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Abstract 

In this paper we consider the problem of routing trains through railway stations. This problem occurs as a subproblem 
in the project DONS that is currently being carded out under the supervision of Railned and Netherlands Railways. The 
project DONS involves the determination of the required future capacity of the Dutch railway infrastructure. 

In this paper we focus on the computational complexity of the problem of routing trains through railway stations. After 
an extensive description of the problem, we show that only a subset of the sections and routes of a railway station needs 
to be taken into account. Then we show that the routing problem is NP-complete as soon as each train has three routing 
possibilities. However, if each train has only two routing possibilities, then the problem can be solved in an amount of 
time that is polynomial in the number of trains. Furthermore, if the layout of the railway station is fixed, then the latter 
is also the case for the problem of finding an assignment of a maximum number of trains to routes that is feasible from 
a safety point of view. This result can be extended to the case where coupling and uncoupling of trains, certain service 
considerations, and a cyclic timetable have to be taken into account. (~) 1997 Elsevier Science B.V. 

Keywords: Railway transportation; Timetabling; Complexity theory; Dynamic programming 

1. Introduction 

This paper is motivated by the project DONS that 
is carried out under the supervision of the Dutch or- 
ganization Railned and Netherlands Railways. 1 It is 
one of the strategic tasks of Railned to assess the re- 
quired future capacity of the Dutch railway infrastruc- 
ture. Currently, this task is accomplished by generat- 
ing a number of plausible future timetables, and by 
checking whether these timetables are feasible, given 
certain scenarios for the future Dutch railway infras- 
tructure. 

* Corresponding author. E-mail: Ikroon@fac.fbk.eur.nl. 
1This research is sponsored by Railned and Netherlands 

Railways. 

Since generating a timetable and checking its fea- 
sibility requires an enormous amount of time when 
carried out manually, the project DONS was initiated 
recently. The objective of this project is to develop a 
Decision Support System (DSS) that will assist the 
planners of Railned in their capacity planning work. 
Systems and models with similar alms are described 
by Bourachot [2] and Carey [3]. 

The DSS to be developed is also called DONS, and 
will contain at least two complementary modules. The 
first module, called CADANS, will assist the planners 
in generating cyclic hourly timetables. The second 
module, called STATIONS, will assist the planners in 
checking whether a timetable generated by CADANS 
is feasible with respect to the routing of trains through 
railway stations, and in generating operating plans for 
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the routing of trains through railway stations. 
The module C A D A N S  is being developed by Schrij- 

ver and Steenbeek [ 23]. This module takes into ac- 
count: (i) desired frequencies of lines, (ii) leg con- 
straints, (iii) market constraints, and (iv) infra con- 
straints. The leg constraints specify the travel times 
between the railway stations, the market constraints 
specify minimum and maximum transfer times be- 
tween certain pairs of trains at a number of railway 
stations, and the infra constraints guarantee that there 
is a certain minimum buffer time between two trains 
passing a common section. A timetable generated by 
C A D A N S  is cyclic with a cycle length of one hour. 
That is, such a timetable covers a time period of one 
hour, and after one hour the same pattern of arrivals 
and departures of trains is repeated. 

CADANS considers the railway infrastructure only 
from a global point of  view, and neglects the detailed 
layout of the railway network within the railway sta- 
tions. Therefore it may happen that a timetable gen- 
erated by CADANS is feasible with respect to the rail- 
way network between the railway stations, but turns 
out to be infeasible if one also considers the detailed 
layout of  the railway network within the railway sta- 
tions. It is the aim of the module STATIONS tO assist 
the planners in checking whether a timetable gener- 
ated by CADANS is feasible with respect to the rout- 
ing of the trains through the railway stations, given 
the layout of the railway stations. If  a routing for all 
trains through the railway stations does not exist, then 
the blocking trains should be identified. In this case, 
the module STATIONS is expected to provide sugges- 
tions for the modification of the arrival and departure 
times of these blocking trains. 

The authors of this paper are involved in the devel- 
opment of STATIONS. For a more detailed description 
of the corresponding project we refer to Kroon and 
Zwaneveld [ 19]. In the current paper we describe a 
number of complexity issues related to the feasibil- 
ity problem that has to be solved by STATIONS. This 
paper is complementary to the paper by Zwaneveld 
et al. [ 25 ], which focuses on the algorithms that are 
incorporated into the module STATIONS. These algo- 
rithms are based on the formulation of the problem 
as a Node Packing Problem, and on the application 
of dominance rules, valid inequalities, heuristics, and 
a branch & cut procedure. The current paper covers 
a number of theoretical aspects, since it considers the 

computational complexity of several variants of  the 
routing problem of trains through railways stations. 
However, some of these theoretical aspects, such as 
the preprocessing rules, are directly useful in practice. 

The organization of this paper is as follows. Section 
2 describes the feasibility problem of routing trains 
through railway stations in more detail. In Section 3 
we introduce the notation that is used in this paper. 
In Section 4 we show how the size of an instance of 
the feasibility problem may be reduced a priori by 
applying specific preprocessing rules. Section 5 con- 
tains the formulation of the problem as an integer lin- 
ear program, and describes the relationship between 
the routing problem and the Fixed Interval Scheduling 
Problem. Next, in Section 6, we focus on the com- 
putational complexity of a number of variants of the 
problem that has to be solved by STATIONS, and in 
Section 7 we show that these results are also valid in 
case of a cyclic timetable. The paper is finished in Sec- 
tion 8 with some conclusions and subjects for further 
research. 

2. Problem description 

The problem of routing trains through railway sta- 
tions that we address in this paper can be stated as 
follows. Given the layout of a railway station, the ar- 
rival and departure times, as well as the arrival and de- 
parture directions of a number of trains, is it possible 
to route these trains through the railway station such 
that no pair of trains is conflicting, such that trains can 
be coupled or uncoupled if necessary, and such that 
a number of service constraints are satisfied? We will 
call this problem the feasibility problem. The charac- 
teristics of the problem that we describe in this paper 
pertain to the railway system in The Netherlands, but 
are very similar to most European railway systems. 

We start out with a more detailed description of 
this feasibility problem: a railway station can be en- 
tered by a train from a number of entering points, and 
it can be left through a number of leaving points. In 
general, each entering point can also serve as a leav- 
ing point, and vice versa. Furthermore, each of these 
points corresponds to a direction of travel. For exam- 
ple, the directions of travel of the Dutch railway sta- 
tion Zwolle are Almelo, Amersfoort, Deventer, Kam- 
pen, and Meppel (cf. Fig. 1 ). The railway network 
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Zwolle (ZL) 

lleventer 

Fig. 1. Infrastructure of  railway station Zwolle. 

outside the entering and leaving points is not relevant 
for the feasibility problem. 

A railway station consists of  platforms and of  a 
large number of  track sections. An inbound route is 
a sequence of  sections linking an entering point to a 
platform section next to a platform. The correspond- 
ing platform section is also part of  the inbound route. 
Similarly, an outbound route is a sequence of  sections 
linking a platform to a leaving point. A complete route 
is either a combination of  an inbound and an outbound 
route using the same platform, or a sequence of  sec- 
tions connecting an entering point to a leaving point, 
bypassing the platforms. There will often be many 
different routes between a given pair of  entering and 
leaving points, and even several different routes that 
use the same platform. 

The arrival time of  a train is the time at which the 
train stops at a platform, after traveling along an in- 
bound route. Similarly, the departure time of  a train is 
the time at which the train starts to leave the railway 
station along an outbound route. As was described in 
Section 1, the arrival and departure times of  trains are 
generated by CADANS. Therefore we will take the ar- 
rival and departure times as given and, if at all pos- 
sible, determine feasible routes for each of  the trains 
passing through the railway station. 

Clearly, the routing of  one train depends on the 
routing of  others. Most importantly, the safety rules 
of  Netherlands Railways dictate the following route 
reservation procedure. As soon as a train arrives at its 
entering point of  the railway station, it reserves an ap- 
propriate inbound route leading to a platform. Since 
any track section can only be reserved by one train 
at a time, no section of  the inbound route may be re- 
served by another train between the moment the in- 
bound route was reserved and the moment the section 
is released again. The latter happens as soon as the 
train leaves the section. Hence, as the train traverses 
the chosen inbound route, it sequentially releases each 

of  the sections comprising the route. An advantage of  
the fact that each train reserves a complete inbound 
route is that it guarantees that each train can travel 
without interruptions along the reserved inbound route 
to a platform. If, on the contrary, only part of  an in- 
bound route were reserved, then it might happen that. 
somewhere on the chosen inbound route, a train has 
to wait for the release of  a section until it can continue 
its route. 

A similar procedure is tbllowed for the outbound 
route. That is, a complete outbound route leading from 
a platform towards a leaving point is reserved for each 
train. Also, if a train does not stop at a platform, then a 
complete route through the railway station, consisting 
of  an inbound route and an outbound route, is reserved 
for the train. 

Other constraints that have to be taken into account 
concern the coupling or uncoupling of  trains at a plat- 
form, and a number of  service considerations, such 
as the possibility for passengers to transfer between 
trains, or the desirability that all trains into the same 
direction depart as much as possible from the same 
platform. 

3. Notation 

We always consider one railway station at a time. 
The layout of  the railway station consists of  a set of  
track sections S. The set of  platforms of  the railway 
station is denoted by P. We assume that each plat- 
form p E P corresponds to exactly one track section. 
Therefore the set of  platform sections is also denoted 
b y P C S .  

In order to keep the presentation clear, we assume 
that each train stops at the involved railway station. 
Thus the route of  each train consists of  a combination 
of  an inbound route and an outbound route. The set of  
available routes R can be determined from the set of  
sections S. Each route r consists of  a set of  sections 
s, c s .  

The set of  trains to he routed through the railway 
station is denoted by T. Train t E T has corresponding 
arrival and departure times At and Dr, usually in min- 
utes. As was mentioned already in the introduction, a 
timetable generated by CADANS is cyclic with a cycle 
length of  60 minutes. That is, the arrival and departure 
times of  trains should be considered modulo 60 rnin- 
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utes. For example, if a train arrives at time instant 59 
and has a standstill of  4 minutes, then it will leave the 
railway station at time instant 3. Nevertheless, for the 
time being, we will neglect the fact that the timetable 
has a cyclic character. We will briefly return to this 
topic in Section 7. 

Train t enters the railway station at its entering point 
Et, and leaves the railway station from its leaving point 
Lt. For each train t a set Rt C R of feasible routes is 
known, determined by the entering point E,, the leav- 
ing point Lt, and possibly a number of other aspects, 
such as a set of allowed or preferred platforms. Fur- 
thermore, the set of sections that may be passed by 
train t is denoted by St = Ur~R, Sr. 

Recall that the inbound route for a train is reserved 
at a single time instant and that the same holds for 
the outbound route. Thus a train is to be assigned 
to a complete inbound route and to a complete out- 
bound route. Furthermore, the sections within a route 
are released one-by-one, as the train traverses along 
its route. I f  train t is assigned to route r E Rt, then 
the start time of the reservation of the inbound part of 
route r for train t is denoted by S(t,  r, 1 ), and the start 
time of the reservation of the outbound part of route 
r for train t is denoted by S(t ,  r, 2). Furthermore, the 
time instant the reservation of section s for train t and 
the inbound part of  route r is released is denoted by 
F( t ,  r, s, 1), and the time instant the reservation of 
section s for train t and the outbound part of route r 
is released is denoted by F( t ,  r, s, 2). In these release 
times also some additional time may be included, in 
order to guarantee a certain buffer time between the 
crossings by two trains of a common section. 

The time instants S ( t , r , i )  and F ( t , r , s , i )  are de- 
termined using well known formulas from the theory 
of dynamics, taking into account (i) the given so- 
called left-to-right coordinates of the sections, and (ii) 
the assumption that trains have either a constant ve- 
locity, or a constant acceleration or deceleration. How- 
ever, also more sophisticated methods to determine 
these time instants may be implemented. 

In many practical situations the time instants 
S(t ,  r, i) and F( t ,  r, s, i) are independent of the cho- 
sen route r. For example, we always have S(t ,  r, 2) = 
Dr, the departure time of train t. In order to keep the 
presentation as clear as possible, we assume through- 
out this paper that all time instants S ( t , r , i )  and 
F( t, r, s, i) are independent of the routes r. 

Thus S( t, i) denotes the start time of the reservation 
ofpart i of  a routefortrain t, and F(  t, s, i) denotes 
the time instant the reservation of section s within 
part i of  a route for  train t is released. 

The safety rules described above may be repre- 
sented using a set  Ft, t, for each pair of trains t, t ' E T. 
Such a set contains the pairs of allowable route com- 
binations ( r , r ' )  for trains t and t'. That is, ( r , r ' )  E 
Ft,t, means that the routing of train t along route r is 
compatible with the routing of train t / along route r t. 
In other words, 

VS E Sr["]Sr, Vi, i' E {1,2} 

[ S ( t , i ) , F ( t , s , i ) )  fq [ S ( t ' , i ' ) , F ( t ' , s , i ' ) )  =0.  (1) 

Thus the reservation of a common section s E Sr fq Sr' 
within part i of route r for train t does not conflict with 
the reservation of this section within part i' of  route r '  
for train t'. 

Now suppose we have an assignment of  trains to 
routes. Let r( t )  denote the route train t has been as- 
signed to. Then, by definition, the assignment t 
r( t) is feasible from a safety point of  view if 

Vt, t' E T Vs E St(t) M St(t,) Vi, i' E {1,2} 

[ S ( t , i ) , F ( t , s , i )  ) fq [ S ( t ' , i ' ) , F ( t ' , s , i ' )  ) =0.  (2) 

It is clear that the use of the sets Ft,t, is a very general 
method for modeling the safety rules. Actually, many 
other constraints may be modeled in the same way. 
For instance, consider the situation where two trains 
have to be coupled at a railway station. One of the 
trains is called the leading train, while the other train, 
called the following train, has to be coupled onto the 
leading train. In this case, the leading train has to be 
assigned to an inbound and an outbound route, while 
the following train has to be assigned to an inbound 
route only (that matches with the route of the leading 
train). A similar situation occurs if a train has to be 
uncoupled into two parts. It is clear that these coupling 
and uncoupling constraints may be modeled using the 
sets Fr,t, introduced above. In this case, (r, r ' )  is an 
element of Ft,t, if and only if a necessary coupling or 
uncoupling procedure involving trains t and t' can be 
performed when this route combination is used. 

Finally, service considerations towards the passen- 
gers may dictate that certain groups of trains all leave 
from the same platform. For instance, such a group of 
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trains may consist of  all trains leaving into the same 
direction. Furthermore, one may wish to incorporate 
certain transfer possibilities between trains into the 
schedule. That is, pairs of  trains need to use platforms 
close to each other (for example, a cross-platform as- 
signment). Once again, these service constraints may 
be modeled by adjusting the sets Ft,t, appropriately. 

In this paper we will only take into account con- 
straints that may be modeled using the sets Ft,t,. More- 
over, we will consider the sets Ft,t, as part of  the input 
of  our problem. The sets Ft,t, may be determined in a 
preprocessing step requiring O( IsI ITI21RI 2) time. 

4. Reduction of sections and routes 

In this section we describe how a number of  track 
sections and a number o f  routes may be eliminated 
from an instance of  the feasibility problem, since it can 
be seen a priori that they do not add to the feasibility 
of  the instance. 

First, we will show in Lemma 1 that only the sec- 
tions (i) containing a switch, (ii) corresponding to 
the entering and leaving points, (iii) corresponding to 
the platforms, or (iv) corresponding to a cross-over 
of  routes are relevant. The set of  relevant sections is 
denoted by S*. Usually S* contains significantly less 
elements than S. Note that, by definition of  S*, each 
section s E S \ S* is located between two sections 
s t, s t/ E S*. 

Lemma 1. An assignment t ---* r( t) is feasible from 
a safety point  o f  view i f  and only i f  

Vt, t' E T Vs E Sr(t) Oar(t,) AS*  Vi, i t E {1,2} 

[ S ( t , i ) , F ( t , s , i ) )  A [ S ( t ' , i t ) , F ( t ' , s , i ' ) )  = 0. (3) 

Proof.  Since the only i f  part of the statement is obvi- 
ous, we will only prove the i f  part. To that end, suppose 
condition (3) is satisfied, and choose trains t, t t E T, 
a section s E (Sr~t) N Sr(t')) \ S*, and i , i  t E {1,2}. 

Without loss of  generality S(t ' ,  i t) >1 S(t ,  i). Let 
s t be the next relevant section on part i of  route 
r ( t )  after section s. Note that section s t is also on 
the same (inbound or outbound) part of  route r ( t  t) 
as section s. Then the fact [ S ( t , i ) , F ( t ,  s t , i ) )  n 
[ S( t ' ,  i t) ,  F ( t ' , s t, i t) ) = 0, together with S( t t, i ' )  >/ 
S ( t , i ) ,  implies S ( t ' , i  ~) >>. F( t , s~ , i ) .  This result 

combined with the obvious inequality F( t, s t, i) > 
F ( t , s , i )  implies S(tt ,  i ~) > F ( t , s , i ) .  It follows 
that [ S ( t , i ) , F ( t , s , i )  ) 0 [ S ( t ' , i t ) , F ( t ' , s ,  it) ) = 0. 
Thus condition (2) is satisfied. [] 

It should be noted that the result of  Lemma 1 also 
holds in case of  a cyclic timetable. This is a result of  
the fact that each section s E S \  S* is located between 
two sections s ~, s" E S*. The details of  this statement 
are left to the reader. 

Based on the information contained in the sets Ft,t, 
some of  the allowed routes for a certain train may 
be excluded from further consideration, since they are 
dominated by other routes. In particular, route r E 
Rt may be eliminated from the set Rt if there exists 
another route ~ E R t  that leaves at least the same 
routing possibilities for all other trains. Thus 

{rt l ( r , r  ') E Ft , t , }c  {rt l (? , r  t) E Ft.t,} 

for all trains t ~ 4: t. 

For example, in our application, route r is dominated 
by route ~, if the set of  relevant sections of  route ? is 
a subset of  the set of  relevant sections of  route r. The 
latter is a consequence of  the method used to determine 
the time instants S(t ,  i) and F( t, s, i). 

5. Model formulation 

In this section we describe the feasibility problem 
of  routing trains through railway stations in terms of  
an integer linear program. Thereafter we describe the 
connection of  the feasibility problem with the Fixed 
Interval Scheduling Problem (FISP).  The most gen- 
eral variant of  the feasibility problem is defined as 
follows. 

The general feasibility problem. Given a railway 
station with a corresponding set of  routes R. For each 
train t a set of  feasible routes Rt C R is given. Fur- 
thermore, for each pair of  trains t and t '  a set Ft,t, of 
allowed pairs of  routes is given. Then the question is 
whether there exists a feasible assignment o f  trains to 
routes, 

The restricted version of  the feasibility problem 
where all sets Ft,t, are completely determined by the 
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safety aspects (1) (that is: (r,r ~) E Ft,t, if and only 
if condition ( 1 ) is satisfied) is called the safety feasi- 
bility problem. 

In our application we are not satisfied with a no- 
answer for a no-instance of  the feasibility problem: 
the corresponding solution should also point at the 
blocking trains. Therefore we choose to formulate the 
problem also as an optimization problem, where the 
objective is to maximize the number of  trains that can 
be routed through the railway station. The correspond- 
ing versions of  the routing problem are called the gen- 
eral optimization problem and the safety optimization 
problem. 

5.1. Formulation as an integer program 

In order to model the general feasibility problem as 
an integer linear program, we choose the binary de- 
cision variables Xt.r for all t E T and r E Rt. The 
decision variable Xt,r assumes the value 1 if train t is 
assigned to route r and the value 0 otherwise. Now 
the objective of  the feasibility problem is to find out 
whether a feasible solution exists to the following con- 
straints: 

Xt ,r=l  for a l l t E T ,  (4) 
rER~ 

S t ,  r "~ Xt, ,r ,  ~ 1 for all t, t ~ E T; r E Rt; 

r' ERt,; (r,r') (~ Ft,t,, (5) 

Xt,r E (0, 1} for all t E T; r ERt .  (6) 

Constraints (4) ensure that each train is assigned to 
exactly one route. Constraints (5) guarantee that only 
allowed train-route combinations are selected. These 
constraints may include constraints due to safety con- 
siderations, coupling and uncoupling of  trains, and ser- 
vice aspects. Finally, constraints (6) declare the vari- 
ables as binary. 

The general optimization problem, where the ob- 
jective is to maximize the number of  trains that can be 
routed through the railway station, reads as follows: 

max ~-~ ~ Xt,r, (7) 
tET rERt 

to Z X t , ~ <  1 for a l l t E T ,  (8) subject 
rERt 

(5) and (6) .  

Constraints (8) ensure that each train is assigned to at 
most one route. Obviously, a yes-instance of  the fea- 
sibility problem can be recognized by the value ITI 
for the objective function in the optimization prob- 
lem. 

The integer linear program has the general structure 
max{ cTX I MX <~ 1, X binary}. Here X is a binary 
vector of  decision variables, M is a zero/one matrix 
and 1 is a vector of  l 's.  This representation shows 
that the problem can be interpreted as a Node Packing 
Problem (NPP) on the incidence graph of  the ma- 
trix M. This allows one to deduce a number of  valid 
inequalities that tighten the integer programming for- 
mulation, and thus make the LP-relaxation more ac- 
curate. For example, inequalities that are valid for the 
NPP are the clique inequalities, and the (lifted) odd 
hole inequalities (cf. Padberg [ 21 ].) 

In principle, the routes occurring in the integer lin- 
ear program are complete routes through the railway 
station. However, if there are many inbound routes 
from certain entering points to certain platforms 
and/or  many outbound routes from certain platforms 
to certain leaving points, then it may be worthwhile 
to replace the complete routes by combinations of  
inbound and outbound routes. Indeed, suppose for 
train t there are nl inbound routes from the entering 
point Et to each platform, and n2 outbound routes 
from each platform to the leaving point Lt. Then the 
number of  complete routes for train t from Et to Lt 
visiting one of  the platforms equals nl x n2 × IPI, 
where IPI denotes the number of  platforms. Hence 
in the model the number of  variables Xt,r for train 
t also equals nj × n2 × IPI. On the other hand, if 
a distinction were made between the inbound routes 
and the outbound routes, then nl × tPI variables are 
required to choose an inbound route for train t, and 
n2 × IPI variables are required to choose an outbound 
route for train t. Thus the total number of  variables 
required for train t would be (nl + n2) x IPI, which 
may be significantly less than nl x n2 × Iel. As 
before, the sets Ft.t may be used to guarantee that 
train t is assigned to matching inbound and outbound 
routes. As a consequence, the NPP-structure of  the 
model is retained. Splitting complete routes into in- 
bound and outbound routes may also be useful if 
one wants to include shunting movements of  trains 
into the model formulation (cf. Kroon and Zwane- 
veld [20] ). 
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5.2. Generalization of  FISP 

If the cyclic structure of the timetable is neglected, 
then each train t needs to occupy a platform during 
the fixed time interval between At and D t. As a con- 
sequence, the general feasibility problem studied in 
this paper is a generalization of the well known Fixed 
Interval Scheduling Problem (FISP). In FISP a num- 
ber of jobs, each one having a fixed start time and a 
fixed finish time, have to be carried out by a number of 
parallel identical machines. The question is whether 
it is possible to find a feasible schedule for all jobs. 
Hashimoto and Stevens [13] and Gupta et al. [12] 
show that FISP can be solved in O( J log J)  time. Here 
J denotes the number of jobs to be carried out. FISP 
was also studied by Gertsbakh and Stern [ 11 ] in the 
context of fleet planning. 

In the variant of  FISP described by Arkin and Sil- 
verberg [ 1 ] each job can be carried out by a subset 
of the machines only, and the objective is to find a 
schedule for a subset of the jobs of maximum total 
value. Arkin and Silverberg show that their variant of 
FISP is NP-hard. However, they also present an algo- 
rithm based on dynamic programming that solves the 
problem in O(JM+I)  time, where J denotes the num- 
ber of jobs and M denotes the number of machines. 
Hence if the number of machines is fixed, then an op- 
timal solution can be found in an amount of time that 
is polynomial in the number of jobs. 

It follows that the variant of FISP described by 
Arkin and Silverberg can be used to model the assign- 
ment of trains to platforms if one neglects the complex- 
ities due to cross-overs of inbound and/or outbound 
routes. If one also takes into account the fact that cer- 
tain assignments of trains to platforms are not allowed 
due to cross-overs of inbound and/or outbound routes, 
then one obtains a problem that seems to be signif- 
icantly more difficult. Nevertheless, in the next sec- 
tion we will show that an approach based on dynamic 
programming, which is an extension of the approach 
of Arkin and Silverberg, can be used for solving the 
feasibility problem of routing trains through railway 
stations. 

Further variants of FISP are studied by Dondeti and 
Emmons [4, 5], by Fischetti et al. [7-9] in the context 
of bus driver scheduling, and by Kolen and Kroon 
[ 14-17] in the context of aircraft maintenance. The 
latter papers present a comprehensive description of 

the computational complexity of several variants of 
FISP. 

6. Computational complexity 

As was mentioned already, the problem of rout- 
ing trains through railway stations in its most general 
form is a generalization of the feasibility version of 
the problem described by Arkin and Silverberg [ I ] .  
Since the latter problem is known to be NP-complete, 
the feasibility problem of routing trains through rail- 
way stations is NP-complete as well. In fact, the latter 
will also follow from Lemma 2, which shows that the 
safety feasibility problem is NP-complete as soon as 
each train has three routing possibilities. This result 
is deduced using the well known Satisfiability (SAT) 
problem. 

Satisfiability problem. Given m clauses Ci . . . . .  C,, 
and n boolean variables xl . . . . .  xn. Each clause con- 
sists of a number of literals (variables, or negations of 
variables). A clause is satisfied if one of the literals 
of the clause is TRUE. That is, a variable that occurs 
in the clause is TRUE or a variable whose negation 
occurs in the clause is FALSE. Then the question is 
whether there exists an assignment of boolean values 
TRUE and FALSE to the variables such that all clauses 
are satisfied. 

Special cases of SAT are 2-SAT and 3-SAT. In 2- 
SAT each clause contains exactly 2 literals, and in 3- 
SAT each clause contains exactly 3 literais. It is known 
that 2-SAT can be solved in O(max{m, n}) time (cf. 
Papadimitriou and Steiglitz [22], and Tarjan [241), 
whereas 3-SAT belongs to the class of NP-complete 
problems. 

6.1. Variable layout of  the railway station 

In this section we will first prove Lemma 2 showing 
that the safety feasibility problem is NP-complete as 
soon as each train has three routing possibilities. 

Lemma 2. IflR, I = 3for  each train t, then the safety 
feasibility problem is NP-complete. 
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Proof. This lemma is proved by a reduction from 3- 
SAT. Indeed, let I be an instance of 3-SAT containing 
m clauses Ct in n variables, each one containing ex- 
actly three literals. 

Then we construct the following instance I '  of the 
safety feasibility problem. With each clause Ct we as- 
sociate a train t. Each train corresponds to a unique 
entering direction, and to a unique leaving direction, 
and each train has to be assigned to a unique prespeci- 
fled platform. Thus the number of entering directions, 
the number of leaving directions, and the number of 
platforms equals ITI. 

For train t there are three inbound routes r~, rt 2, and 
r~, each one leading from the train's entering point 
towards the train's platform. Furthermore, for each 
train there is exactly one outbound route leading from 
the train's platform towards the train's leaving point. 
Thus each train has exactly three routing possibilities 
through the railway station, which are also indicated 
by r~, rt 2, and r 3. Each pair of inbound routes has 
a cross-over or a fly-over. The outbound routes do 
not cross the inbound routes, nor the other outbound 
routes. All inbound routes have the same length and 
consist of one single section. 

All trains have the same arrival time and the same 
departure time. This, together with the previous con- 
ditions, implies that a pair of routes is compatible for 
a pair of trains if and only if the involved inbound 
routes do not have a cross-over. 

Route r~ of train t corresponds with the ith literal 
of clause C1. Thus, if train t is assigned to route r~, 
then the ith literal of clause C1 is assigned the value 
TRUE, and vice versa. Therefore route r~ has a cross- 
over with route ~, if the ith literal of clause Cr is 
the negation of the jth literal of clause Cr,. Otherwise 
route r~ has a fly-over with route ~,. An example of 
a situation with two trains is shown in Fig. 2. 

Next, suppose I is a yes-instance of 3-SAT. Then for 
each clause C1 at least one of the literals is assigned the 

train I 

train 2 

O fly-ever 

O = cross-over 

Fig. 2. An example with 2 trains. 

value TRUE. Select one such literal, and assign train 
t to the corresponding route. This obviously gives a 
feasible assignment of trains to routes in 11 . 

Conversely, suppose 1' is a yes-instance of the safety 
feasibility problem. Then each train t is assigned to 
exactly one route r~. Now the value TRUE is assigned 
to the ith literal of clause t in 1. Furthermore, all unas- 
signed variables are given an arbitrary value. Then 
obviously all clauses are satisfied, and since no con- 
flicts occur in the assignment of trains to routes, the 
obtained solution is feasible for I. 

Thus I is a yes-instance of 3-SAT if and only if 
I '  is a yes-instance of the safety feasibility problem. 
Since 3-SAT is NP-complete, and it is clear that the 
safety feasibility problem is in NP, the safety feasibil- 
ity problem is NP-complete as well. [] 

It should be noted that the general feasibility prob- 
lem is really more general than the safety feasibility 
problem. In fact, it can be proved in a similar fash- 
ion as Lemma 2 that the following result holds for the 
general feasibility problem. 

Lemma 3. The general feasibility problem is NP- 
complete, even if  there are only three routes through 
the railway station. 

This result implies that the general feasibility prob- 
lem is NP-complete even if the layout of the railway 
station is fixed. This is in contrast with the safety fea- 
sibility problem and the safety optimization problem 
which can be solved in polynomial time as soon as the 
layout of the railway station is fixed. The latter will 
be proved in the following section. 

As is often the case in complexity theory, the num- 
bers 2 and 3 describe the borderline between the easy 
problems and the hard problems. This is illustrated in 
Lemma 4 showing that the general feasibility problem 
can be solved in polynomial time if there are only two 
routes per train. 

Lemma 4. I f  IR,[ <~ 2 for  each train t, then the 
general feasibilityproblem can be solved in O( ITI 2) 
time, given the sets Ft,r,. 

Proof. Let I be an instance of the general feasibility 
problem. We will reduce I to an instance 1' of 2-SAT. 
The details are as follows: 
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( 1 ) For each train t with [Rtl = 2 we define variables 
x~ and xt 2. For each train t with IRtl = 1 we define 
one variable x~. 

(2)  For each train t with IRtl = 2 we define clauses 
(x~ V x~) and (2~ v 2t2). For each train t with 

I~,1 = 1 we define a clause (x~ V x~). 
(3)  I f  the ith route of  train t is not compatible  with 

the j t h  route o f  train t', then we define a clause 
(~ V ~,,). 

Obviously,  steps 1 and 2 take O(ITI)  time. Step 3 
takes O( ITI 2) time, since for each pair  of  trains t, t ~ E 
T the set Ft.t, contains at most  four pairs of  routes 
( r ,  r~). Since the number o f  variables of  I '  is O(ITI) 
and the number  o f  clauses of  I ~ is O(ITl2) ,  it can be 

verified in O(ITI 2) whether I t is a yes-instance of  2- 
SAT. Furthermore,  it is not difficult to see that 1 is a 
yes-instance of  the general feasibili ty problem if  and 
only if 1 ~ is a yes-instance of  2-SAT. It follows that the 
general feasibil i ty problem can be solved in O(ITI 2) 
time. [] 

6.2. Fixed layout o f  the railway station 

In this section we show that, for a station with a 
fixed layout, the safety optimization problem can be 
solved in an amount of  t ime that is polynomial  in 
the number of  trains to be routed. This result is an 
extension o f  the result of  Arkin and Silverberg [ 1 ] 
mentioned in Section 5. In order to prove this result, 
we will consider  the actual rai lway operations in more 
detail. To that end, the set of  inbound routes fit for 
train t is denoted by R i. and the set o f  outbound routes 
fit for train t is denoted by R~t. 

Furthermore,  a (poss ib le)  change in the reserva- 
tion of  a section for a train is called an event. Al-  
though in the previous sections the notations S( t ,  i) 
and F( t ,  s, i) were used to denote time instants, they 
will also be used to denote the corresponding events, 
where the correct interpretation should be clear from 
the context. There are 21TI events S(t ,  i) correspond- 
ing to the reservation of  an inbound or an outbound 
route for a train, and there are at most 21TIIS*l events 
F (  t, s, i) corresponding to the release o f  the reserva- 
tion of  a section for a train. Thus the number o f  events 
does not exceed 21Tl(1 + IS*l). 

Note that each event occurs at a single t ime instant. 
However, several events may occur at the same time 

instant. Thus the events can be sorted in chronological 
order, taking into account the rule that, whenever two 
events F( t ,  s , i )  and S( t  ~, i') occur at the same t ime 
instant, the event F ( t ,  s, i) occurs first and the event 
S( t t , i  ~) occurs second. In this way, the reservation 
of  a section is first released before the section can be 
reserved by another train. The list of  events is denoted 
by {eq I q = 1 . . . . .  Q) ,  where the index q is used to 
represent the described order of  the events. 

T he o re m 5. I f  the layout of  the railway station is 
fixed, then the safety optimization problem can be 
solved in polynomial time. 

Proof.  This theorem is proved by showing that the 
problem can be solved as a shortest path problem on 
a network with numbers of  nodes and arcs that are 
polynomial  in the number of  trains if  the layout  of  
the railway station is fixed. The underlying network 
is based on the events eq for q = - 1,0, 1 . . . . .  Q + 1. 
Here the event e - i  is an initial event prior  to all other 
events, and the event ca+! is a final event after all 
other events. 

The nodes in the network are I S* I-vectors, for q = 
- 1  . . . . .  Q representing feasible assignments of  sec- 
tions to trains between the events eq a n d  eq+l. That is, 
the nodes in the network have the form Xq = (x!,q . . . . .  
xls.i,q) where Xs. q = 0 or Xs. q E T for q = - 1  . . . . .  Q 
and s = 1 . . . . .  IS* 1. Here Xs,q = 0 means that section 
s is free between the events eq a n d  eq+l, and Xs.q = t 
means that section s is reserved for train t between the 
events eq and eq+l. Note that for q E { - 1 , Q }  there 

is only one node Xq = (Xl,q . . . . .  Xls.i,q). Indeed, for 
q E { -  1, Q} we have X~,q = 0 for all o" E S*. 

I f  there is an arc in the network from a node X I, = 

(Xl,p . . . . .  xlS*l,p) to a node Xq = (Xl,q . . . . .  xls*l,q), 
then p = q - 1. The latter implies  that the network is 
acyclic. Now the network is completed by performing 
the following steps for q = 1 . . . . .  Q: 

• Suppose eq = S(t ,  1 ) for some t E T. Then there 

is an arc from a node X q _  1 = ( X l , q _  1 . . . . .  Xls. i,q_l) 
to a node Xq = (Xl,q . . . . .  xls.i,q) if condit ion ( i )  or 
condition ( i i )  is satisfied: 

( i )  There exists a route r E Rit such that x,,,q_! = 
0 for all o- E S,; furthermore, X~,q = t for all 
o" E Sr and X~,q = X~,q_ l for all tr  ~ S,; if  these 
condit ions are satisfied, then the arc has length 
1. 
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( i i )  xtr,q = Xo-,q--1 for all tr E S*; if this is satisfied, 
then the arc has length 0. 

• Suppose eq = S(t,  2) for some t E T. Then there 
is an arc of  length 0 from a node X q - i  = (Xl,q-1, 

. . . .  XlS. l ,q_l)  to a node Xq = (Xl,q . . . . .  xls . i ,q)  if 
condition (iii) or condition (iv) is satisfied: 
(iii) There exists a route r E R~t and a platform sec- 

tion s E S r M P  such that Xs,q_l = t and X~,q-i = 
0 for all tr E Sr \ {s}; furthermore, Xtr,q -~ t for 
all o- E S~ and X~,q = X~,q-i  for all tr ~ Sr. 

(iv) For all platform sections s E P we have 
Xs,q-i ~ t; furthermore X~,q = X~,q-i  for all 
o ' E  S*. 

• Suppose eq = F ( t ,  s, i) for some t E T, i E { 1,2}, 
and s E St. Then there is an arc of  length 0 from a 
node X q - i  = (Xl,q-1 . . . . .  x lS . l ,q_l )  to a node Xq = 
(Xl,q . . . . .  Xls.i, q) if condition (v)  or condition (vi) 
is satisfied: 

(v) Xs,q-i = t, Xs,q = 0, and Xa,q = X~,q-1 for all 
o- 4= s. 

(vi) Xs,q-1 ~ t, and X~,q = X~,q-i  for all or E S*. 
I f  condition (i) is satisfied, then inbound route r 

is reserved for train t. Indeed, condition (i) implies 
that all sections s E S~ are free between the events 
eq -  1 and eq. Hence all sections s E Sr  a re  reserved for 
train t between the events eq and eq+l, and all other 
reservations remain unchanged. 

If  condition (iii) is satisfied, then outbound route r 
is reserved for train t. Indeed, condition (iii) implies 
that train t has a standstill at platform section s E 
Sr N P between the events eq-1 and eq, and that all 
other sections o- E Sr \ {S} are free between the events 
eq_ 1 and eq. Hence all sections o- E Sr are reserved for 
train t and route r between the events eq and eq+l, and 
all other reservations remain unchanged. Note that, if 
Xs,q-i = t for some platform section s E P and there 
does not exist a route r E R~ with s E S~ such that 
X~,q-i  = 0 for all o- E Sr \ { s } ,  then there is no 
arc leaving node X q - i  = (X l ,q - i  . . . . .  x l s . i , q_ l ) .  This 
implies that in that case each path leading from node 
X- l  to this node is a deadheading path, which cannot 
be extended to a full path to node X O. 

If  condition (ii) or condition (iv) is satisfied, then 
no route is reserved for train t. Hence all reservations 
remain unchanged. If  train t is waiting at a platform 
section s G P,  then it should be assigned to an out- 
bound route at event eq = S ( t ,  2) .  Therefore the addi- 
tional condition in (iv) that Xs,q-t -4: t for all s E P 

is necessary. 
If  condition (v)  is satisfied, then section s was re- 

served for train t between the events eq-  ! and eq. Since 
eq = F ( t , s , i ) ,  this reservation is released, and all 
other reservations remain unchanged. If  condition (vi) 
is satisfied, then section s was not reserved for train t 
between the events eq_ 1 and eq. Hence all reservations 
remain unchanged. 

We have constructed now a directed network. Obvi- 
ously, only arcs corresponding to the reservation of  an 
inbound route have a positive (unit) length. It follows 
that a path of  total length L from node X_l to node 
XQ represents a feasible routing for L trains through 
the railway station. Thus a feasible routing for a max- 
imum number of  trains through the railway station 
corresponds to a path of  maximum length from node 
X_ l to node XQ. Since the network is acyclic, we can 
solve the longest path problem by replacing each arc 
length by its negative value and by finding the short- 
est path. We can use the idea of  Edmonds and Karp 
[6] to carry out the shortest path computation over 
an equivalent network with non-negative arc lengths. 
Fredman and Tarjan [ 10] have shown that for a net- 
work G = (V,E) the algorithm of Dijkstra can run in 
O(IV I loglV I + [E I) time. 

Therefore it is relevant to count the number of  nodes 
and arcs of  the network. Obviously, the number of  
nodes per event eq is O( [TllS*l ). Recall that the num- 
ber of  events Q does not exceed 2 [TI (  1 + IS*l). Thus 
the number o f nodes I Vl is 21T I( 1 + IS*l) O ( I Zl I s ' l  ) = 
O( IS* I IT[ Is* I+1 ). Furthermore, if condition (i) is sat- 
isfied for an event eq = S( t ,  1), then the number of  
arcs leaving a node Xq_l  = (Xl,q-1 . . . . .  Xls*[,q-I) 
does not exceed IRitl . If  condition (ii) is satisfied for 
such an event, then the number of  such leaving arcs 
equals 1. Similarly, if condition (iii) is satisfied for 
an event eq = S ( t ,  2) ,  then the number of  arcs leav- 
ing a node X q _  1 -~ ( X l , q _  1 . . . . .  xlS . l ,q_l)  does not 
exceed [R~t I. If  condition (iv) is satisfied for such an 
event, then the number of  such leaving arcs equals 
1. Finally, if condition (v) or (vi) is satisfied for an 
event eq = F ( t ,  s, i ) ,  then the number of  arcs leav- 
ing a node X q _  1 -~ ( X l , q _  1 . . . . .  XlS*l,q-1) equals 1. 
Thus the number of  arcs IEI is IgallTlO(IZllS't) + 
Ie°llZlO(lZll s-b) + 2[S*llZlO(ITllS'l) _ -  O(([Ril + 

Ie°l + 21S*l)lTIIS*l+~). 
If  the layout of  the railway station is fixed, then 

[Ri], IR°I, and Is*l are fixed. Hence in that case 



L.G. Kroon et al./European Journal of Operational Research 98 (1997) 485-498 

Ivl = O(ITIJS'J+x), and IEI = O(ITI Is*l+~) as well. 
Thus the routing problem can be solved then in 
O([TI Is*l+j loglT[) time. [] 

It should be noted that the result of Theorem 5 is 
interesting mostly from a theoretical point of view, 
since it provides a generalization of the result of Arkin 
and Silverberg [ 1 ] concerning FISP. The practical 
value of Theorem 5 is limited, due to the size of  
the described network. For example, in the medium- 
sized Dutch railway station Zwolle, the hourly num- 
ber of trains to be routed equals about 20, and the 
number of relevant sections equals about 50. There- 
fore the O(IT[IS*l+~ log ITI) amount of time is of lit- 
tle practical value for this railway station, let alone 
for larger-sized railway stations like Amsterdam or 
Utrecht. For a description of algorithms used in prac- 
tice to solve the routing problem we refer to Zwane- 
veld et ai. [25]. 

The proof of Theorem 5 is strongly based on the 
assumption that the events S( t ,  i) and F( t ,  s, i) are 
independent of the involved routes. However, if these 
events are dependent of the chosen routes, and are ac- 
tually events S( t, r, i) and F ( t, r, s, i) ,  then the prob- 
lem can still be solved in an amount of time that is 
polynomial in the number of trains, given the layout 
of the railway station. The latter can be established by 
considering all events S( t, r, i) and F( t ,  r, s, i) in the 
network, and by reserving a section for a train-route 
combination, instead of for a train only. Obviously, 
the size and complexity of the network will further in- 
crease by this modification. However, the result is still 
a polynomial algorithm for safely routing a maximum 
number of trains. 

In Theorem 5 only the safety aspect of  an assign- 
ment of trains to routes is taken into account, whereas 
other aspects, such as coupling and uncoupling of 
trains and service aspects, are not considered. How- 
ever, coupling and uncoupling of trains may also be 
incorporated into the approach of Theorem 5. Indeed, 
suppose trains t and t ~ with S(t,  1 ) < S( t ' ,  1 ) have to 
be coupled. Then train t is first assigned to an inbound 
route. Next, at the moment a matching inbound route 
for train t / is to be selected, train t is still reserving a 
platform section s E P, since otherwise the coupling 
of trains cannot be performed. Thus an appropriate in- 
bound route r C Rit, for train t ~ may be chosen, given 
the platform section s reserved by train t. Uncoupling 
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of trains may be incorporated in a similar way. Thus 
we have obtained the following corollary. 

Corollary 6. I f  the layout o f  the railway station is 
fixed, then the safety optimization problem, including 
coupling and uncoupling o f  trains, can be solved in 
polynomial time. 

Also some service aspects, such as preferences of 
certain trains for certain routes or platforms, may be 
handled by the dynamic programming approach. Fur- 
thermore, also the requirement that certain pairs of 
trains obtain a cross-platform assignment may be han- 
dled in the same way as the aspect of coupling and 
uncoupling of trains. Finally, different safety systems 
may be included. For example, also a system wherein 
the inbound and outbound routes are reserved on a 
section-by-section basis may be handled similarly. 

If  it is desirable that all trains into the same direc- 
tion depart from the same platform, then this cannot 
be incorporated directly into the approach described 
above. Indeed, two trains bound for the same direction 
usually do not have overlapping standstill intervals at 
the railway station. Therefore at the moment the sec- 
ond train arrives at the railway station, the platform 
used by the first one cannot be recognized from the 
state of the system at that time, unless it is recorded 
somehow. 

Therefore the approach of Theorem 5 is modified 
in the following way. Now the state variables are ex- 
tended to be ( IS* I+n) -vectors, Xq = ( Xl ,q . . . . .  Xjs.i, q, 

Yl,q . . . . .  Yn,q), where n denotes the number of leav- 
ing directions of the railway station. Position l of  the 
latter n positions of a state variable is used to record 
the platform used for the trains bound for leaving di- 
rection l. Such a value is set whenever the first train 
bound for this direction enters the railway station, and 
is taken into account by all consecutive assignments 
of trains to inbound routes. The steps in the network 
description become as follows. 

• Suppose eq = S(t ,  1) for some t C T bound 
for direction Lr. Then there is an arc from a node 

Sq-1 -- ( X l , q - I  . . . . .  XJs* I , q - l ,  Yl,q-1 . . . . .  Yn,q-I ) to a 

node Xq = (Xt.q . . . . .  xjs*l, q, Yl.q . . . . .  Yn,q) if condi- 
tion (i'a), (i~), or (ii ')  is satisfied: 
(i~a) there exists a route r C Rit with platform section 

s E Sr N P such that X~,q_ l = 0 for all o- C Sr 
a n d  Yl,q-1 --- 0 for l = Lt; furthermore, x,~,q = t 
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for all or C Sr and Xtr,q = Xo',q--I for all o- ~ Sr; 
also Yl,q = s for 1 = Lt ,  and  yl,q = Yl,q-1 for  all 

l ~ Lt ,  

(i~) there exists a route r E Rit with platform section 
s E Sr N P such that X~,q_ 1 = 0 for all o- c Sr 
and yl,q-I = s for l = Lt; furthermore, X~,q = t 
for all o- C Sr and X~,q = x~,q-i for all or ~ Sr; 
also Yt,q = Yl,q-1 for 1 = 1 . . . . .  n. 

(ii I) Xa,q = x,~,q-i for all or E S* and Yl,q = Yl,q-I for 
I = 1  . . . . .  n. 

I f  condition (i~a) is satisfied, then train t is the first 
train bound for leaving direction Lt  that arrives at the 
railway station. Thus train t can be assigned to any ap- 
propriate inbound route r E Rit . The platform section 
s used by train t is recorded in YL,,q. I f  condition (i~) 
is satisfied, then train t can be assigned only to an in- 
bound route leading towards platform section s used 
by the previous trains bound for leaving direction Lt. 

Obviously, the number of  nodes and arcs of  the 
network increases by this extension of  the state space. 
Nevertheless, since the number of  leaving directions 
is fixed, the network has still a number of  nodes and 
arcs that are polynomial  in the number of  trains. Thus 
we have obtained the following corollary. 

Coro l l a ry  7. I f  the layout o f  the railway station is 
fixed, then the safety optimization problem, including 
coupling and uncoupling o f  trains as well as the re- 
quirement that all trains bound f o r  the same direction 
should depart f rom the same platform, can be solved 
in polynomial time. 

I f  this is desirable, then a more refined distinc- 
tion between the trains may be handled in a similar 
way. For example, it may be desirable that all regional 
trains bound for the same direction depart from the 
same platform, and that the same holds for the inter- 
city trains bound for the same direction. Such a more 
refined distinction can be realized by extending the 
state space even further, in a similar way as described 
above. 

have neglected the cyclic structure of  the timetable so 
far, although it obviously increases the complexity of  
the feasibility problem. For example, it is well known 
that the cyclic variant of  FISP with identical parallel 
machines is NP-complete (cf. Kolen et al. [18] ,  and 
Dondeti and Emmons [5] ), in contrast with its non- 
cyclic variant. Nevertheless, it is not difficult to see 
that all results described in this paper are also valid in 
case of  a cyclic timetable. 

For example, Lemma 1 also holds in this case. The 
latter is a consequence of  the fact that each section is 
located between two relevant sections. Furthermore, 
the model formulation in Section 5 as well as the com- 
plexity results of  Lemmas 2, 3, and 4 are obviously 
independent of  the cyclic structure of  the timetable. 
Indeed, the sets Rt and Ft,t, for trains t and t / are deter- 
mined in a preprocessing step. In this step the cyclicity 
of  the timetable may or may not be taken into account. 

Also the result of  Theorem 5 that the safety opti- 
mization problem can be solved in polynomial time 
if the layout of  the railway station is fixed extends to 
the case of  a cyclic timetable, although a slight mod- 
ification of  the network is required in order to prove 
this. Indeed, in this case the initial state of  the sys- 
tem at time instant 0 (= time instant 60) need not be 
empty. Hence there will be several initial nodes X_ l = 
(Xl,-  l . . . . .  xlS*l,- l ) representing the possible initial 
states of  the system. Similarly, there will be several 
final nodes XQ = ( Xl.Q . . . . .  Xls.l,a ) representing the 
possible final states of  the system. Now the problem 
is to find the longest path in the network from some 
initial state X - l  = (x l , - i  . . . . .  xls . i ,_l)  to the same 
final s ta te  XQ = ( Xl,  Q . . . . .  X[s.I,Q ) with x,~,-i = Xtr,Q 

for all or E S*. Since the number of  initial states 
is O(ITIIS*l), the problem can still be solved in an 
amount of  time that is polynomial in the number of  
trains if the layout of  the railway station is fixed. 

Finally, the results of  the Corollaries 6 and 7 that in 
the approach of Theorem 5 also coupling and uncou- 
pling of  trains as well as a number of  service aspects 
may be taken into account can be extended directly to 
the case of  a cyclic timetable. 

7. Cyclic timetable 

As was mentioned already in the introduction, a 
timetable generated by CADANS has a cyclic structure 
with a cycle length of  60 minutes. For simplicity, we 

8. Final remarks 

In this paper we consider the problem of  routing 
trains through railway stations. We show that only a 
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subset of  the track sections and the routing possibil i t ies 
needs to be taken into account when deciding whether 
a certain assignment o f  trains to routes is feasible from 
a safety point  o f  view. Furthermore, we describe the 
problem as an integer linear program, which shows 
that the problem can be considered as a Node Packing 
Problem. 

A reduction from 3-SAT shows that the safety fea- 
sibili ty problem is NP-complete  as soon as each train 
has three routing possibili t ies.  However, if  each train 
has at most  two routing possibili t ies,  then the general 
feasibili ty problem can be solved in polynomial  time 
by a reduction to 2-SAT. Furthermore, it is also shown 
that, if the layout of  the rai lway station is fixed, then 
the safety optimizat ion problem can be solved by a 
dynamic programming approach in an amount of  t ime 
that is polynomial  in the number of  trains. In the lat- 
ter approach also coupling and uncoupling of  trains, a 
number o f  service aspects, and a cyclic t imetable may 
be taken into account. 

Currently we are working on the development of  
an algori thm for solving the problem of  routing trains 
through rai lway stations. This research .is described 
in a complementary paper by Zwaneveld et al. [25] .  
The developed algori thm is based on the formulation 
of  the problem as a Node Packing Problem, and on 
the applicat ion of  dominance rules, valid inequalities, 
heuristics, and a branch & cut procedure. It turns out 
that the algori thm is appropriate for solving the routing 
problem for almost all rai lway stations in The Nether- 
lands. Unfortunately, the variance in the processing 
times is still large, and therefore the processing times 
are rather unpredictable.  We hope to solve this prob- 
lem by improving the dominance rules. This topic is a 
subject for further research, together with the imple- 
mentation of  the algori thm into the user-friendly plan- 
ning system STATIONS, and the design of  the interface 
between the modules STATIONS and CADANS. 
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