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Abstract: In this paper  we consider several generalizations of the Fixed Job Scheduling Problem (FSP) 
which appear in a natural way in the aircraft maintenance process at an airport: A number  of jobs have to 
be carried out, where the main attributes of a job are: a fixed start time, a fixed finish time, a value 
representing the job 's  priority and a job class. For carrying out these jobs a number  of machines are 
available. These machines can be split up into a number of disjoint machine classes. For each combination 
of a job class and a machine class it is known whether or not it is allowed to assign a job in the job class to 
a machine in the machine class. Furthermore the jobs must be carried out in a non-preemptive way and 
each machine can be carrying out at most one job at the same time. Within this setting one can ask for a 
feasible schedule for all jobs or, if such a schedule does not exist, for a feasible schedule for a subset of the 
jobs of maximum total value. In this paper we present a complete classification of the computat ional  
complexity of two classes of combinatorial problems related this operational job scheduling problem. 

Keywords: Scheduling, combinatorial analysis, computational complexity, fixed job intervals 

1. Introduction 

Between the time of arrival at and the consecutive time of departure from the main airport in the 
Netherlands an aircraft must be inspected before being allowed to take off again. If the stochastic elements 
are neglected, then such an inspection can be seen as a job being of a certain job class and having a fixed 
start time, a fixed finish time and a value representing its priority. The job class of a job is determined by 
the type of the corresponding aircraft. Examples of job classes are B747, A310, DC10, etc. The start time 
and the finish time of a job might coincide with the time of arrival and the time of departure of the 
aircraft, but this is not necessary: a list of maintenance norms is available which can be used for 
calculating the start and finish time of each job. 

The jobs are carried out by a number of ground engineers. A ground engineer is allowed to carry out a 
specific job only if he has a license for the corresponding aircraft type. From the point of view of the 
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operational management of the engineers it would be optimal if each ground engineer would have a license 
for each aircraft type. In that case the engineers could be considered as being qualitatively identical and 
consequently each job could be assigned to each of them. However, this is not a practical solution, as a 
governmental rule states that each ground engineer is allowed to have two licenses at most. 

In principle all the jobs must be carried out. However, jobs with a low priority may also be carried out 
at the next stop of the corresponding aircraft at an airport. Hence an operational job scheduling problem 
that has to be solved within the described context is the following: Suppose that the number of available 
engineers and the combination of licenses of each engineer are known. Then the operational job scheduling 
problem asks for a feasible schedule for all the jobs, taking into account the licenses of the engineers, or, if 
a feasible schedule for all the jobs does not exist, for a feasible schedule for a subset of the jobs of 
maximum total value. 

In this paper we study two classes of mathematical problems related to this operational job scheduling 
problem. We derive a complete classification of the computational complexity of these classes of problems. 
In a forthcoming publication we will address the tactical counterpart of these problems, asking for the 
required number and licenses of the engineers. In order to follow the literature on job scheduling the 
engineers are addressed as 'machines' in the remainder of this paper. 

2. P r o b l e m  d e f i n i t i o n  

Suppose there are J jobs that have to be carried out. Job j requires continuous processing in the 
interval (sj, ~) ,  has a job class ag and a value vg. As it is sufficient to know for each pair of jobs whether 
or not they are overlapping, it may be assumed without loss of generality that the start and finish times of 
the jobs are integers (see Kolen, Lenstra and Papadimitriou [11]). Therefore job j can be represented as a 
quadruple of integers (sj, ~,  aj, Vg). Whenever the values of the jobs are not relevant, for example in a 
feasibility problem, then they are omitted from the notation. Throughout this paper we use the notation A 
for the number of different job classes and we write T for the integer max{ fj I J = 1, 2 . . . . .  J }. 

The jobs must be carried out in a non-preemptive way by a number of machines, each of which is 
continuously available. The machines can be split up into a number of disjoint machine classes. The 
number of machine classes is denoted by C. For each combination of a job class and a machine class the 
feasibility of assigning a job in the job class to a machine in the machine class is represented in the A X C 
zero /one  matrix L, where the rows of L correspond to the job classes and the columns correspond to the 
machine classes. The interpretation of the matrix L is as follows: L,,. = 1 if and only if it is allowed to 
assign jobs in job class a to machines in machine class c. Examples of matrices L that are studied 
explicitly in the sequel are the following: 

L 0 = ( 1 ) ,  L1=  1 ' 1 1 

L :(o o 1) L4: 1 
- 1 1 ' 1 

Z 5 

1 0 0 )  
1 1 0 • 

1 1 1 

For example, the matrix L 3 represents a situation with 2 job classes and 3 machines classes and where for 
a = 1, 2 a job in job class a can be carried out by the machines in the machine classes a and 3. Let the 
A × C zero /one  matrix L be given. Then the problem of finding a feasible schedule for all the jobs is 
called Class Scheduling with respect to L, or CS(L)  for short. This problem can be stated more formally as 
follows: 
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Instance of CS(L). 
- Jobs (sj, fj, a j )  for j = 1, 2 . . . . .  J,  that have to be carried out. 

C nonnegative integers M 1, M 2 . . . . .  Me., representing the numbers of machines available in the 
machine classes 1, 2 . . . . .  C, respectively. 

Question Does there exist a feasible non-preemptive schedule for all the jobs? 

Note that the matrix L is part  of the definition of the problem CS(L)  and does not belong to the 
instances of the problem CS(L).  Therefore we have defined a whole class of combinatorial problems, 
indexed by the ze ro /one  matrices L. 

The problem of finding a feasible schedule for a subset of jobs of maximum total value is called 
Maximum Class Scheduling with respect to L,  abbreviated as MCS(L).  The formal definition of this 
problem is as follows: 

Instance of MCS(L).  
Jobs (s j, ~ ,  a j, uj) for j = 1, 2 . . . . .  J, that have to be carried out. 
C nonnegative integers M~, M 2 . . . . .  M~,  representing the numbers of machines available in the 

machine classes 1, 2 . . . . .  C, respectively. 

Question. What is the maximum total value of a subset of the jobs for which there exists a feasible 
non-preemptive schedule? 

Again the matrix L does not belong to the instances of the problem MCS(L)  but is part of the 
definition of the problem MCS(L).  Hence we have defined a whole class of combinatorial problems again. 
Note that for any matrix L the problem MCS(L)  is a generalization of the problem CS(L).  

A further generalization of the problems CS(L)  and MCS(L)  is given by Arkin and Silverberg [1]. In [1] 
the assumption is also that all the jobs have a fixed start time and a fixed finish time. However the 
assumption in [1] with respect to the feasibility of the assignment of a specific job to a specific machine is 
different from ours. In [1] for each job j a subset of the machines Vj is given and it is assumed that job j 
can be carried out by the machines in Vj only. The objective is to find a feasible schedule for all the jobs, 
In [1] it is shown that this problem is NP-complete. However an algorithm based on Dynamic Program- 
ming is presented that can be used for solving in O ( J  M+~) time the problem of finding a feasible schedule 
for a subset of the jobs of maximum total value. Here M denotes the total number of available machines. 
This implies that, if the number of machines is fixed, then this optimization problem can be solved in 
polynomial time. Note that in our context for job j with job class aj the set ~ can be defined as follows: 
V = (machines belonging to those machine classes c with L j, = 1}. Hence for a given matrix L an 
instance of the problems CS(L)  or MCS(L)  can be seen as an instance of the problems in [1]. Therefore 
the O( jM +1) time algorithm in [1] can be applied for solving CS(L)  and MCS(L)  also. 

Similar problems were studied by several authors. Dondeti and Emmons [4] and [5] prove that CS(L 1) 
and CS(L2) can be solved in polynomial time. They also show that for the matrices L~ and L 2 the tactical 
problem asking for the required number of machines in each machine class can be solved in polynomial 
time. Furthermore in [5] the computational complexity that is introduced by limited availability of the 
machines is studied. Kolen, Lenstra and Papadimitriou [11] describe a situation with A job classes and A 
machines classes, where a job in job class a can be carried out by a machine in machine class c if and only 
if a _< c. This corresponds in our setting to an A × A upper triangular matrix L. Complexity results are 
presented which show that for this kind of matrices L the problem CS(L)  is NP-complete  if and only if 
A >_ 3. Kolen and Kroon [10] study a situation with A job classes, where each machine has exactly B 
licenses. One of the main results in [10] is that the feasibility problem is NP-complete if and only if 
1 < B < A. Problems similar to the problems CS(L)  and MCS(L)  but in the context of the assignment of 
classes to classrooms at high schools and universities are studied by Carter and Tovey [2]. 
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All the mentioned problems are generalizations of the well known Fixed Job Scheduling Problem (FSP) 
which has been studied by many authors such as Dantzig and Fulkerson [3], Gertsbakh and Stern [8] and 
Gupta, Lee and Leung [9]. FSP is a feasibility problem where it is allowed to assign each of the jobs to 
each of the machines. That is, in our setting FSP can be described as CS(L0). The following result, which 
will be used in the sequel, gives a necessary and sufficient condition for the existence of a feasible schedule 
for an instance of FSP: 

Lemma 1. For an instance of FSP a feasible schedule for all the jobs exists i f  and only if  the maximum job 
overlap is less than or equal to the number of available machines. 

Here the job overlap in the interval ( t -  1, t), denoted by Rt, is defined as follows: 

R , =  I ( j l s j _<  t - 1  and t < f j }  l- 

That is, the job overlap is equal to the number of jobs that should be carried out in the time interval 
( t -  1, t). The maximum job overlap R is defined as: 

R = m a x(R ,  It = 1, 2 . . . . .  T } .  

As FSP is equivalent to CS(L0) and calculating the maximum job overlap is easy, the problem CS(Lo) 
can be solved in polynomial time. More specific, it is well known that the problem CS(Lo) can be solved in 
O ( J  log J )  time. This is optimal as follows from a result of Fredman and Weide [6]. It is also well known 
(Arkin and Silverberg [1], Kolen Lenstra and Papadimitriou [11]) that MCS(L0) can be solved by finding a 
Minimum Cost Flow in a network with O ( J )  nodes and O ( J )  arcs. Hence MCS(L0) can be solved in 
polynomial time also. 

3. Preliminary remarks with respect to L 

In the Sections 4 and 5 a complete classification of the computational complexity of the problems 
CS(L) and MCS(L)  will be presented. An important tool in this classification is Lemma 2, which relates 
the complexities of two problems to each other. This Lemma can be proved by applying an evident 
reduction and therefore the proof is omitted. 

Lemma 2. Let L x and L~ be A x x C x and Ay x Cy zero~one matrices respectively. Suppose that, after the 
application of row or column permutations, L x is a submatrix of Ly. Then the following statements hold: 
- I f  CS(L~) is NP-complete, then CS(Zy) is NP-complete too. 
- I f  MCS(Lx) is NP-hard, then MCS(Ly) is NP-hard too. 

Furthermore it is clear that a complete row or a complete column of zeros in the matrix L is not 
interesting. A row of zeros corresponds to a job class that cannot be assigned to any machine class and a 
column of zeros corresponds to a machine class that is not allowed to carry out any jobs. Two identical 
rows or two identical columns in the matrix L are not interesting either. If, for example, the matrix L 
contains two identical rows, then this means that the corresponding job classes are equivalent and hence it 
makes no sense to distinguish between them. Finally it is clear that applying row or column permutations 
to the matrix L does not change the complexity of CS(L).  Hence if the matrix L can be written as 

by applying row or column permutations, then the complexity of the problem CS(L)  is completely 
determined by the complexity of the problems CS(L x) and CS(Ly). More specific: the problem CS(L)  can 
be solved in polynomial time if and only if both problems CS(L x) and CS(Ly) can be solved in polynomial 
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time. If at least one of the problems CS(L x) or CS(Ly) is N P-complete, then CS(L)  is N P-complete also. 
Analogous results also hold with respect to MCS(L).  These considerations lead to the following definition: 

Def in i t ion .  An A x C ze ro /one  matrix L is called reducible if at least one of the following conditions is 
satisfied: 
- L contains a complete row or a complete column of zeros. 
- L contains two identical rows or two identical columns. 
- By applying row or column permutations L can be written as 

[L° 1 L =  0 L, " 

If none of these conditions is satisfied, then the matrix L is called irreducible. 

Note that the matrices L 0, L 1, L2, L3, L 4 and L s which were defined in Section 2 are all irreducible. 
Now it is clear that a classification of the computational complexity of the problems is the set {CS(L) I L 
is an irreducible ze ro /one  matrix} implies a classification of the computational complexity of the 
problems in the set { C S ( L ) I L  is any ze ro /one  matrix} and that the same holds with respect to the 
problems MCS(L).  Therefore we can restrict our attention to irreducible matrices L. In the following 
sections the NP-completeness results are established by a reduction from Numerical Three Dimensional 
Matching ( =  N3DM).  This problem is defined as follows (Garey and Johnson [7]): 

Ins tance  of  N 3 D M .  
- Integers t, d and a,, b,, and c, for i = 1, 2 . . . . .  t, satisfying the following relations: 

~ ( a i + b , + c  i )= td ,  
i--1 

and 

O < a , , b , , q < d  for i = 1 ,  2 . . . . .  t. 

Q u e s t i o n .  Is it possible to find permutations p and o of {1,  2 . . . . .  t } which are such that: 

a i+bp~,l+cou )=d  f o r i = l , 2  . . . . .  t. 

It is well known that N3DM is NP-complete. Therefore any problem in NP that is more general than 
N3DM is NP-complete also. 

4. C o m p l e x i t y  of  M C S ( L  ) 

In this section we derive a classification of the computational complexity of the problems MCS(L) .  In 
this classification we pay attention to irreducible matrices L only. The main theorem in the classification is 
Theorem 3 which reads as follows: 

Theorem 3. Let L be an irreducible zero~one matrix. Then the problem MCS(L)  is NP-hard if and only if L 
has at least 2 columns. 

The 'only W-part of this theorem can be proved by noting that, if the irreducible matrix L has only 1 
column, then it must be the matrix L 0. As MCS(L0) can be solved in polynomial time, the 'only if '-part of 
Theorem 3 is clear. On the other hand, if the irreducible matrix L has at least 2 columns, then, after 
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apply ing  row or column permutat ions ,  it contains the matr ix  L~ as a submatr ix.  Therefore  the ' i f ' -pa r t  of  
Theorem 3 follows f rom the following theorem and L e m m a  2: 

Theorem 4. MCS(L1)  is NP-hard. 

Proof.  This theorem is proved by a reduction f rom N 3 D M .  Let 11 be an instance of N 3 D M  conta ining 
integers t, d and a,,  b i and c, for i = 1, 2 . . . . .  t. Then the following quanti t ies can be defined: 

A,:=i for i =  1 , 2  . . . . .  t, 

Bj:=t+j for j =  1, 2 . . . . .  t, 

Xis :=2 t+( i - 1 ) t+  j f o r / ,  j = 1 , 2  . . . . .  t, 

S : =  t 2 + 2t,  

T : = S + 2 d + I .  

Note  that the numbers  Ai, B s and X,j are all different for i, j =  1, 2 . . . . .  t. Now an instance 12 of 
MCS(L~)  can be constructed as follows: there are t machines  in machine  class 1 and t 2 - -  t machines  in 
machine  class 2. Fur the rmore  the following jobs  have to be carried out: 
Jobs in job class 1: 

(0, A~) f o r i = l , 2  . . . . .  t, 

( S + d - c  k, T) f o r k = l , 2  . . . . .  t, 

Jobs in job class 2: 

t - 1  t i m e s ( 0 ,  Bj) f o r j = l , 2  . . . . .  t, 

(A i, X,j) f o r / ,  j = l , 2  . . . . .  t, 

(Bj ,  Xis ) f o r / ,  j = l , 2  . . . . .  t, 

(X , / , S+a i+b i )  for i, j = l , 2  . . . . .  t, 

( S + a  +bs, T - l )  f o r / ,  j = l , 2  . . . . .  t, 

t 2 -  t times ( T -  1, T ) .  

The  value of a job  is equal to it 's length (that is: vj = f j  - sj). Figure 1 gives an example  of  an instance 
12 of MCS(L1)  that  has been constructed f rom an instance 11 of N 3 D M .  In this example  11 is a 
yes-instance and in 12 there exists a feasible schedule for a subset of the jobs  which is such that  all the 
machines  are occupied uninterruptedly.  Now we will show for the general case that  11 is a yes- instance if 
and only if in 12 the m a x i m u m  total value of the jobs  for which a feasible schedule exists is equal to t2T. 
The latter is equivalent to the fact that  the schedule is such that all the machines  are occupied 
uninterruptedly  during the interval (0, T).  

Suppose that  there exists a feasible schedule for a subset  of the jobs  which is such that  all the machines  
are occupied uninterruptedly  during the interval (0, T).  As there are exactly t 2 jobs  that  start  at 0, all of 
them must  be carried out. Therefore  the job  (0, A,) in job  class 1 is carried out by a machine  in machine  
class 1 and it is followed directly by one of the jobs  (A~, X, j )  in job  class 2. This s ta tement  holds for 
i = 1, 2 . . . . .  t. Now machine  class 1 is occupied complete ly  in the interval (0, 1). Therefore  the t - 1 jobs  
(0, Bs) in job  class 2 are carried out by machines  in machine  class 2 and each of them is followed directly 
by one of the jobs  (Bj, X,s) in job  class 2. This s ta tement  holds for j = 1, 2 . . . . .  t. 

As there are exactly t 2 jobs  that  finish at 7", all of them must  be carried out. The  jobs  (S  + d - c k, T )  in 
job  class 1 are carried out by machines  in machine  class 1. Therefore  machine  class 1 is occupied 
complete ly  in the interval ( T - 1 ,  T )  and hence the jobs  ( T - 1 ,  T )  in job  class 2 are carried out by 
machines  in machine  class 2. 
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machine class 1 
t machines 

machine class 2 ~ j k L _ *  ~ _ _ b  A T ~ I ~  
t(t-1) machines 0~---~--]XI2 i IS+al+b2 T'I'~ I 

B X i S÷a ÷b 1 T - i  

t o _1"~ _xa3 . . . . .  s,aa*ba T-1L] 
[ ]  = lob c l a s s  1 

{-~ = lob class 2 ~ ~ • - i 
0 t 2t S T 

Figure 1 

As all the machines must be occupied uninterruptedly and the jobs X,j, S + a, + bj) are the only jobs 
which have an overlap with the interval (S, S + 1), all these jobs must be carried out. Therefore we get 
schedules of  the form 

(0, A i ) ( A  *, X,I)(  X O, S +a ,  +bj )  

on machines in machine class 1, where each i occurs exactly once and we get schedules of  the form 

(0, B , ) (Bj ,  X, , ) (  Xij, S + a, + bj) 

on machines in machine class 2, where each j occurs exactly t - 1  times. Hence among  the jobs 
(X,,,  S + a, + b/) that are carried out by machines in machine class 1 each i and each j occurs exactly 
o n c e .  

Fur thermore  on machines in machine class 1 a job (X,,,  S + a i + b~) in job  class 2 is followed by a job  
(S + d -  c k, T)  in job  class 1 in such a way that S + a, + bJ = s + d -  ca, which also means that 
a, + b j+  c k = d. So if we define p ( i ) = j  and o ( i ) =  k, whenever job  (X,j, S +  a, + b/) is combined with 
job (S  + d -  c k, T),  then p and o are the required permutat ions for 11. 

Conversely, given a feasible solution for 11, the construct ion can be reversed to find in 12 a feasible 
schedule for a subset of the jobs of total value equal to t2T, which is clearly optimal. Note  that the jobs  
(S  + a, + b/, T - 1 )  in job  class 2 can be used to fill the 'gap '  on the machines in machine class 2 
completely. Hence 11 is a yes-instance if and only if in ] 2 the maximum total value of  the jobs  for which a 
feasible schedule exists is equal to t2T. It follows that M CS(L 1)  is NP-hard.  [] 

Figure 1 gives an example of an instance 12 of M C S ( L ] )  that has been constructed from an instance 1 l 
of N 3 D M  as described in the proof  of Theorem 4. 

In 11 we have t = 3  and d = 1 2 .  Fur thermore we have (a I, a 2, a 3 ) = ( 3 , 4 , 6 ) ,  (b I, b 2, b 3 ) =  (5, 3, 7) 
and ( q ,  c> c) = (5, 2, 1). Note  that 1~ is a yes-instance, as 

a]  + / 9  3 + c 2 = a 2 + b 2 + c  1 = a 3 + b  1 + c 3 =  12 .  

Figure 1 shows that there exists a feasible schedule for a subset of the jobs which is such that all the 
machines are occupied uninterruptedly. 

5. Complexity of C S ( L )  

The aim of this section is to provide a complete classification of the computa t ional  complexity of  the 
problems CS(L) .  In this classification we pay attention to irreducible matrices L only, as the general case 
can be deduced from this easily using the remarks in Section 3. The main theorem in this classification is 
Theorem 5 which reads as follows: 
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Theorem 5. Let L be an irreducible zero/one matrix. Then the problem CS(L)  is NP-complete if  and only i f  
L has at least 3 columns. 

The proof of this theorem is rather long and has been split up into several parts therefore. In order to 
prove Theorem 5 we adopt the following strategy: First the problem CS(L2) will be shown to be 
polynomially solvable. As L z is, apart from row or column permutations, the greatest irreducible matrix 
with at most 2 columns, this proves the 'only if '-part of Theorem 5. This part of the proof of Theorem 5 
can be found in subsection 5.1. Next the problems CS(L3), CS(L4) and CS(Ls) will be shown to be 
NP-complete. This part  of the proof of Theorem 5 is described in subsection 5.2. Finally it will be shown 
that the problem CS(L)  can be reduced from at least one of the problems CS(L3), CS(L4) or CS(L5) , if 
the matrix L is irreducible and has at least 3 columns. This proves the ' i f ' -par t  of Theorem 5. This part  of 
the proof of Theorem 5 is described in subsection 5.3. 

5.1. Complexity of CS(L2) 

In this subsection we will prove that CS(L 2) can be solved in polynomial time. Let I be an instance of 
CS(Lz) consisting of a set of jobs in 3 job classes and two integers M 1 and M 2 representing the numbers 
of available machines in the two machine classes. Using the result of Lemma 1 necessary conditions for the 
existence of a feasible schedule can be derived as follows. If  we define R~, to be the job overlap of the jobs 
in job class a in the interval (t - 1, t) for a = 1, 2, 3, and t = 1, 2 . . . . .  T, then these conditions can be 
stated as 

R I , < M  a for t = l , 2  . . . . .  T, (1) 

R 2 , < M  2 for t =  1, 2 . . . . .  T, (2) 

R l t + R 2 , + R 3 t < M 1 + M  2 for t =  1 ,2  . . . . .  T. (3) 

In the remainder of this subsection we assume that these conditions hold. Note that for t = 1, 2 . . . . .  T, we 
can add M~ + M 2 - R~, - R2, - R 3 t  dummy jobs in job class 3 in the interval (t - 1, t) to the set of jobs of 
I without changing the feasibility of I. Therefore the inequalities (3) can be replaced by the equalities (4): 

R , t + R z , + R 3 , = M , + M 2 ,  for t = l ,  2 . . . . .  T. (4) 

Next we construct the following network N with O ( J )  nodes and O ( J )  arcs. N contains the nodes 
{ t I t = 0, 1, 2 , . . . ,  T }. For each job j in job class 1 we have an arc from node sj to node fj. The lower and 
upper capacity of such an arc are both equal to 1. For each job j in job class 3 we have an arc from node 
sj to node fj. The lower capacity of such an arc is equal to 0 and the upper capacity is equal to 1. Now the 
following lemma holds: 

Theorem 6. There exists a feasible schedule for 1 if  and only if  there exists a compatible flow of M 1 units from 
node 0 to node T in the network N. 

Proof. Suppose that there exists a feasible schedule for I. Then we can assign 1 unit of flow to each arc in 
N corresponding to a job that is carried out by a machine in machine class 1. The equalities (4) guarantee 
that all machines, and in particular the machines in machine class 1, are continuously busy. Therefore the 
jobs that are carried out by one machine in machine class 1 represent 1 unit of flow from node 0 to node 
T. As there are M 1 machines in machine class 1, this gives a flow of M1 units from node 0 to node T. It  is 
evident that this flow is compatible with all the capacity constraints. 

Conversely, suppose that there exists a compatible flow of M 1 units from node 0 to node T. Then a 
feasible schedule for I can be constructed as follows: the jobs corresponding to an arc containing 1 unit of 
flow are carried out by machines in machine class 1 and the other jobs are carried out by machines in 
machine class 2. Note that the definition of N guarantees that each job in job class 1 is carried out by a 
machine in machine class 1 and that none of the jobs in job class 2 is carried out by a machine in machine 
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class 1. For t = 1, 2 . . . . .  T, we have M 1 units of flow across the cut ((0 . . . . .  t - 1), (t . . . . .  T)}. Therefore 
the job overlap of the jobs that have to be carried out by the machines in machine class 1 is equal to M 1. 
Hence Lemma 1 implies that there exists a feasible schedule for these jobs. According to the equalities (4), 
the job overlap of the jobs that are not carried out by the machines in machine class 1 is equal to M 2. 
Hence Lemma 1 implies that there exists a feasible schedule for these jobs on machine class 2. [] 

Lemma 6 implies that CS(L2) can be solved in polynomial time, as the existence of a compatible flow 
of M1 units from node 0 to node T in the directed network N can be checked in polynomial time (see 
Gondran and Minoux [9]). The same result has also been obtained by Dondeti and Emmons [5]. They use 
almost the same construction. 

5.2. Complexity of CS(Ls), CS(L4) and CS(Ls) 

In this subsection we prove the NP-completeness of the problems CS(L3) , CS(L4) and CS(Ls). The 
NP-completeness of these problems is proved by a reduction from N3DM. In Theorem 10 the problem 
CS(L3) is proved to be NP-complete. As the proof of this theorem is rather complex, it is preceded by 
several lemmas. These lemmas deal with a scheduling problem which is a generalization of FSP. In this 
scheduling problem the job classes and the machine classes are the same as in CS(L3). However the 
machines are not available over the whole interval (0, T). An instance of this scheduling problem is given 
by: 

- Nonnegative integers T t, T 2 and t. 
- 2t integers B~, E 1, B 2, E 2 . . . . .  B,, E,, with 

Tj = Bt < E1< B2 < E2 < . . .  < B < E t =  T 2. 

- t 2 -  t machines in machine class 1. For j = 1, 2 . . . . .  t, there are t - 1  machines available in the 
interval (T 1, E/). 

- t 2 - t  machines in machine class 2. For j = 1, 2 . . . . .  t, there are t - 1  machines available in the 
interval ( Bj, T 2). 

- t machines in machine class 3. These machines are available in the interval (7"1, T 2). 
- t 2 jobs (T l, ~ )  in job class 1. This set of jobs can be partitioned into t subsets V 1, V 2 . . . . .  V, each one 

containing t jobs, where for j = 1, 2 . . . . .  t, a job in ~ has a finish time greater than Bj and less than Ej. 
- t 2 jobs (S]' T2) in job class 2. This set of jobs can be partitioned into t subsets W 1, W 2 . . . . .  W, each 

one containing t jobs, where for j = 1, 2 . . . . .  t, a job in Wj has a start time greater than B] and less than 
E,. 

The question is of course, whether or not there exists a feasible schedule for all the jobs. Figure 2 gives 
an example of an instance of this scheduling problem with t = 3. The instance in Figure 2 is a yes-instance. 

Suppose that there exists a feasible schedule for all the jobs. As all the jobs in job class 1 are 
overlapping, all these jobs are scheduled on different machines. As the maximum number of available 
machines in machine class 1 is t 2 - t, exactly t of the jobs in job class 1 are scheduled on machines in 
machine class 3. The same is true for the jobs in job class 2. Therefore each machine in machine class 3 is 
carrying out exactly 1 job in job class 1 and 1 job in job class 2. More details with respect to the 
distribution of the jobs are derived in the Lemmas 7, 8 and 9: 

Lemma 7. Let p be f ixed  with 1 < p < t. Then the following statements hold: 

(i) the number of  jobs in the sets Vq with p < q which are scheduled on a machine in machine class 3 is 
greater than or equal to t - p + 1, 

(ii) the number of  jobs in the sets Wq with p < q which are scheduled on a machine in machine class 3 is 

greater than or equal to t - p + 1. 
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Proof .  (i) There  are t ( t  - p  + 1 ) j o b s  in the sets Vq with p < q. As the finish t imes of  these j o b s  are  greater  
than Ep_ 1, these j obs  cannot  be scheduled  on a machine  that  is avai lable  in (7"1, Er)  with r < p .  There fore  
at most  ( t -  1)(t - p  + 1) machines  in machine  class 1 are  avai lable  for car ry ing  out  these jobs .  Hence  at 
least  

t ( t - p +  l ) -  ( t - 1 ) ( t - p + l ) = t - p + l  

j o b s  in the sets Vq with p < q are scheduled on a mach ine  in machine  class 3. 
(ii) As the finish t ime of  a j o b  in Vq exceeds the s tar t  t ime of  a j o b  in W r if q > r, a j o b  in Vq can on ly  be 

c o m b i n e d  with a j o b  in W~ on a machine  in machine  class 3 if q < r. [] 

Lemma 8. Let p be f i x e d  with 1 < p < t. Then the following statements hold: 
(i) the number o f  jobs  in the sets Wq with q < p which are scheduled on a machine in machine class 3 is 

greater than or equal to pj 

(ii) the number o f  jobs  in the sets Vq with q < p which are scheduled on a machine in machine class 3 is 

greater than or equal to p. 

Proof .  (i) There  are tp j obs  in the sets Wq with q < p .  As  these j o b s  s tar t  before  Bp+l, these j o b s  canno t  be 
scheduled  on a machine  that  is avai lable  in ( B  r, 7"2) with p < r. Therefore  at most  ( t  - 1 )p  machines  in 
machine  class 2 are avai lable  for car ry ing  out  these jobs .  Hence  at least  tp - ( t  - 1)p  = p  j o b s  in the sets 
Wq with q < p are scheduled on the set of  machines  in mach ine  class 3. 

(ii) As the finish t ime of  a j o b  in V r exceeds the start  t ime of  a j o b  in Wq if r > q, a j o b  in Wq can only be 
combined  with a j o b  in V~ on a machine  in machine  class 3 if r < q. [] 

Lemma 9. Let  p be f i xed  with 1 < p < t. Then the following statements hold: 
(i) exactly 1 job  in Vp is scheduled on a machine in machine class 3; 

(ii) exactly 1 job  in W e is scheduled on a machine in machine class 3; 
(iii) the job  in Vp that is scheduled on a machine in machine class 3 and the job  in We that is scheduled on a 

machine in machine class 3 are scheduled on the same machine. 

Proof .  (i) Accord ing  to L e m m a  7 at least t - p  + 1 j o b s  in the sets Vq with p_< q are scheduled  on a 
machine  in machine  class 3. Accord ing  to L e m m a  8 at  least  p j o b s  in the sets Vq with q < p are scheduled  
on a machine  in machine  class 3. Hence  if non of  the j o b s  in Vp would  be scheduled  on a mach ine  in 



A. W.J. Kolen, L.G. Kroon / Computational complexiO" of (maximum) class scheduling 33 

machine class 3, then at least p + (t - p  + 1) = t + 1 jobs  in the sets Vv with q 4=p would be scheduled on 
machine class 3. However  this is impossible as all the jobs in job  class 1 are overlapping. Therefore at least 
1 job  in Vp is scheduled on a machine in machine class 3. There cannot  be more than 1 such job  as 
otherwise the job overlap of the jobs on machine class 3 would be greater than t. 

(ii) This statement can be proved in the same way as statement (i). 
(iii) This statement follows from the fact that a job  in V u can only be combined with a job  in W r if q _< r. 

Therefore the job in V, that is scheduled on a machine in machine class 3 is combined with a job  in W,, the 
job  in V, ~ that is scheduled on a machine in machine class 3 is combined with a job  in W, 1, etc. [] 

Theorem 10. CS(L3) is NP-cornplete. 

Proof.  This theorem is proved by a reduction from N3DM.  Hence let 11 be an instance of N 3 D M  
containing integers t, d and a,, b i and c, for i = 1, 2 . . . . .  t. Then the following quantities can be defined: 

X , : = t + i  for i = 1 , 2  . . . . .  t, 

Y~:=3t+3dj  for j = l , 2  . . . . .  t, 

Z k : = 3 t + 3 d + 3 d t + k  f o r k = l , 2  . . . . .  t, 

T : =  6t + 3 d +  3dr. 

Now an instance 12 o f  CS(L3) can be constructed as follows: there a r e  t 2 - t machines in machine class 
1,  t 2 - t machines in machine class 2 and t machines in machine class 3. Fur thermore  the following jobs 
have to be carried out: 
Jobs in ,job class" 1: 

t2 t i m e s ( T - t ,  T ) ,  

(t,  X,) f o r i = l , 2  . . . . .  t, 

t - 1  t imes (0 ,  X,) f o r i = l , 2  . . . . .  t, 

t - l t i m e s ( Y ~ + 2 d ,  T - t )  for j =  1, 2 . . . . .  t, 

(X, ,  r , + a , + b , )  f o r / ,  j = l , 2  . . . . .  t. 

Jobs in job class 2: 

t 2 times (0, t ) ,  

( Z  k, T - t )  f o r k = l , 2  . . . . .  t, 

t - 1  t i m e s ( Z  k, T)  f o r k = l , 2  . . . . .  t, 

t - 1  t i m e s ( t ,  Y/) f o r j = l , 2  . . . . .  t, 

( Y j + d - - c k ,  Zk) f o r j ,  k = l , 2  . . . . .  t. 

Figure 3 gives an example of an instance 12 of CS(L  3) that has been constructed from an instance I~ of 
N 3 D M .  In this example both 11 and 12 are yes-instances. Now we will show for the general case that 11 is 
a yes-instance if and only if 12 is a yes-instance. 

Suppose that 12 is a yes-instance. Then the jobs (0, t) in job  class 2 fill up the machine classes 2 and 3 
in the interval (0, t). Therefore the jobs (0, X,) in job  class 1 are carried out by machines in machine class 
1. This implies that the jobs (t, X,) in job  class 1 must be carried out by machines in machine class 3 and 
that the jobs (t, ~ )  in job  class 2 are carried out by machines in machine class 2. 

The jobs ( T - t ,  T)  in job  class 1 fill up the machine classes 1 and 3 in the interval ( T - t ,  T). 
Therefore the jobs ( Z  k, T)  in job  class 2 are carried out by machines in machine class 2. This implies that 
the jobs ( Z  k, T -  t) in job  class 2 are carried out by machines in machine class 3 and that the jobs 
(Yj + 2d, T -  t) in job  class 1 are carried out by machines in machine class 1. 
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All the jobs (X,, Yj + a i + bj) in job class 1 have an overlap with the interval (2t, 3t). Therefore these 
jobs are all carried out by different machines. This implies that t of these jobs are carried out by machines 
in machine class 3 and that the other t 2 - t are carried out by machines in machine class 1. An analogous 
reasoning can be applied to show that t of the jobs (Yj + d - c  k, Zk) in job class 2 are carried out by 
machines in machine class 3 and that the other t 2 - t are carried out by machines in machine class 2. 

In the interval (0, 2t)  the total available machine time is equal to 2t(2t 2 - t). In the same interval the 
total required machine time is also equal to 2t(2t 2 - t). Therefore in the interval (0, 2t)  all the machines 
are occupied uninterruptedly. This holds in particular for the machines in machine class 3. 

As the jobs (t, Xi), among which each i occurs exactly once, are carried out by machines in machine 
class 3, among the jobs (X,, Yj + ai + bj) on machine class 3 each i occurs exactly once. (5) 

In the same way it can be proved that, among the jobs (Yj + d - ck, Zk) on machine class 3 each k 
occurs exactly once. (6) 

Now the following definitions are used: 

T~ := 3t + 3d ,  

T 2 := 3t + 2d + 3dr, 

Bj := Yj for j =  1, 2 . . . . .  t, 

Ej := Yj + 2d for j = 1, 2 , . . . ,  t, 

V j : = ( ( X i ,  Y j + a , + b j ) [ i = l , 2  . . . . .  t )  for j =  1, 2 , . . . ,  t, 

W j : = { ( Y j + d - c k ,  Z k ) l k = l , 2  . . . . .  t )  for j =  1, 2 . . . . .  t, 

These definitions create an instance of the situation that was described in the Lemmas 7, 8 and 9. This 
can be checked easily. From Lemma 9 and (5) it follows that among the jobs ( X ,  Yj + a i + bj) on machine 
class 3 each i and each j occurs exactly once. Therefore a permutat ion p of the set {1, 2 . . . . .  t ) can be 
defined by: p ( i ) : = j  if the job (X,, Yj + ai + bj) is scheduled on a machine in machine class 3. 

Furthermore, using Lemma 9 and (6) it can be concluded that among the jobs (Yj + d - c  k, Zk) on 
machine class 3 each j and each k occurs exactly once. Therefore a permutat ion z of the set (1, 2 , . . . ,  t } 
can be defined by: z ( j ) : =  k if the job ( ~  + d - c ~ ,  Zg) is scheduled on machine class 3. Hence if the 
permutation o of the set (1, 2 . . . . .  t )  is defined by: o := r o 0, then it follows from Lemma 9 that for each i 
job ( X  i, Yp~i) + ai + bp,) )  is combined with job (Yo(i) + d -  co~,), Zo(i) ) on a machine in machine class 3. 

Therefore it follows that a, + bo~) <_ d -  co(~), for i = 1, 2 . . . . .  t. As E~=l(a~ + b~ + c~) = td, it follows 
that these inequalities are equalities in fact. Therefore the permutations 0 and o are the required 
permutations of the set (1, 2 , . . . ,  t } and hence/1 is a yes-instance. 

Conversely, given a feasible solution for 11, the construction can be reversed to find a feasible schedule 
for 12. It follows that 11 is a yes-instance if and only if I z is a yes-instance. As it is clear that CS(L3) 
belongs to NP and it is well known that N 3 D M  is NP-complete,  it follows that CS(L3) is NP-complete 
also. [] 

Figure 3 gives an example of an instance 12 of CS(L3) that has been constructed from an instance 11 of 
N3DM. In 11 we have t = 3 and d = 6. Furthermore we have ( a ,  a 2, a 3 )  = (1, 2, 2), (bl, b2, b3) = (3, 1, 2) 
and (c 1, c2, c3) = (4, 2, 1). Note that 11 is a yes-instance, as 

a 1 + b 2 + c I = a 2 + b 1 + c 3 = a 3 + b 3 + c 2 = 6 

The figure shows that there exists a feasible schedule for all the jobs. 
Next we will prove that the problems CS(L4) and CS(Ls) are NP-complete.  These proofs are essentially 

the same as the proof of Theorem 10, especially the combinatorial argument. Therefore the details of the 
proofs have been omitted, as they can be found in the proof  of Theorem 10. Although the definition of the 
jobs might have been simplified we have defined the jobs as much as possible the same as in the proof  of 
Theorem 10. 
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Theorem 11. CS(L4) is NP-complete. 

Proof. The notation in this proof is the same as in the proof of Theorem 10. Let I~ be an instance of 
N3DM containing integers t, d and a i, bi and c, for i = 1, 2 . . . . .  t. Then an instance 12 of CS(L4) can be 
constructed as follows: There are t 2 - t machines in machine class 1, t 2 - t machines in machine class 2 
and t machines in machine class 3. Furthermore the following jobs have to be carried out: 
Jobs in job class 1: 

t - 1  t imes(0 ,  X,), f o r i = l , 2  . . . . .  t, 

t - 1  t i m e s ( ~ + 2 d ,  T ) ,  f o r j = l , 2  . . . . .  t, 

Jobs in job class 2: 

t - 1  t imes(0 ,  ~ ) ,  f o r j = l , 2  . . . . .  t, 

t - 1  t i m e s ( Z , ,  T ) ,  f o r k = l , 2  . . . . .  t, 

Jobs in job class 3: 

(0. X,), f o r i = l , 2  . . . . .  t, 

( Z  k, T ) ,  f o r k = l , 2  . . . . .  t, 

(X, ,  ~ + a i + b j ) ,  f o r i ,  j = l , 2  . . . . .  t, 

( ~ + d - c , ,  Z , ) ,  for j ,  k = l , 2  . . . . .  t. 

Now we will prove that I] is a yes-instance if and only if 12 is a yes-instance. Suppose that I z is a 
yes-instance. Then it is clear that the jobs in job class 1 are carried out by machines in machine class 1 and 
that the jobs in job class 2 are carried out by machines in machine class 2. Now the machines classes 1 and 
2 are completely occupied at the beginning and at the end of the interval (0, T)  and therefore the jobs 
(0, Xj) and (Z , ,  T )  in job class 3 are carried out by machines in machine class 3. As all the jobs 
( X,, Ys + ai + bJ) in job class 3 have an overlap in the interval (2t, 3t) with all the jobs (0, Yj) in job class 
2, it follows that the jobs (X,, Yj + a~ + bj) are carried out by machines in the machine classes 1 and 3. As 
all the jobs ( Yj + d - c k, Z,  ) in job class 3 have an overlap in the interval (3t + 3dt + 2d, 3t + 3dt + 3d + 1) 
with all the jobs (Yj + 2d, T)  in job class 1, it follows that the jobs (Yj + d - c , ,  Zk) are carried out by 
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machines in the machine classes 2 and 3. Therefore the distribution of the 'essential '  jobs in this instance 
of CS(L 4) is the same as the distribution of the 'essential' jobs in the instance of CS(L3) that was created 
in the proof of Theorem 10. Hence the same combinatorial argument as in the proof of Theorem 10 can be 
used to show that 11 is a yes-instance. 

Conversely, if I~ is a yes-instance, then the construction can be reversed to find a feasible schedule for 
12. Therefore 11 is a yes-instance if and only if 12 is a yes-instance. As is it clear that CS(L4) belongs to NP 
and it is well known that N3DM is NP-complete, it follows that CS(L4) is NP-complete too. [] 

Theorem 12. CS(Ls) is NP-complete. 

Proof. This theorem has been proved by Kolen, Lenstra and Papadimitriou [12]. However, this theorem 
can also be proved by applying the proof of Theorem 11. One only has to note that in the proof of 
Theorem 11 the machines in machine class 1 are completely occupied at the beginning and at the end of 
the interval (0, T). Hence although in CS(Ls) it is allowed to schedule the jobs in job class 2 on machine 
classes 1 or 2, they are scheduled on machine class 2 only. Therefore the situation is analogous to the 
situation in the proof of Theorem 11. Further details of this proof are omitted. [] 

5.3. Completion of the proof of Theorem 5. 

In this subsection the proof of Theorem 5 is completed by linking the results of the Theorems 6, 10, 11 
and 12 together. The required connections between these results are provided by the Lemmas 2, 13 and 14. 

In this subsection the following notation is used: For job class a the set C, denotes the set of machine 
classes that can be used for carrying out jobs in job class a. That is: (7. = { c I L.c = 1 }. 

[,emma 13. Let L be an irreducible A X C matrix with the property that for all job classes a and b we have: 

(c,, n c,, ( ( c .  c c co)) .  

Then the following statements hold: 
(i) for every job class a there is a job class a' with C,, c C, and I C,, [ = 1, 

(ii) there exists a job class a with (2, = {1, 2 . . . . .  C}. 

Proof. (i) Let a be a job class. Then either we have 

Vb((C, n c 

or we have 

The latter condition implies Cb c C, and in that case we can continue with the job class b. By repeating 
this argument several times we will find a job class a '  with 

Vb((Co. n = e )v (c ,  c 

Now we will show that a '  contains exactly one element. Choose c, d ~ C,, and let b be a job class. If 
(2,, n Ch =t~, then Lb, = Lhd = 0, and if C,, c Ch, then Lh, = Lbd = 1. Hence the columns c and d are 
identical. As the matrix L is irreducible it follows that c = d and therefore I C,, I = 1. 

(ii) Analogously as above we can find a job class a with 

Vb((Co n C, = e)v(c  c c . ) ) .  
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However ,  if there exists a j o b  class b with C, ¢~ C h = fl, then the matr ix  L can be t r ans fo rmed  into  b lock  

d iagonal  form with at least two blocks and  hence it is reducible.  This  con t rad ic t ion  impl ies  that  

V b ( C  h c C,,). As L does not  conta in  a comple te  co lumn of  zeros, it follows that  C, = { 1, 2 . . . . .  C }. [] 

L e m m a  14. I f  L is an irreducible matr ix  with at least 3 columns,  then after a suitable permuta t ion  o f  the rows 

and the columns,  it contains at least one o f  the matrices L 3, L 4 or L 5 as a submatr ix .  

Proof.  The fol lowing two cases can be dis t inguished:  
Case 1. There  exist j o b  classes a and b such that  

(C, r~ C~ * ~)A(C. ¢ C~)A(C~ ¢ C,,). 

Now the columns of L can be rearranged in such a way that the rows of L corresponding to the job classes 
a and b are as follows: 

a { O  0 . . .  0 1 1 . . .  1 0 0 . . .  0 1 1 . . .  1~ 

b t O  0 . . .  0 0 0 . . .  0 1 1 . . .  1 1 1 . . .  1]" 

In this case, af ter  a sui table  pe rmuta t ion  of the rows and  the columns,  L conta ins  L 3 as a submatr ix ,  
Case 2. F o r  all j o b  classes a and  b we have 

( C  r~ C A . ~ )  ~ ( ( C  c C~)V(C~ c (7,,)). 

Accord ing  to L e m m a  ] 3 there is a j o b  class r that  can be carr ied out  by  all the mach ine  classes. N o w  there 
must  be at least two other  j o b  classes a and  b, as otherwise L would conta in  2 ident ical  columns.  Aga in  2 
cases can be dis t inguished:  

Case 2a. C,, (3 Ct, = ~ .  Accord ing  to L e m m a  13 there are j o b  classes a '  and  b ' ,  which can be car r ied  out  
by exact ly  1 machine  class and  such that  (7,, c C~ and C h, c C h. N o w  the co lumns  of  L can be rea r ranged  
in such a way that  the rows cor respond ing  to the j o b  classes a ' ,  b '  and r are as follows: 

a '  1 0 0 0 - . .  0 
b '  0 1 0 0 - - .  0 
r 1 1 1 1 - . .  1 

In this case, after a sui table  pe rmuta t ion  of the rows and the columns,  L conta ins  L 4 as a submatr ix .  
Case 2b, Cu¢3 Ch:/ :~.  This implies  ( C , c  C h ) V ( C b c  C, ) .  It may  be assumed that  C c C A. Then  the 

co lumns  of L can be reordered  in such a way that  the rows cor respond ing  to a,  b and  r are as follows: 

a { 1  1 . . .  1 0 0 . . .  0 0 0 . . ,  O \  

b I 1 1 . . .  1 1 1 . . .  1 0 0 . . .  0 ) .  
r 1 1 . . .  1 1 1 . . .  1 1 1 . . .  1 

In this case, af ter  a sui table  pe rmuta t ion  of the rows and  the columns,  L conta ins  L 5 as a submatr ix .  [] 

N o w  the results of  the Lemmas  2 and 14 provide  the required connec t ions  be tween the results  of the 
Theorems  6, 10, 11 and 12. This  comple tes  the p roof  of Theorem 5 and the c lass i f icat ion of  the 
compu ta t i ona l  complex i ty  of the p rob lems  CS(L) .  

6. Concluding remarks 

In this paper  the p rob lems  C S ( L )  and M C S ( L )  which appea r  in a na tura l  way in the a i rcraf t  
ma in tenance  process  at an a i rpor t  were descr ibed  in a formal  way. We have presen ted  a comple te  
c lass i f icat ion of the compu ta t i ona l  complex i ty  of these problems.  In this pape r  we d id  not  look at 
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optimization methods for calculating optimal or satisfying solutions. These aspects are a topic for further 
research. 

Until now we have focused mainly on the operational questions that should be answered within the 
aircraft maintenance process. However in Section 1 we mentioned already that tactical questions with 
respect to the required number and qualifications of the engineers should be answered also. These tactical 
problems, which we have called Class Design with respect to the matrix L, or C D ( L )  for short, can be 
described more formally in terms of jobs and machines as follows: 

Instance of CD(L) .  
- Jobs (sj, fj, a j)  for j = 1, 2 . . . . .  J, that have to be carried out. 

Question. How to choose the numbers of machines in each of the machine classes in order to guarantee the 
existence of a feasible schedule for all the jobs with a minimum total number  of machines? 

It is clear that these problems can be seen as generalizations of FSP also. In a forthcoming publication 
we will present a classification of the computational complexity of the problems CD(L) ,  more or less 
analogous to the classification that we have presented in this paper. 
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