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Abstract: In this paper a generalization of the Fixed Job Scheduling Problem (FSP) is considered, which 
appears in the aircraft maintenance process at an airport. A number of jobs have to be carried out, 
where the main attributes of a job are a fixed start time, a fixed finish time and an aircraft type. For 
carrying out these jobs a number of engineers are available. An engineer is allowed to carry out a specific 
job only if he has a license for the corresponding aircraft type. Furthermore, the jobs must be carried out 
in a non-preemptive way and each engineer can be carrying out at most one job at the same time. Within 
this setting natural questions to be answered ask for the minimum number of engineers required for 
carrying out all jobs or, more generally, for the minimum total costs for hiring engineers. In this paper a 
complete classification of the computational complexity of two classes of mathematical problems related 
to these practical questions is given. Furthermore, it is shown that the polynomially solvable cases of 
these problems can be solved by a combination of Linear Programming and Network Flow algorithms. 

Keywords: Capacity planning; computational complexity; fixed job intervals; job scheduling 

1. Introduction 

Between the time of arrival and the time of departure of an aircraft at the main airport in the 
Netherlands the aircraft must be inspected before being allowed to take off again. If the stochastic 
elements at the airport are neglected, then such an inspection can be seen as a job with a fixed start time, 
a fixed finish time and an aircraft type. The start time and the finish time of a job might coincide with the 
time of arrival and the time of departure of the aircraft, but this is not necessary: a list of maintenance 
norms is available, which can be used for calculating the start and finish time of each job. 

The jobs are carried out by a number of ground engineers. A ground engineer is allowed to carry out a 
specific job only if he has a license for the corresponding aircraft type. From the point of view of the 
operational management of the engineers it would be optimal if each ground engineer would have a 
license for each aircraft type. In that case the engineers could be considered as being qualitatively 
identical and, as a consequence, each job .could be assigned to each of them. However, this solution is not 
a practical one, as a governmental rule in the Netherlands states that each ground engineer is allowed to 
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have two licenses at most. Within this context both tactical capacity planning problems and operational 
job scheduling problems must be solved. Examples of such problems are the following. 

- How many engineers are required for carrying out all jobs and what combination of licenses must 
each of these engineers obtain? 

- How to schedule the jobs, if both the number of available engineers and the combination of licenses 
of each engineer are known? 

In this paper the tactical capacity planning problem asking for the minimum number of engineers and 
for the licenses of each engineer is studied. A complete classification of the computational complexity of 
two classes of mathematical problems related to this practical problem is presented. In this paper it is 
assumed that all engineers are continuously available at the airport. Some of the consequences of the 
presence of a shift system are considered in some detail by Kolen and Kroon [14]. 

The operational job scheduling problem asking for an optimal schedule for the jobs, given the number 
of engineers and the licenses per engineer, has been studied by Kolen and Kroon [13]. In the present 
paper the results of [13] are used several times, as it turns out that there is a close connection between 
the tactical capacity planning problem and the operational job scheduling problem. 

The remainder of this paper is organized as follows. In Section 2 a formal definition of two classes of 
mathematical problems related to the tactical capacity planning problem is presented. In Section 3 it is 
shown that some special cases of these problems can be solved by a combination of Linear Programming 
and Network Flow algorithms. In Section 4 a complete classification is presented of the computational 
complexity of the mathematical problems, that were defined in Section 2. This paper is finished with 
some concluding remarks in Section 5. 

2. Problem definition 

Suppose there are J jobs to be carried out, where for j = 1 , 2 , . . . , J  job j requires continuous 
processing in the time interval (st, f j)  and corresponds to an aircraft of aircraft type aj. The start and 
finish time of job j are assumed to be rational numbers with s t < fj and aj. is an integer with 1 ~< aj ~< A. 
Here  A denotes the number of aircraft types in the system. 

The jobs must be carried out in a non-preemptive way by a number of engineers. An engineer is 
allowed to carry out a specific job only if he has a license for the corresponding aircraft type. In principle 
there are 2 A - 1 different license combinations. However, some license combinations may be excluded a 
priori. The number' of remaining license combinations is denoted by C. The costs per engineer depend 
on the license combination of the engineer. For c = 1 ,2 , . . . ,C  the costs of one engineer with license 
combination ¢ are denoted by k c. 

The aircraft types per license combination are represented in the A X C z e r o / o n e  matrix L, where 
the rows of L correspond to the aircraft types and the columns of L correspond to the license 
combinations. The interpretation of the matrix L is as follows. La¢ = 1 ** aircraft type a belongs to 
license combination c. Examples of matrices L, which will be studied explicitly in the sequel, are the 
following: 

L:I  o11 L2:[i [1o ] 
L 3 =  0 1 ' 1 1 

!] 
[10 ] 

L s =  1 1 • 
1 1 

For example, the matrix L 0 represents a situation, where all aircraft types are considered as being 
identical and where, as a consequence, all jobs can be carried out by all engineers. The matrix L 2 
represents a situation with 3 aircraft types and 2 license combinations, where for c = 1,2 an engineer with 
license combination c has licenses for the aircraft types c and 3. 
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Let the A x C zero/one matrix L be given. Then the problem License Class Design with respect to 
the matrix L, or LCD(L) for short, is defined as follows. 

Instance of LCD(L): 
- J jobs (s i, fj, a j) to be carried out. 
- C integers k c, for c = 1,2 . . . . .  C, representing the costs of one engineer with license combination c. 

Quest ion:  
- How to choose the numbers of engineers such that a feasible non-preemptive schedule exists for all 

jobs and such that the total costs of the engineers are minimum? 

Note that the matrix L is assumed to be part of the type of the problem LCD(L) and that it does not 
belong to the instances of the problem LCD(L). Therefore a whole class of combinatorial problems has 
been defined, indexed by the zero/one matrices L. For a given matrix L the problem License Class 
Design with Uniform Cost with respect to the matrix L, or LCDUC(L) for short, is the special case of 
LCD(L) assuming that k c = k for c = 1,2 . . . . .  C. 

For a given A x C zero/one matrix L the operational job scheduling problem mentioned in Section 2 
is called License Class Scheduling with respect to the matrix L, or LCS(L) for short. Here the numbers 
of engineers are known and the question is whether or not there exists a feasible non-preemptive 
schedule for all jobs. That is, LCS(L) can be stated more formally as follows. 

Instance  of LCS(L): 
- J jobs (st, fi, a j) to be carried out. 
- C integers E c for c = 1,2,..., C, representing the number of available engineers with license 

combination c and satisfying Ec ~< J. 
Quest ion:  

- Does a feasible non-preemptive schedule exist for all jobs, which takes into account the licenses Of 
the engineers? 

Note again that the matrix L is assumed to belong to the type of the problem LCS(L) and that it does 
not belong to the instances of the problem LCS(L). The problems LCS(L) have been studied extensively 
by Kolen and Kroon [13]. They provide a complete classification of the computational complexity of the 
problems LCS(L). This classification is given in Theorem 8 in the present paper. 

For any matrix L both LCS(L), LCD(L) and LCDUC(L) can be seen as generalizations of the well 
known Fixed Job Scheduling Problem, or FSP for short. FSP is equivalent to LCD(L0). That is, in FSP 
the assumption is that all aircraft types can be considered as being identical and that, therefore, all jobs 
can be carried out by all engineers. 

Next to applications in several job scheduling environments [9], FSP and related problems have 
applications in other areas, such as vehicle routing [3] and computer wiring [10,11]. The following lemma, 
which will be used in the sequel, characterizes the optimal solution of an instance of FSP. 

Lemma 1. In any instance of  FSP the minimum number of  engineers required for carrying out all jobs is 
equal to the maximum job overlap. 

Here the job overlap at the time instant t, denoted by Dr, and the maximum job overlap, denoted by 
D, are defined as follows. 

Ot = I{jls~<t<fj}l. 
O = max{Dr l-oo < t < oo/. 

Lemma 1 is a direct consequence of a theorem of Dilworth [4] stating that in any partially ordered set 
the minimum number of chains required for covering all elements is equal to the size of a maximum 
antichain. Gupta, Lee and Leung [10] present a straightforward algorithm which can be used to calculate 
the maximum job overlap in O(J log J) time. This is optimal on a sequential processor, as follows from 
[7]. 



A.W.J. Kolen, L.G. Kroon / License class design 4 3 5  

Similar problems were studied by several authors. Dondeti  and Emmons [5,6] show that LCD(L 1) and 
LCD(L 2) can be solved in polynomial time by iteratively calculating a Maximum Flow in a specially 
structured directed network. Furthermore,  they study the complexity introduced by limited availability of 
the engineers. 

Kolen, Lenstra and Papadimitriou [16] consider a situation with A aircraft types and A license 
combinations, where a job on aircraft type a can be carried out by an engineer with license combination 
c ,~ a >/c. This corresponds in our setting to an A × A  lower triangular matrix L. In [16] it is shown that 
in this case the problem LCS(L)  is NP-complete if A >/3. Note that the cases with A = 1, A = 2 and 
A = 3 are represented by the matrices L 0, L 1 and Ls, respectively. 

Kolen and Kroon [12] describe a situation with A aircraft types, where each engineer has exactly B 
licenses. One of the results in [12] is that in this situation the operational job scheduling problem is 
NP-complete ¢* 1 < B < A. Furthermore,  the tactical capacity planning problem is NP-hard ~ 1 < B < A. 

Arkin and Silverberg [1] present a Dynamic Programming formulation of the operational job 
scheduling problem LCS(L),  which shows that for any z e r o / o n e  matrix L the problem LCS(L)  can be 
solved in O(J  e+l)  time. Here  E denotes the total number of available engineers. Hence, if the total 
number of engineers is fixed, then this algorithm is polynomial in the number of jobs. This result is also 
significant with respect to the problems LCD(L)  and LCDUC(L) ,  as it will be shown in Section 4 that 
strong connections exist between the problems LCS(L)  and the problems LCD(L)  and LCDUC(L) .  
Related problems in the context of the assignment of classes to classrooms in universities and high 
schools were studied by Carter and Tovey [2]. 

3. LP and network flow algorithms 

In this section it is shown that LCD(L 2) can be solved in polynomial time by a combination of Linear 
Programming and Network Flow algorithms. As LCD U C(L  2) is a special case of LCD(L2),  this result 
implies that LCDUC(L  2) can also be solved in polynomial time. These results are similar to the results 
of dondeti and Emmons [6]. However, the method used here to establish these results is different from 
the method in [6]. 

Let I be an instance of LCD(L 2) containing J jobs to be carried out with respect to 3 aircraft types 
and 2 integers k I and k 2 representing the costs per engineer. Without loss of generality it is assumed 
that 0 < k I ~< k 2. The notation {tp [ p = 0,1,2, . . . ,  P} is used for the set of start and finish times of the jobs 
in chronological oi'der. That  is, {tplp = 0,1,2 . . . . .  P} = {sj, f j l j  = 1 ,2 , . . . , J}  and tp_ l < tp for p = 
1,2, . . . ,  P. For p --- 1 ,2 , . . . ,  P and a = 1,2,3, the number Dap denotes the job overlap in the i n t e r v a l  (tp_l, 
tp) of the jobs on aircraft type a. Now an Integer Program, which can be used for solving I, contains the 
following decision variables. 
Y,. :An integer variable indicating the required number of engineers with license combination c 

(c = 1,2). 
Xjc :A binary variable indicating whether or not job j on aircraft type 3 has to be carried out by an 

engineer with license combination c ( j  = 1,2, . . . ,  J and aj = 3 and c = 1,2). 
Note that for a = 1,2 a job on aircraft type a can be carried out by an engineer with license 

combination a only. Therefore  decision variables concerning these jobs are not required. The objective 
and the constraints of the Integer Program can be stated as follows: 

min IP = k lY  ~ + k2Y 2 (3.1) 

subject to 

X j I + X j 2 = I  f o r j = l , 2  . . . . .  J and a i = 3 ,  (3.2) 

Xjc + Dcp <~ Y¢ for c = 1,2 and p = 1,2 . . . . .  P ,  (3.3) 
{J I a j  - 3 a n d  sj < tp <~fj} 

All variables are integer. (3.4) 
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Figure 1 

The objective function (3.1) expresses that one is interested in minimizing the total costs for hiring 
engineers. The constraints (3.2) guarantee that each job on aircraft type 3 is carried out exactly once. The 
constraints (3.3) specify that for c = 1,2 the maximum job overlap of the jobs, which are assigned to the 
engineers with license combination c, should not exceed the number of available engineers with license 
combination c. Hence, according to Lemma 1, any feasible solution of the Integer Program can be 
transformed into a feasible assignment of jobs to engineers and vice versa. Finally, the integrality 
constraints (3.4) specify the integer character of the decision variables. The LP-Relaxation of the Integer 
Program is obtained by relaxing the integrality constraints (3.4) on the variables. The optimal value of the 
LP-Relaxation is denoted by LP. 

Now it will be shown that there exists a strong connection between the solutions of the LP-Relaxation 
and compatible flows in some specially structured networks. This connection will be used then to 
establish several corollaries. Let a rational number A be given, which is greater than or equal to the 
maximum job overlap of all jobs in I. Then the network NI(A) is defined as follows. The node set of 
NI(A) is the set {tp I p = 0,1,2 . . . . .  P}. For each job j on aircraft type 1 there is an arc from node sj to 
node fj  with lower and upper capacity equal to 1. For each job j on aircraft type 3 there is an arc from 
node sj to node fj with lower capacity 0 and upper capacity 1. Furthermore, for p = 1,2, . . . ,  P there is a 
dummy arc (tp_~, tp) with lower capacity 0 and upper capacity A - D t p - D 2 p - D 3 p .  Note that, by 
assumption, this latter number is non-negative. 

Example. The construction of the network NI(A) is illustrated by the following example. Suppose that 
the jobs which have been represented in Figure 1 have to be carried out. 

In this example the maximum job overlap is equal to 2. Hence let zl be greater than or equal to 2. 
Then the network NI(A) can be represented as in Figure 2. 

The lower and the upper capacities of the arcs 1 and 4 are equal to 1. The upper capacities of the arcs 
2, 3 and 5 are equal to 1. The straight arcs are the dummy arcs. The upper capacities of these arcs are 
equal to d - 2. 

L e m m a  2. I f  the network NI(.)  is constructed as described, then the following relations hoM: 
(i) I f  (X ,  Y )  is a feasible solution of the LP-Relaxation, then there exists a flow of Y 1 units from node t o 

to node tp in the network NI(Y 1 + Y2). 
(ii) I f  there exists a flow of  ~ units from node t o to node t e in the network NI( A), then there exists a 

feasible solution of the LP-Relaxation with YI = ~ and }'2 = A - 3. 

Proof. In the proof of this lemma some of the technical details have been left out. For more details the 
reader is referred to [15], which is an extended version of the present paper. 

2 

Figure 2 
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2 

Figure 3 

(i) If (X,  Y) is a feasible solution of the LP-Relaxation, then 7"1 + Y2 is greater  than or equal to the 
maximum job overlap of the jobs in I. Hence  the network N1(Y 1 + Y2) is well defined. Now a flow of Y1 
units from node t o to node te in the network NI(Y  1 + Y2) can be defined as follows. For each job on 
aircraft type 1 there is one unit of flow assigned to the corresponding arc in the network and for each job 
j on aircraft type 3 there are Xi~ units of flow assigned to the corresponding arc in the network. Finally, 
for p = 1 ,2 , . . . ,  P there are Y1 - F,,~s<t ~<faX;1 -D1- units of flow assigned to the dummy arc (t ,_~, 
tp). It is not difficult to prove (see [15~) ti~at"the flow conservation rules and the capacity cons t ra in tsare  
satisfied and that the total amount  of flow is equal to Y1 units. This completes the proof  of  s tatement (i). 

(ii) If  there exists a flow of 6 units from node t o to node te in the network N~(A), then a solution of 
the LP-Relaxation can be defined as follows: Y1 := 6 and Y2 := a - 6. Furthermore,  for each job j on 
aircraft type 3 the variable Xjl is set equal to the value of the flow in the arc corresponding to job j and 
the variable X~2 is set equal to 1 -Xj~.  It is not difficult to prove (see [15]) that in this way a feasible 
solution of the LP-Relaxation is obtained. This completes the proof  of Lemma 2. [] 

Note that the result of Lemma 2 does not only hold for integer values of A but also for fractional 
ones. The network N2(A) is constructed analog to the network N1(A). The difference is that N2(A) 
contains arcs for the jobs on aircraft type 2 or 3. 

Example. For the set of jobs, which was defined in Figure 1, the network N2(A) can be represented as in 
Figure 3. 

The lower and the upper  capacity of arc 6 are equal to 1. The upper  capacities of the arcs 2, 3 and 5 
are equal to 1. The straight arcs are the dummy arcs. The upper  capacities of these arcs are equal to 
A - 2. The following lemma shows for the general case that the networks NI(A) and N2(A) are in some 
sense 'dual '  networks. 

Lemma 3. A flow of 6 units from node t o to node t t, exists in the network NI(A) * a flow of A - 6 units 
from node t o to node t e exists in the network N2(A). 

Proof. If  a flow of 6 units from node t o to node t e exists in the network N~(A), then a feasible solution 
of the LP-Relaxation exists with Yx -- 6 and ¥2 = A - 6. But then it can be shown in the same way as in 
Lemma 2 that a flow of Y2 = A - 6 units from node t o to node te exists in the network N2(Y 1 + Y2) = 
N2(A). The converse s tatement  follows by symmetry. This completes the proof  of Lemma 3. [] 

The relations between the LP-Relaxation and the networks NI(A) and N2(A) have several implica- 
tions, which are described next. 

Corollary 4. I f  (X,  Y )  is an extremal solution of  the LP-Relaxation and Y1 + )12 is integer, then (X,  Y )  is 
all integer. 

Proof. According to Lemma 2, a compatible flow @ exists in the network NI(Y  1 + Y2). Suppose that the 
solution (X,  Y) is fractional. Then it follows that the flow q~ is also fractional. However, as all capacities 
in the network NI(Y  1 + 7"2) are integer, it follows that q~ is not an extremal flow. Therefore  q~ can be 
written as a convex combination of extremal compatible flows, which are all integer. According to 
Lemma 2, these integer compatible flows can be interpreted as integer solutions of the LP-Relaxation. 
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Figure 4 

By linearity, it follows that (X, Y) can be written as a convex combination of integer solutions of the 
LP-Relaxation and hence (X, Y) is not an extremal solution. This contradiction completes the proof of 
Corollary 4. [] 

Example. This example shows that an optimal solution of the LP-Relaxation can be fractional. Suppose 
that the same jobs (sj, f/, a j) have to be carried out as in Figure 1. Then the projection of the feasible 
region onto the 2-dimensional (I11, Y2)-sP ace can be represented as in Figure 4. 

Figure 4 clearly shows that (Yl*, I12") = (1.5, 1) is the unique optimal solution of the LP-Relaxation as 
long as ( k l / k  2) < 2. In that case one obtains (X2], X ~ ) =  (0.5, 0.5), (X3], X3~)= (0.5, 0.5) and (X6], 
X6~) = (1, 0) for the values of the assignment variables. 

Corollary 5. I f  ( X *, Y *) is an optimal solution o f  the LP-Relaxation and YI* + Y2* is fractional, then the 
following statements hoM: 

(i) There exists an optimal integer solution corresponding either to a Maximum Flow in the network 
NI([YI* + Yz*D or to a Maximum Flow in the network NI([YI* + ]I2"]). 

(ii) I f  k I = k 2 = k, then there exists an optimal integer solution corresponding to a Maximum Flow in the 
network NI([YI* + Y2* 1). The value of  this optimal integer solution is k[ Yl* + Y ~  ]. 

Proof. (i) First it is shown that an optimal integer solution exists, where the total number of engineers A* 
satisfies the following inequalities: 

LY1 * + Y2*] ~<a* ~< [YI* + Y2*]. (3.5) 

To establish this result the following parametric Linear Program LP(A) is considered, which is obtained 
from the original LP-Relaxation by the addition of one parametric constraint: 

min LP(A) = k l Y  1 + k2Y: 

subject to Y1 + Y2 = zl, 

(3.2) and (3.3), 
All variables are non-negative. 

Let the set ~ denote the set of A's for which LP(A) has at least one feasible solution. As LP(A) is 
obtained from the original LP-Relaxation by the addition of one parametric constraint, the following 
relation between LP(A) and the optimal value of the LP-Relaxation is obvious. 

LP = min{LP(zl) I a ~ } .  (3.6) 

As (X*,  Y*) is an optimal solution of the LP-Relaxation, the minimum in (3.6) is obtained for 
A = Yl* + Y:*- In the same way as in the proof of Corollary 4 it can be shown that each extremal solution 
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of LP(A) is an integer solution whenever A is an integer. Thus the following relation between LP(A) and 
the optimal value of the Integer Program is obtained. 

IP = min{LP(A) I A ~ and integer}. (3.7) 

From the theory of Parametric Programming it is known that, on its domain, the function LP(A) is a 
convex function of A. As the minimum in (3.6) is obtained for A = YI* + Y2*, it follows that the minimum 
in (3.7) is obtained for A* = [YI* + Y2*] or for A* = [YI* + Y2*]. This implies the existence of an optimal 
integer solution satisfying (3.5). Furthermore,  the assumption 0 < k 1 ~< k 2 implies that, given the total 
number of engineers A*, the number of engineers with license combination 1 must be maximum. From 
Lemma 2 it follows that this can be accomplished by calculating a Maximum Flow in the network 
N1(A*).  This completes the proof of part (i). 

(ii) If k~ = k2, then Y~* + Y2* is the minimum value of A for which a compatible flow exists in the 
network N1(A). As a consequence, a compatible flow in the network NI([YI* + Y2*]) does not exist. [] 

4 .  C o m p u t a t i o n a l  c o m p l e x i t y  

The aim of this section is to provide a complete classification of the computational complexity of the 
problems LCD(L)  and LCDUC(L) .  The structure of this section is as follows. In Section 4.1 some 
preliminary remarks are made, which imply that one does not have to consider all z e r o / o n e  matrices L 
in order to obtain a complete classification. In Section 4.2 a complete classification of the computational 
complexity of the problems LCDUC(L)  is presented and in Section 4.3 the same is done for the 
problems LCD(L).  

4.1. Preliminary remarks 

In this section it is assumed that an NP-hard problem can not be solved in polynomial time and vice 
versa. This assumption is justified because it simplifies the notation in several places and because it is in 
accordance with the general opinion on the relation between the set of polynomially solvable problems 
and the set of NP-hard problems. 

Important concepts in the classification of the computational complexity of the problems LCDUC(L)  
and LCD(L)  are the concepts irreducibility of a z e r o / o n e  matrix and dominance of a column of a 
z e r o / o n e  matrix. These concepts are defined as follows. An A x C z e r o / o n e  matrix L is called 
reducible if at least one of the following conditions is satisfied. 

- L contains a complete row or a complete column of zeros. 
- L contains two identical rows or two identical columns. 
- By applying row or column permutations L can be written as 

L = [L '  0 °.1 
If none of these conditions is satisfied, then the matrix L is called irreducible. If L contains columns c 

and d, which are such that L,c ~< Lad for a = 1,2 . . . .  , A ,  then column c is said to be dominated by 
column d. If L does not contain such columns, then L is said to be a matrix without dominance. 

Furthermore,  important tools in the classification of the computational complexity of the problems 
LCD(L)  and LCDUC(L)  are the Lemmas 6 and 7, which relate the complexities of some problems to 
each other. As these lemmas can be proved by evident reductions, the proofs are omitted. 

L e m m a  6. If ,  by applying row or column permutations,  L can be written as 

o] 
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then the following statement holds: LCD(L) can be solved in polynomial time ** LCD(L') and LCD(L") 
can be solved in polynomial time. A similar statement holds for the problems LCDUC(L), LCDUC(L') and 
LCDUC(L"). 

Lemma 6 shows that a complete classification of the computational complexity of the problems in the 
set {LCD(L) [ L is an irreducible zero/one matrix} implies a complete classification of the computational 
complexity of the problems in the set {LCD(L) I L is any zero/one matrix}. A similar statement holds for 
the problems LCDUC(L). 

Lemma 7. I f  the A '  × C' zero/one matrix L' is a submatrix of  the A × C zero/one matrix L, then 
LCD(L') cc LCD(L). 

Here the notation LCD(L') 0t LCD(L) means that there exists a polynomial reduction from LCD(L') 
to LCD(L) (see [8] for a definition). As in LCDUC(L) the costs of all engineers are equal, the result of 
Lemma 7 does not hold for the problems LCDUC(L). This is illustrated by the following example. If the 
matrices L' and L are defined as follows: 

L ' =  0 , L =  0 1 , 
1 1 0 

then the problem LCDUC(L') is NP-hard, as will be proved in Section 4.2. On the other hand, in the 
situation represented by the matrix L the engineers with one of the license combinations 1, 2 or 3 are 
dominated by the engineers with license combination 4. This implies that for any instance of LCDUC(L) 
there exists an optimal solution, where all engineers have license combination 4. Hence LCDUC(L) is 
equivalent to FSP, which can be solved in O(J log J) time. 

More generally, if in a given license matrix L the license combination c is dominated by the license 
combination d and I is an instance of LCDUC(L), then there exists an optimal solution for I, where the 
number of engineers with license combination c is zero. As a consequence, in the analysis of the 
problems LCDUC(L) it may be assumed without loss of generality that the matrix L is a matrix without 
dominance. This implies that for each pair of license combinations c and d an aircraft type a c'a exists, 
which can be carried out by license combination c and which can not be carried out by license 
combination d. 

In this section the results of [13] are used several times, as it turns out that there exist strong 
connections between the problems LCS(L) and the problems LCD(L) and LCDUC(L). In terms of the 
above definitions the main results of [13] with respect to the problems LCS(L) can be stated as follows. 

Theorem 8. I f  L is an irreducible zero~one matrix, then the following statement holds: LCS(L) is 
NP-complete ~, L contains at least 3 columns. 

Lemma 9. I f  L is an irreducible matrix with at least 3 columns, then, after a suitable permutation of  the 
rows and the columns, it contains one o f  the matrices L3, L 4 or L 5 as a submatrix. 

4.2. Complexity of  LCDUC(L)  

The aim of this subsection is to provide a complete classification of the computational complexity of 
the problems LCDUC(L) for irreducible zero/one matrices L without dominance. This classification is 
expressed in Theorem 10, which reads as follows. 

Theorem 10. I f  L is an irreducible zero/one matrix without dominance, then the following statement holds: 
LCDUC(L)/s NP-hard • L contains at least 3 columns. 
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Proof. The only irreducible matrix without dominance and with one column is the matrix L 0. As was 
mentioned in Section 2, the problem LCDUC(L  0) is equivalent to the problem FSP and can be solved in 
polynomial time therefore. Furthermore,  the only irreducible matrix without dominance and with two 
columns is the matrix L 2. As it was proved in Section 3 that LCDUC(L  2) can be solved in polynomial 
time, this completes the 'only if-part  of Theorem 10. 

The ' i f -par t  is proved by a reduction from LCS(L). Note that it follows from Theorem 8 that LCS(L) 
is NP-complete. Let 11 be an instance of LCS(L)  containing J jobs (sj, fj, aj) to be carried out and C 
integers E c, for c = 1,2 . . . . .  C representing the number of engineers with license combination c and 
satisfying E c ~< J. Let the number T be defined by: T = 1 + max{fj [ j = 1,2 . . . .  , J}. As the matrix L is a 
matrix without dominance, for each pair of different license combinations c and d there exists an aircraft 
type a c'a which can be carried out by license combination c and which cannot be carried out by license 
combination d. Now an instance 12 of LCDUC(L)  is defined as follows. In I 2 the following jobs have to 

be carried out. 
• J jobs (s t, fj, a t) from the instance I 1. 
• E c times the dummy job (T  + d - 1, T + d, a c'a) for c,d = 1,2 . . . . .  C and c 4: d. 

As C is fixed and E c <~ J for c = 1,2 . . . . .  C, the size of I 2 is polynomial in the size of 11. Now the 
c 

following statement will be proved: 11 is a yes-instance ,~ all jobs in I 2 c a n  be carried out by Ec=lEc 
Ec=lEc engineers. Let Yc be the number of engineers. Suppose that all jobs in 12 can be carried out by c 

engineers with license combination c in an optimal solution for 12. Then one has: 

C C 

E Y,-= E Ec. (4.1) 
c - 1  c - 1  

Looking at the interval (T + d - 1, T + d) one sees that all jobs in this interval cannot be carried out by 
engineers with license combination d. The number of jobs in this interval is equal to E~,aE, . .  Therefore  

one has: 

Y,.>/ ~ E c  f o r d = l , 2  . . . . .  C. (4.2) 
c4-d c4=d 

Combining results (4.1) and (4.2) one obtains: 

Yd <~ Ed for d = 1,2 . . . . .  C. (4.3) 

However, equality (4.1) must be satisfied and therefore one finds: 

Y j = E  d f o r d = l , 2 , . . . , C .  (4.4) 

As a consequence, the schedule for the J regular jobs (s i, f j ,  a j) of I 2 is a feasible schedule for the J 
jobs (sj, fj, a j) of 11 and hence 11 is a yes-instance. 
Conversely, if 11 is a yes-instance, then one can construct a schedule for I 2 with y cc=lE~ engineers by 
taking E~ engineers with license combination c, for c = 1,2 . . . . .  C. The J regular jobs (sj, ft, at) of I 2 c a n  

be scheduled in the same way as the J jobs (s t, ft, a j) in the feasible schedule for 11. The dummy jobs 
(T  + d -  1, T + d, a c'd) can be carried out by engineers with license combination c. This holds for 

c , d =  l,2 . . . . .  C and c e d .  
Thus the following statement has been proved. 11 is a yes-instance ~ all jobs in 12 can be carried out by 
~_c E C engineers. As LCS(L)  is NP-complete, it follows that LCDUC(L)  is NP-hard. This completes 

c=¿  
the ' i f -par t  of Theorem 10. [] 

For any z e r o / o n e  matrix L the problem LCDUC(L)  is an integer-valued minimization problem and 
for any instance of LCDUC(L)  the minimum number of required engineers is less than or equal to the 
number of jobs. Furthermore,  if LCDUC(L)  is NP-hard, then it is NP-hard in the strong sense. This 
follows from the fact that in that case LCS(L)  is NP-hard in the strong sense [13]. These remarks imply 
that, assuming P 4: NP, a fully polynomial approximation scheme for LCDUC(L)  does not exist if 

LCDUC(L)  is NP-hard [8]. 
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4.3. Complexity o f  LCD (L) 

The aim of this paragraph is to provide a complete classification of the computational complexity of 
the problems LCD(L)  for irreducible ze ro /one  matrices L. This classification is expressed in Theorem 
11, which reads as follows. 

Theorem 11. I f  L is an irreducible zero~one matrix, then the following statement holds: LCD(L) is 
NP-hard • L contains at least 3 columns. 

The greatest irreducible matrix with two columns is the matrix L 2. As it was proved in Section 3 that 
LCD(L 2) can be solved in polynomial time by a combination of Linear Programming and Network Flow 
algorithms, this provides the 'only iff-part of Theorem 11. The ' i f-part  of Theorem 11 will be established 
by proving that the problems LCD(L3), LCD(L 4) and LCD(L 5) are NP-hard and by applying the 
Lemmas 7 and 9 next. 

Lemma 12. LCD(L 3) is NP-hard. 

Proof. The proof of this lemma uses a reduction from LCS(L3). Note that it follows from Theorem 8 that 
LCS(L 3) is NP-complete. Let I 1 be an instance of LCS(L 3) containing J jobs (sj, fj, aj) to be carried 
out and 3 integers Ea, E 2 and E 3 representing the numbers of engineers with the license combinations 1, 
2 and 3 respectively. Let the number T be defined by: T = 1 + max{fj I j = 1,2 . . . . .  J}. Now an instance 
12 of LCD(L 3) is constructed. The following jobs of the form (st, ft, at) have to be carried out. 

• J jobs (st, ft, a j) from instance 11. 
• E 2 times the dummy job (T, T + 1, 2). 
• E 1 + E 3 times the dummy job (T, T + 1, 1). 
• E 2 + E 3 times the dummy job (T + 1, T + 2, 2). 

Furthermore, three integers kl, k 2 and k 3 are chosen which represent the costs of the engineers and 
which satisfy the following relation: max{k1, k 2} < k 3 < k~ + k 2. As E c ~<J for c = 1,2,3, the size of 12 is 
polynomial in the size of I v Let the total costs of the engineers in an optimal solution for 12 be denoted 
by B. Then the following statement will be proved: 11 is a yes-instance *~B <~ k l E  1 + k 2 E  2 + k3E 3. 
Suppose that 11 is a yes-instance. Then in 12 one can choose El, E 2 and E 3 engineers with the license 
combinations 1, 2 and 3, respectively. The regular jobs in 12 can be scheduled in the same way as in 11 
and it is evident that there exists a feasible schedule for the dummy jobs of 12. As the total costs for 
these engineers are equal to k l E  1 + k 2 E  2 + k3E3, it follows that B <~ k x E  1 + k 2 E  2 + k3E  3. 
Conversely, suppose that in 12 an optimal solution exists satisfying B <<. k l E  1 + k 2 E  2 + k3E 3. Let 111, 112 
and Y3 denote the numbers of engineers with the license combinations 1, 2, and 3, respectively, in this 
optimal solution. Then one has the following inequalities: 

I11 +']13 >~E~ + E  3 because of the interval (T,  T +  1), 

]12 + ]13 >~ Ez + E3 because of the interval ( T + 1, T + 2), 

Y1 + Y2 + )13 >1 E1 + E2 + E3 because of the interval (T,  T + 1), 

k l Y  1 + k 2 Y  2 + k 3 Y  3 <~ k l E  1 + k 2 E  2 + k 3 E  3. 

Using these inequalities and the relations between kt, k z and k3, one obtains: 

k l Y  1 + k 2 Y  2 + k3Y  3 

<~ k l E  1 + k z E  2 + kaE  3 

= (k  3 - k 2 ) ( E  1 -1-E3) --b (k  3 - k l ) ( E  2 --1--E3) --[- (k  1 --l--k 2 - k 3 ) ( E  1 --1-E 2 --b E3) 

(k3 - -  k2)(Y1 '~ Y3) -[- (k3 - -  kl)(Y2 + II3) + (k l  + k2 - k3)(Y1 + II2 + r3) 

= k l Y  1 + k 2 ~  2 + k 3 Y  3 
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As the first and the last part  of this chain are identical, it follows that all inequalities are equalities and 
therefore one has 

Yl = El ,  Y2 = E2 and Y3 = E3- 

Consequently I l is a yes-instance. As LCS(L 3) is NP-complete,  it follows that LCD(L  3) is NP-hard. This 
completes the proof  of Lemma 12. [] 

The NP-hardness of LCD(L  4) and L C D ( L  5) can be proved in the same way as the NP-hardness of 
LCD(L3).  Therefore  the results of the Lemmas 7 and 9 can be applied to establish the validity of 
Theorem 11. This completes the classification of the computational complexity of the problems LCD(L) .  

5. Concluding remarks 

In this paper  the problems L C D U C ( L )  and LCD(L) ,  which appear  within the aircraft maintenance 
process at an airport, were described in a formal way. A complete classification of the computational  
complexity of these problems was presented and it was shown that the polynomially solvable cases can be 
solved by a combination of Linear Programming and Network Flow algorithms. 

In the problems L C D ( L )  it is assumed that the costs per engineer are given by the instances of 
L C D ( L )  and in the problems L C D U C ( L )  it is assumed that the costs per engineer are independent  of 
the license combinations. However, one can also assume that the costs per engineer depend on the 
license combinations, but are part  of the type of the problem at hand. In that case a cost vector K with C 
entries k l, k 2 , . . . ,  k c  for c = 1 , 2 , . . . ,  C representing the costs of one engineer with license combination 
c would belong to the type of the problem. The resulting problem could be called LCD(L,  K). In this 
case the computat ional  complexity of the problem LCD(L,  K)  depends both on the matrix L and on the 
cost vector K. 

Lemma 13. I f  there are 3 license combinations and the cost vector K representing the costs per engineer is 
( k l ,  k2,  k3) , then the following statements are valid: 

(i) LCD(L3,  K )  is NP-hard ~ max{k1, k 2} < k 3 < k I + k 2. 
(ii) LCD(L  4, K )  is NP-hard ~, k 3 < min{k 1, k2}. 

(iii) LCD(Ls ,  K )  is NP-hard ~, k 3 < k 2 < k v 

The ' i f ' -part  of (i) follows from the proof  of Lemma 12. The 'only iF-part of (i) follows from the 
observation that at least one of the license combinations is dominated by the others if the condition 
max{k~, k2} < k 3 < k x + k 2 is not satisfied. In that case there are at most two relevant license combina- 
tions and therefore the problem L C D ( L  3, K)  can be solved in polynomial time then. The statements (ii) 
and (iii) can be proved in a similar way. Although for such individual problems necessary and sufficient 
conditions on the cost vector K can be stated guaranteeing the NP-hardness of LCD(L,  K), it is difficult 
to state such conditions in general. This is a topic for further research. Furthermore,  we are currently 
looking for optimization methods to be used for calculating optimal or satisfying solutions for the cases 
that have been classified as NP-hard in this paper.  
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