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Abstract
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second order terms to a Mincerian earnings function for 6 OECD countries. An
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very well. The impact of search frictions on wages is large. We �nd that reservation
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1 Introduction

How much output is lost due to search frictions? To what extent do wages deviate from

the simple Walrasian rule of �one good, one price�, implying that workers with equal

human capital should earn equal wages? Labor economist have been struggling with

these questions for ages. Empirical inference is troubled by the fact that residuals in

simple Mincer type earnings regressions can be due to at least three factors: (1) imperfect

measurement of the relevant human capital variables, (2) measurement error in wages,

and (3) non-Walrasian features of the labor market like search frictions, resulting in wage

dispersion between otherwise homogeneous workers. A simple way to decompose the error

term in these three components is not available.

This paper shows that an estimate of the e¤ect of search frictions on workers with

equal human capital can be derived from a non-linearity in the earnings function. In

fact, simply adding second order terms in human capital variables and job characteristics

su¢ ces for our approach. At �rst sight, the identi�cation of the e¤ect of frictions from

these non-linearities seems to put the full burden of proof on functional form assumptions.

We show that this is not the case. The only assumption required for our approach is that

the third moments of the distributions of observable and non-observable worker and job

characteristics are approximately equal to zero, as holds for the normal distribution.

Even if this condition is not satis�ed, only strange assumptions on these distributions

can rationalize our empirical results. The empirical evidence, and the regularity of our

results across countries, provides strong support for the relevance of search frictions above

unobserved heterogeneity. Our methodology allows a back-of-the-envelope calculation of

the size of the cost of search, which is de�ned as the relative gap between the worker�s

reservation wage and the wage she would receive in a hypothetical Walrasian world. This

cost of search is estimated to be between 15 and 30 %.1 The output losses due to non-

Walrasian features of the labor market are therefore substantial.

The seminal papers by Dickens and Katz (1987) and Krueger and Summers (1988)

started a debate on the nature of inter-industry wage di¤erentials. Some contributors

claimed that the industry e¤ects in simple OLS earnings regressions are the re�ection

of genuine wage di¤erentials between workers with equal human capital in di¤erent in-

dustries. These di¤erentials might be driven by e¢ ciency wages or rent sharing. Others

1In a previous version of the paper we reported higher estimates but those were based on a mistake.
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took a more sceptical position, claiming that industry di¤erentials might very well be at-

tributed to unobserved worker characteristics which are correlated with industry choice,

see Murphy and Topel (1987). The large literature on the measurement error in schooling

variables, see Angrist and Krueger (1991), reveals that the importance of these unob-

served characteristics should not be underestimated. Recent contributions apply matched

worker-�rm data to resolve the issue, see Abowd, Kramarz, and Margolis (1998).

Another strand in this literature starts from Burdett and Mortensen�s (1998) model

of monopsonistic wage setting in a world with on the job search. A high wage raises

the in�ow and reduces the out�ow of workers, but it also reduces pro�ts by increasing

the wage bill. This trade-o¤ results in a non-degenerate equilibrium wage distribution.

Larger �rms pay higher wages and have longer average tenures. These correlations allow

for inference on the dispersion of wages, holding constant the human capital of the worker,

see Van den Berg and Ridder (1998) and Postel Vinay and Robin (2002).

This paper applies the search model of Teulings and Gautier (2004), that is based on

the assignment models analyzed by Sattinger (1975) and Teulings (1995). Workers vary

by their level of skill (or human capital) and jobs by their level of complexity. Both the

skill and the complexity index vary continuously, so that there is an in�nitum of job and

worker types. Highly skilled workers are assumed to have an absolute advantage in all jobs

and a comparative advantage in complex jobs. In the Walrasian version of this model,

each worker type is assigned to a unique job type, where output reaches its maximum.

Both this optimal complexity level and log wages are increasing in the skill type of the

worker, the former due to comparative advantage, the latter due to absolute advantage.

In the presence of search frictions, workers will not wait for ever till this unique �rst best

job type comes along. When a contact occurs between a worker and a job, both face a

trade o¤ between either the pay o¤ of matching with the partner that is available now or

waiting for a more suitable partner. Hence, workers accept a range of job types, instead

of a single job type as in the Walrasian equilibrium. Suppose that wages are set by Nash

bargaining between the worker and the �rm. Then, both sides share the loss in output

relative to what it would be in the optimal assignment. Wages for a particular type of

worker are concave in the job type: the wage reaches a maximum for the level of job

complexity that maximizes output; it is lower for less or for more complex jobs. The basic

idea of this paper is to capture this concavity empirically by simply adding second order
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terms in the skill and complexity levels to Mincerian earnings functions.

We can construct a proxy for the skill index. Using standard human capital variables,

we construct this index such that it is linearly related to wages. Similarly, we can construct

a complexity index linearly related to wages, using industry and occupation dummies.

When both indices enter jointly in a wage regression, their coe¢ cients have no structural

interpretation, since both indices are perfectly collinear in the Walrasian case, due to the

comparative advantage assumption. Hence, the size of both coe¢ cients is determined by

the share of unobserved heterogeneity in the variance of both indices, and not by the

underlying structure of the economy.2 We show, however, that it is di¢ cult to justify the

second order terms on these grounds. If we apply a standard normality assumption on the

distribution of both observed and unobserved job and worker characteristics, then second

order terms cannot be explained by unobserved heterogeneity. In fact, any distribution

with a zero third moment yields this conclusion.

The estimation results can be used to quantify the size of search frictions. We derive

a simple relation for the cost of search from our theoretical model. For the empirical im-

plementation, we allow the skill and complexity index to be only partially observed, but

we assume the third moments of the distribution of observed and unobserved character-

istics to be zero. Using this assumption, we are able to derive a simple relation between

the regression coe¢ cients of the Mincer equation and the size of search frictions. The

model yields two testable predictions regarding the sign and relative magnitude of the

coe¢ cients for the second order terms.

We cannot test the normality assumption for unobserved characteristics, but we can

test this assumption for the observed part of the skill and complexity indexes. Obviously,

these assumptions are not exactly satis�ed, but they come close to the data. More im-

portantly, these deviations from normality di¤er widely between the six countries that we

investigate. For some countries, the skill distribution is skewed to the left, for others it

is skewed to the right, and mutatis mutandis the same for the complexity distribution.

However, the estimated coe¢ cients for the second order terms have no relation to these

di¤erences in the skewness of the skill and complexity distribution, while they �t the

restrictions on their sign and relative magnitude derived from the search model very well

2For the purpose of this paper, it is irrelevant whether there is measument error in observed charac-
teristics or unobserved heterogeneity, because the former can always be respeci�ed in terms of the latter.
Hence, we discuss our results in terms of unobserved heterogeneity.
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for all six countries. Hence, search frictions are a far more parsimonious explanation for

these terms than asymmetric unobserved heterogeneity.

The paper is organized as follows. Section 2 derives a theoretical relation between

wages and worker and job characteristics in the presence of search frictions. This relation

is used in Section 3 to explain why in a simple Mincerian type of wage equation, second

order terms of worker skills and job characteristics are signi�cant. We also discuss whether

or not these second order terms can be interpreted in terms of unobserved characteristics.

Section 4 concludes by relating our results to the literature on industry wage di¤erentials

and on structural identi�cation of hedonic models.

2 Wage formation in a world with search frictions

2.1 The Walrasian point of reference

Consider a Walrasian world where workers and jobs are heterogeneous. Workers di¤er by

their level of skill, denoted s, and jobs by their level of complexity, denoted c. Both indexes

vary continuously on the real domain. Highly skilled workers have an absolute advantage

in all jobs and a comparative advantage in complex jobs. The main features of this type

of world are discussed extensively in Teulings (1995, 2005), so we state the characteristics

of market equilibrium without proof. Let y (s; c) denote the log market value of output

of worker type s at job type c. We assume y (�) to be twice di¤erentiable in both its
arguments. Absolute advantage implies that better skilled workers are more productive

than their colleagues with less skills in any job, ys (s; c) > 0. Hence, better skilled workers

earn higher wages in equilibrium. The Ricardian concept of comparative advantage implies

that better skilled workers are relatively more productive in more complex jobs. This

requires productivity to be log supermodular in s and c: ysc (s; c) > 0.3 Furthermore,

we assume that y (s; c) has a unique interior maximum in c for each s and that a free

entry-zero pro�t condition for �rms applies. Hence, log wages are equal to the value of

output. Finally, the value of leisure is zero, so that workers are willing to work for any

positive wage above non-employment.

3Since Becker�s (1973) seminal paper on mariage markets, it has been standard to associate compara-
tive advantage with supermodularity. However, the Ricardian concept of comparative advantage, where
the output of a match is tradable and there is free entry, requires log supermodularity, see Teulings and
Gautier (2004) for a further analysis.
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In this Walrasian equilibrium, workers of type s are assigned to that job type, c(s);

where they produce the highest value of output, and by implication, where they earn the

highest wage. By construction, y [s; c (s)] satis�es the �rst and second order condition for

a maximum:

yc [s; c (s)] = 0

ycc [s; c (s)] < 0

since y (s; c) is di¤erentiable and since there is an interior maximum of y (s; c) in c for

each s. Under the assumptions above, this equilibrium assignment c(s) is a di¤erentiable

function. It is strictly increasing, c0 (s) > 0, due to comparative advantage of better

skilled workers in more complex jobs.4 Since c (s) is strictly increasing, it has a well

de�ned inverse function, s = s (c) ; s0 (c) > 0, with s [c (s)] = s. Hence, the equilibrium

assignment is described by a one-to-one correspondence between s and c: Each skill type

is assigned to a unique job type and vice versa. The equilibrium locus of log wages w is

a twice di¤erentiable function of the skill level s. It is strictly increasing, w = w� (s) =

y� (s) ; w�0 (s) > 0, due to absolute advantage of better skilled workers in any job type.

The superscript � indicates that w� (s) is the log wage for worker type s when assigned
to her optimal job type c (s), and mutatis mutandis the same for y� (s) � y [s; c (s)].

Combining these results yields dw� [s (c)] =dc = w�0 [s (c)] s0 (c) > 0: log wages can also be

written as an increasing function of job complexity c. To summarize, log wages are an

increasing function of both the skill level s and the level of job complexity c, while the

skill level s is an increasing function of the complexity level c (and vice versa).

We have not yet de�ned the units of measurement of s and c. For the subsequent

analysis, it is useful to apply a convenient normalization of both indexes. First, without

loss of generality we can choose the unit of measurement of wages such that E[w] =

0. Next, we can apply any increasing twice di¤erentiable transformations to s and c

without loosing any features of the equilibrium that we discussed above. Absolute and

comparative advantage of better skilled workers, the one-to-one correspondence between

4Di¤erentiating the identity: yc [s; c (s)] = 0 with respect to s yields:

ysc [s; c (s)] + ycc [s; c (s)] c
0 (s) = 0

Comparative advantage implies ysc [s; c (s)] > 0, the second order condition for a maximum implies
ycc [s; c (s)] < 0. Hence: c0 (s) > 0.
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s and c, and the twice di¤erentiability of the log wage function, all these feature are

invariant to such transformations. A convenient transformation of s is w� (s). After

this transformation, the log wage in the optimal assignment is a linear function of the

transformed skill variable, with a unit slope: w� (s) = s. Since E[w] = 0, we have:

E[s] = 0. Likewise, a convenient transformation of c is w� [s (c)]. Then, log wages in

the optimal assignment are also a linear function of the transformed complexity variable,

also with a unit slope, w� [s (c)] = c, and hence: E[c] = 0. As a further consequence,

the assignment of workers to jobs is linear with unit slope: c (s) = s (or equivalently:

s (c) = c). Due to this linear one-to-one correspondence between s and c, both variables

are perfectly correlated in equilibrium. Throughout this paper, s and c refer to the skill

and complexity indexes that are transformed in this way. This makes them equal to the

log wages associated with their respective optimal job type c (s), or worker type s (c). It

is important to note that these normalizations can be imposed without loss of generality.

Note furthermore that apart from the assumptions on the di¤erentiability of the output

function y (�), and on absolute and comparative advantage, we do not make any other
functional form assumption.

2.2 Adding search frictions

The Walrasian assignment model of the previous section can be extended with search

frictions, following the analysis of Teulings and Gautier (2004). The idea is that now

workers meet only a limited number of job types per period and vice versa. For simplicity,

we rule out on the job search: workers can only search while being unemployed. In the

Walrasian equilibrium, a worker of skill type s was assigned to the unique job type c (s)

that maximized the value of her output, yielding a one-to-one correspondence between

s and c. Hence, both variables were perfectly correlated. In the presence of search

frictions, this one-to-one correspondence breaks down, so that the correlation between s

and c is no longer perfect. Workers cannot a¤ord to wait for ever till the optimal job

type c (s) comes along, and mutatis mutandis the same for �rms. Hence, they accept a

set of job types instead of just the optimal job. Let r (s) be the log reservation wage

of the worker. Workers accept only jobs that pay a log wage of at least r (s). In the

Walrasian equilibrium, this reservation wage is equal to the log wage and to log output:

y� (s) = w� (s) = r (s), since workers will not accept any wage o¤er that pays less than
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what they can get in the optimal assignment. Search frictions make workers less choosy,

since they cannot a¤ord to search forever till they �nd the optimal job type. This reduces

log reservations wages r (s) below y� (s):

r (s) � y� (s)� x (s) = y [s; c (s)]� x (s) (1)

x (s) is the ratio between the maximum output and the reservation wage or the relative

loss in reservation wage due to search frictions. Hence, we refer to x (s) as the cost of

search. Search models imply that a match between a worker and a �rm is characterized by

a positive surplus y (s; c)�r (s). Wage setting distributes this surplus between the worker
and the �rm. We assume wages to be set by Nash bargaining over this surplus.5 Let �

be the worker�s bargaining power parameter. Then, the log wage of an s-type worker in

a c-type job satis�es approximately:6

w (s; c) �= r (s) + � [y (s; c)� r (s)] (2)

Hence, w(s; c) is an increasing function of y(s; c) for a �xed s. Therefore, c(s) is also

the value of c that maximizes w(s; c) for a �xed s: w [s; c (s)] � w� (s) :7 The situation is
depicted in Figure E. Panel A represents theWalrasian case, where r (s) = w� (s) = y� (s),

and hence x (s) = 0. All workers of type s are assigned to the job type c (s) that maximizes

their output. Panel B represents the case with search frictions: r (s) is less than y� (s),

5Like in the Walrasian case, there are no other factors of production than labor. Firms have to pay a
per period cost of maintaining a vacancy, which limits the supply of vacancies. Firms�expected share in
the surplus compensates them for the cost of maintaining vacancies, see Teulings and Gautier (2004) for
details.

6Strictly speaking, this relation applies in levels:

W = R+ �X

However, for a small relative di¤erence x, the di¤erence is of higher order:

w = r + �x+O
�
x2
�

since ln (1 + �x) = �x+O
�
x2
�
. Close to the Walrasian equilibrium, x is small.

7There is an important di¤erence between this model and Shimer and Smith (2000). They treat both
side of the market symmetrically, so that their wage equation reads:

w (s when matched to c) = r (s) + � [y (s; c)� r (s)� r (c)]

where by symmetry � = 1
2 . Since there are no other factors of production than labor, the �rm�s outside

option is zero in our model, so r (c) drops out. Hence, contrary to Shimer and Smith�s model, the
maximum of y (s; c) and w (s; c) for a given s coincide.
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the di¤erence being x (s). An s-type job seeker is less choosy than in a Walrasian world

and accepts all c-type tasks for which y (s; c) � r (s). Low wages w (s; c) are a weighted
average of r (s) and y (s; c). Figure 1 depicts both situations in s; c-space: the Walrasian

equilibrium is represented by the solid diagonal, the search equilibrium by the band around

it.

Like in the Walrasian equilibrium, we choose suitable normalizations of s; c and w. We

maintain the normalization E[w] = 0. The normalization of s and c is more involved in this

case, since the one-to-one correspondence between s and c that applied in the Walrasian

equilibrium does not carry over to the search equilibrium. Hence, wages depend on both s

and c. For the empirical exercise discussed in Section 3, it is most convenient to normalize

s and c as the conditional expectations of log wage:

E [w (s; c) js] = s

E [w (s; c) jc] = c

The Walrasian equilibrium is a special case of this rule. Then: E[cjs] = c (s), so that

E[w (s; c) js] = w [s; c (s)] = w� (s) = s. A similar argument applies to E[w (s; c) jc]. The
idea behind the normalization is similar to inference based on revealed preference. There,

we have no direct observations of the utility function, but we infer it from observed

behavior. We can normalize utility by any monotonic transformation without loss of

generality. Here, we have no direct observations on s and c, but we infer them from log

wages. Again, we can normalize them by any increasing transformation without loss of

generality.8

We simplify the analysis by the following assumption:

Assumption 1: The cost of search are equal for all skill types: x (s) = x

By this assumption the cost of search is equal for all skill types, so that x is the fraction

of foregone output due to search frictions, i.e. the di¤erence between output in aWalrasian

economy and an economy with search frictions. In a more general model, Assumption 1

is likely to be violated. Here our aim is more modest. We are only interested in a �rst

order approximation of x (s). For that purpose, we can ignore variations in x (s) along

8The usual approach of a theorist is to make assumptions on primitives and derive the implications
for endogenous variables. Here we work the other way around. That is most convenient for the empirical
part of this paper. The analogy with revealed preference shows why this is a legitimate approach.
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the support of s. Teulings and Gautier (2004) derive an expression for x (s) in terms of

the primitives of the model. A suitable combination of the density of skill supply and the

cost of maintaining vacancies, generates Assumption 1 as a result. Furthermore, we show

that x (s) is almost constant in simulations of the model for quite standard assumptions

on these primitives, except for extreme values of s.

We apply a Taylor expansion around the Walrasian equilibrium, where the cost of

search are zero, x = 0. Let �c � c � c (s) denote the deviation from the optimal

allocation for type s and let �c� � c+(s)�c (s), where c+(s) is the most complex job that
a worker of type s is willing to accept, that is, for which y (s; c) � r (s). In the Walrasian
equilibrium, �c� = 0. A worker of type s turns down more complex jobs because too

much output would go to the �rm. Nash bargaining implies that output is equal to the

reservation wage at the boundary of the matching set. Hence:

y [s; c (s) + �c�] = r (s)

By a second order Taylor expansion of equation (1) with respect to c around c = c(s) and

using yc [s; c (s)] = 0, we have:

x �= �
1

2
ycc�c

�2 (3)

We can make exactly the same argument for the least complex job that a worker of type

s is willing to accept. Hence, job o¤ers with j�cj > �c� are rejected.

Lemma 1:

Up to a second order Taylor expansion, the matching set of a type s worker is sym-

metric around the midpoint c (s), its upper bound being c (s) + �c� and its lower bound

being c (s)��c�.

This lemma can be used for the derivation of the expectation of �c2 in the matching

set, again using a Taylor expansion:9

E [�cjs] �= 0 (4)

E
�
�c2js

� �=
1

3
�c�

2 �= �
2

3
y�1cc x

9Let f (�c) = f0 + f1�c+O
�
�c2

�
be a second order Taylor expansion of the density function �c in

the pool of vacancies. Then:
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The parameter jyccj has a special interpretation. It is the curvature of the log cost function
of a �rm producing task type c, or, the complexity dispersion parameter, see Teulings

(2005), measuring the productivity loss due to suboptimal assignments:

Loss (�c) = y� (s)� y [s; c (s) + �c] �= �
1

2
ycc�c

2

where the second equality follows from the same Taylor expansion as in equation (3).

Since the wage of the least attractive job type in the matching set of a worker of type s

is equal to her reservation wage, Loss(�c�) is equal to x. Consider a second order Taylor

expansion of equation (2) around w [s; c (s)] and a �rst order expansion of the expectation

of s conditional on c and vice versa:

w (s; c) �= w0 + wss+ wcc+
1

2
wsss

2 + wscsc+
1

2
wccc

2 (5)

wcc = �ycc < 0

E [cjs] �= �0 + �c

E [sjc] �= � 0 + �s

The inequality in the second line follows from the concavity of y [s; c (s)]. Note that the

second order expansion implies the implicit assumption that the complexity dispersion

parameter is constant along the domain of s. Variation in ycc along the domain of s is

a higher order phenomenon that will be ignored in the subsequent analysis. The same

applies to variation in the cost of search x. The subsequent proposition relates the other

partial derivatives of w (s; c) to the parameters of the joint distribution of s and c.

Proposition 1 Normalize w; s and c such that E[w] = 0; E[w (s; c) js] = s and E[w (s; c) jc] =
c. Then, the Taylor expansions in equation (5) imply:

w (s; c) �= w0 + s� !
�
�s2 � (1 + �) sc+ c2

�
(6)

E [�c] =

R�c�
��c� f (v) vdvR�c�
��c� f (v) dv

=

2
3f1�c

�3 +O
�
�c�

4
�

2f0�c� +O
�
�c�2

� = O
�
�c�

2
�

E
�
�c2

�
=

R�c�
��c� f (v) v

2dvR�c�
��c� f (v) dv

=

2
3f0�c

�3 +O
�
�c�

4
�

2f0�c� +O
�
�c�2

� =
1

3
�c�

2

+O
�
�c�

3
�

11



where ! � �1
2
wcc = �1

2
�ycc > 0 and

p
� =Cor[s; c] and where w0 is an appropriate

constant.

The proof is delegated to Appendix A. Proposition 1 provides a simple economic theory

for a wage function that is concave in s and c. In the Walrasian equilibrium, s and c are

perfectly correlated with c = s, and hence Var[c] =Var[s]. This equality does not hold

in a search equilibrium. We show in Appendix A that Var[c] = �Var[s], which is smaller

than Var[s] since
p
� is a correlation. This is due to absolute advantage: in the optimal

assignment c (s), a variation in s has a �rst order e¤ect in y (s; c) (and hence on w (s; c)),

while a variation in c has only a second order e¤ect on y (s; c), since by construction

yc [s; c (s)] = 0. Hence, comparing the two single variable regressions, the regression on

s "explains" a larger share of the variance of w (s; c) than the one on c. Since we have

normalized E[w (s; c) js] = s and E[w (s; c) jc] = c, the variance of s must be larger than
that of c.

The proof of Proposition 1 implies:

E
�
�c2js

� �= � (1� �)�2
where �2 �Var[s], see Appendix A. Substitution of these results in equation (3) yields a
simple expression for x:

x = �3
2
ycc� (1� �)�2 = 3

!

�
� (1� �)�2 (7)

The variance of w satis�es, see Appendix A:

Var [w] ' �2 + (1� �)2 (1 + �) �!2�4 (8)

' �2 +
1 + �

9�
�2x2 � �2 + 1

12
x2 �= �2

where the second step uses (7). The inequality applies if � � 1=2 and � � 1=2 which is
reasonable from an empirical point of view, see e.g. Abowd and Lemieux (1993). The

latter approximation shows that the variance of the second order term is small relative to

the �rst order term for values of x up to 0:50.

Summing up, we have extended the assignment model of the previous section with a

simple model of search frictions with Nash bargaining over wages. In this world, wages

are a concave function of worker and job characteristics. A second order Taylor expansion

12



of this wage function allows us to characterize the relation between this wage function,

the joint distribution of s and c, and the cost of search x. We need only two additional

assumptions on functional forms to derive these relations: both the cost of search x and

the complexity dispersion parameter ycc must be constant along the support of s.

3 Empirical analysis

3.1 The measurement of the key variables

A fundamental problem in the empirical analysis of non-Walrasian features of wages and

worker-to-job assignments is the di¢ culty to distinguish between deviations from the

frictionless assignment and measurement error in the data. Hence, if we want to apply

the framework developed above for an empirical analysis, we have to allow for the fact

that the three main ingredients of our analysis are all observed with a fair amount of

unobserved heterogeneity or measurement error. These imperfections are modelled as

follows:

s � �s+ s (9)

s � (q � E [q])0 �

c � �c+ c

c � (m� E [m])0 


w = w + u

where w is the observed log wage, E[s] = E[c] = E[u] = 0 and E[�ss] =E[cc] =E[wu] =

E [su] = E [cu] = 0, q is a vector of observed worker characteristics, and m is a vector

of observed job characteristics. Without loss of generality, we normalize all observed and

unobserved variables such that they have a zero mean. Both the skill index s and the

complexity index c are assumed to be made up of two orthogonal parts. The �rst part

is observed by the econometrician (�s and �c respectively) while the second is not (s and c

respectively). The random variable u captures the measurement error in wages. Hence,

it is uncorrelated to any other random variable in the model. Bound and Krueger (1991)

report that the ratio of variance of the signal to the total variance in log hourly wages is

0.84 for the CPS.

13



Equation (9) places hardly any restrictions on the structure of observed and unobserved

components of s and c. At �rst sight, the linearity of the relation between s and q and

between c and m seems to be a strong assumption. However, we can include everything

and its square in q and m, so that this speci�cation can capture any di¤erentiable non-

linear relation up to an arbitrary small degree of misspeci�cation. Similarly, the additive

separability between the observed and the unobserved component is not a restriction: it

implies that we de�ne �c �E[cjq] and c as the variation in c orthogonal on E[cjq].

3.2 The estimation of �s and �c

How can we estimate the parameter vectors � and 
 and hence the observed part of the

skill and complexity indexes, �s and �c? If the real world is described by the Walrasian

model of Section 2.1, then the answer is simple. We can simply apply OLS to the relations

w� (s) and w� [s (c)] which directly relate wages to observed worker and job characteristics.

Hence, in that case � and 
 can be consistently estimated from the following regression

models:

w = (q � E [q])0 � + "s (10)

w = (m� E [m])0 
 + "c

where "s and "c are error terms. The error terms in both regressions re�ect the unobserved

part of worker and job characteristics and the measurement error in log wages, that is:

"s = s + u and "c = c + u. Note that we run separate regressions for the supply and

the demand side of the market. If we had included q and m simultaneously, it would be

unclear whether our estimates re�ect a supply or a demand side relationship; q would

have served partly as a proxy for the unobserved part in the complexity index, c, and

m would have served partly as a proxy for the unobserved part in the skill index, s.

Since s and c are perfectly correlated, it is quite likely that �s is correlated with c and

that �c is correlated with s. Only by estimating both relations separately, we can give a

structural interpretation to the regression coe¢ cients. In fact, this procedure is similar

to the approach proposed by Rosen (1974). We return to this issue below.

The simple procedure laid out in equation (10) works �ne in a Walrasian world. How-

ever, if the real world is characterized by search frictions and if log wages therefore satisfy

the concave function (6), then, as suggested by a number of commentators on a previous
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version of this paper, this procedure does not seem to work anymore. Equation (6) in-

cludes quadratic terms in s and c, so that estimates of � and 
 that do not allow for this

non-linearity seem to be biased. The subsequent proposition shows this intuition to be

false:

Proposition 2 If (6) holds and measurement error in s, c and w is as in (9), then �

and 
 are consistently estimated by equation (10).

Proof. Equation (6) is constructed such that

E [w (s; c) js] = s

E [w (s; c) jc] = c

Since E[sj�s] = �s and E[cj�c] = �c and since u is uncorrelated to anything else, these equations
imply E[wj�s] = �s and E[wj�c] = �c. Hence, equation (10) gives consistent estimates of �

and 
.

The intuition for Proposition 2 is that the correlation between w and s2 introduced in

equation (6) by the term �!�s2 is exactly o¤set by the correlations introduced by both
other second order terms, ! (1 + �) sc an �!c2, since s and c are positively correlated.
Taking these three terms together, w and s2 are uncorrelated. Mutatis mutandis the

same analysis applies to the correlation between w and c2. Apart from the unobserved

heterogeneity in s and c respectively and the measurement error in log wages, the error

terms "s and "c capture also the e¤ect of suboptimal assignment due to search frictions.

Proposition 2 is just a re�ection of the way in which we have constructed our search model.

We derived partial derivatives of w (s; c) by imposing the restrictions E[w (s; c) js] = s and
E[w (s; c) jc] = c. There is no loss of generality involved in imposing these restrictions,

they just apply a proper scaling on the indexes s and c, see the discussion in Section 2.1.

Proposition 2 implies that w and �s2 should be uncorrelated. This implication is imposed

in our estimation procedure. We apply an iterative procedure such that if we enter both

�s and �s2 in regression (10), then the coe¢ cient on the second order term �s2 is indeed

exactly zero.10 Mutatis mutandis the same applies to our regression for �c.

10First, we run the regression: w = �1 �s1 +�2 �s1
2 + "s, where �s1 is constructed from equation (9).

Second, we construct a new variable �s2 = �1 �s1 +�2 �s1
2� E

�
�1�s1 + �2�s

2
1

�
and rerun the �rst regression

where we replace �s1 by �s2. We repeat these steps till �2 = 0.
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Our empirical analysis for the United States applies the CPS March supplements for

1989-92. We consider full time, non-farmer, private sector workers aged between 16 and 65,

which yields 222179 observations. We constructed hourly wages. The vector q includes the

usual variables: total years of schooling, a third order polynomial in experience, highest

completed education, being married, having a full or part time contract and various cross

terms of experience, education and being married; m contains 520 occupation and 242

industry dummies. Besides q and m, we add calendar time dummies to capture the e¤ect

of in�ation and the business cycle. Obviously, these time dummies are not included in the

construction of �s and �c. Let R2ws and R
2
wc denote the R

2 statistics for both regressions (10);

R2ws = 0:3358 and R2wc = 0:3632. Hence, the observed part of the skill and complexity

indexes capture a reasonable part of the total variance in log wages.

3.3 Interpreting regressions with both �s and �c

When we enter �s and �c in an OLS regression on log wages simultaneously, we obtain the

following results (t-values between brackets):

w
R2

0:4445

= �s�s
0:601
(180)

+ �c�c
0:668
(209)

+ e (11)

Can we give a structural interpretation to these coe¢ cients? In Appendix B, we proof

the following result:

Proposition 3 Consider the Walrasian assignment model w = s = c, the measurement

model in equation (9), and the regression equation (11). The coe¢ cients �s and �c satisfy:�
�s
�c

�
=

1

R2�sR
2
�c � C2

�
R2�c (R

2
�s � C)

R2�s (R
2
�c � C)

�
where R2�s and R

2
�c are the share of the variances of �s and �c in the total variances of s and

c respectively, and where C � Corr [�s; �c].

The proof follows directly from the formulas for OLS regression coe¢ cients. We cannot

identify R2�s; R
2
�c and C from the data directly, even in this Walrasian world, since we have

no way to decompose the error terms "s and "c in equation (11) into u on the one hand

and s and c on the other hand. R2ws and R
2
wc are therefore a lower bound for R

2
�s and
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R2�c respectively. The estimated coe¢ cients �s and �c provide further information. The

better the information on the skill variable (R2�s is high), the higher the coe¢ cient �s, and

mutatis mutandis the same for the complexity variable. For the special case R2�s = R
2
�c , we

have �s = �c = (1 + C)
�1: the higher the correlation between the skill and complexity

variable, the lower will be the coe¢ cients �s and �c. The intuition is that with imperfect

information, s becomes a proxy for c and the other way around. If R2�s = R
2
�c = 1, then

C = 1 (since Cor[s; c] = 1) and the model would be unidenti�ed by perfect collinearity of

its regressors. It is tempting to give the coe¢ cients �s and �c a structural interpretation.

For example, referring to the old debate started by Doeringer and Piore�s (1971) analysis

of segmented labor markets where wages are an attribute of jobs rather than of workers:

a high value of ac is then interpreted as support for the segmented labor market view of

the world, while a high value of �s is interpreted as support for the traditional human

capital interpretation. Similarly, Krueger and Summers (1988) use this type of regression

to estimate inter-industry wage di¤erentials. Those are then interpreted as evidence for

non Walrasian wage setting. The above analysis makes the simple and well known point

that the regression coe¢ cients can be just a re�ection of the relative amount of unobserved

heterogeneity in s and c, and that any structural interpretation is therefore hazardous.

Can we use this framework to distinguish between the Walrasian model and the model

extended with search frictions? The critical di¤erence between both models is that in the

latter log wages are positively related to the cross term sc, see equation (6), while in

the former s and c are perfectly correlated and hence we are unable to establish the

interaction e¤ect of s and c on log wages w. E[wsc] being positive is the essence of

comparative advantage: the larger c, the larger the e¤ect of s on w. The obvious way to

address this question is to extend equation (11) with second order terms in the observed

part of the skill and complexity indices, �s and �c respectively:

w
R2

0:4479

= �s�s
0:607
(182)

+ �c�c
0:664
(207)

+ �ss
�
�s2 � E

�
�s2
��

�0:172
(21)

+ �cc
�
�c2 � E

�
�c2
��

�0:170
(22)

+ �sc (�s�c� E [�s�c])
0:429
(37)

+ "

(12)

17



The second order terms show up highly signi�cantly.11 The issue is whether this result

is su¢ cient to reject the simple Walrasian model, w = s + u = c + u, or that it can be

interpreted in the same way as equation (11), such that �s2 captures part of the e¤ect of c

and �c2 that of s. We proof a negative and a positive result. For this purpose, it is useful

to de�ne: ~z � [�s; s; �c; c]0.

Proposition 4 Posit the Walrasian model w = s = c and the measurement model (9).

Then, any value of �sc can be rationalized from the correlation of �s�c to s and/or c.

Proof. ~z can be linearly decomposed into four orthogonal components, ~v, such that

w = v1+ v2+ v3+ v4, �s � v1+ v3; and �c � v2+ v3. Hence, the remaining component v4 is
orthogonal to �s and �c: E [viv4] = 0, i = 1; 3: However, the orthogonality of the components

of ~v does not impose any restrictions on the value of third moments, E [vivjv4] ; i = 1; 2; 3,

j = 1; 2; 3: Therefore, any value of �sc can be rationalized this way.

Proposition 5 requires an assumption on the joint distribution of �s; s; �c; and c.

Assumption 2: ~z follows a multivariate normal distribution.

Proposition 5 Equation (9) and Assumption 2 imply that if the Walrasian model is the

true model, then �ss = �sc = �cc = 0 in (12).

Proof. Due to Assumption 2, ~z can be linearly decomposed into four orthogonal

normally distributed components. Consider the expression for the coe¢ cients of an OLS

regression, ~� = [X 0X]�1X 0~y, where X is the matrix of explanatory variables and where

~y � fwg is the vector of observed log wages. The coe¢ cients of second order terms are
di¤erent from zero only if either the �rst and the second order terms are correlated (the

cross product of the �rst and second order terms in X 0X 6= 0) or the second order terms
are correlated with w (X 0~y 6= 0). Regarding X 0X: both s and c are linear combinations

of ~z. Since ~z can be linearly decomposed in four orthogonal components, ~v, the �rst

and the second order terms are only correlated if the third moments of these components

11A commentator wondered why s2 and c2 enter signi�cantly, while s and c are constructed such that
their square term yields coe¢ cient zero, see Section 3.1. The reason is that s2 and c2 are correlated with
sc. Another commentator suggested that c entering signi�cantly implies the rejection of equation (6),
since there wc = 0. However, c is correlated to s, so that observed job characteristics serve as a proxy for
unobserved worker characteristics, similar to Proposition 2.
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are di¤erent from zero, or if the cross terms E
�
viv

2
j

�
6= 0. However, these moments are

zero, due to Assumption 2. Regarding X 0y: since u is uncorrelated with anything else, a

potential correlation must be due to the vector of true log wages, w. Under the Walrasian

model, it satis�es: w = s = c. Hence, w is a linear combination of ~z. Then, a similar

argument as for X 0X establishes that w is uncorrelated with the second order terms, since

otherwise either a third moment or a cross term of ~v should be non-zero. Both are ruled

out by Assumption 2.

Corollary 2:

Under Assumption 2, the inclusion of second order terms does not a¤ect the estimated

value of �s and �c in the Walrasian model, since the second and �rst order terms are

uncorrelated, so that the X 0X matrix is block diagonal.

Proposition 4 states the negative claim that we cannot learn about the relevance of

the search model from the regression equation (12) without further assumptions on the

joint distribution of ~z. Moreover, �s�c can capture variation in s and c that is correlated to

neither �s nor �c, so that even the fact that �s and �c are una¤ected by the introduction

of the second order terms (as predicted by Corollary 2) does not imply the rejection of

the Walrasian model. Proposition 5 achieves the opposite of Proposition 4. It makes

the positive claim that for a quite standard distributive assumption, the second order

coe¢ cients are highly informative on the size of search frictions. Under this assumption,

any deviation of �sc from zero implies a rejection of the Walrasian model.12 However,

Assumption 2 can never be fully tested. We can test the normality of the distribution

of �s and �c, and thereby of v1; v2 and v3 but, we can never test the normality of v4.

Even the residuals from equation (11), e, do not provide information, for two reasons.

First, we cannot distinguish between v4 and the measurement error in wages u, so that

non-normality can be attributed to either source. Second, even if Var[u] = 0, both the

Walrasian model with a non-normal v4 and the search model with a normal v4 imply the

non-normality of e.

Empirically, we do �nd that the coe¢ cients �s and �c do not change much by the

inclusion of the second order terms, see equation (11) and (12). The covariance matrix of

X and ~y, including E[w3], is shown in Table 1. For the third moments, the t-statistics for

12Note that Assumption 2 is more strict than is needed for Proposition 4. Any symmetric distribution
is consistent with this argument.
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the signi�cance of the deviation from zero are listed underneath the covariances.13 We

do not present the fourth moment because they have no e¤ect on our estimates of the

higher order terms (�ss, �cc and �sc). Although the covariances of the �rst and the second

order terms are small, they are all signi�cant. This is not surprising since given the large

number of observations (0.2 million), any small deviation of normality will be detected

with high signi�cance. We conclude that the distribution of �s and �c is not exactly normal

but that it comes close.

Table 1 Covariance matrix of w; �s and �c for the U.S.
�s �c

�s 0:13507
�c 0:08066 0:14611
(�s2 � E [�s2]) �0:00182

(�4:46)
�0:00240
(�5:66)

(�c2 � E [�c2]) �0:00140
(�2:24)

�0:00177
(�3:85)

(�s�c� E [�s�c]) �0:00240
(�5:66)

�0:00140
(�2:24)

w 0:13507 0:14611
jt-valuesj between brackets (under the null hypothesis of joint normality of �s; �c; w))

However, we have two further pieces of evidence that makes the interpretation of the

second order terms as capturing correlations with unobserved worker and job characteris-

tics highly unlikely. First, although we have not yet derived the precise relation between

the search model in equation (6) and the regression model (12) (we do this in the next sec-

tion), it seems natural to assume that the signs of wss; wsc; and wcc carry over to �ss; �sc;

and �cc. These sign restrictions hold in equation (12). Similarly, equation (6) implies

wsc = jwss + wccj. One would expect that this restriction carries over to equation (12):
�sc = j�ss + �ccj. By and large, this restriction holds.14 In Section 5, we account for the
13The assumption that �s is distributed normally yields no prediction regarding the value of E

�
�s2
�
.

However, the assumption implies: E
�
�s
�
�s2 � E

�
�s2
���

= 0 and E
h�
�s2 � E

�
�s2
��2i

= 2E
�
�s2
�
.

14A commentator on a previous version claimed that this restriction is imposed by the way we have
constructed s and c, such that in a regression with only s and s2, the coe¢ cient on s2 is zero (and
the same for c). This claim is incorrect. This can be seen immediately by considering the case where
E[s] =E[c] =E[sc] and where the true model is w = �ss+�cc+�scsc+". This case satis�es the constraints
imposed by the construction of s and c, but does not satisfy �sc = j�ss + �ccj.
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e¤ect of the unobserved components in s and c on this restriction. That derivation brings

our test even closer to the actual results.

Second, we repeat our regressions for �ve other OECD countries.15 Table 2 presents

the results. All countries satisfy the three sign restrictions on the coe¢ cients for the second

order terms that are implied by the hypothesis that wages are concave in worker and job

characteristics. Except for Germany, they all satisfy the constraint that �sc �= j�ss + �ccj.
This strongly suggests that we have come across an empirical regularity. If this regularity

was due to some systematic non-normality in the joint distribution of ~z, then we would

expect that this regularity would also show up in the covariance of �rst and second

order e¤ects as reported in Table 1 for the US. In Appendix C, we present the covariance

matrices for the other countries. They show no regularity. We therefore conclude that the

signi�cance of the higher order terms is unlikely to be due to unobserved heterogeneity.

However, we can not rule out that our results are driven by an exotic non-symmetric

distribution of unobservables which is very di¤erent across OECD economies. But we

believe that the search model provides a much more parsimonious explanation for our

�ndings. In the next section we give a more structural interpretation of our results.

Table 2 Estimation results for equation (12) for various other OECD countries
Country year �s �c (�s2 � E [�s2]) (�c2 � E [�c2]) (�s�c� E [�s�c]) N R2

France 94 0:60
(32:2)

0:61
(31:8)

�0:39
(10:9)

�0:25
(5:3)

0:62
(9:0)

6052 0.49

Germany 94 0:58
(13:1)

0:86
(32:6)

�0:38
(2:7)

�0:17
(2:4)

0:17
(1:2)

3079 0.38

Netherlands 94 0:57
(18:9)

0:72
(30:7)

�0:32
(5:8)

�0:05
(1:3)

0:40
(4:3)

2251 0.59

Portugal 97 0:66
(562:0)

0:61
(522:4)

�0:19
(101:7)

�0:11
(54:1)

0:29
(27:4)

1.67mln 0.53

UK 86 0:77
(36:3)

0:59
(21:1)

�0:40
(7:2)

�0:53
(3:9)

0:82
(7:93)

4850 0.42

15The data come from the Luxembourg Income Study (http://www.lisproject.org) which is based on
the Family Budget Survey (INSEE) for France, the SOEP (DIW) for Germany, the SEP (CBS) for the
Netherlands and the Family Expenditure Survey (UKDA) for the UK. For Portugal we use the Quadros
de Pessoal for Portugal (Ministry of Labour and Solidarity). The samples include full time, non-farmer,
private sector workers aged between 16 and 65. We calculated �s and �c for each country the same way
as we discussed before where �s captures all the observable worker characteristics (including higher order
terms) that were available and �c captures all the job characteristics. In particular, the information we
had on �c varied considerably , i.e. industry and occupation coding varied between 2 and 4 digits.
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3.4 A structural interpretation in the context of the search
model

If s and c would be fully observed, the empirical implementation of equation (7) would be

simple. We would calculate the correlation between s and c,
p
�, from the data, estimate

equation (6) to obtain an estimate for ! and calculate x from equation (7), using a value

for � derived from the empirical literature, for example Abowd and Lemieux (1993).

Given that we do not have such perfect measures, the imperfect correlation between the

observed indices �s and �c can be due to either unobserved characteristics or search frictions

which cause s and c themselves to be imperfectly correlated. It is useful in the context

of the search model to de�ne C as the ratio of the correlation between the observed skill

and complexity indexes on the one hand, and the correlation between their true values

on the other hand. Hence:

Cor [�s; �c] =
p
�C (13)

with 0 < C < 1: unobserved heterogeneity in s and c reduces their correlation. Proposi-

tion 6 provides a structural interpretation for the coe¢ cients of equation (12):

Proposition 6 Consider the search model (6), the measurement model (9), and the nor-

mality Assumption 2. Then, the regression coe¢ cients in (12) converge to:�
�s
�c

�
=

1

R2�sR
2
�c � �C2

�
R2�c (R

2
�s � �C)

R2�s (R
2
�c � C)

�
(14)

while the coe¢ cients for the second order terms converge to:24 �ss�sc
�cc

35 = ! (1� �)2 R2�sR
2
�c

(R2�sR
2
�c � �C2)

2

24 ��R2�cC
(R2�sR

2
�c + �C

2)
�R2�sC

35 (15)

= ! (1� �)2 �s�c

(�s + �c � 1)2

24 ��s (1� �s)
1 + 2�s�c � �s � �c

��c (1� �c)

35
where we apply equation (14) in the second line.

The proof is delegated to Appendix D. Contrary to the Walrasian case, �s and �c are

identi�ed if both s and c are perfectly observed (R2�s = R
2
�c = C = 1). The reason is that s

and c are no longer perfectly correlated in the presence of search frictions, so that there is
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no multicollinearity problem and the estimated coe¢ cients converge to their true values

�s = ws = 1 and �c = wc = 0 in that case.

Equation (15) reveals that the search model imposes two non-linear restrictions on

the extended Mincer equation (12), relating the coe¢ cients �sc=�ss and �sc=�cc to �s and

�c. As can be easily veri�ed from the �rst line of equation (15), if s and c are perfectly

observable (R2�s = R
2
�c = C = 1), then �cc = �!. The second line of equation (15) yields

a number of testable implications of the search model. First, from Proposition 5, if there

were no search frictions (� = 1 ), then the coe¢ cients of the second order terms would

be zero. This possibility is clearly rejected by the data. Second, the sign of �sc must

be positive and the signs of �ss and �cc must be negative. These restrictions are clearly

satis�ed, see the estimation results for equation (12) in Section 2. A stricter tests applies

the two non-linear restrictions. We estimate (10), (12) and (15) simultaneously by non-

linear least squares. The R2 of this model and (12) is equal up to four decimals.16 This

is strong evidence in favor of the interpretation of the second order terms as being due to

search frictions.

Regrettably, we are unable to identify ! and � separately, since they enter in the same

way in all three equations (15). We can therefore estimate ! (1� �)2, but not its two
components. The intuition is that a high value of �sc can be due to two factors. Either,

the correlation between �s and �c is low due to large search frictions and no measurement

error, leading to a high Var[cjs] and hence a low correlation � between s and c. But

then �cc is a fairly accurate estimate of !. Or, the low correlation between �s and �c

is mainly low due to large measurement error in s and c, so that Var[cjs] is low and

� is high. But then �cc underestimates ! due to attenuation bias, so that the cost of

a suboptimal assignment is high due to a strong curvature of y (s; c). Since we cannot

establish � directly from the data, we have no way to distinguish between both stories.

Alternatively, we can phrase this problem in terms of equation (3). Either, there is a lot

of unobserved heterogeneity in s and c, so that we underestimate jyccj by attenuation bias,
but then we overstate ��2because most of the imperfect correlation between �s and �c is

due to unobserved heterogeneity, not to search frictions. Or, we observe s and c well. In

that case, our estimate of jyccj is reasonably close, but then all the imperfect correlation
is due to search frictions.
16However, because we have more than 200,000 observation it is just rejected by an F-test.
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The non-linear least squares estimation of (15) for the US yields (t-value between

brackets):

! (1� �)2 = 0:1476 (32)

The observed correlation between �s and �c provides a lower bound for �, where all imperfect

correlation between �s and �c is attributed to search frictions and none to unobserved

heterogeneity: � > Cor[�s; �c]2. Hence, equations (7), (8), (13), (14), (15) and the fact that

Var[w] = 0:402 imply:

� > Cor [�s; �c]2 = 0:3296

! = 0:1476� (1� �)�2 > 0:3285

�x = 3!� (1� �)Var [w] > 0:0736

Table 3 structural estimates (lower bounds) for other countries
Country year ! (1� �)2 � > ! > �x >
France 94 0.1640 0.3633 0.4046 0.0685
Germany 94 0.1431 0.1597 0.2027 0.0151
The Netherlands 94 0.1743 0.2142 0.2823 0.0248
Portugal 97 0.0869 0.3873 0.2315 0.0470
UK 86 0.3969 0.1875 0.6013 0.0600

The values for other OECD countries are given by Table 3 for Var[w] = 0:4 �= �2,

see equation (8). Many studies have tried to establish � empirically. Alternatively, we

can line up with the common practice in the search literature, and set � equal to its

�neutral�value of 1=2, as we do here. Then, the complexity dispersion parameter should

be jyccj � 2��1! = 4! > 0:30 (see Proposition 1) and the cost of search x > 15%.

However, direct estimates of ! suggest much higher values than 0:33. Teulings (2005)

derives a relation between the complexity dispersion parameter and Katz and Murphy�s

(1992) estimate of the elasticity of substitution between low and high skilled workers. This

relation implies that the complexity dispersion parameter is in the order of 2,17 so ! = 0:5
17This might even be a conservative estimate of the complexity dispersion parameter, since it assumes

that demand for the output of various job types c is governed by a Leontie¤ technology. Hence, changes
in the assignment of workers to jobs are the only source of substitutability between worker types. A more
�exible technology than Leontie¤ would shift part of the substitutability to the demand for job types c,
thereby reducing the amount of substitution due to the assingment process, hence raising !.
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which suggests a higher value for �.18 Using this value for ! and applying equation (13)

and (17) (from Appendix C) yields:

� = 1�
r
0:148

0:500
= 0:456

C =
Cor [�s; �c]
p
�

=

r
0:330

0:456
= 0:851

R2�s =
0:664

1� 0:607 � 0:456� 0:851 = 0:656

�x = 3� 0:5� (1� 0:656)� 0:656� 0:402 = 0:136

The value of the share of observed characteristics in the total variance of c, R2�s, seems to

be in line with what is known about the signal to noise ratio for in particular education

data. If we take those numbers as a benchmark, the cost of search is in the order of

x �= 27%.
However, there is an alternative way to estimate x, not from wage data, but from

unemployment. One can show that the cost of search are distributed evenly among its

three components: the rate of unemployment, the rate of vacancies, and the cost of

suboptimal assignment, provided that � = 1=2 and that there is no on the job search,

see Teulings and Gautier (2004). Hence, the cost of search is three times the natural

unemployment rate, that is, x �= 3� 5% = 15%, about half as high as the estimate based
on wage data.

Can we reconcile these two independent and con�icting pieces of evidence? In Gautier,

Teulings and van Vuuren (2004), we extend the model in Section 2.2 with on the job

search. In the model without on the job search, the reservation wage is equal to the value

of search while unemployed. In the model with on the job search, this equality no longer

holds. There, the reservation wage is smaller than the value of search while unemployment

because workers no longer give up the full option value of search, since they can continue

search on the job. We therefore de�ne x as the di¤erence between y�(s) and the �ow value

of unemployment. This extension narrows the gap for two reasons. First, y�(s) remains

the same but the value of unemployment increases when introducing on the job search

because the wage that maximizes the Nash product now contains a "no quit" premium.

18 jyccj =
�
�low-highVar [w]

��1
= (1:4� 0:40)�1 ' 2. This relation provides a lower bound for ! since it

assumes a Leontie¤ technology in the demand for the output of various c-types. Allowing for substitution
between c-types yields higher values of ! .
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Secondly, E[�c2] becomes smaller because workers keep moving to the diagonal c(s) in

Figure 1.19

4 Final remarks

We conclude this paper by relating our results to the three strands in the literature that

have been discussed in Section 1. First, our results have implications for the discussion

on inter-industry wage di¤erentials initiated by Krueger and Summers� (1988) classic

paper. The framework laid out in Section 2 basically points at a fundamental problem of

interpreting the results of wage regressions including both worker and job characteristics in

the set of regressors: the one will be a proxy for the unobserved component of the other and

vice versa. This insight is all but new. Since Krueger and Summers (1988), many papers

have addressed this issue by using panel data, initially to control for unobserved worker

characteristics, and more recently to control for unobserved worker and job characteristics

simultaneously, by using matched �rm-worker data, see Abowd, Kramarz, and Margolis

(1998). The debate has not yet been settled.

The contribution of this paper is to show that the set up in Krueger and Summers

might be mistaken. Their regressions suggest that some industries are universally �better�

than others, as they pay higher wages. This feature is due to the additivity of their log

wage function in worker and job characteristics. Hence, their wage function is not log

supermodular, as is required for comparative advantage. In a world with comparative

advantage / log supermodularity there is no such thing as a universally �better�job. The

wage for a worker of a particular type is concave in the characteristics of the job she holds,

and there is an interior maximum. A "higher" job type than this �optimal�job type yields

a lower wage. Furthermore, the �optimal�job type depends on a worker�s characteristics.

In our regressions, we allow for this concavity by entering second order terms in worker

and job characteristics. These turn out to be highly signi�cant, which puts into question

the interpretation of Krueger and Summers� industry dummies as capturing e¢ ciency

wage e¤ects or rents. Similarly, our results have implications for the methodology of

Abowd, Kramarz, and Margolis (1998). Interestingly, while unobserved characteristics

deem hopeless any attempt to provide a structural interpretation of the relative magnitude

19x ' 4! (1� �)2 �
1��Var[w] = 0:44:While the relation between x and unemployment becomes �2u lnu

which equals 0:30 for u is 0.05.
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of the coe¢ cients for worker and job characteristics in a cross section analysis, we have

shown that the second order terms are much less sensitive to this problem. One must

make quite extreme assumptions on the distribution of the error terms to rationalize these

coe¢ cients by unobserved heterogeneity. We provide some simple formulas to correct the

coe¢ cients of the second order terms for the e¤ect of unobserved heterogeneity assuming

their distribution to be normal.

Second, a comparison of our approach to the literature on the estimation of assignment

models o¤ers an alternative interpretation for what is at stake. Rosen�s (1974) seminal

paper on hedonic pricing and assignment sparkled a debate on what variation is required

for identi�cation of the underlying production and utility functions in this type of model.

In terms of this paper, how can we identify the curvature of y (s; c)? As pointed out by

Heckman and Sedlacek (1985), following early contributions by Roy (1951), identi�cation

is problematic because people self-select into the job type c that yields the highest output

in a Walrasian equilibrium. In their models with only two job types, there is su¢ cient

within job variation in s left to identify a large part of y (s; c), after correcting for the se-

lectivity of worker types by using standard techniques. In our model, which is essentially

a continuous version of the Roy model, this strategy no longer works. The equilibrium

assignment is characterized by a one-to-one correspondence of s to c, denoted s (c). This

one-to-one correspondence yields a perfect correlation between s and c, which renders

any attempt to estimate the full functional form of y (s; c) hopeless by a standard multi-

collinearity problem. One can establish y [s; c (s)] = y� (s) (from the zero pro�t condition

w� (s) = y� (s)) and one can establish its �rst derivative ys [s; c (s)] (from the �rst order

condition for optimal assignment, w�
0
(s) = ys [s; c (s)]), but not its curvature yss [s; c (s)].

In a Walrasian equilibrium, we observe y (s; c) only for its optimal assignment c = c (s),

and not for other values of c. Kahn and Lang (1988) suggested to use variation between

markets in the distribution of the supply of s or the demand for c. This leads to di¤erent

equilibrium assignments c (s) in various markets, which allows for the identi�cation of

yss (s; c). Ekeland, Heckman, and Nesheim (2004) exploit the generic non-linearity of the

equilibrium assignment c (s).

Here, we travel another route. Workers cannot a¤ord to search for ever for an optimal

job when search is costly. They are forced to accept jobs at which they produce less

than the maximum output, that is, c 6= c (s). This process breaks down the perfect
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correlation between s and c that characterizes the Walrasian equilibrium. Obviously, we

have information on log wages w (s; c) and not on log output y (s; c). However, when we

assume that gains from a better match quality are shared in some �xed way between the

worker and the �rm, the curvature in wages is informative on the curvature in output, see

Figure 2. Adding second order terms in s and c allows us to estimate this curvature in

wages. Regrettably, the formulas to correct the coe¢ cients for the e¤ect of measurement

error do not allow for a complete identi�cation of the underlying structure. They only

provide sensible lower bounds for the importance of search frictions. The formulas imply

that the output losses due to search frictions are in the order of 25 %, which is substantial.
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Appendix

A Proof of Proposition 1

The normalizations of w; s and c imply:

E [E [w (s; c) js]] = E [s] = E [w] = 0

E [E [w (s; c) jc]] = E [c] = E [w] = 0

Hence, since E[E [cjs]] =E[c] = 0:

E [E [cjs]] = E [�0 + �s] = �0 = 0

and by the same argument � 0 = 0. Hence, we can write:

s = �c+�s

c = �s+�c

where E[�c] =E[�s] =Cov[c;�s] =Cov[s;�c] = 0. By the de�nition of c (s) we have:

wc [s; c (s)] = wc + wscs+ wccc (s) = 0)

c (s) = �wc + wscs
wcc

Hence, c (s) is a linear function of s. Therefore E[c (s)] = c [E (s)] = c (0). Since
c (s) =E[cjs], E[c (s)] =E[E [c jsj]] =E[c] = 0, we have c (0) = 0. This implies wc = 0.
Combining these results yields:
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w (s; c) = w0 + wss+
1

2
wsss

2 + wscsc+
1

2
wccc

2

= w0 + wss+
1

2
wsss

2 + wscs (�s+�c) +
1

2
wcc (�s+�c)

2

= w0 + ws (�c+�s) +
1

2
wss (�c+�s)

2 + wsc (�c+�s) c+
1

2
wccc

2

) d2E [w (s; c) js] =ds2 = wss + 2�wsc + �2wcc � 0
d2E [w (s; c) jc] =dc2 = � 2wss + 2�wsc + wcc � 0

�
) dE [w (s; c) js] =ds = ws � 1

dE [w (s; c) jc] =dc = �ws � 1

�
) � = 1) wsc = (1 + �)!

wss = �2�!

where ! � �1
2
wcc and �2 �Var[s]. Hence, Cov[s; c] =E[s (�s+�c)] = ��2 =E[c (c+�s)] =E[c2],

Var[c] = ��2 and E[�c2] �= � (1� �)�2. Q.E.D.

A.1 Second moment of w

The variance of w is derived from Proposition 1:

w = w0 + s� !
�
��s2 + (1 + �) s (�s+�c)� (�s+�c)2

�
= w0 + s� !

�
(1 + �) s�c��c2

�
using an expression for w0 (which can be derived from the relation E[w] = 0) and Var[s] =
�2, Var[�c] = � (1� �)�2, E[�c3] �= 0 (by its symmetry around E[�c]) and E[�c4] �=
3Var[�c]2 (taking the ratio between 4th and 2th moment for the normal distribution):

Var [w] ' �2 + � (1� �)2 (1 + �)�4!2

B Proof of Proposition 3

De�ne: X1 � [s; c] be the matrix of �true��rst order e¤ects. Accordingly, let �X1 denote
the �observed��rst order e¤ects. Since all variables are measured in deviation from their
mean, we can ignore the intercept. By the de�nitions in Section 2, the moments of the
sub-matrices �X 0

1
�X1 and �X 0

1y read:

1

N
E
�
�X 0
1w
�
= �2

�
R2�s
R2�c

�
1

N
E
�
�X 0
1
�X1

�
= �2

�
R2�s C
C R2�c

�
whereN is the number of observations in the regression. Consider equation (11). Applying
the expression for OLS coe¢ cients proofs the Proposition. Q.E.D.
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C Covariance matrices for various countries

Table 4 Standard errors under joint normality
�s �c

(�s2 � E [�s2]) �3s
p
15=N �2s�

1
c

p
15=N

(�c2 � E [�c2]) �2c�
1
s

p
15=N �3c

p
15=N

(�s�c� E [�s�c]) �2s�
1
c

p
15=N �2c�

1
s

p
15=N

Table 6 Covariance of w; �s and �c for France (N = 6052)
�s �c

�s 0:11813
�c 0:06835 0:10884
(�s2 � E [�s2]) �0:00480 0:00884
(�c2 � E [�c2]) 0:01316 0:01775
(�s�c� E [�s�c]) 0:00884 0:01316
w 0:11813 0:10884

Table 7 Covariance of w; �s and �c for Germany (N = 3079)
�s �c

�s 0:03530
�c 0:02061 0:07537
(�s2 � E [�s2]) 0:00674 0:00531
(�c2 � E [�c2]) 0:00584 0:00383
(�s�c� E [�s�c]) 0:00531 0:00584
w 0:03530 0:07537

Table 8 Covariance of w; �s and �c for the Netherlands (N = 2251)
�s �c

�s 0:08610
�c 0:04102 0:09123
(�s2 � E [�s2]) �0:03252 �0:01064
(�c2 � E [�c2]) �0:00181 �0:01071
(�s�c� E [�s�c]) �0:01064 �0:00181
w 0:08610 0:09123

Table 9 Covariance of w; �s and �c for Portugal (N = 1671267)
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�s �c
�s 0:14724
�c 0:10670 0:17873
(�s2 � E [�s2]) 0:06703 0:04905
(�c2 � E [�c2]) 0:05534 0:08872
(�s�c� E [�s�c]) 0:04905 0:05534
w 0:14725 0:17873

Table 10 Covariance of w; �s and �c for the UK (N = 4850)
�s �c

�s 0:09208
�c 0:03166 0:05806
(�s2 � E [�s2]) �0:00658 0:00194
(�c2 � E [�c2]) 0:00341 0:00514
(�s�c� E [�s�c]) 0:00194 0:00341
w 0:09208 0:05806

D Proof of Proposition 6

Previous de�nitions imply the following covariance matrix of �s; s; �c; and c:

Var [�s; �c; s; c] = �2

2664
R2�s �C R2�s �R2�s
�C �R2�c �R2�c �R2�c
R2�s �R2�c 1 �
�R2�s �R2�c � �

3775 (16)

Analogous to X1 and �X1, let X2 � [s2 � E [s2] ; sc � E [sc] ; c2 � E [c2]]; the covariance
matrix of �true�second order e¤ects and let �X2 denote the covariance matrix of �observed�
second order e¤ects, both net of their mean. Since all variables are considered in deviation
from their mean, we can ignore the intercept. By Assumption 2, �X 0

1
�X2 = 0, so that the

X 0X matrix for equation (12) is block diagonal. Hence, we can invert the sub-matrices
�X 0
1
�X1 and �X 0

2
�X2 separately. Hence, the �rst and second order terms can be derived

independently.
First, consider the �rst order terms. �X 0

1
�X1 can be taken from equation (16). Since

second order terms are uncorrelated to �rst order terms, only the term s in equation (6)
is correlated to �X1. Hence: E

�
�X 0
1w
�
=E
�
�X 0
1s
�
, which can again be taken from equation

(16). Applying the expression for OLS coe¢ cients yields:�
�s
�c

�
=

�
R2�s �C
�C �R2�c

��1 �
R2�s
�R2�c

�
=

1

R2�sR
2
�c � �C2

�
R2�c (R

2
�s � �C)

R2�s (R
2
�c � C)

�
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Rearranging terms gives:

C

R2�c
=

1� �c
�s

(17)

�C

R2�s
=

1� �s
�c

Next, consider the second order terms. De�ne: w2 � ! [��; 1 + �;�1]0 be the vector
of coe¢ cients of the �true�second order e¤ects. Only the second order terms in equation 6)
are correlated to �X2. These second order terms read: X2w2. Hence: E

�
�X 0
2w
�
=E
�
�X 0
2X2

�
w2.

The moments of the sub-matrices �X 0
2
�X2 and �X 0

2X2 read:20

1

N
E
�
�X 0
2X2

�
= �4

24 2R4�s 2�R4�s 2�2R4�s
2�R2�sR

2
�c (�+ �2)R2�sR

2
�c 2�2R2�sR

2
�c

2�2R4�c 2�2R4�c 2�2R4�c

35
1

N
E
�
�X 0
2
�X2

�
= �4

24 2R4�s 2�R2�sC 2�2C2

2�R2�sC �R2�sR
2
�c + �

2C2 2�2R2�cC
2�2C2 2�2R2�cC 2�2R4�c

35
De�ne: �2 � [�ss; �sc; �cc]. Then:

�2 = plim
h�
�X 0
2
�X2

��1 �X 0
2w
i
= plim

h�
�X 0
2
�X2

��1 �X 0
2X2

i
w2 (18)

= ! (1� �)2 R2�sR
2
�c

(R2�sR
2
�c � �C2)

2

24 ��R2�cC
(R2�sR

2
�c + �C

2)
�R2�sC

35
Q.E.D.

E Figures

20We use the fourth moment of the multivariate normal distribution:
E
�
x41
�
= 3�41 )E

�
x41
�
�E
�
x21
�2
= 2�41;

E
�
x31x2

�
= 3�21�12 )E

�
x31x2

�
�E
�
x21
�
E[x1x2] = 2�21�12;

E
�
x21x

2
2

�
= �21�

2
2 + 2�

2
12

)E
�
x21x

2
2

�
�E
�
x21
�
E
�
x22
�
= 2�212

)E
�
x21x

2
2

�
�E[x1x2]2 = �21�22 + �212

E
�
x1x2x

2
3

�
�E[x1x2]E

�
x23
�
= 2�13�23

E[x1x2x3x4]�E[x1x2]E[x3x4] = �13�24 + �14�23.
with x1; x2; x3; x4 being a zero mean multivariate normal
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Figure 2: Identi�cation with and without search frictions
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