
European Journal of Operational Research 54 (1991) 23-38 23
North-Holland

Theory and Methodology

On the computational complexity
of (maximum) class scheduling

A n t o o n W . J . K o l e n
University of Limburg, P.O. Box 616, 6200 MD Maastricht, Netherlands

L e o G . K r o o n
Erasmus University, P.O. Box 1738, 3000 DR Rotterdam, Netherlands

Received September 1989; revised November 1989

Abstract: In this paper we consider several generalizations of the Fixed Job Scheduling Problem (FSP)
which appear in a natural way in the aircraft maintenance process at an airport: A number of jobs have to
be carried out, where the main attributes of a job are: a fixed start time, a fixed finish time, a value
representing the job 's priority and a job class. For carrying out these jobs a number of machines are
available. These machines can be split up into a number of disjoint machine classes. For each combination
of a job class and a machine class it is known whether or not it is allowed to assign a job in the job class to
a machine in the machine class. Furthermore the jobs must be carried out in a non-preemptive way and
each machine can be carrying out at most one job at the same time. Within this setting one can ask for a
feasible schedule for all jobs or, if such a schedule does not exist, for a feasible schedule for a subset of the
jobs of maximum total value. In this paper we present a complete classification of the computat ional
complexity of two classes of combinatorial problems related this operational job scheduling problem.

Keywords: Scheduling, combinatorial analysis, computational complexity, fixed job intervals

1. Introduction

Between the time of arrival at and the consecutive time of departure from the main airport in the
Netherlands an aircraft must be inspected before being allowed to take off again. If the stochastic elements
are neglected, then such an inspection can be seen as a job being of a certain job class and having a fixed
start time, a fixed finish time and a value representing its priority. The job class of a job is determined by
the type of the corresponding aircraft. Examples of job classes are B747, A310, DC10, etc. The start time
and the finish time of a job might coincide with the time of arrival and the time of departure of the
aircraft, but this is not necessary: a list of maintenance norms is available which can be used for
calculating the start and finish time of each job.

The jobs are carried out by a number of ground engineers. A ground engineer is allowed to carry out a
specific job only if he has a license for the corresponding aircraft type. From the point of view of the

0377-2217/91/$03.50 © 1991 - Elsevier Science Publishers B.V. All fights reserved

24 A. W.J. Kolen, L.G. Kroon / Computational complexity of (maximum) class scheduling

operational management of the engineers it would be optimal if each ground engineer would have a license
for each aircraft type. In that case the engineers could be considered as being qualitatively identical and
consequently each job could be assigned to each of them. However, this is not a practical solution, as a
governmental rule states that each ground engineer is allowed to have two licenses at most.

In principle all the jobs must be carried out. However, jobs with a low priority may also be carried out
at the next stop of the corresponding aircraft at an airport. Hence an operational job scheduling problem
that has to be solved within the described context is the following: Suppose that the number of available
engineers and the combination of licenses of each engineer are known. Then the operational job scheduling
problem asks for a feasible schedule for all the jobs, taking into account the licenses of the engineers, or, if
a feasible schedule for all the jobs does not exist, for a feasible schedule for a subset of the jobs of
maximum total value.

In this paper we study two classes of mathematical problems related to this operational job scheduling
problem. We derive a complete classification of the computational complexity of these classes of problems.
In a forthcoming publication we will address the tactical counterpart of these problems, asking for the
required number and licenses of the engineers. In order to follow the literature on job scheduling the
engineers are addressed as 'machines' in the remainder of this paper.

2. P r o b l e m d e f i n i t i o n

Suppose there are J jobs that have to be carried out. Job j requires continuous processing in the
interval (sj, ~) , has a job class ag and a value vg. As it is sufficient to know for each pair of jobs whether
or not they are overlapping, it may be assumed without loss of generality that the start and finish times of
the jobs are integers (see Kolen, Lenstra and Papadimitriou [11]). Therefore job j can be represented as a
quadruple of integers (sj, ~, aj, Vg). Whenever the values of the jobs are not relevant, for example in a
feasibility problem, then they are omitted from the notation. Throughout this paper we use the notation A
for the number of different job classes and we write T for the integer max{ fj I J = 1, 2 J }.

The jobs must be carried out in a non-preemptive way by a number of machines, each of which is
continuously available. The machines can be split up into a number of disjoint machine classes. The
number of machine classes is denoted by C. For each combination of a job class and a machine class the
feasibility of assigning a job in the job class to a machine in the machine class is represented in the A X C
zero /one matrix L, where the rows of L correspond to the job classes and the columns correspond to the
machine classes. The interpretation of the matrix L is as follows: L,,. = 1 if and only if it is allowed to
assign jobs in job class a to machines in machine class c. Examples of matrices L that are studied
explicitly in the sequel are the following:

L 0 = (1) , L1= 1 ' 1 1

L :(o o 1) L4: 1
- 1 1 ' 1

Z 5

1 0 0)
1 1 0 •

1 1 1

For example, the matrix L 3 represents a situation with 2 job classes and 3 machines classes and where for
a = 1, 2 a job in job class a can be carried out by the machines in the machine classes a and 3. Let the
A × C zero /one matrix L be given. Then the problem of finding a feasible schedule for all the jobs is
called Class Scheduling with respect to L, or CS(L) for short. This problem can be stated more formally as
follows:

A. W.J. Kolen, L. G. Kroon / Computational complexi(v of (maximum) class scheduling 25

Instance of CS(L).
- Jobs (sj, fj, a j) for j = 1, 2 J, that have to be carried out.

C nonnegative integers M 1, M 2 Me., representing the numbers of machines available in the
machine classes 1, 2 C, respectively.

Question Does there exist a feasible non-preemptive schedule for all the jobs?

Note that the matrix L is part of the definition of the problem CS(L) and does not belong to the
instances of the problem CS(L). Therefore we have defined a whole class of combinatorial problems,
indexed by the ze ro /one matrices L.

The problem of finding a feasible schedule for a subset of jobs of maximum total value is called
Maximum Class Scheduling with respect to L, abbreviated as MCS(L). The formal definition of this
problem is as follows:

Instance of MCS(L).
Jobs (s j, ~ , a j, uj) for j = 1, 2 J, that have to be carried out.
C nonnegative integers M~, M 2 M~, representing the numbers of machines available in the

machine classes 1, 2 C, respectively.

Question. What is the maximum total value of a subset of the jobs for which there exists a feasible
non-preemptive schedule?

Again the matrix L does not belong to the instances of the problem MCS(L) but is part of the
definition of the problem MCS(L). Hence we have defined a whole class of combinatorial problems again.
Note that for any matrix L the problem MCS(L) is a generalization of the problem CS(L).

A further generalization of the problems CS(L) and MCS(L) is given by Arkin and Silverberg [1]. In [1]
the assumption is also that all the jobs have a fixed start time and a fixed finish time. However the
assumption in [1] with respect to the feasibility of the assignment of a specific job to a specific machine is
different from ours. In [1] for each job j a subset of the machines Vj is given and it is assumed that job j
can be carried out by the machines in Vj only. The objective is to find a feasible schedule for all the jobs,
In [1] it is shown that this problem is NP-complete. However an algorithm based on Dynamic Program-
ming is presented that can be used for solving in O (J M+~) time the problem of finding a feasible schedule
for a subset of the jobs of maximum total value. Here M denotes the total number of available machines.
This implies that, if the number of machines is fixed, then this optimization problem can be solved in
polynomial time. Note that in our context for job j with job class aj the set ~ can be defined as follows:
V = (machines belonging to those machine classes c with L j, = 1}. Hence for a given matrix L an
instance of the problems CS(L) or MCS(L) can be seen as an instance of the problems in [1]. Therefore
the O(jM +1) time algorithm in [1] can be applied for solving CS(L) and MCS(L) also.

Similar problems were studied by several authors. Dondeti and Emmons [4] and [5] prove that CS(L 1)
and CS(L2) can be solved in polynomial time. They also show that for the matrices L~ and L 2 the tactical
problem asking for the required number of machines in each machine class can be solved in polynomial
time. Furthermore in [5] the computational complexity that is introduced by limited availability of the
machines is studied. Kolen, Lenstra and Papadimitriou [11] describe a situation with A job classes and A
machines classes, where a job in job class a can be carried out by a machine in machine class c if and only
if a _< c. This corresponds in our setting to an A × A upper triangular matrix L. Complexity results are
presented which show that for this kind of matrices L the problem CS(L) is NP-complete if and only if
A >_ 3. Kolen and Kroon [10] study a situation with A job classes, where each machine has exactly B
licenses. One of the main results in [10] is that the feasibility problem is NP-complete if and only if
1 < B < A. Problems similar to the problems CS(L) and MCS(L) but in the context of the assignment of
classes to classrooms at high schools and universities are studied by Carter and Tovey [2].

26 A.W.J. Kolen, L.G. Kroon / Computational complexity of (maximum) class scheduling

All the mentioned problems are generalizations of the well known Fixed Job Scheduling Problem (FSP)
which has been studied by many authors such as Dantzig and Fulkerson [3], Gertsbakh and Stern [8] and
Gupta, Lee and Leung [9]. FSP is a feasibility problem where it is allowed to assign each of the jobs to
each of the machines. That is, in our setting FSP can be described as CS(L0). The following result, which
will be used in the sequel, gives a necessary and sufficient condition for the existence of a feasible schedule
for an instance of FSP:

Lemma 1. For an instance of FSP a feasible schedule for all the jobs exists i f and only if the maximum job
overlap is less than or equal to the number of available machines.

Here the job overlap in the interval (t - 1, t), denoted by Rt, is defined as follows:

R , = I (j l s j _< t - 1 and t < f j } l-

That is, the job overlap is equal to the number of jobs that should be carried out in the time interval
(t - 1, t). The maximum job overlap R is defined as:

R = m a x(R , It = 1, 2 T } .

As FSP is equivalent to CS(L0) and calculating the maximum job overlap is easy, the problem CS(Lo)
can be solved in polynomial time. More specific, it is well known that the problem CS(Lo) can be solved in
O (J log J) time. This is optimal as follows from a result of Fredman and Weide [6]. It is also well known
(Arkin and Silverberg [1], Kolen Lenstra and Papadimitriou [11]) that MCS(L0) can be solved by finding a
Minimum Cost Flow in a network with O (J) nodes and O (J) arcs. Hence MCS(L0) can be solved in
polynomial time also.

3. Preliminary remarks with respect to L

In the Sections 4 and 5 a complete classification of the computational complexity of the problems
CS(L) and MCS(L) will be presented. An important tool in this classification is Lemma 2, which relates
the complexities of two problems to each other. This Lemma can be proved by applying an evident
reduction and therefore the proof is omitted.

Lemma 2. Let L x and L~ be A x x C x and Ay x Cy zero~one matrices respectively. Suppose that, after the
application of row or column permutations, L x is a submatrix of Ly. Then the following statements hold:
- I f CS(L~) is NP-complete, then CS(Zy) is NP-complete too.
- I f MCS(Lx) is NP-hard, then MCS(Ly) is NP-hard too.

Furthermore it is clear that a complete row or a complete column of zeros in the matrix L is not
interesting. A row of zeros corresponds to a job class that cannot be assigned to any machine class and a
column of zeros corresponds to a machine class that is not allowed to carry out any jobs. Two identical
rows or two identical columns in the matrix L are not interesting either. If, for example, the matrix L
contains two identical rows, then this means that the corresponding job classes are equivalent and hence it
makes no sense to distinguish between them. Finally it is clear that applying row or column permutations
to the matrix L does not change the complexity of CS(L). Hence if the matrix L can be written as

by applying row or column permutations, then the complexity of the problem CS(L) is completely
determined by the complexity of the problems CS(L x) and CS(Ly). More specific: the problem CS(L) can
be solved in polynomial time if and only if both problems CS(L x) and CS(Ly) can be solved in polynomial

A.W.J. Kolen, L.G. Kroon / Computational complexity of(maximum) class schedufing 27

time. If at least one of the problems CS(L x) or CS(Ly) is N P-complete, then CS(L) is N P-complete also.
Analogous results also hold with respect to MCS(L). These considerations lead to the following definition:

Def in i t ion . An A x C ze ro /one matrix L is called reducible if at least one of the following conditions is
satisfied:
- L contains a complete row or a complete column of zeros.
- L contains two identical rows or two identical columns.
- By applying row or column permutations L can be written as

[L° 1 L = 0 L, "

If none of these conditions is satisfied, then the matrix L is called irreducible.

Note that the matrices L 0, L 1, L2, L3, L 4 and L s which were defined in Section 2 are all irreducible.
Now it is clear that a classification of the computational complexity of the problems is the set {CS(L) I L
is an irreducible ze ro /one matrix} implies a classification of the computational complexity of the
problems in the set { C S (L) I L is any ze ro /one matrix} and that the same holds with respect to the
problems MCS(L). Therefore we can restrict our attention to irreducible matrices L. In the following
sections the NP-completeness results are established by a reduction from Numerical Three Dimensional
Matching (= N3DM). This problem is defined as follows (Garey and Johnson [7]):

Ins tance of N 3 D M .
- Integers t, d and a,, b,, and c, for i = 1, 2 t, satisfying the following relations:

~ (a i + b , + c i)= td ,
i--1

and

O < a , , b , , q < d for i = 1 , 2 t.

Q u e s t i o n . Is it possible to find permutations p and o of {1, 2 t } which are such that:

a i+bp~,l+cou)=d f o r i = l , 2 t.

It is well known that N3DM is NP-complete. Therefore any problem in NP that is more general than
N3DM is NP-complete also.

4. C o m p l e x i t y of M C S (L)

In this section we derive a classification of the computational complexity of the problems MCS(L) . In
this classification we pay attention to irreducible matrices L only. The main theorem in the classification is
Theorem 3 which reads as follows:

Theorem 3. Let L be an irreducible zero~one matrix. Then the problem MCS(L) is NP-hard if and only if L
has at least 2 columns.

The 'only W-part of this theorem can be proved by noting that, if the irreducible matrix L has only 1
column, then it must be the matrix L 0. As MCS(L0) can be solved in polynomial time, the 'only if '-part of
Theorem 3 is clear. On the other hand, if the irreducible matrix L has at least 2 columns, then, after

28 A. W.J. Kolen, L.G. Kroon / Computational complexity of(maximum) class scheduling

apply ing row or column permutat ions , it contains the matr ix L~ as a submatr ix. Therefore the ' i f ' -pa r t of
Theorem 3 follows f rom the following theorem and L e m m a 2:

Theorem 4. MCS(L1) is NP-hard.

Proof. This theorem is proved by a reduction f rom N 3 D M . Let 11 be an instance of N 3 D M conta ining
integers t, d and a,, b i and c, for i = 1, 2 t. Then the following quanti t ies can be defined:

A,:=i for i = 1 , 2 t,

Bj:=t+j for j = 1, 2 t,

Xis :=2 t+(i - 1) t+ j f o r / , j = 1 , 2 t,

S : = t 2 + 2t,

T : = S + 2 d + I .

Note that the numbers Ai, B s and X,j are all different for i, j = 1, 2 t. Now an instance 12 of
MCS(L~) can be constructed as follows: there are t machines in machine class 1 and t 2 - - t machines in
machine class 2. Fur the rmore the following jobs have to be carried out:
Jobs in job class 1:

(0, A~) f o r i = l , 2 t,

(S + d - c k, T) f o r k = l , 2 t,

Jobs in job class 2:

t - 1 t i m e s (0 , Bj) f o r j = l , 2 t,

(A i, X,j) f o r / , j = l , 2 t,

(Bj , Xis) f o r / , j = l , 2 t,

(X , / , S+a i+b i) for i, j = l , 2 t,

(S + a +bs, T - l) f o r / , j = l , 2 t,

t 2 - t times (T - 1, T) .

The value of a job is equal to it 's length (that is: vj = f j - sj). Figure 1 gives an example of an instance
12 of MCS(L1) that has been constructed f rom an instance 11 of N 3 D M . In this example 11 is a
yes-instance and in 12 there exists a feasible schedule for a subset of the jobs which is such that all the
machines are occupied uninterruptedly. Now we will show for the general case that 11 is a yes- instance if
and only if in 12 the m a x i m u m total value of the jobs for which a feasible schedule exists is equal to t2T.
The latter is equivalent to the fact that the schedule is such that all the machines are occupied
uninterruptedly during the interval (0, T).

Suppose that there exists a feasible schedule for a subset of the jobs which is such that all the machines
are occupied uninterruptedly during the interval (0, T). As there are exactly t 2 jobs that start at 0, all of
them must be carried out. Therefore the job (0, A,) in job class 1 is carried out by a machine in machine
class 1 and it is followed directly by one of the jobs (A~, X, j) in job class 2. This s ta tement holds for
i = 1, 2 t. Now machine class 1 is occupied complete ly in the interval (0, 1). Therefore the t - 1 jobs
(0, Bs) in job class 2 are carried out by machines in machine class 2 and each of them is followed directly
by one of the jobs (Bj, X,s) in job class 2. This s ta tement holds for j = 1, 2 t.

As there are exactly t 2 jobs that finish at 7", all of them must be carried out. The jobs (S + d - c k, T) in
job class 1 are carried out by machines in machine class 1. Therefore machine class 1 is occupied
complete ly in the interval (T - 1 , T) and hence the jobs (T - 1 , T) in job class 2 are carried out by
machines in machine class 2.

A.W.J. Kolen, L.G. Kroon / Computational complexity of (maximum)class scheduling 29

machine class 1
t machines

machine class 2 ~ j k L _ * ~ _ _ b A T ~ I ~
t(t-1) machines 0~---~--]XI2 i IS+al+b2 T'I'~ I

B X i S÷a ÷b 1 T - i

t o _1"~ _xa3 s,aa*ba T-1L]
[] = lob c l a s s 1

{-~ = lob class 2 ~ ~ • - i
0 t 2t S T

Figure 1

As all the machines must be occupied uninterruptedly and the jobs X,j, S + a, + bj) are the only jobs
which have an overlap with the interval (S, S + 1), all these jobs must be carried out. Therefore we get
schedules of the form

(0, A i) (A *, X,I)(X O, S +a , +bj)

on machines in machine class 1, where each i occurs exactly once and we get schedules of the form

(0, B ,) (Bj , X, ,) (Xij, S + a, + bj)

on machines in machine class 2, where each j occurs exactly t - 1 times. Hence among the jobs
(X,,, S + a, + b/) that are carried out by machines in machine class 1 each i and each j occurs exactly
o n c e .

Fur thermore on machines in machine class 1 a job (X,,, S + a i + b~) in job class 2 is followed by a job
(S + d - c k, T) in job class 1 in such a way that S + a, + bJ = s + d - ca, which also means that
a, + b j+ c k = d. So if we define p (i) = j and o (i) = k, whenever job (X,j, S + a, + b/) is combined with
job (S + d - c k, T), then p and o are the required permutat ions for 11.

Conversely, given a feasible solution for 11, the construct ion can be reversed to find in 12 a feasible
schedule for a subset of the jobs of total value equal to t2T, which is clearly optimal. Note that the jobs
(S + a, + b/, T - 1) in job class 2 can be used to fill the 'gap ' on the machines in machine class 2
completely. Hence 11 is a yes-instance if and only if in] 2 the maximum total value of the jobs for which a
feasible schedule exists is equal to t2T. It follows that M CS(L 1) is NP-hard. []

Figure 1 gives an example of an instance 12 of M C S (L]) that has been constructed from an instance 1 l
of N 3 D M as described in the proof of Theorem 4.

In 11 we have t = 3 and d = 1 2 . Fur thermore we have (a I, a 2, a 3) = (3 , 4 , 6) , (b I, b 2, b 3) = (5, 3, 7)
and (q , c> c) = (5, 2, 1). Note that 1~ is a yes-instance, as

a] + / 9 3 + c 2 = a 2 + b 2 + c 1 = a 3 + b 1 + c 3 = 12 .

Figure 1 shows that there exists a feasible schedule for a subset of the jobs which is such that all the
machines are occupied uninterruptedly.

5. Complexity of C S (L)

The aim of this section is to provide a complete classification of the computa t ional complexity of the
problems CS(L) . In this classification we pay attention to irreducible matrices L only, as the general case
can be deduced from this easily using the remarks in Section 3. The main theorem in this classification is
Theorem 5 which reads as follows:

30 A. W.J. Kolen, L.G. Kroon / Computational complexity of (maximum) class scheduling

Theorem 5. Let L be an irreducible zero/one matrix. Then the problem CS(L) is NP-complete if and only i f
L has at least 3 columns.

The proof of this theorem is rather long and has been split up into several parts therefore. In order to
prove Theorem 5 we adopt the following strategy: First the problem CS(L2) will be shown to be
polynomially solvable. As L z is, apart from row or column permutations, the greatest irreducible matrix
with at most 2 columns, this proves the 'only if '-part of Theorem 5. This part of the proof of Theorem 5
can be found in subsection 5.1. Next the problems CS(L3), CS(L4) and CS(Ls) will be shown to be
NP-complete. This part of the proof of Theorem 5 is described in subsection 5.2. Finally it will be shown
that the problem CS(L) can be reduced from at least one of the problems CS(L3), CS(L4) or CS(L5) , if
the matrix L is irreducible and has at least 3 columns. This proves the ' i f ' -par t of Theorem 5. This part of
the proof of Theorem 5 is described in subsection 5.3.

5.1. Complexity of CS(L2)

In this subsection we will prove that CS(L 2) can be solved in polynomial time. Let I be an instance of
CS(Lz) consisting of a set of jobs in 3 job classes and two integers M 1 and M 2 representing the numbers
of available machines in the two machine classes. Using the result of Lemma 1 necessary conditions for the
existence of a feasible schedule can be derived as follows. If we define R~, to be the job overlap of the jobs
in job class a in the interval (t - 1, t) for a = 1, 2, 3, and t = 1, 2 T, then these conditions can be
stated as

R I , < M a for t = l , 2 T, (1)

R 2 , < M 2 for t = 1, 2 T, (2)

R l t + R 2 , + R 3 t < M 1 + M 2 for t = 1 ,2 T. (3)

In the remainder of this subsection we assume that these conditions hold. Note that for t = 1, 2 T, we
can add M~ + M 2 - R~, - R2, - R 3 t dummy jobs in job class 3 in the interval (t - 1, t) to the set of jobs of
I without changing the feasibility of I. Therefore the inequalities (3) can be replaced by the equalities (4):

R , t + R z , + R 3 , = M , + M 2 , for t = l , 2 T. (4)

Next we construct the following network N with O (J) nodes and O (J) arcs. N contains the nodes
{ t I t = 0, 1, 2 , . . . , T }. For each job j in job class 1 we have an arc from node sj to node fj. The lower and
upper capacity of such an arc are both equal to 1. For each job j in job class 3 we have an arc from node
sj to node fj. The lower capacity of such an arc is equal to 0 and the upper capacity is equal to 1. Now the
following lemma holds:

Theorem 6. There exists a feasible schedule for 1 if and only if there exists a compatible flow of M 1 units from
node 0 to node T in the network N.

Proof. Suppose that there exists a feasible schedule for I. Then we can assign 1 unit of flow to each arc in
N corresponding to a job that is carried out by a machine in machine class 1. The equalities (4) guarantee
that all machines, and in particular the machines in machine class 1, are continuously busy. Therefore the
jobs that are carried out by one machine in machine class 1 represent 1 unit of flow from node 0 to node
T. As there are M 1 machines in machine class 1, this gives a flow of M1 units from node 0 to node T. It is
evident that this flow is compatible with all the capacity constraints.

Conversely, suppose that there exists a compatible flow of M 1 units from node 0 to node T. Then a
feasible schedule for I can be constructed as follows: the jobs corresponding to an arc containing 1 unit of
flow are carried out by machines in machine class 1 and the other jobs are carried out by machines in
machine class 2. Note that the definition of N guarantees that each job in job class 1 is carried out by a
machine in machine class 1 and that none of the jobs in job class 2 is carried out by a machine in machine

A.W.J. Kolen, L.G. Kroon / Computational complexi(v of (maximum) class scheduling 31

class 1. For t = 1, 2 T, we have M 1 units of flow across the cut ((0 t - 1), (t T)}. Therefore
the job overlap of the jobs that have to be carried out by the machines in machine class 1 is equal to M 1.
Hence Lemma 1 implies that there exists a feasible schedule for these jobs. According to the equalities (4),
the job overlap of the jobs that are not carried out by the machines in machine class 1 is equal to M 2.
Hence Lemma 1 implies that there exists a feasible schedule for these jobs on machine class 2. []

Lemma 6 implies that CS(L2) can be solved in polynomial time, as the existence of a compatible flow
of M1 units from node 0 to node T in the directed network N can be checked in polynomial time (see
Gondran and Minoux [9]). The same result has also been obtained by Dondeti and Emmons [5]. They use
almost the same construction.

5.2. Complexity of CS(Ls), CS(L4) and CS(Ls)

In this subsection we prove the NP-completeness of the problems CS(L3) , CS(L4) and CS(Ls). The
NP-completeness of these problems is proved by a reduction from N3DM. In Theorem 10 the problem
CS(L3) is proved to be NP-complete. As the proof of this theorem is rather complex, it is preceded by
several lemmas. These lemmas deal with a scheduling problem which is a generalization of FSP. In this
scheduling problem the job classes and the machine classes are the same as in CS(L3). However the
machines are not available over the whole interval (0, T). An instance of this scheduling problem is given
by:

- Nonnegative integers T t, T 2 and t.
- 2t integers B~, E 1, B 2, E 2 B,, E,, with

Tj = Bt < E1< B2 < E2 < . . . < B < E t = T 2.

- t 2 - t machines in machine class 1. For j = 1, 2 t, there are t - 1 machines available in the
interval (T 1, E/).

- t 2 - t machines in machine class 2. For j = 1, 2 t, there are t - 1 machines available in the
interval (Bj, T 2).

- t machines in machine class 3. These machines are available in the interval (7"1, T 2).
- t 2 jobs (T l, ~) in job class 1. This set of jobs can be partitioned into t subsets V 1, V 2 V, each one

containing t jobs, where for j = 1, 2 t, a job in ~ has a finish time greater than Bj and less than Ej.
- t 2 jobs (S]' T2) in job class 2. This set of jobs can be partitioned into t subsets W 1, W 2 W, each

one containing t jobs, where for j = 1, 2 t, a job in Wj has a start time greater than B] and less than
E,.

The question is of course, whether or not there exists a feasible schedule for all the jobs. Figure 2 gives
an example of an instance of this scheduling problem with t = 3. The instance in Figure 2 is a yes-instance.

Suppose that there exists a feasible schedule for all the jobs. As all the jobs in job class 1 are
overlapping, all these jobs are scheduled on different machines. As the maximum number of available
machines in machine class 1 is t 2 - t, exactly t of the jobs in job class 1 are scheduled on machines in
machine class 3. The same is true for the jobs in job class 2. Therefore each machine in machine class 3 is
carrying out exactly 1 job in job class 1 and 1 job in job class 2. More details with respect to the
distribution of the jobs are derived in the Lemmas 7, 8 and 9:

Lemma 7. Let p be f ixed with 1 < p < t. Then the following statements hold:

(i) the number of jobs in the sets Vq with p < q which are scheduled on a machine in machine class 3 is
greater than or equal to t - p + 1,

(ii) the number of jobs in the sets Wq with p < q which are scheduled on a machine in machine class 3 is

greater than or equal to t - p + 1.

32 A. W.J. Kolen, L.G. Kroon /Computational complexity of(maximum)class scheduling

= Idle

machine class 1 1
t(t-1) machines 2

machlnsc,ees2
t(t-1) machines ~ - - ~

machine class 3
t machines

131 E1 132 E 2 133 E 3

Figure 2

Proof . (i) There are t (t - p + 1) j o b s in the sets Vq with p < q. As the finish t imes of these j o b s are greater
than Ep_ 1, these j obs cannot be scheduled on a machine that is avai lable in (7"1, Er) with r < p . There fore
at most (t - 1)(t - p + 1) machines in machine class 1 are avai lable for car ry ing out these jobs . Hence at
least

t (t - p + l) - (t - 1) (t - p + l) = t - p + l

j o b s in the sets Vq with p < q are scheduled on a mach ine in machine class 3.
(ii) As the finish t ime of a j o b in Vq exceeds the s tar t t ime of a j o b in W r if q > r, a j o b in Vq can on ly be

c o m b i n e d with a j o b in W~ on a machine in machine class 3 if q < r. []

Lemma 8. Let p be f i x e d with 1 < p < t. Then the following statements hold:
(i) the number o f jobs in the sets Wq with q < p which are scheduled on a machine in machine class 3 is

greater than or equal to pj

(ii) the number o f jobs in the sets Vq with q < p which are scheduled on a machine in machine class 3 is

greater than or equal to p.

Proof . (i) There are tp j obs in the sets Wq with q < p . As these j o b s s tar t before Bp+l, these j o b s canno t be
scheduled on a machine that is avai lable in (B r, 7"2) with p < r. Therefore at most (t - 1)p machines in
machine class 2 are avai lable for car ry ing out these jobs . Hence at least tp - (t - 1)p = p j o b s in the sets
Wq with q < p are scheduled on the set of machines in mach ine class 3.

(ii) As the finish t ime of a j o b in V r exceeds the start t ime of a j o b in Wq if r > q, a j o b in Wq can only be
combined with a j o b in V~ on a machine in machine class 3 if r < q. []

Lemma 9. Let p be f i xed with 1 < p < t. Then the following statements hold:
(i) exactly 1 job in Vp is scheduled on a machine in machine class 3;

(ii) exactly 1 job in W e is scheduled on a machine in machine class 3;
(iii) the job in Vp that is scheduled on a machine in machine class 3 and the job in We that is scheduled on a

machine in machine class 3 are scheduled on the same machine.

Proof . (i) Accord ing to L e m m a 7 at least t - p + 1 j o b s in the sets Vq with p_< q are scheduled on a
machine in machine class 3. Accord ing to L e m m a 8 at least p j o b s in the sets Vq with q < p are scheduled
on a machine in machine class 3. Hence if non of the j o b s in Vp would be scheduled on a mach ine in

A. W.J. Kolen, L.G. Kroon / Computational complexiO" of (maximum) class scheduling 33

machine class 3, then at least p + (t - p + 1) = t + 1 jobs in the sets Vv with q 4=p would be scheduled on
machine class 3. However this is impossible as all the jobs in job class 1 are overlapping. Therefore at least
1 job in Vp is scheduled on a machine in machine class 3. There cannot be more than 1 such job as
otherwise the job overlap of the jobs on machine class 3 would be greater than t.

(ii) This statement can be proved in the same way as statement (i).
(iii) This statement follows from the fact that a job in V u can only be combined with a job in W r if q _< r.

Therefore the job in V, that is scheduled on a machine in machine class 3 is combined with a job in W,, the
job in V, ~ that is scheduled on a machine in machine class 3 is combined with a job in W, 1, etc. []

Theorem 10. CS(L3) is NP-cornplete.

Proof. This theorem is proved by a reduction from N3DM. Hence let 11 be an instance of N 3 D M
containing integers t, d and a,, b i and c, for i = 1, 2 t. Then the following quantities can be defined:

X , : = t + i for i = 1 , 2 t,

Y~:=3t+3dj for j = l , 2 t,

Z k : = 3 t + 3 d + 3 d t + k f o r k = l , 2 t,

T : = 6t + 3 d + 3dr.

Now an instance 12 o f CS(L3) can be constructed as follows: there a r e t 2 - t machines in machine class
1, t 2 - t machines in machine class 2 and t machines in machine class 3. Fur thermore the following jobs
have to be carried out:
Jobs in ,job class" 1:

t2 t i m e s (T - t , T) ,

(t, X,) f o r i = l , 2 t,

t - 1 t imes (0 , X,) f o r i = l , 2 t,

t - l t i m e s (Y ~ + 2 d , T - t) for j = 1, 2 t,

(X, , r , + a , + b ,) f o r / , j = l , 2 t.

Jobs in job class 2:

t 2 times (0, t) ,

(Z k, T - t) f o r k = l , 2 t,

t - 1 t i m e s (Z k, T) f o r k = l , 2 t,

t - 1 t i m e s (t , Y/) f o r j = l , 2 t,

(Y j + d - - c k , Zk) f o r j , k = l , 2 t.

Figure 3 gives an example of an instance 12 of CS(L 3) that has been constructed from an instance I~ of
N 3 D M . In this example both 11 and 12 are yes-instances. Now we will show for the general case that 11 is
a yes-instance if and only if 12 is a yes-instance.

Suppose that 12 is a yes-instance. Then the jobs (0, t) in job class 2 fill up the machine classes 2 and 3
in the interval (0, t). Therefore the jobs (0, X,) in job class 1 are carried out by machines in machine class
1. This implies that the jobs (t, X,) in job class 1 must be carried out by machines in machine class 3 and
that the jobs (t, ~) in job class 2 are carried out by machines in machine class 2.

The jobs (T - t , T) in job class 1 fill up the machine classes 1 and 3 in the interval (T - t , T).
Therefore the jobs (Z k, T) in job class 2 are carried out by machines in machine class 2. This implies that
the jobs (Z k, T - t) in job class 2 are carried out by machines in machine class 3 and that the jobs
(Yj + 2d, T - t) in job class 1 are carried out by machines in machine class 1.

34 A. W.J. Kolen, L G. Kroon /Computational complexity of(maximum)class scheduling

All the jobs (X,, Yj + a i + bj) in job class 1 have an overlap with the interval (2t, 3t). Therefore these
jobs are all carried out by different machines. This implies that t of these jobs are carried out by machines
in machine class 3 and that the other t 2 - t are carried out by machines in machine class 1. An analogous
reasoning can be applied to show that t of the jobs (Yj + d - c k, Zk) in job class 2 are carried out by
machines in machine class 3 and that the other t 2 - t are carried out by machines in machine class 2.

In the interval (0, 2t) the total available machine time is equal to 2t(2t 2 - t). In the same interval the
total required machine time is also equal to 2t(2t 2 - t). Therefore in the interval (0, 2t) all the machines
are occupied uninterruptedly. This holds in particular for the machines in machine class 3.

As the jobs (t, Xi), among which each i occurs exactly once, are carried out by machines in machine
class 3, among the jobs (X,, Yj + ai + bj) on machine class 3 each i occurs exactly once. (5)

In the same way it can be proved that, among the jobs (Yj + d - ck, Zk) on machine class 3 each k
occurs exactly once. (6)

Now the following definitions are used:

T~ := 3t + 3d ,

T 2 := 3t + 2d + 3dr,

Bj := Yj for j = 1, 2 t,

Ej := Yj + 2d for j = 1, 2 , . . . , t,

V j : = ((X i , Y j + a , + b j) [i = l , 2 t) for j = 1, 2 , . . . , t,

W j : = { (Y j + d - c k , Z k) l k = l , 2 t) for j = 1, 2 t,

These definitions create an instance of the situation that was described in the Lemmas 7, 8 and 9. This
can be checked easily. From Lemma 9 and (5) it follows that among the jobs (X , Yj + a i + bj) on machine
class 3 each i and each j occurs exactly once. Therefore a permutat ion p of the set {1, 2 t) can be
defined by: p (i) : = j if the job (X,, Yj + ai + bj) is scheduled on a machine in machine class 3.

Furthermore, using Lemma 9 and (6) it can be concluded that among the jobs (Yj + d - c k, Zk) on
machine class 3 each j and each k occurs exactly once. Therefore a permutat ion z of the set (1, 2 , . . . , t }
can be defined by: z (j) : = k if the job (~ + d - c ~ , Zg) is scheduled on machine class 3. Hence if the
permutation o of the set (1, 2 t) is defined by: o := r o 0, then it follows from Lemma 9 that for each i
job (X i, Yp~i) + ai + bp,)) is combined with job (Yo(i) + d - co~,), Zo(i)) on a machine in machine class 3.

Therefore it follows that a, + bo~) <_ d - co(~), for i = 1, 2 t. As E~=l(a~ + b~ + c~) = td, it follows
that these inequalities are equalities in fact. Therefore the permutations 0 and o are the required
permutations of the set (1, 2 , . . . , t } and hence/1 is a yes-instance.

Conversely, given a feasible solution for 11, the construction can be reversed to find a feasible schedule
for 12. It follows that 11 is a yes-instance if and only if I z is a yes-instance. As it is clear that CS(L3)
belongs to NP and it is well known that N 3 D M is NP-complete, it follows that CS(L3) is NP-complete
also. []

Figure 3 gives an example of an instance 12 of CS(L3) that has been constructed from an instance 11 of
N3DM. In 11 we have t = 3 and d = 6. Furthermore we have (a , a 2, a 3) = (1, 2, 2), (bl, b2, b3) = (3, 1, 2)
and (c 1, c2, c3) = (4, 2, 1). Note that 11 is a yes-instance, as

a 1 + b 2 + c I = a 2 + b 1 + c 3 = a 3 + b 3 + c 2 = 6

The figure shows that there exists a feasible schedule for all the jobs.
Next we will prove that the problems CS(L4) and CS(Ls) are NP-complete. These proofs are essentially

the same as the proof of Theorem 10, especially the combinatorial argument. Therefore the details of the
proofs have been omitted, as they can be found in the proof of Theorem 10. Although the definition of the
jobs might have been simplified we have defined the jobs as much as possible the same as in the proof of
Theorem 10.

A.W.J. Kolen, L,G. Kroon / Computational complexity of(maximum) class scheduling 35

machine class 1
t(t-1) machines

machine class 2
t(t-1) machines

machine class 3
t machines

2t 1"1 T z T

[] = jobc lass 1 [] = j o b c l a s s 2 ~ = idle

Figure 3

Theorem 11. CS(L4) is NP-complete.

Proof. The notation in this proof is the same as in the proof of Theorem 10. Let I~ be an instance of
N3DM containing integers t, d and a i, bi and c, for i = 1, 2 t. Then an instance 12 of CS(L4) can be
constructed as follows: There are t 2 - t machines in machine class 1, t 2 - t machines in machine class 2
and t machines in machine class 3. Furthermore the following jobs have to be carried out:
Jobs in job class 1:

t - 1 t imes(0 , X,), f o r i = l , 2 t,

t - 1 t i m e s (~ + 2 d , T) , f o r j = l , 2 t,

Jobs in job class 2:

t - 1 t imes(0 , ~) , f o r j = l , 2 t,

t - 1 t i m e s (Z , , T) , f o r k = l , 2 t,

Jobs in job class 3:

(0. X,), f o r i = l , 2 t,

(Z k, T) , f o r k = l , 2 t,

(X, , ~ + a i + b j) , f o r i , j = l , 2 t,

(~ + d - c , , Z ,) , for j , k = l , 2 t.

Now we will prove that I] is a yes-instance if and only if 12 is a yes-instance. Suppose that I z is a
yes-instance. Then it is clear that the jobs in job class 1 are carried out by machines in machine class 1 and
that the jobs in job class 2 are carried out by machines in machine class 2. Now the machines classes 1 and
2 are completely occupied at the beginning and at the end of the interval (0, T) and therefore the jobs
(0, Xj) and (Z , , T) in job class 3 are carried out by machines in machine class 3. As all the jobs
(X,, Ys + ai + bJ) in job class 3 have an overlap in the interval (2t, 3t) with all the jobs (0, Yj) in job class
2, it follows that the jobs (X,, Yj + a~ + bj) are carried out by machines in the machine classes 1 and 3. As
all the jobs (Yj + d - c k, Z,) in job class 3 have an overlap in the interval (3t + 3dt + 2d, 3t + 3dt + 3d + 1)
with all the jobs (Yj + 2d, T) in job class 1, it follows that the jobs (Yj + d - c , , Zk) are carried out by

36 A.W.J. Kolen, L.G. Kroon /Computational complexity of(maximum)class scheduling

machines in the machine classes 2 and 3. Therefore the distribution of the 'essential ' jobs in this instance
of CS(L 4) is the same as the distribution of the 'essential' jobs in the instance of CS(L3) that was created
in the proof of Theorem 10. Hence the same combinatorial argument as in the proof of Theorem 10 can be
used to show that 11 is a yes-instance.

Conversely, if I~ is a yes-instance, then the construction can be reversed to find a feasible schedule for
12. Therefore 11 is a yes-instance if and only if 12 is a yes-instance. As is it clear that CS(L4) belongs to NP
and it is well known that N3DM is NP-complete, it follows that CS(L4) is NP-complete too. []

Theorem 12. CS(Ls) is NP-complete.

Proof. This theorem has been proved by Kolen, Lenstra and Papadimitriou [12]. However, this theorem
can also be proved by applying the proof of Theorem 11. One only has to note that in the proof of
Theorem 11 the machines in machine class 1 are completely occupied at the beginning and at the end of
the interval (0, T). Hence although in CS(Ls) it is allowed to schedule the jobs in job class 2 on machine
classes 1 or 2, they are scheduled on machine class 2 only. Therefore the situation is analogous to the
situation in the proof of Theorem 11. Further details of this proof are omitted. []

5.3. Completion of the proof of Theorem 5.

In this subsection the proof of Theorem 5 is completed by linking the results of the Theorems 6, 10, 11
and 12 together. The required connections between these results are provided by the Lemmas 2, 13 and 14.

In this subsection the following notation is used: For job class a the set C, denotes the set of machine
classes that can be used for carrying out jobs in job class a. That is: (7. = { c I L.c = 1 }.

[,emma 13. Let L be an irreducible A X C matrix with the property that for all job classes a and b we have:

(c,, n c,, ((c . c c co)) .

Then the following statements hold:
(i) for every job class a there is a job class a' with C,, c C, and I C,, [= 1,

(ii) there exists a job class a with (2, = {1, 2 C}.

Proof. (i) Let a be a job class. Then either we have

Vb((C, n c

or we have

The latter condition implies Cb c C, and in that case we can continue with the job class b. By repeating
this argument several times we will find a job class a ' with

Vb((Co. n = e)v (c , c

Now we will show that a ' contains exactly one element. Choose c, d ~ C,, and let b be a job class. If
(2,, n Ch =t~, then Lb, = Lhd = 0, and if C,, c Ch, then Lh, = Lbd = 1. Hence the columns c and d are
identical. As the matrix L is irreducible it follows that c = d and therefore I C,, I = 1.

(ii) Analogously as above we can find a job class a with

Vb((Co n C, = e)v(c c c .)) .

A. W.J. Kolen, L.G. Kroon / Computational complexity' of (maximum) class scheduling 37

However , if there exists a j o b class b with C, ¢~ C h = fl, then the matr ix L can be t r ans fo rmed into b lock

d iagonal form with at least two blocks and hence it is reducible. This con t rad ic t ion impl ies that

V b (C h c C,,). As L does not conta in a comple te co lumn of zeros, it follows that C, = { 1, 2 C }. []

L e m m a 14. I f L is an irreducible matr ix with at least 3 columns, then after a suitable permuta t ion o f the rows

and the columns, it contains at least one o f the matrices L 3, L 4 or L 5 as a submatr ix .

Proof. The fol lowing two cases can be dis t inguished:
Case 1. There exist j o b classes a and b such that

(C, r~ C~ * ~)A(C. ¢ C~)A(C~ ¢ C,,).

Now the columns of L can be rearranged in such a way that the rows of L corresponding to the job classes
a and b are as follows:

a { O 0 . . . 0 1 1 . . . 1 0 0 . . . 0 1 1 . . . 1~

b t O 0 . . . 0 0 0 . . . 0 1 1 . . . 1 1 1 . . . 1]"

In this case, af ter a sui table pe rmuta t ion of the rows and the columns, L conta ins L 3 as a submatr ix ,
Case 2. F o r all j o b classes a and b we have

(C r~ C A . ~) ~ ((C c C~)V(C~ c (7,,)).

Accord ing to L e m m a] 3 there is a j o b class r that can be carr ied out by all the mach ine classes. N o w there
must be at least two other j o b classes a and b, as otherwise L would conta in 2 ident ical columns. Aga in 2
cases can be dis t inguished:

Case 2a. C,, (3 Ct, = ~ . Accord ing to L e m m a 13 there are j o b classes a ' and b ' , which can be car r ied out
by exact ly 1 machine class and such that (7,, c C~ and C h, c C h. N o w the co lumns of L can be rea r ranged
in such a way that the rows cor respond ing to the j o b classes a ' , b ' and r are as follows:

a ' 1 0 0 0 - . . 0
b ' 0 1 0 0 - - . 0
r 1 1 1 1 - . . 1

In this case, after a sui table pe rmuta t ion of the rows and the columns, L conta ins L 4 as a submatr ix .
Case 2b, Cu¢3 Ch:/ :~. This implies (C , c C h) V (C b c C,) . It may be assumed that C c C A. Then the

co lumns of L can be reordered in such a way that the rows cor respond ing to a, b and r are as follows:

a { 1 1 . . . 1 0 0 . . . 0 0 0 . . , O \

b I 1 1 . . . 1 1 1 . . . 1 0 0 . . . 0) .
r 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1

In this case, af ter a sui table pe rmuta t ion of the rows and the columns, L conta ins L 5 as a submatr ix . []

N o w the results of the Lemmas 2 and 14 provide the required connec t ions be tween the results of the
Theorems 6, 10, 11 and 12. This comple tes the p roof of Theorem 5 and the c lass i f icat ion of the
compu ta t i ona l complex i ty of the p rob lems CS(L) .

6. Concluding remarks

In this paper the p rob lems C S (L) and M C S (L) which appea r in a na tura l way in the a i rcraf t
ma in tenance process at an a i rpor t were descr ibed in a formal way. We have presen ted a comple te
c lass i f icat ion of the compu ta t i ona l complex i ty of these problems. In this pape r we d id not look at

38 A. W.J. Kolen, L.G. Kroon /Computational complexity of(maximum)class scheduling

optimization methods for calculating optimal or satisfying solutions. These aspects are a topic for further
research.

Until now we have focused mainly on the operational questions that should be answered within the
aircraft maintenance process. However in Section 1 we mentioned already that tactical questions with
respect to the required number and qualifications of the engineers should be answered also. These tactical
problems, which we have called Class Design with respect to the matrix L, or C D (L) for short, can be
described more formally in terms of jobs and machines as follows:

Instance of CD(L) .
- Jobs (sj, fj, a j) for j = 1, 2 J, that have to be carried out.

Question. How to choose the numbers of machines in each of the machine classes in order to guarantee the
existence of a feasible schedule for all the jobs with a minimum total number of machines?

It is clear that these problems can be seen as generalizations of FSP also. In a forthcoming publication
we will present a classification of the computational complexity of the problems CD(L) , more or less
analogous to the classification that we have presented in this paper.

References

[1] Arkin, E.M., and Silverberg, E.L., "Scheduling jobs with fixed start and end times", Discrete appfied mathematics 18 (1987) 1-8.
[2] Carter, M.W., and Tovey, C.A., "When is classroom assignment hard?", Working paper 89-02, February 1989, University of

Toronto, Department of Industrial Engineering, and Operations Research, to appear.
[3] Dantzig, G.L., and Fulkerson, D.R., "Minimizing the number of tankers to meet a fixed schedule", Naoal Research Logistics

Quarterly 1 (1954) 217-222.
[4] Dondeti, V.R., and Emmons, H., "Resource requirements for scheduling with different processor sizes", Parts 1 and II,

Technical memoranda 579 and 589, Department of Operations Research, Case Western Reserve University, Cleveland, OH,
1986.

[5] Dondeti, V.R., and Emmons, H., "Interval scheduling with processors of two types", Operations Research, to appear.
[6] Fredman, M.L., and Weide, L., "On the complexity of computing the measure of U[a i, b,]", Communications of the ACM 21

(1978) 540-544.
[7] Garey, M.R., and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San

Fransisco, CA 1979.
[8] Gertsbakh, I., and Stern, H.I., "Minimal resources for fixed and variable job schedules", Operations Research 18 (1978) 68-85.
[9] Gondran, M., and Minoux, M., Graphs and Algorithms. Wiley-Interscience, New York, 1984.

[10] Gupta, U.L., Lee, D.T., and Leung, J.Y.-T., "An optimal solution to the channel assignment problem", IEEE Transactions on
Computers 28 (1979) 807-810.

[11] Kolen, A.W.J., and Kroon, L.G., "On the computational complexity of (A, L)-Class Scheduling", Report Nr. 34 of the
Rotterdam School of Management, 1989.

[12] Kolen, A.W.J., Lenstra, J.K., and Papadimitriou, C.H., "Interval scheduling problems", Unpublished manuscript.

