Maternal and perinatal outcome of temporizing management in 254 consecutive patients with severe pre-eclampsia remote from term

Willy Visser, Henk C.S. Wallenburg

Erasmus University School of Medicine and Health Sciences, Department of Obstetrics and Gynecology, Room EE 2283, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

Received 21 June 1995; revision received 7 July 1995; accepted 12 September 1995

Abstract

Objective: To assess maternal and perinatal outcomes of expectant management with plasma volume expansion and pharmacologic vasodilatation in patients with severe pre-eclampsia remote from term. Study design: All women with severe pre-eclampsia between 20 and 32 weeks' gestation, not in labor and with a live, single fetus admitted to the University Hospital Rotterdam from 1985 to 1993 were managed with the intention to prolong gestation. Treatment consisted of correction of the maternal circulation with vasodilatation by means of dihydralazine and plasma volume expansion under central hemodynamic monitoring. Primary end-points of the study were prolongation of gestation, maternal antepartum and postpartum complications, and fetal and neonatal outcome. Results: Two-hundred fifty-four patients were included. The median prolongation of pregnancy was 14 (range 0–62) days. Hemodynamic treatment was associated with marked objective and subjective improvement in maternal condition. Complications of central hemodynamic monitoring were not observed. Perinatal mortality was 20.5%. Conclusion: Expectant management with plasma volume expansion and pharmacologic vasodilatation under central hemodynamic monitoring of the maternal circulation may delay delivery and enhance fetal maturity and does not appear to be associated with an increased risk of maternal morbidity and mortality.

Keywords: Pre-eclampsia; HELLP; Temporizing management; Perinatal outcome; Hemodynamics

1. Introduction

Pre-eclampsia complicates 5–10% of all pregnancies and is directly or indirectly responsible for a large proportion of maternal and perinatal mortality and morbidity [1]. Although the cause of pre-eclampsia is still unknown, the placenta is considered a key factor [2]. Therefore, delivery of fetus and placenta is the only effective treatment, which may benefit the mother but is often not in the interest of the second patient, the fetus, in particular remote from term. The decision to deliver must depend on the estimated balance of maternal and fetal-neonatal risks. In preterm pregnancy complicated by mild pre-eclampsia the balance of maternal and neonatal interests will usually lead to conservative management, in an attempt to postpone delivery in order to reduce neonatal morbidity and mortality [1,3]. On the other hand, in cases of severe pre-eclampsia or eclampsia most guidelines recommend expeditious delivery regardless of gestational age [1,4], in particular when pre-eclampsia is complicated by the HELLP syndrome [5,6]. In recent years, as methods for monitoring maternal and fetal wellbeing improved, these guidelines have been challenged and attempts have been made to postpone delivery also in women with severe pre-eclampsia remote from term [3,7,8]. However, recent reports of small series of patients indicate that such an approach could be associated with increased maternal morbidity [7].

In 1985 a protocol of temporizing management of severe pre-eclampsia remote from term was instituted in our department. The protocol is based on correction of the maternal circulation with plasma volume expansion and pharmacologic vasodilatation under central hemo-
dynamic monitoring [9]. The purpose of this study is to
assess the maternal and perinatal outcomes of 254
consecutive patients with severe pre-eclampsia before 32
weeks gestation managed according to this protocol.

2. Patients and methods

The study population consisted of all women with
severe pre-eclampsia between 20 and 31 completed
weeks of gestation, not in labor and with a live, single
fetus, admitted to the antenatal wards of the University
Hospital Rotterdam (AZR) between January 1, 1985
and December 31, 1993. The AZR serves as a perinatal
primary care center for an area with approximately
35,000 deliveries per year.

Severe pre-eclampsia was defined as the occurrence
after 20 weeks’ gestation of a diastolic blood pressure,
before treatment, of ≥110 mmHg (Korotkoff 4) and
proteinuria of ≥0.3 g/l in a 24-h urine collection, or
the occurrence of repetitive diastolic blood pressure
values of ≥90 mmHg and proteinuria in combination
with the HELLP syndrome or eclampsia. The HELLP
syndrome was defined as the simultaneous occurrence
of a platelet count of <100 × 10⁹/l, serum aspartate
aminotransferase (ASAT) and serum alanine amino-
transferase (ALAT) concentrations >30 U/l (2 S.D.
above the mean in our hospital), and hemolysis defined
by abnormal peripheral blood smear. Patients with
known vascular, renal, hepatic or hematologic disease
were excluded.

Gestational age was based on the last menstrual
period and confirmed by early ultrasound in the majority
of cases.

All patients were managed with the intention to
prolong gestation in order to enhance fetal maturity.
Temporizing treatment consisted of bed rest and correction
of the maternal circulation to previously established
normal hemodynamic values for the second half of
gestation [10] by means of pharmacologic vasodilata-
tion and plasma volume expansion under central hemody-
namic monitoring. Each patient underwent
pulmonary artery catheterization and radial arterial line
placement in the obstetric intensive care unit as previ-
ously described in detail [9–11]. Briefly, a Swan-Ganz
catheter was inserted in a median basilic vein and
advanced into the pulmonary artery under continuous
oscilloscopic monitoring. Baseline values of systemic
and pulmonary arterial and venous pressures, and of
cardiac output, were obtained after a stabilization pe-
riod of approximately 1 h. Cardiac output was mea-
sured in triplicate in supine position at end-expiration
by means of thermodilution, using 10 ml of chilled 5%
dextrose solution. Patients with a pulmonary capillary
wedge pressure (PCWP) of <10 mmHg received intra-
venous infusion of pasteurized plasma at a rate of
approximately 250 ml/h to reach and maintain PCWP
values of 10–12 mmHg. If, after volume expansion, the
cardiac index was still <3.5 l.min⁻¹.m⁻² and the
systemic vascular resistance index was >2000
dyne.s.cm⁻⁵.m², patients received an intravenous infu-
sion of dihydralazine at a rate of 1 mg/h followed by
hourly increments of 1 mg, until the cardiac index had
reached a value between 3.5 and 4.6 l.min⁻¹.m⁻² and
a systemic vascular resistance index of ≤2000
dyne.s.cm⁻⁵.m² had been obtained. When cardiac index
and systemic vascular resistance had reached normal
values but diastolic blood pressure was still ≥100
mmHg, antihypertensive treatment with x-methyldopa
was added. After a stable hemodynamic condition had
been obtained and maintained for 1–2 days, the vascular
catheters were removed and the patient was trans-
ferred to the antenatal ward. Antihypertensive
treatment was continued under close monitoring of
blood pressure, fluid balance, and laboratory values.

All patients kept bed rest and received an unre-
stricted diet. Maternal condition was assessed by moni-
toring blood pressures, fluid balance and pertinent
laboratory values including protein in 24-h urine sam-
iples, complete blood counts, liver enzymes (ASAT,
ALAT, gamma glutamyl transferase, serum lactic dehy-
drogenase) and total bilirubin, renal function tests
(serum creatinine and uric acid) and tests for hemolysis
(peripheral blood smear, serum haptoglobin). Coagula-
tion tests (activated partial thromboplastin time,
prothrombin time, normotest, thrombotest, fibrinogen,
fibrinogen degradation products, antithrombin III)
were performed on admission in the majority of pa-
tients, and during treatment when indicated. Anticon-
vulsant treatment with intravenous diazepam was used
in eclamptic patients and when eclampsia appeared to
be imminent, as judged by hyperactive deep tendon
reflexes with clonus. Platelet transfusions were given at
the time of cesarean section when platelet counts were
≤30 × 10⁹/l. Ultrasound examination was performed
in all patients to detect fetal growth retardation
and congenital abnormalities. Fetal condition was assessed
by cardiotocography (non-stress CTG) on admission
and at least daily thereafter. If labor occurred and
delivery was still to be postponed, uterine activity was
inhibited using intravenous fenoterol. Corticosteroids
to accelerate fetal lung maturation were not used in
patients with pre-eclampsia during the period of the study.

The decision to deliver was taken by the attending
obstetrician in consultation with the neonatologist,
weighing combined maternal and fetal risks against the
risks of neonatal mortality and morbidity. The mode of
delivery was individualized and mainly determined by
fetal condition. Neonates requiring intensive care were
transferred to our neonatal intensive care unit. Pul-
monary surfactant therapy was used after 1991.
The study protocol was approved by the University and Hospital Ethics Committee. The primary endpoints of the study were the number of days of prolongation of gestation after admission, predefined maternal antepartum and postpartum complications (mortality, HELLP syndrome, eclampsia, abruptio placentae, post-partum hemorrhage, pulmonary edema), and specified measures of fetal and neonatal outcome (birthweight, perinatal mortality, neonatal morbidity as judged by Apgar score, artificial ventilation, bronchopulmonary dysplasia, cerebral bleeding).

Birthweight is presented as actual weight at birth and related to the Dutch reference curve, corrected for gestational age, parity and fetal sex [12]. Data on perinatal mortality comprise all stillbirths and neonatal deaths occurring within 28 days of birth; infant mortality includes all deaths between 28 days and 1 year after birth. Bronchopulmonary dysplasia is defined as a requirement for oxygen at 28 days of life, irrespective of gestational age at birth.

Data analysis was based on intention to treat and included all patients, also when they were delivered before the actual start of temporizing treatment. Data are presented as median (range) unless stated otherwise. Hemodynamic and laboratory values were examined by non-parametric one-way analysis of variance for repeated measurements and Wilcoxon’s rank sign test as appropriate. Categorical variables were assessed with the χ²-test. A P-value of < 0.05 (two-tailed) was considered significant.

3. Results

During the period of the study 254 patients with severe pre-eclampsia before 32 weeks’ gestation who met the inclusion criteria were delivered at this center. General characteristics on admission are summarized in Table 1. The majority of the patients (94%) were referred from regional hospitals, usually because of complications such as the HELLP syndrome (33%), eclampsia (5%), or severe fetal growth retardation (20%); half the number of patients had already received antihypertensive treatment because of a diastolic blood pressure of ≥ 110 mmHg.

Baseline hemodynamic measurements showed patterns similar to those previously observed in untreated and treated pre-eclamptic patients [10] and will be reported elsewhere. The total amount of plasma expander administered during treatment varied between 1 and 4 liters, mainly administered during the first 3 days after admission. All patients received dihydralazine in doses varying between 1 and 15 mg/h; 40% of the patients also required z-methyldopa in doses between 750 mg and 4 g/24h. The relevant laboratory data on admission are shown in Table 2. During treatment proteinuria increased significantly (P < 0.001) from a median value of 2.8 g/l to 4.9 g/l, without changes in plasma creatinine levels. None of the patients developed a creatinine level > 200 μmol/l. Between admission and delivery the hemoglobin concentration showed a significant fall from 7.7 to 7.0 mmol/l (P < 0.001).

Table 3 summarizes maternal outcome. There were no maternal complications associated with the introduction or maintenance of the radial artery or Swan-Ganz catheter. Pregnancy was terminated within 48 h after admission in 13% of patients because of fetal distress as judged by the non-stress fetal CTG (n = 29), or fetal death (n = 3). When patients delivered within 48 h are omitted from the calculation, the median prolongation of pregnancy was 17 days with a prolongation of ≥ 14 days in 51% of the patients.

Eclampsia occurred in one patient shortly after admission, before the start of treatment, followed by cortical blindness; normal vision returned 1 day after cesarean section for fetal distress. Visual disturbances were observed in two other patients. One severely hypertensive patient developed cortical blindness 1 day after the start of treatment; normal vision returned within 2 days, and pregnancy was prolonged by 6 days. In the second patient temporary visual problems after

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>General characteristics on admission of 254 patients with severe pre-eclampsia</td>
</tr>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Nulliparous</td>
</tr>
<tr>
<td>Gestational age (weeks)</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
</tr>
<tr>
<td>Antihypertensive treatment before admission</td>
</tr>
<tr>
<td>Eclampsia before admission</td>
</tr>
<tr>
<td>HELLP before admission</td>
</tr>
<tr>
<td>Upper abdominal pain</td>
</tr>
<tr>
<td>Severe fetal growth retardation</td>
</tr>
</tbody>
</table>

Values are median (range) or numbers (percentage) as appropriate.

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory data on admission</td>
</tr>
<tr>
<td>Proteinuria (g/l)</td>
</tr>
<tr>
<td>≥ 5 g/l</td>
</tr>
<tr>
<td>Creatinine (μmol/l)</td>
</tr>
<tr>
<td>Uric acid (mmol/l)</td>
</tr>
<tr>
<td>Hemoglobin (mmol/l)</td>
</tr>
<tr>
<td>Hematocrit (l/l)</td>
</tr>
<tr>
<td>Platelets (× 10^9/l)</td>
</tr>
<tr>
<td>50 – 100</td>
</tr>
<tr>
<td>< 50</td>
</tr>
<tr>
<td>Bilirubin (μmol/l)</td>
</tr>
<tr>
<td>ASAT (U/l)</td>
</tr>
<tr>
<td>ALAT (U/l)</td>
</tr>
<tr>
<td>LDH (U/l)</td>
</tr>
<tr>
<td>Haptoglobin (g/l)</td>
</tr>
</tbody>
</table>

Values are median (range) or numbers as appropriate.
delivery were due to retinal edema. Bleeding problems observed in 6% of patients were not severe and consisted of abdominal hematoma following cesarean section (n = 12), postpartum uterine bleeding (n = 1), hematemesis (n = 1) and a hematoma of the vulva (n = 1). Renal failure or disseminated coagulopathy was not observed.

In all patients with the HELLP syndrome the upper abdominal pain abated and usually disappeared within 2–3 h after the start of treatment. In 42 of 75 patients who were admitted with HELLP and who were not delivered within 48 h because of fetal distress, all signs and symptoms disappeared before delivery. On the other hand, 20 women developed a complete antepartum HELLP syndrome during treatment, which resolved in six patients before delivery. All four patients with pulmonary edema were admitted with the HELLP syndrome. Two women developed antepartum pulmonary edema; the first one during induction of labor with prostaglandin E2 after fetal death, the second one during tocolysis with fenoterol. Both patients were treated successfully with diuretics. In the two patients with pulmonary edema after delivery, a diagnosis of cardiomyopathy was made by ultrasound; one of these patients had received prostaglandin E2 after delivery. Both patients needed artificial ventilation for 2–3 days and recovered completely.

Perinatal outcome is shown in Table 4. The high proportion of very small-for-gestational age (< 2.3rd percentile) infants is mainly caused by the 73 women admitted at a gestational age of ≤ 27 weeks, of whom 25% were delivered of very small-for-gestational age infants compared with 10.5% in women admitted between 27 and 32 weeks’ gestation (P < 0.01). Total perinatal loss was 20.5%, with a 95% confidence interval of 15–26%. Of the 52 cases of perinatal loss, 60% were due to fetal death. All stillbirths, except one caused by complete abruptio placentae at 34 weeks’ gestation, occurred in cases with severe fetal growth retardation at gestational ages < 30 weeks. Although fetal distress was recognized, it was decided not to deliver because of low estimated birthweight, small chance of survival, or high estimated risk of serious morbidity and later handicap. The majority of neonatal deaths (76%) were due to respiratory distress associated with very preterm birth. One of the two infants with a cerebral bleeding grade III had a ruptured cerebral aneurysma and died 1 day after birth, the other infant survived and showed a minor delay in speech development at the age of 1 year. No correlation could be demonstrated between the last maternal platelet count before delivery and neonatal platelet count. Eight infants died in their first year of life, in all cases due to severe bronchopulmonary dysplasia.

Table 3
Maternal outcome

<table>
<thead>
<tr>
<th>Prolongation of pregnancy (days)</th>
<th>14 (0–62)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termination within 48 h</td>
<td>32 (12.6%)</td>
</tr>
<tr>
<td>Prolongation in remaining patients (days)</td>
<td>17 (3–62)</td>
</tr>
<tr>
<td>Antepartum resolution of HELLP</td>
<td>48 (45.7%)</td>
</tr>
<tr>
<td>Prolongation of pregnancy (days)</td>
<td>22 (8–62)</td>
</tr>
<tr>
<td>Maternal mortality</td>
<td>0</td>
</tr>
</tbody>
</table>

Maternal morbidity

Eclampsia	1	
Visual disturbances	3	
Abruptio placentae	12	
Complete	1	
Partial	15	
Hemorrhagic problems	HELLP syndrome	20
Antepartum	Postpartum	4
Pulmonary edema	4	

Termination of pregnancy

Vaginal delivery	43 (16.9%)	
Spontaneous labor	9	
Induced labor	34	
Cesarean section	211 (83.1%)	
Fetal indication	Maternal indication	22
Combined indication	8	

Values are median (range) or numbers (percentage) as appropriate.
Table 5 shows perinatal outcome related to gestational age on admission and prolongation of pregnancy. Of the 25 pregnancies with an onset of pre-eclampsia before 26 weeks’ gestation, only four babies survived and did well, after a median prolongation of pregnancy of 16 (2-42) days. Perinatal survival improved significantly with gestational age, with reductions in perinatal mortality of approximately 50% per week between 27 and 32 weeks’ gestation on admission.

4. Discussion

Severe pre-eclampsia <32 weeks’ gestation is an infrequent complication of pregnancy and published experience in managing such patients is limited. In this report we present our experience with temporizing management in what is, to the best of our knowledge, the largest consecutive series of patients with severe pre-eclampsia remote from term treated in one center. Our treatment is based on the assumption that symptomatic correction of maternal hemodynamics may improve perfusion of maternal tissues and organs and could thus benefit the mother and perhaps also the fetus [13,14]. Whereas hemodynamics in untreated pre-eclamptic women are characterized by a reduced cardiac output and circulating volume and a high peripheral vascular resistance, patients receiving antihypertensive drugs and intravenous fluids show hemodynamic patterns that are variable and unpredictable [10]. For that reason we consider central hemodynamic monitoring an indispensable tool to assess the hemodynamic balance of flow, pressure and resistance in the systemic and in particular the pulmonary circulations in treated pre-eclamptic patients referred from other hospitals, and to monitor antihypertensive treatment and plasma volume expansion [13]. Based on the results of the present study and on previously reported experience [10,11], the maternal risks of the invasive hemodynamic monitoring applied in the first 1–3 days of treatment appear to be small in our hands. This may, at least in part, be attributed to the small number of skilled operators involved, and to the presence in the obstetric intensive care unit of an experienced medical and nursing staff, 24 h per day and 7 days per week.

In contrast to other reports on conservative management in which patients with the HELLP syndrome [7,8,15–17], with eclampsia [4,7,8,16–18], with severe fetal growth retardation [8,17] and with fetal distress [8,15–17] were excluded, our study includes all patients with early onset pre-eclampsia and a live fetus on admission. Despite the presence of eclampsia, HELLP, and fetal compromise, in more than 40% of cases, the mean prolongation of pregnancy of 16 (range 0–62) days is similar [4,8,15,17,19] or better [7,16,18,20] than that reported in comparable studies in selected patients. In contrast to the results of a recent study [7], suggesting that expectant management without hemodynamic correction in patients with severe pre-eclampsia may increase maternal morbidity, in our study hemodynamic treatment was associated with marked objective and subjective improvement in maternal condition. We did not observe maternal mortality [6,18] and severe complications such as ruptured liver hematoma [4,6], intracerebral hemorrhage [4] and renal failure [4,6,7,18]. In our study four (1.6%) patients developed pulmonary edema, which compares favorably with the reported incidence of 2.9% among pre-eclamptic patients [21]. Two of these patients were treated with prostaglandin E₂, and one with fenoterol, drugs that have been reported to cause [22] or exacerbate pulmonary edema [23]. The observation of complete resolution of the HELLP syndrome before delivery in 51% of the patients in whom pregnancy could be prolonged for >48 h, supports our earlier report on the beneficial maternal effects of temporizing hemodynamic treatment in patients with HELLP [11]. Although it is said that the natural history of the HELLP syndrome is that of a deteriorating postpartum process [24], HELLP recurred post partum in only two patients.
Table 6
Comparison between maternal and perinatal outcome of temporizing management in patients with severe pre-eclampsia remote from term in the University Hospital Rotterdam (AZR) 1985-1993, and as published in the literature

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 254)</td>
<td>(n = 28)</td>
<td>(n = 49)</td>
</tr>
<tr>
<td>Gestational age on admission (weeks)</td>
<td>28.9 (21-31)</td>
<td>29.2 (24-32)</td>
<td>30.7 (28-32)</td>
</tr>
<tr>
<td>Platelets < 100 x 10^9/l before admission</td>
<td>95 (37.4%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HELLP before admission</td>
<td>85 (33.5%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eclampsia before admission</td>
<td>12 (4.7%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fetal exclusion criteria</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Prolongation of pregnancy (days)</td>
<td>16.2 (0-62)</td>
<td>9.5 (2-26)</td>
<td>15.4 (4-36)</td>
</tr>
<tr>
<td>Maternal mortality</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gestational age at delivery (weeks)</td>
<td>31.2 ± 2.6</td>
<td>30.6 ± 4.7</td>
<td>32.9 ± 1.5</td>
</tr>
<tr>
<td>Birthweight (g)</td>
<td>1160 ± 390</td>
<td>1480 ± 450</td>
<td>1622 ± 360</td>
</tr>
<tr>
<td>Below 10th percentile</td>
<td>149 (58.7%)</td>
<td>?</td>
<td>15 (30.1%)</td>
</tr>
<tr>
<td>Perinatal mortality (%)</td>
<td>20.5</td>
<td>7.1</td>
<td>0</td>
</tr>
<tr>
<td>Fetal deaths</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neonatal deaths</td>
<td>21</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Values are mean ± S.D. (range), or numbers (percentages), as appropriate.

The rise in protein excretion observed in the majority of the pre-eclamptic patients during temporizing treatment may be due to the plasma volume expansion, which is known to magnify proteinuria in patients with the nephrotic syndrome [25].

As shown in Table 5, a gain in pregnancy of 1 week appears to improve perinatal outcome considerably in pregnancies with a gestational age below 32 weeks, which agrees with previous studies [26,27]. However, assessment of the perinatal results of prolongation of pregnancy in our observational study is hampered by the absence of an appropriate control group, and comparison with the perinatal results of expectant management in pre-eclamptic patients reported in the literature is difficult because gestational age on admission is often not comparable [4,15-17,19,20,28]. In addition, in many reports patients are excluded for various reasons, including fetal growth retardation and fetal distress [4,7,8,15-19]. Finally, because of recent advances in perinatal care, results obtained in recent years cannot be compared with those of earlier studies. Two studies [7,8] on expectant management in pre-eclamptic patients with a mean gestational age on admission that is comparable with our study are summarized in Table 6. Olah et al. [7] reported a perinatal mortality of only 7.1% in a retrospective analysis of 28 selected patients with severe pre-eclampsia in whom pregnancy was prolonged by 9.5 days. In that study patients were treated with nifedipine and methyldopa and were only selected for conservative treatment if hypertension could be satisfactorily controlled. Only patients without an unspecified maternal or fetal indication for immediate delivery were included. Sibai et al. [8] reported a randomized trial of aggressive (n = 46) vs. expectant (n = 49) management in pre-eclamptic patients between 28 and 32 weeks gestation. Expectant management was begun after a stable maternal condition was obtained during a 24-h observation period using magnesium sulfate, hydralazine or nifedipine. In that study no perinatal mortality occurred in both groups, but patients with fetal growth retardation and fetal distress were excluded. In the study by Sibai et al. [8], as well as in the study of Olah et al. [7], corticosteroids to accelerate fetal lung maturation were used, which may be an important advantage of prolongation of pregnancy for at least 48 h [29,30]. During the study period corticosteroids were not used in patients with pre-eclampsia in our center. Our reluctance to administer corticosteroids to hypertensive patients was based on the results of the first randomized trial of antenatal corticosteroid therapy [31]. That trial included 90 pre-eclamptic women, and 12 fetal deaths were observed in 47 treated patients compared with three fetal deaths among 43 non-treated patients. Later observational studies, although small, have failed to confirm an excess risk of fetal death associated with the use of antenatal corticosteroids in hypertensive patients [30] and because of convincing evidence of its efficacy in the prevention of the neonatal respiratory distress syndrome, antenatal corticosteroid therapy was introduced in the management of pre-eclamptic patients in our department in 1994. The perinatal mortality of 20.5% in our patients compares favorably with that of 62% in the 50 patients reported by Moodley et al. [18], in which study patients with impending or evident eclampsia were excluded. Also in this study corticosteroids were used. The study of Moodley et al. [18] is omitted from Table 6, because of too many unreported data.

Our study confirms findings of earlier studies that perinatal outcome in patients with an onset of pre-eclampsia before 26 weeks is generally poor [4,15,18,28] and cannot be markedly improved by prolongation of
pregnancy. The high incidence of fetal growth retardation in our study is consistent with earlier reports [19,32,33] and suggests that the fetal-placental impact of severe pre-eclampsia has preceded overt clinical disease by a considerable period of time.

In conclusion, our experience obtained in a large number of patients with severe early-onset pre-eclampsia shows that expectant management with plasma volume expansion and pharmacologic vasodilatation under invasive monitoring of the maternal circulation and with careful surveillance of maternal and fetal condition may delay delivery and does not appear to be associated with an increased risk of maternal morbidity and mortality. Such treatment should only be practiced in tertiary care centers with adequate facilities for mother and infant. Controlled studies are needed to further define the value of temporizing hemodynamic treatment in patients with severe early onset pre-eclampsia.

Acknowledgements

This study was supported by Grant No. 28-1133 from the Dutch Preventiefonds.

The authors gratefully acknowledge the assistance in data collection of Marieke W. de Jong and Mijnke M.M. Janssen.

References

