
EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

ELSEVIER European Journal of Operational Research 82 (1995) 190-205

Theory and Methodology

Exact and approximation algorithms for the operational fixed
interval scheduling problem

Leo G. Kroon a Marc Salomon a,. and Luk N. Van Wassenhove b

a Erasmus University (I~S.M.), P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands
b INSEAD, Boulevard de Constance, F-77305 Fontainebleau, France

Received April 1993; revised August 1993

Abstract

The Operational Fixed Interval Scheduling Problem (OFISP) is characterized as the problem of scheduling a
number of jobs, each with a fixed starting time, a fixed finishing time, a priority index, and a job class. The objective
is to find an assignment of jobs to machines with maximal total priority. The problem is complicated by the
restrictions that: (i) each machine can handle only one job at a time, (ii) each machine can handle only jobs from a
prespecified subset of all possibl e job classes, and (iii) preemption is not allowed. It follows from the above that
OFISP has both the character of a job scheduling problem and the character of an assignment problem. In this
paper we discuss the occurrence of the problem in practice, and we present newly developed exact and approxima-
tion algorithms for solving OFISP. Finally, some computational results are shown.

Keywords: Job scheduling; Integer programming; Lagrangean relaxation; Heuristics

1. Introduct ion

The authors were first confronted with the Operational Fixed Interval Scheduling Problem (OFISP)
during the development of a decision support system for the maintenance department of the major dutch
airline company KLM at Schiphol Airport (Dijkstra et al., 1990). Planes arriving at the airport may
require a number of maintenance jobs. The processing times as well as the order in which these jobs have
to be carried out are specified by strict maintenance norms. As a consequence, the maintenance norms
and the time-table determine the fixed intervals in which the jobs have to be carried out in order not to
delay the departure of the airplanes on their next flights. The problem is further complicated by the
safety rule that each of the available engineers is licensed to carry out jobs on at most two different
aircraft types.

One of the problems to be solved by the decision support system is to develop maintenance schedules,
such that in principle all jobs are carried out. However, jobs with low priority that cannot be carried out
within their required interval might be postponed until the next stop of the airplane at an airport.

* Corresponding author.

0377-2217/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0377-2217(93)E0335-U

L.G. Kroon et al. / European Journal of Operational Research 82 (1995) 190-205 191

Later on, the authors became aware of, or involved in several other projects in which OFISP plays an
important role. These projects are briefly discussed below:
• The assignment of airplanes to gates (Hagdorn-van der Meijden and Kroon, 1990, and de Wit, 1991).

This problem also occurs at Schiphol Airport, where airplanes of different types have to be assigned to
gates during fixed intervals. However, each gate can only handle a limited set of aircraft types, due to
technical restrictions. The problem here is to find an assignment of airplanes to gates where the
number of unassigned airplanes - whose passengers have to be transported to the terminal by bus - is
minimized.

• The scheduling o f operating rooms in a hospital. In most hospitals a limited number of operating rooms
is available. Some of these operating rooms may be general purpose, but others may be suitable for
only a subset of the various types Of operations. In general the time slot for an operation is fixed some
time ahead. Now the problem to be solved in this context is to find a feasible schedule for as many as
possible of the planned operations, taking into account the restricted suitability of the operating
rooms.

• The assignment of holiday bungalows to vacationists (Kolen et al., 1987). Usually holiday bungalows are
booked a long time in advance for a period of one or more weeks. The holiday bungalows may differ in
several aspects, like size, location, accommodation, quality, and price. Each season the booking office
is faced with the problem of finding an assignment of holiday bungalows to vacationists, such that
there is a matching between the desires of the vacationists with respect to e.g. comfort, and the
available accommodation.
Also the classroom assignment problem (CAP) considered by Carter (1989) is closely related to

OFISP. These examples illustrate that OFISP is an interesting problem from a practical point of view.
However, the number of algorithms that is available for solving OFISP is quite limited. The research
reported here is conducted in an attempt to fill this gap. This paper is organized as follows. In Section 2
we consider the special case of OFISP, where all machines are identical and where all jobs belong to the
same job class. Section 3 proceeds with the general case, in which several machineclasses and job classes
exist. We formulate OFISP as an integer linear program, and present an approximation algorithm based
on Lagrangean relaxation and decomposition. In Section 4 we compare the computational results of our
heuristic with the results obtained from the integer linear program and with the results obtained from
the linear programming relaxation thereof. We make some final remarks in Section 5. In this paper we
follow the literature on job scheduling. Therefore we address the maintenance engineers (gates,
operating rooms, holiday bungalows, classroom) as 'machines', and the inspections (airplanes, operations,
holiday periods, classes) as 'jobs'.

2. Identical machines and one job class

OFISP is a generalization of the Fixed Job Scheduling Problem (FSP) and the Maximum Fixed Job
Scheduling Problem (Max.FSP). In these problems all jobs have a fixed starting time and a fixed finishing
time a n d belong to the same job class. Furthermore, the machines are identical. We will discuss the
problems FSP and Max.FSP first. Thereaf ter we will consider the case with several machine classes and
several job classes.

Suppose there are J jobs to be carried out in the time-interval [0, T], where each job j is represented
by the triple (sj, fj, pj). Here sj and fj are the fixed starting and finishing time of job j, respectively, and
pj represents the priority of job j. For carrying out these jobs M identical machines are available. FSP is
the feasibility problem of determining whether there exists a feasible non-preemptive schedule for all
jobs. A necessary and sufficient condition for the existence of a feasible schedule for all jobs is given by
the following lemma.

192 L.G. Kroon et aL / European Journal of Operational Research 82 (1995) 190-205

iobs . , e[; io

5E] 8

-'- 9Z]

2 E] 7 []
D

t i m e a x i s

Fig. 1. Instance of FSP with J = 10 and L = 4.

Lemma 1. A feasible non-preemptive schedule for all jobs exists i f and only i f the maximum job overlap is
less than or equal to the number o f available machines.

Here the job overlap at time t, denoted by L t , and the maximum job overlap, denoted by L, are defined
as follows.

L , = l { j l s j < t < f ; } , , L = m a x { L , O < t < _ T } .

Lemma 1 is a direct consequence of Dilworth's theorem on partially ordered sets, stating that in any
partially ordered set the minimum number of chains required for covering all elements is equal to the
size of a maximum antichain (Dilworth, 1950). An O(J log(J)) algorithm for determining the maximum
job overlap of the jobs is described by Hashimoto and Stevens (1971) and Gupta, Lee and Leung (1979).
Note that a feasible preemptive schedule also exists if and only if the maximum job overlap is less than or
equal to the number of available machines. So in this case nothing can be gained by allowing preemption.

Fig. 1 gives an example of an instance of FSP. In this figure the bars indicate the jobs to be carried
out. In this example the maximum job overlap L equals 4. Hence the minimum number of machines
required for carrying out all jobs equals 4 as well.

I f the maximum job overlap exceeds the number of available machines, then Max.FSP becomes
interesting. Max.FSP is the problem of finding a subset of jobs with maximum total value that can be
processed by the available machines. Max.FSP is considered by Arkin and Silverberg (1987), Kolen et al.
(1987), and Kolen and Kroon (1991). They show that Max.FSP can be solved in polynomial time by a
minimum cost flow algorithm. Arkin and Silverberg and Kolen et al. first construct a clique-graph.
Thereafter , this graph is used as the underlying graph of a minimum cost flow problem with M units of
flow.

The construction of the underlying directed graph G that we use in this paper is more direct than
those constructions, and can be described as follows. The set {t r I r = 0, 1 R} is used to represent all
starting and finishing times of the jobs in chronological order. That is, {t, [r = 0, 1 R} = {sj, f j I J =
1 J}, and t r_ ~ < t r for r = 1 , . . . , R. The set of nodes of the graph G is in one-to-one correspondence
with the set {t, I r = 0, 1 , . . . ,R} . A particular job j is represented in G by an arc from the node
corresponding to s i to the node corresponding to fj. This arc has an upper capacity of one on the
amount of flow that can be transported, and associated costs of pj per unit of flow transported.
Furthermore, for r = 1 R, there is an arc from t,_ ~ to t r with zero costs and unlimited capacity.
Obviously, a feasible schedule for a subset of jobs of maximum total value corresponds to a minimum
cost flow of M units of flow from t o to t R in the graph G. Fig. 2 shows t h e g r a p h G corresponding to the
set of jobs represented in Fig. 1. A job is carried out if and only if in the solution to the minimum cost
flow problem one unit of flow passes through the corresponding arc. The minimum cost flow problem on

Fig. 2. The graph G corresponding to the set of jobs represented in Fig. I.

L.G. Kroon et al. / European Journal of Operational Research 82 (1995) 190-205

3 7

4 9

Fig. 3. The reduced graph with R = 5 corresponding to the graph of Fig. 2.

193

the graph G can be solved e.g. by the strongly polynomial time algorithm of Orlin (1988). In order to
speed up the algorithm and to save storage space the following graph compression procedure can be
applied to G:

Graph compression procedure:
Step 1. Search for a pair of nodes (t r _ l , t r) in G such that node tr_ 1 does not have any outgoing job arcs

or node t r does not have any incoming job arcs. I f such a pair (tr_l, tr) does not exist, then
STOP else Goto Step 2.

Step 2. Replace the pair (tr_~, t~) by one single node and update the incoming and the outgoing arcs
accordingly. Repeat Step 1.

Lemma 2. There is a one-to-one correspondence between the feasible flows of M units of f low in G, and the
feasible flows of M units o f flow in the graph obtained after applying the graph compression procedure to G.

Proofi Two consecutive nodes (t r_ 1, tr) are replaced by one single node in the following cases: Case 1.
Node t r_ 1 does not have any outgoing job arcs. If a job finishing at tr_ 1 is carried out by one of the
machines, then this machine will be idle during the interval (t r _ l , tr). Therefore it may be assumed as
well that the finishing time of such a job equals t r. Thus node t r_ 1 is superfluous. Case 2. Node tr does
not have any incoming job arcs. If a job starting at t r is carried out by one of the machines, then this
machine must have been idle during the interval (L-~, tr)" Therefore it may be assumed as well that the
starting time of such a job equals t r_ 1. Thus node t r is superfluous. []

Application of the Graph Compression Procedure to the graph of Fig. 2 yields the reduced graph of
Fig. 3.

3. Several machine and job classes

Here we assume that there are C different machine classes, and A different job classes, where each
machine class is allowed to handle jobs from a limited number of job classes. Each job j belongs to a
certain job class a i. For c = 1 , . . . , C, the integer M c represents the predetermined number of machines
in machine class c. Furthermore, 5g c is the set of job classes that can be carried out by machines in
machine class c. For j = 1 ; . . . , J, the set ~ consists of all machine classes that can be used for carrying
out job j. Mathematically, OFISP can be formulated as:

OFISP:

J

ZOFIS P = max ~ ~ piXj,c
j = l c ~

(1)

194 L. G. Kroon et al. / European Journal of Operational Research 82 (1995) 190-205

subject to

E (2)
{j l ajE,~fcASj <---tr <f j}

E Xj,c<-l, 1=1,'", J, (3)
c ~

xi, c ~ {0, 1},] = 1 , . . . , J ; c e ~/, (4)

where xi, c is a binary decision variable, indicating whether job j is assigned to a machine in machine
class c (j = 1 J, a n d c ~ ~.). The objective function (1) states that we look for a feasible schedule for
a subset of jobs with maximum total value.

Xi , c<Mc, c = l , . . . , C ; r = O , . . . , R ,

Lemma 3. Each solution satisfying constraints (2)-(4) can be interpreted as a feasible non-preemptive
schedule.

Proof. Constraints (3) and (4) guarantee that each job is assigned to at most one machine class.
Furthermore, constraints (2) ensure that at any point in time the total number of jobs assigned to
machine class c does not exceed the number of machines available in machine class c. Thus Lemma 1
assures that there exists a feasible non-preemptive schedule for all jobs that are assigned to machine
class c. The latter holds for each machine class c. []

Remark 1. The restrictions corresponding to values of r for which tr is not a starting time of any job j
with aj ~ ¢ c are in fact redundant, and can be eliminated from the model formulation.

Remark 2. Another problem closely related to OFISP is the Tactical Fixed Interval Scheduling Problem
(TFISP), where the objective is to carry out all jobs against minimum total machine costs. The complexity
of several variants of this problem is studied extensively by Kolen and Kroon (1992). The case of TFISP
with identical machines and one job class is considered by Hashimoto and Stevens (1971), Gertsbakh and
Stern (1978), and Gupta, Lee and Leung (1979). This problem is equivalent to FSP and can be solved in
O(J log(J)) time. Dondeti and Emmons (1992) study a generalization Of this problem, with 3 job classes
and 2 machine classes. The machines in machine class c (c = 1, 2) are allowed to carry out jobs in the job
classes c and 3. It is shown that this variant of TFISP can be solved in polynomial time by repeatedly
solving a Max Flow problem. Another algorithm for solving this variant of TFISP, based on Linear
Programming and a Max Flow algorithm, is presented by Kolen and Kroon (1992). Fischetti, Martello
and Toth (1987, 1989, 1992) describe variants of TFISP with side constraints either on the total workload
per machine or on the spread time per machine (i.e. the difference between the finishing time of the last
assigned job and the starting time of the first assigned job). It is shown tha t these variants of TFISP,
which a r e related to the bus driver scheduling problem, are NP-hard. Kroon, Salomon and Van
Wassenhove (1993) present an approximation algorithm for solving the general variant of TFISP with
several machine classes and several job classes. Their algorithm is based on Lagrangean relaxation and
decomposition. It is very similar to the algorithm for solving OFISP in the present paper.

Kolen and Kroon (1991) show that OFISP is NP-hard when C > 1, except for some trivial cases. As a
consequence, solving OFISP to optimality when C > 1 requires the use of (potentially very) time-consum-
ing algorithms. An example of such an algorithm is given by Arkin and Silverberg (1987). Their algorithm
is based on dynamic programming. Unfortunately, since the number of nodes of the corresponding
network is O(J M) and the number of arcs is o(JM+I) , the practical applicability of this approach is

L.G. Kroon et al. /European Journal of Operational Research 82 (1995) 190-205 195

jobs 4 ~S////////////////////~ 7 [7

31 : ' : ~1

21 _ _ l 6 U/f/ / / / / / / / / / / / / / / /~

1 ~/~///// / / / / / / / /Y~ 5 1 :.: : ~ time axis
|

[] = job class 1 [] = job c lass 2 ~ = job c lass 3

Fig. 4. Instance of OFISP with A = 3 and C = 2. The jobs in job class 1 can be carried out by the machines in machine class 1, the
jobs in job class 2 can be carried out by the machines in machine class 2, and the jobs in job class 3 can be carried out by all
machines.

small. Since OFISP must be solved routinely in practice, we concentrate on fast procedures that yield
satisfactory (and not necessarily optimal) solutions. The number of available approximation algorithms
for solving OFISP is still quite limited. One example is provided by Carter (1989), who presents an
approximation algorithm based on Lagrangean relaxation for the classroom assignment problem, which is
a problem closely related to OFISP. In the Lagrangean subproblems the restriction that the jobs must be
processed in a non-preemptive way is relaxed. Also a heuristic for constructing feasible solutions is
provided.

The algorithm described in the present pape r exploits the observation that OFISP can be modelled as
a minimum cost flow problem if all machines are identical. In our algorithm the restriction that each job
must be processed at most once is relaxed. If the number of machine classes is greater than 1, then we
construct for each machine class c a corresponding graph Go, representing all jobs j for which aj ~ d c.
Although the problem obtained in this way is still related to the minimum cost flow problem, it is
complicated by the set of restrictions (3), which state that each job may be processed at most once. As a
consequence, t h e graphs Gc are coupled by a set of constraints. These constraints must ensure that the
total amount of flow that passes through the arcs corresponding to job j (j = 1 , J) is at most one. An
instance of OFISP is shown in Fig. 4, and the corresponding graphs G~ and their coupling constraints are
shown in Fig. 5. The dual-cost heuristic we propose can be summarized as follows:

Dual-cost heuristic:
Repeat

Apply upper bounding procedure;
Apply lower bounding procedure;
Update dual-cost multipliers

Until Stop Criterion is fulfilled

The upper (lower) bounding procedure is described in Section 3.1 (Section 3.2). To update the
dual-cost multipliers (introduced below), we use the standard subgradient optimization procedure as

3 5 '

i i • i :

• i

Fig. 5. The graphs G 1 and G 2 corresponding to the instance of OFISP shown in Fig. 4. The coupling constraints are indicated by
dotted boxes. Note that, for ease of representation, we did not apply the Graph Compression Procedure here.

196 L.G. Kroon et aL / European Journal of Operational Research 82 (1995) 190=205

described by Fisher (1981) as well as a dual-descent procedure. The dual-cost multiplier updating
procedure is described in Section 3.3. Finally, the stop criterion is based upon (i) the gap between upper
and lower bound, (ii) the computation time, and (iii) the number of iterations.

3.1. Upper bounding procedure

Upper bounds to Zovis e are obtained by Lagrangean relaxation of the linking constraints (3), using
non-negative multipliers u = (u l , . . . , u j). The resulting Lagrangean problem LR(OFISP) is formulated
as follows.

LR(OFISP):
J J

ZLR(OFISP)(U) = m a x E E (& - u j) x j . ~ + E uj (1')
j = l c E ~ j = l

subject to (2) and (4)

LR(OFISP) decomposes into C minimum cost flow problems with M c units of flow on the graphs G c,
where the transportation costs per unit of flow are now equal to u j - & for job j. It follows that

y
ZLR(OFIsm(U) = --EcC=IZ(G~)+ Ej=luj where Z(G c) is the solution to the minimum cost flow problem
on the graph G c. Since it is a well known result (Fisher, 1981) that min u >_0ZLR(OFIsm(U)> Zovts e, it
follows that ZLR(OFmm(U) yields an upper bound to Zovis e for all u > 0.

Furthermore, an alternative upper bound - not exploited in our heuristic, but used in Section 4 to
compare the computational results with - is obtained by solving the linear programming relaxation of
OFISP (or LP(OFISP) for short). Note that this bound equals minu>_oZLi:(ovism(U), since the La-
grangean problem satisfies the integrality property (Geoffrion, 1974). Finally, a third upper bound is
obtained by relaxation of the restriction that each job j can only be carried out by a machine in machine
class c when j E J c. Upon relaxation of this set restriction a single class problem with EcC= lMc machines
remains. This 'set relaxed' problem, denoted by SR(OFISP), can be solved by the procedure described in
Section 2.

3.2. Lower bounding procedure

The lower bounding procedure - which generates feasible solutions to OFISP - can be described as
follows: at each iteration we start out with a tentative schedule with some jobs that have been assigned to
a machine, while others are still unassigned. As long as there are idle machines, we search in a greedy
fashion for an idle machine with the highest potential profit in terms of the unassigned jobs that can be
processed by that machine. The latter is accomplished by repetitively solving a shortest path problem on
the graphs Go, from which all arcs corresponding to already assigned jobs have been eliminated. More
formally, the lower bounding procedure is stated as follows:

Lower bounding procedure:
M := Ec= 1Me;
f := {all jobs};
Repeat

Search for a 'locally best' machine class c* with Me. > 0;
Mc.==Mc.- 1;
M : = M - 1:
f : = f \ { a l l jobs that can be carried out by one machine of c*};

Until M = 0 or J = ¢;

L.G. Kroon et al. /European Journal of Operational Research 82 (1995) 190-205 197

As already stated, the greedy search for a 'locally best' machine class c* is done by solving for each
c = 1 C, a shortest path problem on the graph G c, where all job arcs corresponding to jobs not in f
have been deleted. In this problem the length of each job arc corresponding to job j equals uj -p:. . Let
the value of the resulting solution be equal to Pc. Then the locally best machine class c* is taken as
argmin {Pc I c = 1 , . . . , C}. As can be seen easily, this procedure results in a feasible solution to OFISP,
since it is ensured that (i) each job is processed at most once, and (ii) each machine processes at most
one job at the same time. Consequently, the total value corresponding to the obtained schedule yields a
lower bound to Zo~is e. During the course of the heuristic the lower bounding procedure is executed
every LBfreq iterations.

3.3. Dual-cost adaptation procedure

Our heuristic subsequently iterates between the upper bounding procedure and the lower bounding
procedure, updating the dual-cost multipliers u each round, until some prespecified stop-criterion is
satisfied. To update the dual-cost multipliers we apply the well-known subgradient optimization proce-
dure (Fisher, 1981) in our first heuristic (H1):

where A is a positive scalar step size, determined as:

Ix(Zumi_n) - zL~(m))

±(1_ xj,)
j= l c ~ j

Here ZUB(m)(ZLB(m)) is the upper (lower) bound value obtained by heuristic HI. The dualcost
multipliers are initialized at uj = 0 for j = 1 J. The scalar/~ has an initial value/.% which is halved
whenever the upper bound has failed to decrease during Hlhalf iterations.

As an alternative to HI we have also developed a second heuristic (H2), in which the subgradient
optimization procedure is combined with a dual-descent procedure. In H2 the dual-descent procedure
starts (with the multipliers obtained by the upper bounding procedure) when the upper bound has failed
to decrease during H2decrease subgradient iterations. It modifies the dual-costs of a job assigned more
than once in such a way that this job will be assigned to at most one machine class in the next iteration of
the upper bounding procedure. This implies a non-negative improvement of the upper bound in the next
iteration of the upper bounding procedure. The number of dual-descent iterations is set equal to H2iter.
Thereaf ter the subgradient procedure is called again. More formally, the dual-descent procedure is
described as follows:

Dual-descent procedure:
Initialization. Solve a minimum cost flow problem on Gc, c = 1 , C;

Let the corresponding objective value be Z(G¢), c = 1 C;
Step 1. Search for a job j* which is assigned to more than one machine class; I f no such job

exists then STOP else pick the first one and goto Step 2;
Step 2. Remove all arcs corresponding to job j* from the graphs Go, c ~ ~. . , and denote the

remaining graphs by He;
Step 3. Solve a minimum cost flow problem on He, c ~ ~. . , and let the corresponding objective

value be Z(Hc), c ~ ~ . ;

198 L.G. Kroon et aL /European Journal of Operational Research 82 (1995) 190-205

Step 4. Define A 1 := maxc ~ ~j.{Z(H ~) , Z(Gc)} and let this maximum be obtained for c = c*;
Define k 2 := max c ~ g,:.\{c.l{Z(H¢) - Z(G~)};
Update uj. := uj. + ½(a I + k2);

Remark 3. Note that, for the reader's convenience, we have included the initialization step in our
description of the dual-descent procedure. However, the minimum cost flow problem has already been
solved in the upper bounding procedure. Note further that in the dual-descent procedure both A 1 and
a 2 are non-negative.

Lemma 4. I f A 2 <A1, then job j* is assigned to exactly one machine class in the next iteration of the upper
bounding procedure. The improvement of the upper bound in the next iteration equals ~¢ ~ ~i.,{~.}(Z(Hc) -
Z(Gc)).

1 Proof . Note that A 2 < $(A 1 q- A2) < A 1. If job j* is assigned to machine class c* in the next iteration,
then Z(G~.) increases by½(A 1 + A2). If job j* is not assigned to machine class c* in the next iteration,
then Z(G~.) increases by k 1. As we want to minimize Z(Gc.), job j* is assigned to machine class c* in
the next iteration. Now let c be different from c*. If job j* is assigned to machine class c in the next

1 iteration, then Z(G¢) increases by y(A 1 + A2). If job j* is not assigned to machine class c in the next
iteration, then Z(G¢) increases by Z(H~) - Z(G~), which is less than or equal to A 2. Therefore job j* is
not assigned to machine class c in the next iteration. The objective function of LR(OFISP) equals
Y'.J_lEce~.j(pj -- Uj)Xj, c J _ + F~j= lUj. This implies that the objective function changes by

E al+a2] &+a2 - - -31- - -

c ~ . \ { c } 2 2 '

~ ' (a 1 + a 2) . [] if uj. increases by 1

Note that the improvement of the upper bound in the next iteration also equals Ec ~ ~.,@.}(Z(Hc) -
Z(G~)) if A 1 = A 2. However, in this case job j* may be assigned to more than one machine class in the
next iteration.

4. C o m p u t a t i o n a l r e su l t s

Heuristics HI and H2 have been implemented with Borland's Turbo Pascal 5.0 on an Olivetti M380
with 80386 processor and 80387 mathematical co-processor 1. Two different sets of problem instances are
considered. The first set of instances contains a number of randomly generated instances, whereas the
second set of instances comes from the real-life situation of the maintenance department at Schiphol
Airport.

4.1. Randomly generated problem instances (Set I)

The first set of instances that we created to test our heuristics was generated randomly. In order to
obtain information on the robustness of our heuristics, a number of problem parameters have been

As the developed DSS had to run on a personal computer, we have obtained our computational results, as far as possible, on a
personal computer.

L.G. Kroon et aL / European Journal of Operational Research 82 (1995) 190-205 199

varied:
- the number of jobs J,
- the n u m b e r of job classes A,
- the a priori utilization rate p.
H e r e the a priori utilization rate p of the system is an indicator of the expected workload per capacity
unit of the workforce. More formally, the util ization rate is def ined as follows:

1 expected total workload (in time-units) J × 7D

P = total workforce (in time-units) T × M

where D indicates the max imum job durat ion, T represents the length of the p lanning horizon, and M
denotes the total n u m b e r of machines. W e consider instances with low utilization rate (p = 0.8), medium
util ization rate (p = 1.0), and high utilization rate (p = 1.2). With respect to the machine classes it is
assumed that each machine can process jobs f rom two different job classes, which results in the relat ion
C = (2A). R e m e m b e r tha t this reflects the si tuation at the main tenance depa r tmen t of K L M at Schiphol
Airpor t , where each engineer is al lowed to carry out jobs on at most two different aircraft types. As we
consider instances with A = 3, A = 4, and A -- 5, this results in instances with C = 3, C = 6, and C = 10.
Fur the rmore , based u p o n the si tuation at Schiphol Ai rpor t we set the total number of machines to
M = 18 or M = 20. The machines were equally divided over the different machine classes 2. The
pa rame te r D was set in such a way that the required values for the utilization rate p were obtained.

The p rocedure for genera t ing the jobs is as follows. W e consider a planning hor izon of T = 1000
t ime-units and instances with J = 100, J = 200 and J = 300. For each job j the class aj is chosen
randomly f rom the set {1 A} and the processing t ime dj is genera ted randomly f rom the U(0, D)-dis-
tribution. The start ing t ime sj is genera ted randomly f rom the U(0, T - di)-distr ibution , and the finishing
t ime f j is set equal to sj + dj. The priorities pj of the jobs are de te rmined in such a way that the total
amount o f work tha t is carr ied out is maximized, which is achieved by put t ing pj = dj. For each (J, A ,
p)-combina t ion obta ined in this way we have genera ted 10 instances, which yields a total of 270
instances 3. Table 1 shows some o ther pa rame te r settings and stop-criteria used for H1 and H2 4

Table 2 shows the average relative quality A § and the average absolute quality A A for heuristic H.
Here , and in the remainder o f this paper , a pe r fo rmance measure with a bar is the average performance ,
c o m p u t e d over 10 instances per cell. The above quality measures are defined as:

A~ = ZUB(H) -- ZLB(H) a n d A A = ZOFISP -- ZLB(H)

ZUB(H) ZOFISP

O F I S P and L P (O F I S P) were, as far as possible, solved by L I N D O (Schrage, 1987) on the personal
compu te r 5. For instances tha t were too large to be handled by L I N D O on the personal compute r we
used O S L (IBM, 1991) on an I B M R S / 6 0 0 0 . So, all instances were solved to optimality, ei ther by
L I N D O or by OSL. Results in Tables 2 and 3 obta ined by O S L on the IBM R S / 6 0 0 0 are placed in
brackets.

2For C = 3 w e s e t M c=6,for C=6wese t M c=3,andfor C=10weset M c = 2 (c = 1 ,C).
3 The problem generator is available from the authors on request.
4 The parameter settings are determined based on a small preliminary study.
5 As an alternative to LINDO we experimented with NETSIDE (Kennington and Wishman, 1988) to solve LP(OFISP). NETSIDE
is a specialized code for solving network problems with a number of linear side constraints. However, for our instances the
computation times of NETSIDE were even higher than the ones required by LINDO. The latter may be caused by the fact that,
although OFISP has clearly a network structure, the number of side constraints (3) is too high.

200 L.G. Kroon et al. / European Journal of Operational Research 82 (1995) 190-205

Table 1
Parameter settings and stop-criteria for heuristics

parameter setting numerical value

subgradient procedure /z 0 = 1.0 when p = 0.8
/z 0 = 1.5 when p = 1.0
/z 0 = 2.0 when p = 1.2
H/half = 6

n2decrease = 6
n2iter = 12

dual-descent procedure

lower bounding frequency LBfreq = 5

stop criterion numerical value

optimal solution

maximum no. of iterations
maximum CPU-time

ZUB(H) -- ZLB(H)
< 0.005

ZUB(H)

J (number of jobs)
2J seconds

T a b l e 3 shows t h e a v e r a g e qua l i t y (AAp) a n d t h e a v e r a g e C P U - t i m e L(L-~t , in s e c o n d s) r e q u i r e d to solve

L P (O F I S P) 6. I n a d d i t i o n , t h e n u m b e r o f t i m e s t h e L P - r e l a x a t i o n y ie lds a f r a c t i o n a l so lu t i on is d e n o t e d

by LPf , w h i l e t h e n u m b e r o f t i m e s t h e b o u n d o b t a i n e d by so lv ing S R (O F I S P) is b e t t e r t h a n t h e b o u n d

o b t a i n e d by t h e s u b g r a d i e n t (d u a l - d e s c e n t) p r o c e d u r e is f o u n d in t h e c o l u m n s c o r r e s p o n d i n g to d m

(d/4z). F r o m t h e c o m p u t a t i o n a l r e su l t s o f T a b l e s 2 a n d 3 it c a n b e c o n c l u d e d t h a t t h e heu r i s t i c s H1 a n d

H 2 p e r f o r m a l m o s t e q u a l l y we l l w i t h r e s p e c t to a b s o l u t e a n d r e l a t i v e d e v i a t i o n f r o m op t ima l i ty . T h e fac t

t h a t 142 d o e s n o t p e r f o r m s ign i f i can t ly b e t t e r t h a n H I m a y b e c a u s e d by t h e w a y w e i m p l e m e n t e d 142. In
t h e c u r r e n t i m p l e m e n t a t i o n o f 112 w e do n o t u se sens i t iv i ty analysis to o b t a i n t h e d i f f e r e n c e b e t w e e n

Z (H c) a n d Z(Gc) . H e n c e in an a l t e r n a t i v e i m p l e m e n t a t i o n o f 112 t h e t i m e s p e n t in t h e d u a l - d e s c e n t

p r o c e d u r e m a y poss ib ly b e r e d u c e d in f a v o u r o f t h e n u m b e r o f i t e r a t ions , w h i c h m a y l e a d to a b e t t e r

Table 2
Quality of the heuristics

p = 0.8 p = 1.0 p = 1.2

A J /IR I AA 1 AR 2 AAH2 AR 1 AA 1 ARHI z~A2 AR 1 AA 1 AR 2 z~A2

3 100 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.02 0.00
200 0.03 0.01 0.03 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01
300 0.04 0.02 0.04 0.02 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.01

4 100 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.00 0.02 0.00
200 0.05 0.03 0.05 0.03 0.02 0.02 0.03 0.02 0.01 0.01 0.02 0.01
300 0.06 (0.02) 0.06 (0.02) 0.04 (0.02) 0.04 (0.02) 0.02 (0.02) 0.02 (0.02)

5 100 0.03 0.02 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
200 0.05 (0.03) 0.06 (0.03) 0.03 (0.02) 0.03 (0.02) 0.02 (0.01) 0.02 (0.01)
300 0.06 (0.03) 0.06 (0.03) 0.03 (0.02) 0.03 (0.02) 0.02 (0.02) 0.02 (0.02)

6 In case the problem was solved by OSL no CPU-times are reported in the table.

L.G. Kroon et al. / European Journal of Operational Research 82 (1995) 190-205

Table 3
Quality of upper bounding procedures

201

p = 0 . 8 p = 1 . 0 p = 1.2

A J AAp LP t LPf dH1 dH2 AAp -Lett LP I dH1 dH2 AAp L~ LPf dH1 dH2

3 100 < 0.01 40 2 9 10 < 0.01 57 1 4 5 < 0.01 52 2 7 7
200 < 0.01 130 3 10 10 < 0.01 416 4 9 10 < 0.01 492 6 4 8
300 < 0.01 181 3 10 10 < 0.01 1012 7 9 10 < 0.01 1583 7 1 4

4 100 < 0.01 199 6 8 9 < 0.01 211 4 0 0 < 0.01 140 5 3 4
200 < 0.01 1080 8 10 10 < 0.01 1955 10 3 7 < 0.01 2193 10 0 0
300 (<0.01) - (7) 10 10 (<0.01) - (10) 7 9 (<0.01) - (10) 0 1

5 100 < 0.01 566 5 6 7 < 0.01 428 5 1 2 < 0.01 288 4 1 2
200 (<0.01) - (10) 10 10 (<0.01) - (10) 1 2 (<0.01) - (10) 0 0
300 (<0.01) - (10) 10 10 (<0.01) - (10) 1 ~2 (<0.01) - (10) 0 1

u p p e r bound. T h e average re la t ive d i f fe rence (af ter 2 J seconds o f compu ta t i on t ime 7) b e t w e e n lower-

and u p p e r b o u n d ranges (on average) f rom 1% for instances with high u t i l i za t ion ra te and A = 3 to 6%

for ins tances with low ut i l izat ion ra te and A - - - 5 . T h e small absolute d i f fe rences (f rom 0 to 3% on

average) b e t w e e n the heur is t ic lower b o u n d and the op t imal solut ion indicates that the lower bound ing

rou t ine is r a the r effect ive in f inding good solut ions to OFISP . In genera l , bo th the lower bound ing

p r o c e d u r e and the u p p e r bound ing p rocedu re s p e r f o r m best for instances with high ut i l izat ion rate.

F u r t h e r m o r e , for ins tances wi th low ut i l izat ion ra te the a l te rna t ive uppe r bound ob ta ined f rom

S R (O F I S P) is o f ten b e t t e r than the subgrad ien t and dua l -descen t u p p e r bound. However , for ins tances
wi th high ut i l iza t ion ra te this b o u n d is o f ten o u t p e r f o r m e d by these uppe r bounds.

Tab le 3 shows fu r the r that the u p p e r bound ob ta ined f rom L P (O F I S P) is r emarkab ly tight. Fo r some

ins tances the solut ion to L P (O F I S P) turns out to be all in teger , whereas for o thers the va lue ob ta ined

f rom L P (O F I S P) equa ls ZOFIS e, a l though the co r respond ing solut ion is fract ional . Unfor tuna te ly , the

C P U - t i m e r equ i r ed to c o m p u t e this uppe r bound increases strongly in the n u m b e r of jobs and in the

n u m b e r of m a c h i n e classes. F u r t h e r m o r e , the n u m b e r o f instances for which an opt imal in teger solut ion

is ob ta ined by solving L P (O F I S P) is h igh for the set of instances with low ut i l izat ion ra te and a small

n u m b e r of m a c h i n e classes and jobs, but decreases fast w h e n the u t i l iza t ion rate, the n u m b e r of m ach ine

classes, or the n u m b e r o f jobs increases. A f rac t ional solut ion to L P (O F I S P) for an ins tance with a small

n u m b e r of mach ine classes genera l ly conta ins only a small n u m b e r of f ract ional variables. O n the o the r

Table 4
Overview of workload and number of jobs

Mon Tue Wed Thu Fri Sat Sun Total

hrs. jobs hrs. jobs hrs. jobs hrs. jobs hrs. jobs hrs. jobs hrs. jobs hrs. jobs

A310 31.2 37 33.1 42 36.8 47 29.8 41 48.1 58 35.8 48 41.4 55 251.2 328
B737 68.1 120 69.3 122 68.1 115 64.4 115 71.2 123 61.3 103 67.2 116 469.6 814
B747 83.7 48 99.8 67 96.5 64 102.7 63 69.3 50 122.5 84 80.9 56 655.4 432
DCIO 19.4 15 31.6 21 16.0 12 22.6 15 13.9 12 30.9 21 18.7 14 153.1 110

Total 202.4 220 233.8 252 217.4 238 219.5 234 197.5 243 250.5 256 208.2 241 1529.3 1684

7 HI (H2) stopped for 22 (17) out of 270 instances before 2/seconds of CPU-time because of the optimality criterion, and for 4 (2)
out of 270 instances because of having reached the maximum number of J iterations.

202 L.G. Kroon et aL / European Journal of Operational Research 82 (1995) 190-205

Table 5
License combinations in each scenario

scenario

license combination No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7

A310 / B737 3 4 5 4 4 3 3
A310/B747 3 4 5 4 4 3 3
A310/DCIO 3 4 5 2 6 1 5
B737 / B747 3 4 5 6 2 5 1
B737 / DC10 3 4 5 4 4 3 3
B747/DClO 3 4 5 4 4 3 3
Total teamsize 18 24 30 24 24 18 18

h a n d , a f r a c t i o n a l s o l u t i o n f o r a n i n s t a n c e w i t h a h i g h n u m b e r o f m a c h i n e c l a s se s c a n b e a l m o s t

c o m p l e t e l y f r a c t i o n a l . I n s u c h c a s e s r o u n d i n g d o w n t h e f r a c t i o n a l s o l u t i o n d o e s n o t l e a d t o a u s e f u l

i n t e g e r s o l u t i o n . O n e is t h e n c o m m i t t e d to a n e n u m e r a t i o n s c h e m e in o r d e r to o b t a i n a g o o d i n t e g e r

s o l u t i o n . I t a p p e a r s f r o m o u r e x p e r i m e n t s t h a t - n o t w i t h s t a n d i n g t h e s m a l l g a p b e t w e e n Z o r i s P a n d

ZLe(OFmp)-f inding a n o p t i m a l i n t e g e r s o l u t i o n m a y b e a n e n o r m o u s t a sk , n o t o n l y fo r L I N D O o n t h e

p e r s o n a l c o m p u t e r , b u t a l so f o r O S L o n t h e I B M R S / 6 0 0 0 . F o r e x a m p l e , so lv ing t h e l a r g e s t i n s t a n c e s o f

o u r e x p e r i m e n t s to o p t i m a l i t y t a k e s a C P U - t i m e w h i c h v a r i e s f r o m 10 m i n u t e s t o 8 h o u r s o n t h e

R S / 6 0 0 0 . T h e l a t t e r m a k e s a n e n u m e r a t i o n a p p r o a c h i n t e r e s t i n g f r o m a t h e o r e t i c a l p o i n t o f v i e w 8, b u t

in p r a c t i c e , w h e r e O F I S P h a s t o b e s o l v e d o n a p e r s o n a l c o m p u t e r q u i c k l y a n d r o u t i n e l y in a d y n a m i c

e n v i r o n m e n t , t h i s a p p r o a c h h a s o n l y a l i m i t e d v a l u e .

4.2. Rea l - l i f e i n s tances (Se t I1)

A p a r t f r o m t h e r a n d o m l y g e n e r a t e d i n s t a n c e s o f O F I S P , w e a l so a n a l y z e a n u m b e r o f i n s t a n c e s o f

O F I S P t h a t c o m e f r o m a s t u d y f o r t h e m a i n t e n a n c e d e p a r t m e n t o f K L M a t S c h i p h o l A i r p o r t . I n t h e s e

Table 6
Day-by-day results for scenario No. 4

Quality of heuristics Upper bounding procedures

Mon 0.07 0.06 0.08 0.06 < 0.01 n n n
Tue 0.07 0.06 0.08 0.06 < 0.01 y n n
Wed 0.06 0.04 0.06 0.04 < 0.01 n y y
Thu 0.06 0.05 0.06 0.05 < 0.01 n n n
Fri 0.08 0.06 0.09 0.06 < 0.01 n n n
Sat 0.08 0.07 0.05 0.04 < 0.01 n n n
Sun 0.03 0.02 0.03 0.02 < 0.01 n n n

8 Research is in progress (Kroon 1990) to develop polyhedral approaches for solving OFISP. This research is based on a slightly
different formulation of OFISP as a Node Packing problem. In this formulation (aggregated) decision variables x j. c ate replaced by
(disaggregated) decision variables X~,m, reflecting the 0-1 decision on processing job j at machine m (instead of processing job j on
a machine from class c). This approach has the advantage that the corresponding coefficient matrix is a clique matrix and that the
lifted odd-hole inequalities of Padberg (1974) can sometimes be used to turn a fractional solution into an integer one. Unfortunately,
the size of this alternative formulation grows very fast in the number of machines, making this formulation not useful on a personal
computer for the problem dimensions studied here. For the aggregated formulation of OFISP given in Section 3 we did not yet
succeed in finding useful valid inequalities. Furthermore, we are currently looking for specialized branch-and-bound procedures for
solving OFISP.

L.G. Kroon et aL / European Journal of Operational Research 82 (1995) 190-205

Table 7
Weekly results for all scenarios

203

Quality of heuristics Upper bounding procedures

A~I a~l A~2 a~2 a~t, LPf dill dH2
Scen. No. 1 0.06 0.05 0.06 0.05 < 0.01 y n n

Scen. No. 2 0.07 0.05 0.08 0.05 < 0.01 y y y
Scen. No. 3 0.08 0.03 0.08 0.03 < 0.01 y y y
Scen. No. 4 0.06 0.03 0.06 0.03 < 0.01 y y y
Scen. No. 5 0.07 0.06 0.07 0.05 < 0.01 y n n
Scen. No. 6 0.05 0.03 0.05 0.03 < 0.01 y y y
Scen. No. 7 0.08 0.07 0.05 0.04 < 0.01 y n n

instances of OFISP four different aircraft types are present: A310, B737, B747, and DCIO. For each of
these aircraft types the workload per day (in hours) and the number of jobs per day are represented in
Table 4. For example, on Monday for the A310 the total workload is 31.2 hours, generated by 37 jobs.
Each engineer has a license for two aircraft types. KLM's management is interested in the best size and
composition of her workforce. In order to obtain this information, seven different scenarios have been
generated, as shown in Table 5. Each scenario represents one composition of the workforce. For
example, in scenario No. 1 all license combinations are obtained by three engineers, and the total
teamsize is 18 people. For each scenario we obtain day-by-day and weekly results. The results for our
heuristics have been obtained on a personal computer, whereas the solutions to OFISP and LP(OFISP)
were obtained by OSL on an IBM RS/6000. All instances were solved to proven optimality. In Table 6
some of the day-by-day results are shown for scenario No. 4. In the Tables 6 and 7 LPf shows whether or
not LP(OFISP) has a fractional solution, and dill and dH2 indicate if the upper bound obtained from
SR(OFISP) was bet ter than the upper bound obtained by the heuristics 141 and H2. In the correspond-
ing columns 'y' indicates 'yes', and 'n' indicates 'no'. The weekly results have been obtained for all
scenarios by aggregating the day-by-day results. These results are shown in Table 7. The results obta ined
for these real-life instances are a little worse (1-2%) than the results obtained for the randomly
generated ones. However, the absolute deviation from optimality is still quite acceptable. Furthermore,
for a given scenario the upper bounding procedures perform best on days with a relatively low utilization
rate (workload). The weekly results, which all correspond to the same workload, show the same trend.
That is, the upper bounds are strong if the total number of engineers in the scenario is relatively low.

As before, the upper bound obtained from LP(OFISP) is excellent. In many cases this upper bound
equals Zovmp, although the corresponding solution is fractional. In general, solving these real-life
instances to optimality requires less computational effort than solving the (equally sized) randomly
generated instances. For most of the real-life instances OSL finds an optimal integer solution after a
search through a limited number of nodes of the branch-and-bound tree, whereas for some of the
randomly generated instances OSL has to search through well over five thousand nodes. Still, on a
personal computer the enumeration approach has only a limited value, even for these real-life instances.

5. Final remarks

In this paper we consider the Operational Fixed Interval Scheduling Problem (OFISP) and its
appearance in practice. We suggest an exact algorithm for the single machine class variant. This
algorithm is a simplification of the algorithms of Arkin and Silverberg (1987) and Kolen et al. (1987).
Furthermore, we formulate the multiple machine class variant as an integer program, and we present two

204 L.G. Kroon et aL /European Journal of Operational Research 82 (1995) 190-205

dua l -cos t heur is t ics for solving this gene ra l p rob l em. Final ly , we c o m p a r e the p e r f o r m a n c e of our
heur is t ics wi th the p e r f o r m a n c e o f solving L P (O F I S P) fo l lowed by a s t a n d a r d e n u m e r a t i o n scheme.
A l t h o u g h L P (O F I S P) yie lds exce l len t u p p e r bounds , this a p p r o a c h has as a ser ious d raw-back assoc ia ted
wi th it tha t for l a rge r s ized ins tances it r equ i r e s too much t ime and memory , bo th on a pe r sona l
c o m p u t e r and on a works ta t ion . This d raw-back t o g e t h e r wi th the obse rva t ion tha t our heur is t ics yield
-within an accep t ab l e a m o u n t of C P U - t i m e on a p e r s o n a l c o m p u t e r - feas ib le so lu t ions tha t a re on
average only 0 - 7 % f rom op t ima l i ty m a k e s our heur is t ics b e t t e r su i tab le for use in p rac t ice than the
e n u m e r a t i o n app roach . Never the less , fu tu re r e sea rch has to focus on po lyhed ra l m e t h o d s a n d / o r ta i lor
m a d e e n u m e r a t i o n schemes which hopefu l ly improve the p e r f o r m a n c e of the e n u m e r a t i o n approach .

Acknowledgements

T h e au thors wan t to express the i r g r a t i t ude to p ro fessors A n t o o n K o l e n and Jo van N u n e n for the i r
s t imula t ing discussions. F u r t h e r m o r e , the au thor s wan t to t h a n k p ro fes so r J e f K e n n i n g t o n for mak ing
N E T S I D E avai lable , and I B M (Ne the r l ands) for mak ing O S L avai lable . F ina l ly the re fe rees a re
a c k n o w l e d g e d for useful sugges t ions which l ead to i m p r o v e m e n t s of the pape r .

References

Arkin, E.M., and Silverberg, E.L. (1987), "Scheduling jobs with fixed starting and finishing times", Discrete Applied Mathematics 18,
i-8.

Carter, M.W., (1989), "A lagrangean relaxation approach to the classroom assignment problem", INFOR 27, 230-246.
Dondeti, V.R., and Emmons, H. (1992), "Interval scheduling with processors of two types", Operations Research 40, $76-$85.
Dijkstra, M.C., Kroon, L.G., van Nunen, J.A.E.E., and Salomon, M. (1991), "A DSS for capacity planning of aircraft maintenance

personnel", International Journal of Production Economics 23, 69-78.
Dilworth, R.P. (1950), "A decomposition principle for partially ordered sets", Annals of Mathematics 51, 161-166.
Fischetti, M., Martello, S., and Toth, P. (1987), "The Fixed Job Schedule Problem with spread time constraints", Operations

Research 6, 849-858.
Fischetti, M., Martello, S., and Toth, P. (1989), "The Fixed Job Schedule Problem with working time constraints", Operations

Research 3, 395-403.
Fischetti, M., Martello, S., and Toth, P. (1992), "Approximation algorithms for Fixed Job Schedule Problems", Operations Research

40, $96-$108.
Fisher, M.L. (1981), "The Lagrangean relaxation method for solving integer programming problems", Management Science 27,

1-18.
Geoffrion, A.M. (1974), "Lagrangean relaxation and its uses in integer programming", Mathematical Programming Study 2,

82-114.
Gertsbakh, I., and Stern, H.I. (1978), "Minimal resources for fixed and variable job schedules", Operations Research 26, 68-85.
Gupta, U.L., Lee, D.T., and Leung, J.Y.-T. (1979), "An optimal solution to the channel assignment problem", IEEE Trans. Comp.

28, 807-810.
Hagdorn-van der Meijden, E., and Kroon, L.G. (1989), "Pitfalls in obtaining solutions for an aircraft to gate assignment problem",

Man. Rep. Series 59, Rotterdam School of Management, Erasmus University, The Netherlands.
Hashimoto, A., and Stevens, J. (1971), "Wire routing by optimizing channel assignments within large apertures", in: Proceedings of

the 8th Design Automation Workshop, 155-169.
IBM, Optimization Subroutine Library, Release 2: Guide and References, Third edition, July 1991.
Kennington, J.L., and Whisman, A. (1988), "NETSIDE user guide", Technical Report 86-OR-01 (revised), Southern Methodist

University, Dallas.
Kolen, A.W.J. and Kroon, L.G. (1991), "On the computational complexity of (maximum) class scheduling", European Journal of

Operational Research 54, 23-38.
Kolen, A.W.J., and Kroon, L.G. (1992), "License class design: complexity and algorithms", European Journal of Operational

Research 63, 432-444.
Kolen, A.W.J., Lenstra, J.K., and Papadimitriou, C.H. (1987), "Interval scheduling problems", unpublished manuscript.

L.G. Kroon et al. /European Journal of Operational Research 82 (1995) 190-205 205

Kroon, L.G. (1990), "Job scheduling and capacity planning in aircraft maintenance", PhD Thesis, Rotterdam School of
Management, Erasmus University, The Netherlands.

Kroon, L.G., Salomon, M., and Van Wassenhove, L.N. (1993), "Exact and approximation algorithms for the tactical fixed interval
scheduling problem", Working Paper, Rotterdam School of Management, Erasmus University, The Netherlands.

Orlin, J.B. (1988), "A faster strongly polynomial minimum cost flow algorithm", in: Proceedings of the 20th ACM symposium on the
theory of computing.

Padberg, M.W. (1973), "On the facial structure of set packing polyhedra", Mathematical Programming 5, 199-215.
Schrage, L., (1987), User Manual for Linear, Integer and Quadratic Programming with LINDO, The Scientific Press, Redwood City,

1987.
Wit, J. de, (1991), "On the assignment of aircraft to gates", Technical Report, ORTEC Consultants, Gouda, The Netherlands,

1991. (Paper presented at the EURO XI Conference, Aachen (Germany), July 16-19, 1991).

