Radiographic features of oral cholecystograms of 448 symptomatic gallstone patients: implications for nonsurgical therapy

Peter W. Plaisier*, Koen Brakelb, René L. van der Hul,c, Hajo A. Bruininga

aDepartment of Surgery, bDepartment of Radiology, University Hospital 'Dijkzigt', Erasmus University Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, Netherlands

(Received 15 June 1993; revision accepted 1 October 1993)

Abstract

Since radiographic findings on oral cholecystography (OCG) have implications for the eligibility for nonsurgical therapy of elderly patients, we investigated the OCGs of 448 symptomatic gallstone patients (109 male, 339 female; mean age, 49.8 ± 14 (range, 21–88)). Opacification of the gallbladder was found in 323 cases (72.1%). Calcifications of gallstones were found in 85 opacified gallbladders (26.3%). Solitary and multiple stones were calcified in 35.3% and 18.2%, respectively (P < 0.0005). When divided into two groups (≤40 years and >40 years), there was a significant increase in calcifications (P < 0.02) and a non-significant increase in opacification with increasing age. It is concluded that age is a determinant for calcification of gallstones and not opacification of the gallbladder. Since multiple stones are proportionately observed more in clinical studies than in epidemiologic studies, it is suggested that multiplicity of stones predisposes to biliary complaints. That solitary stones are more likely to be calcified than multiple stones, adds to the hypothesis that solitary and multiple stones have a different pathogenesis. Elderly patients, in whom nonsurgical therapy is most likely to be indicated and cost-effective, are less likely to be suitable for this form of treatment, since age is a determinant for stone calcification.

Key words: Gallbladder, lithotripsy; Gallbladder, radiography; Lithotripsy

1. Introduction

The development of oral cholecystography (OCG) is one of the milestones in the history of roentgenology [1]. OCG has been the unchallenged standard in the diagnosis of gallbladder disease for half a century, but less than five years after the introduction of ultrasonography (US), OCG disappeared almost entirely from clinical practice. The introduction of several nonsurgical treatment modalities for gallstone disease [2–8], resurrected the use of OCG for it can provide information on stone composition and patency of the cystic duct.

We analysed the OCGs of 448 symptomatic gallstone patients for their radiographic features. The aim of this study was twofold. First, we wanted to investigate if age is a determinant of calcification of gallstones and nonopacification of the gallbladder, because this would have implications for the eligibility for nonsurgical therapy of elderly patients. Second, we wanted to investigate to what extent our clinical findings agreed with epidemiologic findings. This paper reports our findings.

2. Patients and methods

In 1988 a surgical outpatient biliary clinic was started. It was especially designed to select patients for alternative treatment modalities for gallstone disease, such as orally administered bile acids [2,3], contact dissolution [4,5], extracorporeal shock wave lithotripsy (ESWL) [6,7] and rotary contact lithotripsy [8].

In the period April 1st, 1988 to April 1st, 1992, 774 patients visited this clinic. All patients were analysed according to protocol: patient’s history, physical examination and (if patients were considered symptomatic) laboratory tests and radiologic examination. Patients were considered symptomatic only, if they had experi-
enced one or more episodes of abdominal pain (usually epigastric or right upper quadrant) lasting more than 15 min but less than 5 h, according to the Roma Working Team definition [9].

Radiologic examination consisted of US and OCG. Calcifications were only recorded in visualised gallbladders, analogously to the GREPCO study [10]. Results of recent examinations done elsewhere, were not repeated and used in this study. An OCG was not performed, when the patient refused a nonsurgical therapeutic option or if previous US examination excluded the patient by our ESWL entry criteria (>10 stones, stones with a diameter <5 mm, common bile duct stones, aneurysms or cysts in the shock wave path and pregnancy) [7].

One-hundred thirteen patients (14.6%) were excluded from OCG, because they had no biliary symptoms. Of the 661 symptomatic patients, 213 patients (32.2%) had no OCG performed because they preferred cholecystectomy. OCG was performed after intake of iocemetic acid the evening before the examination. Intake of Cholebrine® (iocemtic acid) was according to body weight: <60 kg, 3.00 g (1.86 g); 60–90 kg, 4.50 g (2.79 g); >90 kg, 6.00 g (3.72 g). Cholebrine® was taken orally in two steps with an interval of 1 h, with some water, after which the patient was not allowed to eat, drink or smoke. Intake of Cholebrine® was planned in such a way, that fasting time was approximately 12 h.

Due to logistical reasons we were not able to provide repeat doses in the case of nonvisualisation of the gallbladder. However, it has been demonstrated that in patients in whom normal opacification occurs after a repeat dose, the initial dose already gave a faint visualisation of the gallbladder [11]. Therefore, we categorised faint visualisation as opacification being present.

All data were recorded on standardised forms without knowledge of previous examinations. On these standardised forms used for OCG the radiologist recorded whether there was opacification (Yes/No), the number of gallstones (0, 1, 2, 3, 4, 5, 6–10, >10), the diameter of the largest stone (in mm), whether the stones were calcified (Yes/No) and if there was buoyancy (the presence of floating stones, Yes/No). In addition, if present, the sort of calcification (core, rim <2 mm, rim >2 mm, total) was recorded. Finally, in the case the gallbladder did not opacify, whether there was contrast in the small bowels (Yes/No) to determine the patient’s compliance. In the case of nonspherical stones the largest diameter was recorded. Measurements of stone size were corrected for an empirically determined magnification factor of 1.3.

Statistical analysis was done by means of regression analysis, the Chi-square test for trends in proportions, and the test for differences between proportions assuming binomial distributions.

Table 1

<table>
<thead>
<tr>
<th>Feature</th>
<th>No. of patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallbladder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opacification</td>
<td>323</td>
<td>72.1</td>
</tr>
<tr>
<td>Gallstones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcification</td>
<td>85</td>
<td>26.3</td>
</tr>
<tr>
<td>Completely</td>
<td>30</td>
<td>35.3</td>
</tr>
<tr>
<td>Rim ≤ 2 mm</td>
<td>24</td>
<td>28.2</td>
</tr>
<tr>
<td>Rim > 2 mm</td>
<td>13</td>
<td>15.3</td>
</tr>
<tr>
<td>Core</td>
<td>13</td>
<td>15.3</td>
</tr>
<tr>
<td>Not recorded*</td>
<td>5</td>
<td>5.9</td>
</tr>
<tr>
<td>Buoyancy</td>
<td>20</td>
<td>4.5</td>
</tr>
</tbody>
</table>

*OCG performed in another hospital.
Table 2
Distribution of number of stones at oral cholecystography (OCG) and the corresponding findings at ultrasonography (US) in 323 visualised gallbladders of 448 symptomatic patients

<table>
<thead>
<tr>
<th>No. of stones</th>
<th>No. of patients on OCG (%)</th>
<th>No. of patients on US (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>54 (16.7)</td>
<td>18 (5.6)*</td>
</tr>
<tr>
<td>1</td>
<td>102 (31.6)</td>
<td>107 (33.1)</td>
</tr>
<tr>
<td>2</td>
<td>41 (12.7)</td>
<td>41 (12.7)</td>
</tr>
<tr>
<td>3</td>
<td>13 (4.0)</td>
<td>20 (6.2)</td>
</tr>
<tr>
<td>4</td>
<td>12 (3.7)</td>
<td>11 (3.4)</td>
</tr>
<tr>
<td>5</td>
<td>8 (2.5)</td>
<td>23 (7.1)</td>
</tr>
<tr>
<td>6–10</td>
<td>24 (7.4)</td>
<td>27 (8.4)</td>
</tr>
<tr>
<td>>10</td>
<td>57 (17.6)</td>
<td>65 (20.1)</td>
</tr>
<tr>
<td>Not specifically stated</td>
<td>12 (3.7)</td>
<td>11 (3.4)</td>
</tr>
<tr>
<td>Total</td>
<td>323 (90.9)</td>
<td>323 (100.0)</td>
</tr>
</tbody>
</table>

*Grit (concretions < 3 mm), 6; polyps, 4; sludge, 2; adenomyomatosis, 1; passed stones, 5.

OGC also provides information on the functional state of the gallbladder, information which is necessary for several nonsurgical treatment modalities for symptomatic gallstones.

We analysed the radiographic findings of 448 symptomatic gallstone patients. It is one of the largest prospective clinical studies available in the US era. Moreover, these data were double-checked with US in all cases. That different radiologists interpreted the OCGs, probably did not influence results, since it has been demonstrated that there is little inter-observer variability in assessment of visualisation of the gallbladder and opaqueness of gallstones [10].

We found an overall opacification rate of 72.1%, which is comparable with two epidemiologic studies in Italy [10,13]. Although Mujahed et al. found an overall visualisation rate of 91.7%, it must be borne in mind that they used a different OCG regimen [16]: at day 1 of their 2-day examination, 75.2% of the gallbladders opacified which is indeed comparable with our data. We also found that age is not a determinant of visualisation, which was also found by the Rome group [10].

We demonstrated an overall calcification rate of 26.3%, a percentage also largely comparable with the Rome group, which found radiopacity in 29.1% of the cases [10]. It is also in accordance with the clinical impression that radiolucent prevail over radiopaque stones [17]. We found that the elderly are more likely to have calcified gallstones than younger patients, which is in accordance with Bell’s chemical analysis of gallstones [18]. However, unlike Bell and others [19], we, like the GREPICO study, were not able to demonstrate a significant larger calcification rate in men than in women. This is most probably caused by the fact that radiologic studies do not entirely reflect the chemical structure of the gallstones, since not all calcifications are shown at radiography [20]. On the other hand, the discrepancy may be due to selection. Bell found a radiopaqueness in 50% of patients coming to cholecystectomy and in his paper he had already noted that this rate was considerably higher than reported elsewhere [18]. He argued that radiopaque stones were more likely to be detected than radiolucent stones, which was true since his study was performed in the pre-US era. Sutor and Wooley also used gallstones removed at cholecystectomy [19], which possibly explains the difference.

We found that multiple stones prevail over solitary stones in both OCG and US, which is in accordance with the clinical impression [17]. This was also found in another clinical study performed by Brink, who investigated the contents of extirpated gallbladders [21]. Epidemiologic studies, however, demonstrate solitary stones in 40.5–50.9% of the OCGs [10,22] and 45% of the USs [23]. This discrepancy between clinical and epidemiologic studies suggests that multiple stones are more likely to cause biliary symptoms than solitary stones. This impression is in accordance with the findings of the National Cooperative Gallstone Study, where patients with multiple stones had more biliary pain before entering the study and were more likely to develop symptoms during the prospective follow-up [24].

Finally, to our knowledge, we are the first to report on the finding that solitary stones are calcified more often than multiple stones, a finding which adds to the hypothesis that solitary and multiple stones have different etiologies [25].

Our finding that elderly patients are more likely to have calcified gallstones implies that these patients are less likely to profit from nonsurgical therapy. First, because all sorts of calcifications exclude them from oral and contact dissolution therapy [2–3]. Second, because calcifications of >2 mm are contraindicated for ESWL [6,7], and third, because stones with a calcified rim ≤2 mm are even less likely to be cleared with ESWL than noncalcified stones [26]. In contrast to this, is the fact that rotary contact lithotripsy is able to treat all sorts of stones, including calcified ones [8]. However, this form of treatment is invasive and not readily available in most clinics [27].

That elderly patients are less likely to be suitable for nonsurgical therapy is regrettable, since in these patients this form of treatment is most likely to be indicated and cost-effective [28].

5. References

11 Berk RN. The problem of impaired first-dose visualisation of the gallbladder. AJR 1971; 113: 186–188.

