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Chapter 1

Introduction

This thesis is devoted to statistics in extreme value theory, where the estimation
of quantities related to extreme events is of particular interest. For example
in the design of dikes, a typical requirement is that the sea wall must be high
enough so that the chance of a flood is no more than once in ten thousand years.
We consider such a flood an extreme event. Or, in insurance mathematics it is
of great interest to have statistical insight into the occurrence of large claims,
due to natural catastrophes such as floods, hurricanes, high temperatures that
give potential risk of fires of enormous proportions, etc. A common feature of
this kind of events is that not many (if any at all) events of similar size have
been observed in the past. Hence when making inferences related to extreme
events, in particular one faces the problem of estimation where information
from previous ’experiments’ is scarce.

Let us illustrate our problem with an example. In Figure 1.1.a, in the real
line are indicated 1877 observations from the sea level (in cm) at Delfzijl, which
is located in the north coast of The Netherlands, measured during winterstorms
in the years 1882-1991. The storm season lasts from October 1 until March 15.
For more details on the data set see Dillingh et al. (1993). Now suppose that
we are interested in estimating those sea levels (during winterstorms) that have
probability .05 or .0001 of being exceeded. To start organising the information
contained in the sample, we construct the empirical distribution function Fn,
i.e. we put mass 1/n at every one of the observations (where n represents
the sample size throughout). This is shown in Figure 1.1.b. Then, from this
distribution the desired levels could be obtained by making the correspondence
between the given probability and the level, as shown in Figure 1.1.b. But, it
becomes clear that extra information is needed as the sea level to be estimated
becomes larger, with the most extreme cases being when the given probability
is smaller than 1/n. Figures 1.2.a display the empirical distribution on a log-
scale, i.e. the step function − log(1 − Fn), which is often an appropriate scale
when one is mainly interested in the larger values of a sample.

Under rather general conditions, extreme value theory provides a class of
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Figure 1.1: a) Left: sea level (cm) at Delfzijl (the data was trend corrected).
b) Right: empirical distribution of the sea level sample.

functions to fit to the distribution of the largest observations. Figure 1.2.b
shows some of these functions. A real parameter, γ say, comes into play which
determines their shape. To fit the appropriate function to the tail of the distri-
bution, one has then to decide on the shape, and moreover on the appropriate
shift and scaling constants; for instance in case of deciding for a straight line
(γ = 0) then one has to decide on the appropriate slope and origin of the line
to fit to the tail.

The conditions that allow us to make such extrapolation are the extreme
value conditions. If X1, X2, ..., Xn are independent identically distributed (i.i.d.)
random variables with common distribution function F , we require that there
exist constants an > 0 and bn ∈ R such that the sequence of distribution func-
tions

P
(max1≤i≤n Xi − bn

an
≤ x

)

converges weakly to a non-degenerate distribution function. It then can be
shown that with a judicious choice of an and bn we have

lim
n→∞

Fn(anx + bn) = Gγ(x) := exp
(

− (1 + γx)−1/γ
)

(1.0.1)

for all x with 1 + γx > 0, where γ is a real parameter. This condition can be
written in an equivalent form suitable for the application to quantiles. Let the
function U be the generalized (left-continuous) inverse of the function 1/(1−F ),
i.e.

U(t) :=
( 1

1 − F

)←
(t) = F←(1 − 1

t
), t > 1.

Then (1.0.1) is equivalent to: for all x > 0

lim
t→∞

U(tx) − U(t)

a(t)
=

xγ − 1

γ
. (1.0.2)
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Figure 1.2: a) Top and bottom left: step function − log(1−Fn) of the sea level
sample with estimated models. b) Bottom right: theoretical models.

This is relevant to high quantile estimation: it means that a high quantile
U(y)(= F←(1 − 1/y)) for large y (y = tx in (1.0.2)), is connected in a simple
way asymptotically to a lower quantile U(t) and U(t) can be estimated using
the empirical quantile function. Hence

U(y) ≃ U(t) + a(t)
(y/t)γ − 1

γ
.

The left hand side is what we want to know and everything at the right hand
side can be estimated using the empirical distribution function.

This means that the extreme value conditions are more or less unavoid-
able for estimation of high quantiles (outside the scope of the observations).
Nevertheless these conditions are not always fulfilled. Hence it is useful to de-
velop a check on the correctness of the asymptotic model (1.0.1) based on the
observations at hand.

Such a check (or a test) is developed in Chapter 2 of this thesis for the one-
dimensional case and in Chapter 4 for the two-dimensional case. In the course
of the development of the test, some interesting results are obtained concerning



4 Introduction

tail empirical processes.
Chapter 3 is on large deviation for extremes. It is directly motivated by

Proposition 2.3.2 in chapter 2. Under a second order condition we derive that

lim
n→∞

1 − Fn(anxn + bn)

1 − Gγ(x)
= 1

for any sequence xn ↑ 1/((−γ) ∨ 0).
In chapter 5 we compare two estimators for the dependence function and the

spectral measure by simulation. One estimator is based on maximum likelihood
and the other estimator is based on non-parametric. We also present several
methods to generate samples from distributions in the domain of attraction of
a multi-dimensional extreme value distribution.

Chapter 6 deals with stable distribution. We derive alternative necessary
and sufficient conditions for the domain of of attraction of a stable distribution
in Rd which are phrased entirely in terms of (the joint distribution of) linear
combinations of the marginals.



Chapter 2

Approximations to the Tail

Empirical Distribution

Function with Application to

Testing Extreme Value

Conditions

co-authors: Holger Drees and Laurens de Haan

Abstract. A weighted approximation to the tail empirical distribution function is
derived which is suitable for applications in extreme value statistics. The approxima-
tion is used to develop an Anderson-Darling type test of the null hypothesis that the
distribution function belongs to the domain of attraction of an extreme value distri-
bution. A useful auxiliary result is a tail approximation to the distribution function.

2.1 Introduction

To assess the risk of extreme events that have not occurred yet, one needs
to estimate the distribution function (d.f.) in the far tail. Extreme value
theory provides a natural framework for an extrapolation of the distribution
function beyond the range of available observations via the so-called Pareto
approximation of the tail.

Assume that i.i.d. random variables (r.v.’s) Xi, 1 ≤ i ≤ n, with d.f. F are
observed such that

lim
n→∞

P
(

a−1
n ( max

1≤i≤n
Xi − bn) ≤ x

)

= Gγ(x)

5



6 2 Approximations, Tail Empirical Distribution Function

for all x ∈ R, with some normalizing constants an > 0 and bn ∈ R; in short we
write F ∈ D(Gγ). Here

Gγ(x) := exp
(

− (1 + γx)−1/γ
)

(2.1.1)

for all x ∈ R such that 1 + γx > 0, and γ ∈ R is the so-called extreme value
index. For γ = 0, the right-hand side of (2.1.1) is defined as exp(−e−x).

This extreme value condition can be rephrased in the following way:

lim
t→∞

tF̄ (ã(t)x + b̃(t)) = (1 + γx)−1/γ (2.1.2)

for all x with 1 + γx > 0. Here F̄ := 1 − F , ã is some positive normalizing
function and b̃(t) := U(t) with

U(t) :=
( 1

1 − F

)←
(t) = F←

(

1 − 1

t

)

and F← denoting the generalized inverse of F . In other words, if X is a r.v.
with d.f. F , then

lim
t→∞

P
(X − b̃(t)

ã(t)
≤ x

∣

∣

∣
X > b̃(t)

)

= 1 − (1 + γx)−1/γ =: Vγ(x)

for x > 0, where Vγ is a so-called generalized Pareto distribution. Thus, roughly
speaking, we have for large t and x > b̃(t)

F̄ (x) = P{X > x} ≈ t−1
(

1 + γ
x − b̃(t)

ã(t)

)−1/γ
, (2.1.3)

that is, the tail of the d.f. can be approximated by a rescaled tail of a general-
ized Pareto distribution with suitable scale and location parameter and shape
parameter γ. Since the latter can be easily extrapolated beyond the range of
the observations, this framework offers an approach for estimating the d.f. F in
the far tail.

Condition (2.1.2) holds for most standard distribution, but not for all distri-
butions. Hence before applying approximation (2.1.3) one should check whether
(2.1.2) is a reasonable assumption for the data set under consideration. To this
end, we do not want to specify the exact parameters of the approximating
generalized Pareto distribution beforehand.

A natural way to check the validity of (2.1.2) is to compare the tail of the
empirical d.f. and a generalized Pareto distribution with estimated parameters
by some goodness-of-fit test. Here we focus on tests of Anderson-Darling-type;
however, using the empirical process approximations that will be established in
the paper, similar results can be easily proved for other goodness-of-fit tests.

In the classical setting when a simple null hypothesis F = F0 is to be tested,
test statistics of Anderson-Darling type can be written in the form

∫ 1

0

(

Fn(F−1
0 (x)) − x

)2
ψ(x) dx
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for a suitable weight function ψ which is unbounded near the boundary of the
interval [0, 1]; here Fn denotes the empirical d.f. defined by

Fn(x) :=
1

n

n
∑

i=1

I{Xi ≤ x}, x ∈ R.

If the null hypothesis is composite (but of parametric form), then F0 is replaced
with a d.f. with estimated parameters.

In the present framework two important differences must be taken into
account. First, we do not assume that the left hand side and the right hand
side of (2.1.3) are exactly equal, but the unknown d.f. F is only approximated by
the “theoretical” generalized Pareto d.f. Second, this approximation is expected
to hold only in the right tail, for x > b̃(n/k) with k ≪ n, say. In the asymptotic
setting, we will assume that k = kn is an intermediate sequence, that is,

lim
n→∞

kn = ∞, lim
n→∞

kn/n = 0.

The first condition is necessary to ensure consistency of the test, while the
second condition reflects the restriction to the tail.

To be more specific, here we consider the test statistic

Tn :=

∫ 1

0

( n

kn
F̄n

(

â(
n

kn
)
x−γ̂n − 1

γ̂n
+ b̂(

n

kn
)
)

− x
)2

xη−2 dx (2.1.4)

with F̄n := 1 − Fn. Here γ̂n, â(n/kn) and b̂(n/kn) are suitable estimators of
the shape, scale and location parameter to be discussed later on, and η is an
arbitrary positive constant. Since this test statistic measures a distance between
the conditional distribution of the excesses above b̂(n/kn) and an approximating
generalized Pareto distribution (cf. (2.1.2)), a plot of this statistic as a function
of k = kn may also be a useful tool for determining the point from which on
approximation (2.1.3) is sufficiently accurate.

In the classical setting with simple null hypothesis, the asymptotic distribu-
tion of the Anderson-Darling test statistic under the null hypothesis is usually
derived from a weighted approximation of the empirical distribution function.
In analogy, in Theorem 2.2.1 we state a weighted approximation to the tail
empirical process

En(x) :=
√

kn

(

n

kn
F̄n

(

a
( n

kn

)

x+ b
( n

kn

))

− (1+γx)−1/γ

)

, x ∈ R. (2.1.5)

For the uniform distribution such approximations are well known; see, e.g.,
Csörgő and Horváth (1993, Theorems 5.1.5 and 5.1.10). For more general d.f.’s
F ∈ D(Gγ), one must very carefully choose suitable modifications a and b of the
normalizing functions to obtain accurate weighted approximations (cf. Lemma
2.2.1). Moreover, it turns out that for a certain class of d.f.’s with extreme
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value index γ = 0, a qualitatively different result holds. Proposition 2.2.1
gives an analogous approximation to the corresponding process with estimated
parameters in the case γ > −1/2. The asymptotic normality of Tn then follows
easily (Theorem 2.2.2).

As an auxiliary result to the approximation of En, we first need a weighted
approximation to the (deterministic) tail d.f. F̄ or, more precisely, to tF̄ (a(t)x+
b(t))− (1+γx)−1/γ , which is proved in Section 2.3 (see Proposition 2.3.2). This
result is very useful in a wider context. For instance, Drees et al. (2003) have
derived large deviation results in extreme value theory from this approxima-
tion. The Sections 2.4 and 2.5 contain the proofs of the main results, while in
Section 2.6 asymptotic critical values are determined and the actual size of the
Anderson-Darling type test with nominal size 5% is examined in a simulation
study.

2.2 Main results

If i.i.d. uniformly distributed r.v.’s Ui are observed, then (2.1.2) holds with
ã(t) = 1/t and γ = −1. For this particular case, Csörgő and Horváth (1993,
Theorems 5.1.5 and 5.1.10) gave a weighted approximation to the normalized
tail empirical process En defined in (2.1.5). Let

Un(t) :=
1

n

n
∑

i=1

I{Ui ≤ t}, t ∈ R,

denote the uniform tail empirical d.f. Then there exists a sequence of Brownian
motions Wn such that

sup
t>0

t−1/2e−ε| log t|
∣

∣

∣

∣

√

kn

( n

kn
Un

(kn

n
t
)

− t
)

− Wn(t)

∣

∣

∣

∣

P−→ 0 (2.2.1)

as n → ∞ for all intermediate sequences kn, n ∈ N (see also Einmahl (1997,
Corollary 3.3)).

By the well-known quantile transformation, (F←(1−Ui))1≤i≤n has the same
distribution as (Xi)1≤i≤n. Because F̄ (t) ≤ t is equivalent to F←(1 − t) ≤ x, it
follows that F̄n has the same distribution as

x 7→ 1 − 1

n

n
∑

i=1

1{F←(1 − Ui) ≤ x} =
1

n

n
∑

i=1

1{Ui < F̄ (x)} = Un(F̄ (x) − 0),

that is the left hand limit of Un at F̄ (x). Hence, by the continuity of Wn, we
obtain for suitable versions of F̄n that

sup
{x:zn(x)>0}

(zn(x))−1/2e−ε| log zn(x)|×

×
∣

∣

∣

∣

√

kn

[ n

kn
F̄n

(

ã
( n

kn

)

x + b̃
( n

kn

)

)

− zn(x)
]

− Wn(zn(x))

∣

∣

∣

∣

P−→ 0

(2.2.2)
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with

zn(x) :=
n

kn
F̄

(

ã
( n

kn

)

x + b̃
( n

kn

)

)

.

In view of (2.1.2), one may conjecture that (2.2.2) still holds if zn(x) is replaced
with (1 + γx)−1/γ . However, for this to be justified, one must replace the
normalizing functions ã and b̃ with suitable modifications such that (2.1.2)
holds in a certain uniform sense. Moreover, we must bound the speed at which
kn tends to ∞.

In the sequel, we will focus on distributions which satisfy the following
second order refinement of condition (2.1.2):

lim
t→∞

tF̄
(

ã(t)x + b̃(t)
)

− (1 + γx)−1/γ

Ã(t)
= (1 + γx)−1−1/γHγ,ρ

(

(1 + γx)−1/γ
)

(2.2.3)

for all x with 1 + γx > 0 and some ρ ≤ 0 where

Hγ,ρ(x) :=
1

ρ

(

xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)

.

De Haan and Stadtmüller (1996) proved that (2.2.3) is equivalent to

lim
t→∞

U(tx) − b̃(t)

ã(t)
− xγ − 1

γ

Ã(t)
= Hγ,ρ(x) (2.2.4)

for all x > 0. Moreover, they showed that in (2.2.3) and (2.2.4) all possible non-
trivial limits must essentially be of the given types, and that |Ã| is necessarily
ρ–varying.

Under this assumption, Drees (1998) and Cheng and Jiang (2001) deter-
mined suitable normalizing functions a and b such that convergence (2.2.4)
holds uniformly in the following sense. In what follows, f(t) ∼ g(t) means
f(t)/g(t) → 1.

Lemma 2.2.1. Suppose the second order condition (2.2.4) holds. Then there
exist a function A, satisfying A(t) ∼ Ã(t) as t → ∞, and for all ε > 0 a
constant tε > 0 such that for all t and x with min(t, tx) ≥ tε

x−(γ+ρ)e−ε| log x|

∣

∣

∣

∣

∣

∣

∣

∣

U(tx) − b(t)

a(t)
− xγ − 1

γ

A(t)
− Kγ,ρ(x)

∣

∣

∣

∣

∣

∣

∣

∣

< ε. (2.2.5)

Here

a(t) :=















ctγ if ρ < 0,
γU(t) if ρ = 0, γ > 0,
−γ(U(∞) − U(t)) if ρ = 0, γ < 0,
U∗∗(t) + U∗(t) if ρ = 0, γ = 0
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with c := limt→∞ t−γ ã(t) (which exists in that case),

b(t) :=

{

U(t) − a(t)A(t)/(γ + ρ) if γ + ρ 6= 0, ρ < 0,
U(t) else,

and

Kγ,ρ(x) :=























1
γ+ρxγ+ρ if ρ < 0, γ + ρ 6= 0,

log x if ρ < 0, γ + ρ = 0,
1
γ xγ log x if ρ = 0 6= γ,
1
2 log2 x if ρ = 0 = γ,

and for any integrable function g the function g∗ is defined by

g∗(t) := g(t) − 1

t

∫ t

0
g(u)dt.

In the sequel, we denote the right endpoint of the support of the generalized
Pareto d.f. with extreme value index γ by

1

(−γ) ∨ 0
=

{

−1/γ if γ < 0,

∞ if γ ≥ 0,

and its left endpoint by

− 1

γ ∨ 0
=

{

−∞ if γ ≤ 0,

−1/γ if γ > 0.

We have the following approximation to the tail empirical process En defined
in (2.1.5):

Theorem 2.2.1. Suppose that the second order condition (2.2.4) holds for some
γ ∈ R and ρ ≤ 0. Let kn be an intermediate sequence such that

√
knA(n/kn),

n ∈ N, is bounded and choose a, b and A as in Lemma 2.2.1. Then there
exist versions of F̄n and a sequence of Brownian motions Wn such that for all
x0 > −1/(γ ∨ 0)
(i)

sup
x0≤x<1/((−γ)∨0)

(

(1 + γx)−1/γ
)−1/2+ε

∣

∣

∣
En(x) − Wn

(

(1 + γx)−1/γ
)

−
√

knA
( n

kn

)

(1 + γx)−1/γ−1Kγ,ρ

(

(1 + γx)1/γ
)

∣

∣

∣

P−→ 0
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if γ 6= 0 or ρ < 0, and
(ii)

sup
x0≤x<∞

(

max
(

e−x,
n

kn
F̄

(

a
( n

kn

)

x + b
( n

kn

)

))

)−1/2+ε

×

×
∣

∣

∣

∣

En(x) − Wn(e−x) −
√

knA
( n

kn

)

e−x x2

2

∣

∣

∣

∣

P−→ 0

if γ = ρ = 0.

Remark 2.2.1. If, in particular,
√

knA(n/kn) tends to 0, then the bias term√
knA(n/kn) (1 + γx)−1/γ−1Kγ,ρ((1 + γx)1/γ) is asymptotically negligible. In

order for this statement to be true, it is sufficient to assume that the left-hand
side of (2.2.3) remains bounded (rather than the present limit requirement)
provided that kn tends to infinity sufficiently slowly.

The assertion in Theorem 2.2.1(ii) is wrong if the maximum of e−x and
n/knF̄ (a(n/kn)x+b(n/kn)) is replaced with just one of these two terms. Hence
the asymptotic behavior of the tail empirical d.f. in the case γ = ρ = 0 is
qualitatively different from the behavior in the case (i). This is due to the fact
that in the case γ 6= 0 or ρ < 0 the tail behavior of F is essentially determined
by the parameters γ and ρ, while in the case γ = ρ = 0 tail behaviors as diverse
as F̄ (x) ∼ exp(− log2 x), F̄ (x) ∼ exp(−√

x) and F̄ (x) ∼ exp(−x2), say, are
possible (cf. Example 2.3.1).

Nevertheless, also in the case γ = ρ = 0 results similar to the one in case (i)
hold if max

(

e−x, (n/kn)F̄ (a(n/kn)x + b(n/kn))
)

is replaced with some weight
function converging to ∞ much slower than e−x as x tends to ∞:

Corollary 2.2.1. Under the conditions of Theorem 2.2.1 with γ = ρ = 0 one
has for all τ > 0

sup
x0≤x<∞

max(1, xτ )

∣

∣

∣

∣

En(x) − Wn(e−x) −
√

knA
( n

kn

)

e−x x2

2

∣

∣

∣

∣

P−→ 0.

The proofs of Theorem 2.2.1 and Corollary 2.2.1 are given in section 2.4.
According to these results, the standardized tail empirical d.f.

En((x−γ − 1)/γ) =
√

kn

(

n

kn
F̄n

(

a
( n

kn

)x−γ − 1

γ
+ b

( n

kn

)

)

−x

)

, x ∈ (0, 1]

converges to a Brownian motion plus a bias term if kn tends to ∞ not too fast.
This may be used to construct a test for F ∈ D(Gγ). However, to this end,
first the unknown parameters γ, a(n/kn) and b(n/kn) must be replaced with
suitable estimators. The following result is an analog to Theorem 2.2.1(i) and
Corollary 2.2.1 for the process with estimated parameters in the case γ > −1/2.
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Proposition 2.2.1. Suppose that the conditions of Theorem 2.2.1 are satisfied
for some γ > −1/2. Let γ̂n, â(n/kn) and b̂(n/kn) be estimators such that

√

kn

(

γ̂n−γ,
â(n/kn)

a(n/kn)
−1,

b̂(n/kn) − b(n/kn)

a(n/kn)

)

−
(

Γ(Wn), α(Wn), β(Wn)
) P−→ 0

(2.2.6)

for some measurable real-valued functionals Γ, α and β of the Brownian motions
Wn used in Theorem 2.2.1. Then, for the versions of F̄n used in Theorem 2.2.1
and every ε > 0 and τ > 0, one has

sup
0<x≤1

h(x)

∣

∣

∣

∣

√

kn

(

n

kn
F̄n

(

â
( n

kn

)x−γ̂n − 1

γ̂n
+ b̂

( n

kn

)

)

− x

)

− Wn(x) − L(γ)
n (x) −

√

knA
( n

kn

)

xγ+1Kγ,ρ

(1

x

)

∣

∣

∣

∣

P−→ 0

(2.2.7)

with

L(γ)
n (x) :=











1
γ x

(

1
γ Γ(Wn) − α(Wn)

)

+ 1
γ Γ(Wn)x log x

− 1
γ x1+γ

(

γβ(Wn) + 1
γ Γ(Wn) − α(Wn)

)

if γ 6= 0,

x
(

− β(Wn) − 1
2Γ(Wn) log2 x + α(Wn) log x

)

if γ = 0,

and

h(x) =

{

x−1/2+ε if γ 6= 0 or ρ < 0,

(1 + | log x|)τ if γ = ρ = 0.

Remark 2.2.2. (i) If γ < −1/2, a rate of convergence of k
−1/2
n for the es-

timators in (2.2.6) is not sufficient to ensure the approximation (2.2.7).
To see this, note that in this case b̂(n/kn) − b(n/kn) is of larger order

than k
−1/2
n (n/kn)γ−ε and hence also of larger order than the difference

between the inth largest order statistic and the right endpoint F←(1) for
some sequence in → ∞ not too fast, leading, for small x > 0, to a non-
negligible difference between F̄n(a(n/kn)(x−γ − 1)/γ + b(n/kn)) and the
corresponding expression with estimated parameters.

(ii) Typically the functionals Γ, α and β depend on the underlying d.f. F only
through γ if the estimators γ̂n, â(n/kn) and b̂(n/kn) use only the largest
kn + 1 order statistics and

√
knA(n/kn) → 0. This justifies the notation

L
(γ)
n for the limiting function occurring in (2.2.7) in that case. However,

if
√

knA(n/kn) → c 6= 0 then L
(γ)
n will also depend on c; for simplicity,

we ignore this dependence in the notation.
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Example 2.2.1. In Proposition 2.2.1 one may use the so-called maximum
likelihood estimator in a generalized Pareto model (cf. Smith (1987)). Denote
the jth order statistic by Xj,n. Since the excesses Xn−i+1,n −Xn−kn,n, 1 ≤ i ≤
kn over the random threshold Xn−kn,n are approximately distributed according
to a generalized Pareto distribution with shape parameter γ and scale parameter
σn := a(n/kn) if F ∈ D(Gγ) and kn is not too big, γ and σn are estimated by the
pertaining maximum likelihood estimators γ̂n and σ̂n in an exact generalized
Pareto model for the excesses. They can be calculated as the solutions to the
equations

1

k

k
∑

i=1

log
(

1 +
γ

σ
(Xn−i+1,n − Xn−k,n)

)

= γ

1

k

k
∑

i=1

1

1 + γ
σ (Xn−i+1,n − Xn−k,n)

=
1

γ + 1
.

In Theorem 2.1 of Drees et al. (2004) it is proved that γ̂n, â(n/kn) := σ̂n

and b̂(n/kn) := Xn−kn,n satisfy (2.2.6) with

Γ(Wn) = −(γ + 1)2

γ

(

(2γ + 1)Sn − Rn

)

+ (γ + 1)Wn(1),

α(Wn) = −γ + 1

γ

(

Rn − (γ + 1)(2γ + 1)Sn

)

− (γ + 2)Wn(1),

β(Wn) = Wn(1),

where

Rn :=

∫ 1

0
t−1Wn(t) dt,

Sn :=

∫ 1

0
tγ−1Wn(t) dt,

provided
√

knA(n/kn) → 0; if
√

knA(n/kn) → c > 0 then additional bias terms
enter the formulas. As usual, for γ = 0, these expressions are to be interpreted
as their limits as γ tends to 0, that is,

Γ(Wn) = −
∫ 1

0
(2 + log t)t−1Wn(t) dt + Wn(1),

α(Wn) =

∫ 1

0
(3 + log t)t−1Wn(t) dt − 2Wn(1),

β(Wn) = Wn(1).

(Applying Vervaat’s (1972) lemma to the approximation to the tail empirical
distribution function given in Theorem 2.2.1, restricted to a compact interval
bounded away from 0, and then using a Taylor expansion of t 7→ (t−γ − 1)/γ
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shows that the Brownian motions used by Drees et al. (2004) are indeed the
Brownian motions used in Proposition 2.2.1 multiplied with −1.)

Hence one may apply Proposition 2.2.1 to obtain the asymptotics of the tail
empirical distribution function with estimated parameters. 2

It is easy to devise tests for F ∈ D(Gγ) with γ > −1/2 using approximation
(2.2.7). For example, using the following limit theorem, the critical values of the
Anderson-Darling type test can be calculated which rejects the null hypothesis
if knTn (defined in (2.1.4)) is too large.

Theorem 2.2.2. Under the conditions of Proposition 2.2.1 with
√

knA(n/kn) →
0 one has

knTn −
∫ 1

0

(

Wn(x) + L(γ)
n (x)

)2
xη−2 dx

P−→ 0 (2.2.8)

for all η > 0 if γ 6= 0 or ρ < 0, and all η ≥ 1 if γ = ρ = 0.

Since the continuous distribution of
∫ 1
0 (Wn(x) + L

(γ)
n (x))2xη−2dx does not

depend on n, for fixed γ > −1/2 its quantiles Qp,γ defined by P{
∫ 1
0 (Wn(x) +

L
(γ)
n (x))2xη−2dx ≤ Qp,γ} = p can be obtained by simulations (see Section 6).

Then the one-sided test rejecting F ∈ D(Gγ) if knTn > Q1−ᾱ,γ has asymptotic
size ᾱ ∈ (0, 1).

If one wants to test F ∈ D(Gγ) for an arbitrary unknown γ > −1/2, one
may use the test rejecting the null hypothesis if knTn > Q1−ᾱ,γ̃n for some
estimator γ̃n which is consistent for γ if F ∈ D(Gγ). If the functionals Γ,

α and β determining the limit distributions of γ̂n, â(n/kn) and b̂(n/kn) are
continuous functions of γ (like the ones obtained in Example 2.2.1), then also

L
(γ)
n (x) and hence the quantiles Qp,γ are continuous functions of γ. Thus the

test has asymptotic size ᾱ.

However, recall that, in fact, for (2.2.8) to hold we have not merely assumed
that F ∈ D(Gγ) but also that the second order condition (2.2.4) holds and, for
the particular kn used in the definition of the test statistic Tn, in addition
we have assumed that A(t) → 0 sufficiently fast such that

√
knA(n/kn) → 0.

Hence, we actually test the subset of the null hypothesis F ∈ D(Gγ) described
by these additional assumptions. This, however, is exactly what is needed in
statistical applications. For instance, note that typically the very same assump-
tions are made when confidence intervals for extreme quantiles or for exceedance
probability over high thresholds are calculated. Therefore, for this purpose, one
must not only check whether F ∈ D(Gγ) but whether the Pareto approximation
is sufficiently accurate for the number of order statistics used for estimation!
Moreover, if one lets k vary, then the test statistic can also be used to find the
largest k for which the Pareto approximation of the tail distribution beyond
Xn−k,n is justified.
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A test for a similar hypothesis, but based on the tail empirical quantile
function instead of the tail empirical distribution function, has been discussed
by Dietrich et al. (2002). That test does not require γ > −1/2 but, on the other
hand, U(∞) > 0 and a slightly different second order condition were assumed.

The test based on the statistic knTn becomes particularly simple if Γ, α
and β are the zero functional, that is, the estimators γ̂n, â(n/kn) and b̂(n/kn)

converge at a faster rate than k
−1/2
n . This can be achieved by using suit-

able estimators based on mn largest order statistics with kn = o(mn) and√
mnA(n/mn) → 0. (For example, γ may be estimated by the estimator given

in Example 2.2.1 with mn instead of kn, and b(n/kn) by a quantile estimator
of the type described in de Haan and Rootzén (1993).) In that case the limit
distribution

∫ 1
0 W 2

n(x)xη−2dx of the test statistic knTn does not depend on γ, so
that no consistent estimator γ̃n for γ is needed. However, this approach has two
disadvantages. Firstly, in practice it is often not an easy task to choose kn such
that the bias is negligible (i.e.

√
knA(n/kn) → 0). It is even more delicate to

choose two numbers kn and mn such that kn is much smaller than mn but not
too small and, at the same time, the bias of the estimators of the parameters
is still not dominating when these are based on mn order statistics. Secondly,
while this approach may lead to a test whose actual size is closer to the nominal
value ᾱ, the power of the test will probably higher if one choose a larger value
for kn, e.g. kn = mn, because the larger kn the larger will typically be the test
statistic knTn if the tail empirical d.f. is not well approximated by a generalized
Pareto d.f. For these reasons, in the simulation study we will focus on the case
where the tail empirical d.f. and the estimators γ̂n, â(n/kn) and b̂(n/kn) are
based on the same number of largest order statistics.

2.3 Tail Approximation to the Distribution Function

A substantial part of the proof of Theorem 2.2.1 consists of proving an approx-
imation to the tail of the (deterministic) distribution function.

For all c, δ > 0 define sets

Dt,ρ := Dt,ρ,δ,c :=

{

{x : tF̄ (a(t)x + b(t)) ≤ ct−δ+1} if ρ < 0,

{x : tF̄ (a(t)x + b(t)) ≤ |A(t)|−c} if ρ = 0.

Check that, in particular, eventually [x0,∞) ⊂ Dt,ρ for all x0 > −1/(γ ∨ 0).

Proposition 2.3.1. Suppose that the second order relation (2.2.4) holds for
some γ ∈ R and ρ ≤ 0. For ε > 0, define

wt(x) :=
{(

tF̄ (a(t)x + b(t))
)ρ−1

e−ε| log(tF̄ (a(t)x+b(t)))|, γ 6= 0 or ρ 6= 0,

min
(

(tF̄ (a(t)x + b(t)))−1e−ε| log(tF̄ (a(t)x+b(t)))|, ex−ε|x|
)

, γ = ρ = 0.
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Then, for all ε, δ, c > 0,

sup
x∈Dt,ρ

wt(x)

∣

∣

∣

∣

∣

tF̄ (a(t)x + b(t)) − (1 + γx)−1/γ

A(t)

−
(

tF̄ (a(t)x + b(t))
)1+γ

Kγ,ρ

( 1

tF̄ (a(t)x + b(t))

)

∣

∣

∣

∣

→ 0

as t → ∞.

Moreover, we establish an analogous result where tF̄ (a(t)x+b(t)) is replaced
with (1 + γx)−1/γ . To this end, let for δ, c > 0

D̃t,ρ := D̃t,ρ,δ,c :=

{

{x : (1 + γx)−1/γ ≤ ct−δ+1} if ρ < 0,

{x : (1 + γx)−1/γ ≤ |A(t)|−c} if ρ = 0,

and, for γ 6= 0 or ρ < 0,

w̃t(x) :=
(

(1 + γx)−1/γ
)ρ−1

exp
(

− ε| log((1 + γx)−1/γ)|
)

.

Proposition 2.3.2. If the second order relation (2.2.4) holds for some γ ∈ R

and ρ ≤ 0, then

sup
x∈Dt,ρ

wt(x)
∣

∣

∣

tF̄ (a(t)x + b(t)) − (1 + γx)−1/γ

A(t)
−(1+γx)−1/γ−1Kγ,ρ

(

(1+γx)1/γ
)

∣

∣

∣ → 0

as t → ∞. Moreover, if γ 6= 0 or ρ < 0, then

sup
x∈D̃t,ρ

w̃t(x)
∣

∣

∣

tF̄ (a(t)x + b(t)) − (1 + γx)−1/γ

A(t)
−(1+γx)−1/γ−1Kγ,ρ

(

(1+γx)1/γ
)

∣

∣

∣
→ 0,

and for γ = ρ = 0

sup
x∈D̃t,0

wt(x)
∣

∣

∣

tF̄ (a(t)x + b(t)) − e−x

A(t)
− e−x x2

2

∣

∣

∣
→ 0

for all δ, c > 0 as t → ∞.

At first glance, it is somewhat surprising that the results look differently
in the case γ = ρ = 0 in that one needs a more complicated weight function,
namely the minimum of a function of the standardized tail d.f. tF̄ (a(t)x+ b(t))
and the corresponding function of the limiting exponential d.f. The following
example shows that indeed the straightforward analog to the assertion in the
case γ 6= 0 or ρ < 0 does not hold, because, in the case γ = ρ = 0, these two
functions may behave quite differently for large x, despite the fact that for fixed
x the former converges to the latter.
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Example 2.3.1. Here we give an example of a d.f. satisfying (2.2.4) such that

sup
{x:x>c log |A(t)|}

ex−ε|x|
∣

∣

∣

tF̄
(

a(t)x + b(t)
)

− e−x

A(t)
− e−x x2

2

∣

∣

∣
(2.3.1)

does not tend to 0 for any c, ε > 0.
Let F (x) := 1 − e−

√
x, x > 0, and a(t) := 2 log t, b(t) := log2 t, A(t) :=

1/ log t. Then U(x) = log2 x satisfies the second order condition (2.2.4):

1

A(t)

(U(tx) − U(t)

a(t)
− log x

)

→ log2 x

2

as t → ∞. Moreover

tF̄
(

a(t)x+b(t)
)

= t exp
(

−
√

2x log t + log2 t
)

= exp
(

− log t
(
√

1 + 2x/ log t − 1
)

)

.

Hence, for x = x(t) = λ(t) log t/2 with λ(t) → ∞ as t → ∞, one obtains

tF̄
(

a(t)x + b(t)
)

= exp
(

− log t
√

λ(t)(1 + o(1))
)

,

e−x x2

2
=

1

8
exp

(

2(log log t + log λ(t)) − 1

2
λ(t) log t

)

= o(tF̄ (a(t)x + b(t))),

e−x = o
(

tF̄ (a(t)x + b(t))
)

,

so that

tF̄
(

a(t)x + b(t)
)

− e−x

A(t)
− e−x x2

2
=

tF̄
(

a(t)x + b(t)
)

A(t)
(1 + o(1)).

However, this contradicts the convergence of (2.3.1) to 0 as t → ∞:

(e−x)−1+ε
∣

∣

∣

tF̄ (a(t)x + b(t)) − e−x

A(t)
− e−x x2

2

∣

∣

∣

= (e−x)−1+ε tF̄ (a(t)x + b(t))

A(t)
(1 + o(1))

= exp
(1 − ε

2
λ(t) log t −

√

λ(t) log t(1 + o(1))
)

· 1 + o(1)

A(t)

→ ∞.

Likewise one can show that F (x) = 1 − e−x2
, x > 0, satisfies the second

order condition (2.2.4) but that

sup
x∈Dt,0

(

tF̄ (a(t)x + b(t))
)−1

exp
(

− ε| log(tF̄ (a(t)x + b(t)))|
)

×

×
∣

∣

∣

tF̄
(

a(t)x + b(t)
)

− e−x

A(t)
− e−x x2

2

∣

∣

∣ → ∞.

2
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Before proving the propositions, we need an auxiliary lemma. Let

qt(x) :=
U(tx) − b(t)

a(t)
− xγ − 1

γ
.

Lemma 2.3.1. For each ε > 0, there exists t̃ε > 0 such that

sup
x≥t̃ε/t

x−(γ+ρ)e−ε| log x||qt(x)| = O(A(t))

as t → ∞.

Proof. We focus on the case γ = ρ = 0; the assertion can be proved by the
same arguments in the other cases. From Lemma 2.2.1 we know that, for each
δ > 0, there exists tδ such that for t, tx ≥ tδ

e−ε| log x||qt(x)| ≤ e−ε| log x||A(t)|
( log2 x

2
+ δeδ| log x|

)

.

Choose δ < ε and t̃ε = tδ to obtain the assertion, since supx>0 e−ε| log x| log2 x <
∞. 2

Let

Bt,ρ := Bt,ρ,δ,c :=

{

[ctδ−1,∞) if ρ < 0,

{y : | log y| ≤ c| log |A(t)||} if ρ = 0,

with δ, c > 0.

Corollary 2.3.1. For all c, δ > 0,

sup
x∈Bt,ρ

x−γ |qt(x)| → 0

as t → ∞.

Proof. For ρ < 0, choose ε ≤ |ρ| in Lemma 2.3.1 to obtain

sup
x≥1

x−γ |qt(x)| ≤ sup
x≥1

x−(γ+ρ)e−ε| log x||qt(x)| = O(A(t)) = o(1).

For all c, δ, t̃ε > 0, eventually ctδ−1 is greater than t̃ε/t. Hence, by Lemma 2.3.1,

sup
ctδ−1≤x<1

x−γ |qt(x)| ≤ O(A(t)) · sup
ctδ−1≤x<1

xρ−ε = O
(

A(t) · t(δ−1)(ρ−ε)
)

→ 0

if (δ − 1)(ρ − ε) < −ρ (which is satisfied for sufficient small ε > 0), since A(t)
is ρ-varying and hence A(t) = o(tη+ρ) for all η > 0.

In the case ρ = 0, one has for all ε ∈ (0, 1/c)

sup
x∈Bt,ρ

x−γ |qt(x)| ≤ O(A(t)) · sup
x∈Bt,ρ

eε| log x| = O
(

A(t)eεc| log |A(t)||) → 0,



2.3 Tail Approximation to the Distribution Function 19

since eventually |A(t)|c > t̃ε/t and hence x > t̃ε/t for all x ∈ Bt,ρ. 2

Proof of Proposition 2.3.1.

For simplicity assume that F is eventually strictly increasing. (For more
general F , the assertion follows by standard extra arguments using the second
order condition (2.2.3).) Let g(x) := (1 + γx)−1/γ and

y :=
1

tF̄ (a(t)x + b(t))
,

which implies that x = (U(ty) − b(t))/a(t). Then g′(x) = −(g(x))γ+1 and
g′′(x) = (γ + 1)(g(x))2γ+1, and so

tF̄
(

a(t)x + b(t)
)

− (1 + γx)−1/γ

= −
(

(

1 + γ
U(ty) − b(t)

a(t)

)−1/γ
−

(

1 + γ
yγ − 1

γ

)−1/γ
)

= −
(

g
(U(ty) − b(t)

a(t)

)

− g
(yγ − 1

γ

)

)

= qt(y)

(

−g′
(yγ − 1

γ

)

)

−
∫ qt(y)

0

∫ s

0
g′′

(yγ − 1

γ
+ u

)

du ds

= qt(y)y−γ−1 −
∫ qt(y)

0

∫ s

0
(1 + γ)

(

1 + γ(
yγ − 1

γ
+ u)

)−1/γ−2

du ds

with (1 + γx)−1/γ−j := e−x for γ = 0 and j = 1, 2.
Since (1 + γ((yγ − 1)/γ + u))−1/γ−2 lies between (1 + γ(yγ − 1)/γ)−1/γ−2 =

y−1−2γ and (1 + γ((yγ − 1)/γ + qt(y)))−1/γ−2 = y−1−2γ(1 + γy−γqt(y))−1/γ−2,
Corollary 2.3.1 yields

∣

∣

∣tF̄ (a(t)x + b(t)) − (1 + γx)−1/γ − qt(y)y−1−γ
∣

∣

∣ ≤ 2|1+γ|y−1−2γq2
t (y) (2.3.2)

for all y ∈ Bt,ρ and sufficiently large t.
Since ty → ∞ uniformly for y ∈ Bt,ρ, (2.2.5), Lemma 2.3.1 and Corollary

2.3.1 imply

sup
y∈Bt,ρ

wt(x)
∣

∣

∣

tF̄
(

a(t)x + b(t)
)

− (1 + γx)−1/γ

A(t)

−
(

tF̄ (a(t)x + b(t))
)1+γ

Kγ,ρ

( 1

tF̄ (a(t)x + b(t))

)

∣

∣

∣

≤ sup
y∈Bt,ρ

y1−ρe−ε| log y|
(∣

∣

∣

qt(y)y−(1+γ)

A(t)
− y−(1+γ)Kγ,ρ(y)

∣

∣

∣ + 2|1 + γ|y
−(1+2γ)

|A(t)| q2
t (y)

)

≤ sup
y∈Bt,ρ

y−(γ+ρ)e−ε| log y|
∣

∣

∣

qt(y)

A(t)
− Kγ,ρ(y)

∣

∣

∣

+ 2|1 + γ| sup
y∈Bt,ρ

y−(γ+ρ)e−ε| log y| |qt(y)|
|A(t)| sup

y∈Bt,ρ

y−γ |qt(y)|

→ 0.
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Because x ∈ Dt,ρ,δ,c is equivalent to y ∈ Bt,ρ,δ,1/c if ρ < 0, the assertion is
proved in that case.

In the case ρ = 0, we have proved that for all c > 0

sup
{x:|A(t)|c≤1/y≤|A(t)|−c}

wt(x)
∣

∣

∣

y−1 − (1 + γx)−1/γ

A(t)
− y−(1+γ)Kγ,0(y)

∣

∣

∣
→ 0.

Thus it suffices to prove that

sup
{x:1/y<|A(t)|c}

wt(x)
∣

∣

∣

y−1 − (1 + γx)−1/γ

A(t)
− y−(1+γ)Kγ,0(y)

∣

∣

∣
→ 0,

where we may assume that c > 0 is sufficiently large. Note that

wt(x)
∣

∣

∣y−(1+γ)Kγ,0(y)
∣

∣

∣ = O
(

e−ε| log y| log2 y
)

= o(1)

uniformly for 1/y < |A(t)|c. Moreover, for c > 1/ε,

wt(x)y−1 ≤ e−ε| log y| ≤ |A(t)|cε = o(A(t))

for all x such that 1/y < |A(t)|c.
Therefore, it suffices to verify that

sup
{x: tF̄ (a(t)x+b(t))<|A(t)|c}

wt(x)(1 + γx)−1/γ = o(A(t)). (2.3.3)

To this end, we distinguish three cases.
First suppose γ > 0. Then (1 + γx)U(t) = a(t)x + b(t) → ∞ uniformly for

all x such that 1/y = tF̄ (a(t)x + b(t)) < |A(t)|c → 0. By the Potter bounds
(see Bingham et al. (1987), Theorem 1.5.6)

y−1 = tF̄
(

a(t)x + b(t)
)

=
F̄

(

(1 + γx)U(t)
)

F̄ (U(t))
≥ 1

2
(1 + γx)−1/(γ(1−ε/2))

(2.3.4)

for sufficient large t. Hence the left-hand side of (2.3.3) is bounded by

sup
{x:1/y<|A(t)|c}

y1−ε
(

2y−1
)1−ε/2 ≤ 2|A(t)|εc/2 = o(A(t))

when we choose c > 2/ε.
Likewise, for γ < 0, one has

y−1 = tF̄
(

a(t)x + b(t)
)

=
F̄

(

U(∞) − (1 + γx)(U(∞) − U(t))
)

F̄
(

U(∞) − (U(∞) − U(t))
) ≥ 1

2
(1 + γx)−1/(γ(1−ε/2))

(2.3.5)
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and one can argue like in the case γ > 0.
Finally, if γ = 0 then the left-hand side of (2.3.3) is bounded by

sup
{x: tF̄ (a(t)xt+b(t))<|A(t)|c}

e−εx = e−εxt

with xt = inf{x : tF̄ (a(t)x + b(t)) ≤ |A(t)|c}. According to (2.3.2), Lemma
2.3.1, and Corollary 2.3.1, one has eventually

e−xt ≤ |A(t)|c +
∣

∣qt

(

|A(t)|−c
)∣

∣|A(t)|c + 2q2
t

(

|A(t)|−c
)

|A(t)|c

= |A(t)|c
(

1 +
∣

∣qt

(

|A(t)|−c
)∣

∣ + 2q2
t

(

|A(t)|−c
)

)

= |A(t)|c
(

1 + O
(

|A(t)|1−εc
)

)

= O
(

|A(t)|c(1−ε)
)

which implies that e−εxt = O(|A(t)|εc(1−ε)) = o(A(t)) for c > 2/ε and ε < 1/2.
The proof of Proposition 2.3.1 is complete. 2

Proof of Proposition 2.3.2.

Recall the definition y := 1/
(

tF̄ (a(t)x + b(t))
)

. We consider three cases.

Case (i): ρ < 0.
Inequality (2.3.2) and Corollary 2.3.1 imply

sup
x∈Dt,ρ

∣

∣

∣y(1+γx)−1/γ−1
∣

∣

∣ ≤ sup
y≥ctδ−1

y−γ |qt(y)|+2|1+γ| sup
y≥ctδ−1

(y−γqt(y))2 → 0.

(2.3.6)

Hence, for γ + ρ 6= 0, by the definition of Kγ,ρ

sup
x∈Dt,ρ

wt(x)
∣

∣

∣(1 + γx)−(1+1/γ)Kγ,ρ

(

(1 + γx)1/γ
)

− y−(1+γ)Kγ,ρ(y)
∣

∣

∣

= sup
x∈Dt,ρ

e−ε| log y| 1

|γ + ρ|
∣

∣

∣

(

y(1 + γx)−1/γ
)1−ρ − 1

∣

∣

∣

→ 0.

(2.3.7)

If γ + ρ = 0, then the left-hand side of (2.3.7) equals

sup
x∈Dt,ρ

e−ε| log y|
∣

∣

∣

(

y(1 + γx)−1/γ
)1+γ

log
(

y(1 + γx)−1/γ
)

+
(

(

y(1 + γx)−1/γ
)1+γ − 1

)

(− log y)
∣

∣

∣
→ 0.

Now the first assertion is immediate from Proposition 2.3.1. In view of
(2.3.6), w̃t(x)/wt(x) tends to 1 uniformly for x ∈ Dt,ρ. Moreover, (1+γx)−1/γ ≤
ct−δ+1 implies tF̄ (a(t)x+ b(t)) ≤ 2ct−δ+1 for sufficient large t. Thus the second
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assertion follows immediate from the first.

Case (ii): ρ = 0, γ 6= 0.
Define

D1
t,0 :=

{

x : |A(t)|c ≤ tF̄ (a(t)x + b(t)) ≤ |A(t)|−c
}

=
{

x :
∣

∣ log
(

tF̄ (a(t)x + b(t))
)∣

∣ ≤ c| log |A(t)||
}

,

D2
t,0 :=

{

x : tF̄ (a(t)x + b(t)) ≤ |A(t)|c
}

,

so that Dt,0 = D1
t,0 ∪ D2

t,0. As in case (i), (2.3.2) and Corollary 2.3.1 imply

sup
x∈D1

t,0

∣

∣

∣y(1+γx)−1/γ −1
∣

∣

∣ ≤ sup
y∈Bt,0

y−γ |qt(y)|+2|1+γ| sup
y∈Bt,0

(y−γqt(y))2 → 0.

(2.3.8)

Hence

sup
x∈D1

t,0

wt(x)
∣

∣

∣(1 + γx)−(1+1/γ)Kγ,0

(

(1 + γx)1/γ
)

− y−(1+γ)Kγ,0(y)
∣

∣

∣

=
1

|γ| sup
x∈D1

t,0

e−ε| log y|
∣

∣

∣
y(1 + γx)−1/γ log

(

y(1 + γx)−1/γ
)

+
(

y(1 + γx)−1/γ − 1
)

(− log y)
∣

∣

∣

→ 0.

(2.3.9)

Note that

sup
x∈D2

t,0

wt(x)
∣

∣

∣
y−(1+γ)Kγ,0(y)

∣

∣

∣
= sup

x∈D2
t,0

1

|γ|e
−ε| log y|| log y| → 0. (2.3.10)

Therefore, for the first assertion it remains to verify that

sup
x∈D2

t,0

wt(x)
∣

∣

∣
(1 + γx)−1/γ−1Kγ,0

(

(1 + γx)1/γ
)

∣

∣

∣

=
1

|γ| sup
x∈D2

t,0

wt(x)(1 + γx)−1/γ
∣

∣ log
(

(1 + γx)−1/γ
)∣

∣

(2.3.11)

tends to 0. For γ > 0, (2.3.4) shows that the right-hand side of (2.3.11) is
bounded by

1

|γ| sup
x∈D2

t,0

wt(x)
(

2y−1
)1−ε/2∣

∣ log
(

2y−1
)∣

∣

≤ 1

|γ| sup
y≥|A(t)|−c

y1−ε
(

2y−1
)1−ε/2∣

∣ log
(

2y−1
)∣

∣ → 0,
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and hence the convergence of (2.3.11) follows. In the case γ < 0, we can
argue likewise. So the first assertion is immediate from (2.3.9)–(2.3.11) and
Proposition 2.3.1.

For the second assertion, it suffices to prove that {x : (1 + γx)−1/γ ≤
|A(t)|−c} ⊂ {x : tF̄ (a(t)x + b(t)) ≤ |A(t)|−2c} eventually, and that
supx∈Dt,0

w̃t(x)/wt(x) is bounded when we replace ε with ε/2 in the definition
of wt.

From (2.3.8), we have supx∈D1
t,0

w̃t(x)/wt(x) → 1, so we must check whether

supx∈D2
t,0

w̃t(x)/wt(x) is bounded.

We only discuss the case γ > 0, since the arguments are similar for γ < 0.
By the Potter bounds, for all η > 0 and sufficiently large t,

2(1 + γx)−(1−η)/γ ≥ y−1 = tF̄
(

a(t)x + b(t)
)

≥ 1

2
(1 + γx)−1/(γ(1−η))

uniformly for all x ∈ D2
t,0 (cf. (2.3.4)). Thus

sup
x∈D2

t,0

w̃t(x)

wt(x)
= sup

x∈D2
t,0

yε/2−1

(1 + γx)−(1−ε)/γ

≤ sup
x∈D2

t,0

21−ε/2 (1 + γx)−1/γ

(1 + γx)−(1−ε)/γ
≤ 2 sup

x∈D2
t,0

(1 + γx)−ε/γ

≤ 2 sup
x∈D2

t,0

(2y−1)ε(1−ε/2) → 0.

Thus supx∈Dt,0
w̃t(x)/wt(x) is bounded for γ > 0 .

Next we verify {x : (1 + γx)−1/γ ≤ |A(t)|−c} ⊂ {x : tF̄ (a(t)x + b(t)) ≤
|A(t)|−2c}. To this end, define xt := inf{x : tF̄ (a(t)x + b(t)) ≤ |A(t)|−2c}.
Then by the analog to (2.3.8), (1 + γxt)

−1/γ ∼ tF̄ (a(t)xt + b(t)) = |A(t)|−2c.
Hence for x satisfying (1 + γx)−1/γ ≤ |A(t)|−c, we have for sufficient large t,
(1 + γx)−1/γ < (1 + γxt)

−1/γ , which implies x > xt, and tF̄ (a(t)x + b(t)) <
tF̄ (a(t)xt + b(t)) = |A(t)|−2c. Hence we obtain {x : (1 + γx)−1/γ ≤ |A(t)|−c} ⊂
{x : tF̄ (a(t)x + b(t)) ≤ |A(t)|−2c}, and the proof of the second assertion is
complete.

Case (iii): γ = ρ = 0.
In the very same way as for ρ < 0, we obtain for all d > 0

sup
{x:| log y|≤d| log |A(t)||}

|ye−x − 1| → 0. (2.3.12)

Thus

sup
x∈D1

t,0

wt(x)
∣

∣

∣
e−xx2 − log2 y

y

∣

∣

∣

≤ sup
x∈D1

t,0

e−ε| log y|
∣

∣

∣ye−x log
(

ye−x
)

log(e−x/y) + (ye−x − 1) log2 y
∣

∣

∣

→ 0.
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Moreover, in view of (2.3.12) with d = 2c, eventually − log y < c log |A(t)|
implies −x < c log |A(t)|/2. Hence

sup
x∈D2

t,0

wt(x)
∣

∣

∣e−xx2 − log2 y

y

∣

∣

∣

≤ sup
x>−c log |A(t)|/2

e−ε|x|x2 + sup
x>−c log |A(t)|/2

e−ε| log y| log2 y → 0.

Again the first assertion follows from Proposition 2.3.1.
Finally, in view of (2.3.12), e−x < |A(t)|−c implies 1/y < |A(t)|−2c for

sufficiently large t, so that the second assertion is obvious.
The proof of Proposition 2.3.2 is complete. 2

2.4 Tail Approximation to the Empirical Distribu-

tion Function

For the proof of Theorem 2.2.1, we need two additional Lemmas.

Lemma 2.4.1. Suppose x0 > −1/(γ ∨ 0).
(i) If ρ < 0, then

sup
x0≤x<1/((−γ)∨0)

∣

∣

∣

(1 + γx)−1/γ

tF̄ (a(t)x + b(t))
− 1

∣

∣

∣ → 0.

(ii) If ρ = 0 and γ 6= 0, then for all η > 0

sup
x0≤x<1/((−γ)∨0)

tF̄
(

a(t)x + b(t)
)

− (1 − γx)−1/γ

(

(1 + γx)−1/γ
)1−η → 0

as t → ∞ and thus

sup
x0≤x<1/((−γ)∨0)

tF̄
(

a(t)x + b(t)
)

(

(1 + γx)−1/γ
)1−η is bounded.

(iii) If γ = ρ = 0, then for all η, c > 0

sup
x0≤x<−c log |A(t)|

tF̄
(

a(t)x + b(t)
)

− e−x

e−(1−η)x
→ 0

as t → ∞ and so

sup
x0≤x<−c log |A(t)|

tF̄
(

a(t)x + b(t)
)

e−(1−η)x
is bounded.
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Proof. (i). By (2.3.6), one has for all δ ∈ (0, 1) and c > 0

[

x0,
1

(−γ) ∨ 0

)

⊂
{

x : (1 + γx)−1/γ ≤ c

2
t−δ+1

}

⊂ Dt,ρ

for sufficiently large t. Hence, again by (2.3.6),

sup
x0≤x<1/((−γ)∨0)

∣

∣

∣

(1 + γx)−1/γ

tF̄
(

a(t)x + b(t)
) − 1

∣

∣

∣
→ 0.

(ii). By similar arguments as in (i), one concludes [x0, 1/((−γ) ∨ 0)) ⊂ Dt,0.
Hence Proposition 2.3.2 with ε = η implies

sup
x0≤x<1/((−γ)∨0))

(

(1 + γx)−1/γ
)η−1

∣

∣

∣

tF̄
(

a(t)x + b(t)
)

− (1 + γx)−1/γ

A(t)

− (1 + γx)−1/γ−1Kγ,0

(

(1 + γx)1/γ
)

∣

∣

∣

= sup
x0≤x<1/((−γ)∨0))

1

A(t)

∣

∣

∣

tF̄
(

a(t)x + b(t)
)

− (1 + γx)−1/γ

(

(1 + γx)−1/γ
)1−η

− A(t)
(

(1 + γx)−1/γ
)γ+η

Kγ,0

(

(1 + γx)1/γ
)

∣

∣

∣

→ 0.

Because A(t) → 0 and (1 + γx)−1/γ is bounded for x ≥ x0, the assertions are
immediate from the definition of Kγ,0.

(iii). The proof is similar to the one of (ii). Note that (2.3.12) shows that
wt(x)/e(1−ε)x → 1 uniformly for x0 ≤ x < −c log |A(t)|. 2

Lemma 2.4.2. Let W denote a Brownian motion.
(i) If γ 6= 0 or ρ < 0, then

sup
x0≤x<1/((−γ)∨0)

(

(1+γx)−1/γ
)−1/2+ε

∣

∣

∣
W

(

tF̄
(

a(t)x+b(t)
))

−W
(

(1+γx)−1/γ
)

∣

∣

∣
→ 0 a.s.

as t → ∞.
(ii) If ρ = γ = 0, then

sup
x0≤x

(

max
(

e−x, tF̄
(

a(t)x+b(t)
))

)−1/2+ε∣
∣

∣
W

(

tF̄
(

a(t)x+b(t)
)

)

−W (e−x)
∣

∣

∣
→ 0 a.s.

as t → ∞.

Proof. (i). Let s := (1 + γx)−1/γ and u(t, s) := tF̄ (a(t)x + b(t)) − s. Then
x0 ≤ x < 1/((−γ)∨ 0) implies 0 < s ≤ s0, where s0 is a constant depending on
x0. So we only need to prove

sup
0<s≤s0

s−1/2+ε
∣

∣W
(

u(t, s) + s
)

− W (s)
∣

∣ → 0 a.s. (2.4.1)
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as t → ∞. From Lemma 2.4.1, one can easily conclude that sη−1u(t, s) → 0
uniformly for s ∈ (0, s0], and hence in the sequel we may assume u(t, s) ≤ s1−η

with η = ε/(1 − ε) for sufficiently large t.
For all 0 < a < 1

sup
0<s≤a

s−1/2+ε|W (u(t, s) + s) − W (s)|

≤ sup
0<s≤a

s−1/2+ε
(

s + u(t, s)
)(1−ε)/2 · sup

0<s≤a

∣

∣

∣

W (u(t, s) + s)
(

s + u(t, s)
)(1−ε)/2

∣

∣

∣ + sup
0<s≤a

∣

∣

∣

W (s)

s1/2−ε

∣

∣

∣.

Since

lim
a→0

sup
0<s≤a

s−1/2+ε
(

s+u(t, s)
)(1−ε)/2

= lim
a→0

sup
0<s≤a

(

s2ε/(1−ε)+
u(t, s)

s1−ε/(1−ε)

)(1−ε)/2
= 0,

the law of iterated logarithm yields

lim
a→0

sup
0<s≤a

s−1/2+ε|W (u(t, s) + s) − W (s)| = 0 a.s.

On the other hand, by the continuity of W , for all fixed a > 0

lim
n→∞

sup
a<s≤s0

s−1/2+ε|W (u(t, s) + s) − W (s)| = 0 a.s.

as t → ∞. Now assertion (2.4.1) is obvious.

(ii). We consider x ∈ [x0,−c log |A(t)|) and x ∈ [−c log |A(t)|,∞) separately.
As in the proof of (i), one may conclude from Lemma 2.4.1 that

sup
x0≤x<−c log |A(t)|

(e−x)−1/2+ε
∣

∣

∣
W

(

tF̄
(

a(t)x + b(t)
)

)

− W (e−x)
∣

∣

∣
→ 0 a.s.

(2.4.2)

Since e−x → 0 and tF̄ (a(t)x + b(t)) → 0 uniformly for x ≥ −c log |A(t)|, we
get

sup
x≥−c log |A(t)|

(

max
(

e−x, tF̄
(

a(t)x + b(t)
))

)−1/2+ε∣
∣

∣
W

(

tF̄
(

a(t)x + b(t)
)

)

− W (e−x)
∣

∣

∣

≤ sup
x≥−c log |A(t)|

(

tF̄
(

a(t)x + b(t)
)

)−1/2+ε∣
∣

∣
W

(

tF̄
(

a(t)x + b(t)
)

)∣

∣

∣

+ sup
x≥−c log |A(t)|

(e−x)−1/2+ε|W (e−x)|

→ 0 a.s.

(2.4.3)

by the law of the iterated logarithm. A combination of (2.4.2) and (2.4.3) proves
the assertion. 2
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Proof of Theorem 2.2.1.

We focus on the case γ 6= 0 or ρ < 0, because the other case can be treated
similarly.

Define

ε∗ =

{

ε if ρ < 0,

ε/2 if ρ = 0 6= γ,

and

I : =
(

(1 + γx)−1/γ
)−1/2+ε

∣

∣

∣

∣

En(x) − Wn

(

(1 + γx)−1/γ
)

−
√

knA
( n

kn

)

(1 + γx)−1/γ−1Kγ,ρ

(

(1 + γx)1/γ
)

∣

∣

∣

∣

≤
(

(1 + γx)−1/γ
)−1/2+ε

(

n
kn

F̄ (a( n
kn

)x + b( n
kn

))
)−1/2+ε∗

( n

kn
F̄

(

a(
n

kn
)x + b(

n

kn
)
)

)−1/2+ε∗

×

×
∣

∣

∣

∣

√

kn

( n

kn
F̄n

(

a(
n

kn
)x + b(

n

kn
)
)

− n

kn
F̄

(

a(
n

kn
)x + b(

n

kn
)
)

)

− Wn

( n

kn
F̄

(

a(
n

kn
)x + b(

n

kn
)
)

)

∣

∣

∣

∣

+

(

(1 + γx
)−1/γ

)−1/2+ε

w̃t(x)
w̃t(x)

√

knA
( n

kn

)

×

×
∣

∣

∣

∣

n
kn

F̄
(

a( n
kn

)x + b( n
kn

)
)

− (1 + γx)−1/γ

A( n
kn

)
− (1 + γx)−1/γ−1Kγ,ρ

(

(1 + γx)1/γ
)

∣

∣

∣

∣

+
(

(1 + γx
)−1/γ

)−1/2+ε

∣

∣

∣

∣

Wn

( n

kn
F̄

(

a(
n

kn
)x + b(

n

kn
)
)

)

− Wn

(

(1 + γx)−1/γ
)

∣

∣

∣

∣

:= I1 + I2 + I3.

By (2.2.2) (with a and b instead of ã and b̃) and Lemma 2.4.1 one has

supx0≤x<1/((−γ)∨0) I1
P−→ 0. From Proposition 2.3.2 and the fact that ((1 +

γx)−1/γ)−1/2+ε/w̃t(x) is bounded uniformly for x0 ≤ x < 1/((−γ) ∨ 0), it fol-
lows that supx0≤x<1/((−γ)∨0) I2 → 0. Finally Lemma 2.4.2 shows that

supx0≤x<1/((−γ)∨0) I3
P−→ 0. 2

Proof of Corollary 2.2.1.

Because of Theorem 2.2.1(ii) and max(1, xτ ) = o(e(1/2−ε)x) as x → ∞ for
all τ > 0 and ε ∈ (0, 1/2), it suffices to prove that

sup
x0≤x<∞

( n

kn
F̄

(

a
( n

kn

)

x + b
( n

kn

)

))1/2−ε
max(1, xτ ) = O(1).
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According to Lemma 2.2 of Resnick (1987), there exists a function ā such
that a(t)/ā(t) → 1 as t → ∞ and

F t
(

ā(t)x + b(t)
)

≥ 1 − (1 + δ)3(1 + δx)−1/δ

for all δ > 0, sufficiently large t and x ≥ x0. Thus, by the mean value theorem,
there exists θt,x ∈ (0, 1) such that

tF̄
(

ā(t)x + b(t)
)

≤ t
(

1 −
(

1 − (1 + δ)3(1 + δx)−1/δ
)1/t)

= (1 + δ)3(1 + δx)−1/δ
(

1 − θt,x(1 + δ)3(1 + δx)−1/δ
)1/t−1

≤ 2(1 + δx)−1/δ

if x ≥ 0 and δ > 0 is sufficiently small. Since by the locally uniform convergence
in (2.1.2)

sup
x0≤x<0

( n

kn
F̄

(

a
( n

kn

)

x + b
( n

kn

)

))1/2−ε
max(1, xτ ) = O(1),

it follows that

sup
x0≤x<∞

( n

kn
F̄

(

a
( n

kn

)

x + b
( n

kn

)

))1/2−ε
max(1, xτ )

= O(1) + 2 sup
0≤x<∞

(

1 +
δ

2
x
)−1/δ

max(1, xτ )

= O(1)

if δ is chosen smaller than 1/τ . 2

2.5 Tail Empirical Process With Estimated Param-

eters: Proofs

In this section we prove the approximation to the tail empirical process with
estimated parameters stated in Proposition 2.2.1 and the limit theorem 2.2.2
for the test statistic Tn. To this end, we need a sequence of lemmas.

Define

An,kn :=
â(n/kn)

a(n/kn)
,

Bn,kn :=
b̂(n/kn) − b(n/kn)

a(n/kn)
,

yn(x) :=
(

1 + γ
(

Bn,kn + An,kn

x−γ̂n − 1

γ̂n

)

)−1/γ
.
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Recall from (2.2.6) that

An,kn = 1 + k−1/2
n α(Wn) + oP (k−1/2

n ),

Bn,kn = k−1/2
n β(Wn) + oP (k−1/2

n ), (2.5.1)

γ̂n = γ + k−1/2
n Γ(Wn) + oP (k−1/2

n ).

Lemma 2.5.1. Suppose (2.5.1) holds. Let λn > 0 be such that λn → 0, and

k
−1/2
n λγ

n → 0 if γ < 0, or k
−1/2
n log2 λn → 0 if γ = 0.

(i) If γ > 0 then, for all ε > 0, x−1/2+ε
(√

kn(yn(x) − x) − L
(γ)
n (x)

) P−→ 0, and

xε−1(yn(x) − x)
P−→ 0 as n → ∞ uniformly for x ∈ (0, 1].

(ii) If −1/2 < γ ≤ 0 then, for all ε > 0, x−1/2+ε
(√

kn(yn(x)−x)−L
(γ)
n (x)

) P−→ 0

and (yn(x) − x)/x
P−→ 0 as n → ∞ uniformly for x ∈ [λn, 1].

Proof. For γ 6= 0, define δn := 1 + γBn,kn − An,knγ/γ̂n, and ∆n := ∆n,x :=

δnγ̂n/(γAn,knx−γ̂n), so that δn = OP (k
−1/2
n ).

(i). By the mean value theorem there exist θn,x ∈ (0, 1) such that

yn(x) =
(

1 + γ
(

Bn,kn + An,kn

x−γ̂n − 1

γ̂n

)

)−1/γ

=
( γ

γ̂n
An,knx−γ̂n + δn

)−1/γ

=
( γ

γ̂n
An,knx−γ̂n

)−1/γ
(1 + ∆n)−1/γ

=
( γ

γ̂n
An,knx−γ̂n

)−1/γ − 1

γ

( γ

γ̂n
An,knx−γ̂n(1 + θn,x∆n)

)−1/γ−1
δn

=
( γ

γ̂n
An,knx−γ̂n

)−1/γ − 1

γ
xγ̂n(1/γ+1)δn(1 + oP (1)) (2.5.2)

where the oP (1)-term tends to 0 uniformly for x ∈ (0, 1]. Hence again by the
mean value theorem and (2.5.1), for some θn,x ∈ (0, 1),

yn(x) − x

=
(

( γ

γ̂n
An,kn

)−1/γ − 1
)

xγ̂n/γ + (xγ̂n/γ − x) − 1

γ
xγ̂n(1/γ+1)δn(1 + op(1))

= −1

γ
(1 + op(1))

( γ

γ̂n
An,kn − 1

)

xγ̂n/γ + x1+θn,x(γ̂n/γ−1) log x
( γ̂n

γ
− 1

)

−1

γ
xγ̂n(1/γ+1)δn(1 + op(1))

=
1

γ
(1 + op(1))xγ̂n/γ

( γ̂n − γ

γ̂n
An,kn − (An,kn − 1)

)

+ x1+θn,x(γ̂n/γ−1) log x
γ̂n − γ

γ

−1

γ
xγ̂n(1/γ+1)

(

γBn,kn +
1

γ̂n
(γ̂n − γ) − γ

γ̂n
(An,kn − 1)

)

(1 + op(1)). (2.5.3)
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Now the first assertion is a straightforward consequence of (2.5.1). For example,

x−1/2+ε
√

kn
1

γ
(1 + oP (1))xγ̂n/γ

( γ̂n − γ

γ̂n
An,kn − (An,kn − 1)

)

=
1

γ
x−1/2+ε exp

(

(γ̂n/γ − 1) log x
)

×

×x
(

√

kn
γ̂n − γ

γ̂n
An,kn −

√

kn(An,kn − 1)
)

(1 + oP (1))

=
1

γ
x−1/2+εx

(Γ(Wn)

γ
− α(Wn)

)

(1 + oP (1))

uniformly for x ∈ (0, 1].
Moreover, in view of (2.5.3),

xε−1(yn(x) − x)

= −1

γ
(1 + op(1))

( γ

γ̂n
An,kn − 1

)

xγ̂n/γ−1+ε + xε+θn,x(γ̂n/γ−1) log x
( γ̂n

γ
− 1

)

− 1

γ
xγ̂n−1+ε+γ̂n/γδn(1 + op(1))

P−→ 0

as n → ∞ uniformly for x ∈ (0, 1].

(ii). First we consider the case γ = 0. Then

yn(x) − x

= exp
(

−
(

Bn,kn + An,kn

x−γ̂n − 1

γ̂n

)

)

− x

= x
(

exp
(

−
(

Bn,kn + An,kn

(x−γ̂n − 1

γ̂n
+ log x

)

− (An,kn − 1) log x
)

)

− 1
)

.

(2.5.4)

An application of the mean value theorem to γ 7→ x−γ together with (2.5.1)
yields

x−γ̂n − 1

γ̂n
= − log x +

1

2
γ̂n log2 x exp

(

− θn,xγ̂n log x
)

(2.5.5)

for some θn,x ∈ (0, 1). It follows that

x−γ̂n − 1

γ̂n
+ log x

P−→ 0

as n → ∞ uniformly for x ∈ [λn, 1], since then k
−1/2
n log2 x ≤ k

−1/2
n log2 λn → 0

and likewise γ̂n log x
P−→ 0. Hence

Bn,kn + An,kn

(x−γ̂n − 1

γ̂n
+ log x

)

− (An,kn − 1) log x
P−→ 0,
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and by (2.5.1) and (2.5.5)

x−1/2+ε
√

kn(yn(x) − x)

= −x−1/2+εx
(

√

knBn,kn +
√

knAn,kn

(x−γ̂n − 1

γ̂n
+ log x

)

−
√

kn(An,kn − 1) log x
)

(1 + oP (1))

= −x−1/2+εx
(

β(Wn) +
1

2
Γ(Wn) log2 x − α(Wn) log x

)

(1 + oP (1))

uniformly for x ∈ [λn, 1], that is, the first assertion.
Likewise one concludes from (2.5.4), (2.5.1) and (2.5.5) that (yn(x) − x)/x

tends to 0 uniformly for x ∈ [λn, 1].

Next assume −1/2 < γ < 0. Because δn = OP (k
−1/2
n ) and, by the definition

of λn and (2.5.1),

k−1/2
n xγ̂n ≤ k−1/2

n λγ̂n
n = o

(

exp
(

log λn(γ̂n − γ)
)

)

= oP (1),

∆n → 0 in probability uniformly for x ∈ [λn, 1]. Therefore, the first assertion
can be established as in the case γ > 0.

Furthermore, according to (2.5.3),

yn(x) − x

x

= −1

γ
(1 + op(1))

( γ

γ̂n
An,kn − 1

)

xγ̂n/γ−1 + xθn,x(γ̂n/γ−1) log x
( γ̂n

γ
− 1

)

− 1

γ
xγ̂n+γ̂n/γ−1δn(1 + op(1))

= −1

γ

( γ

γ̂n
An,kn − 1

)

exp
(

√
kn(γ̂n − γ)

γ

log x√
kn

)

(1 + op(1))

+
log x√

kn

√
kn(γ̂n − γ)

γ
exp

(θn,x

√
kn(γ̂n − γ)

γ

log x√
kn

)

− 1

γ
exp

(

√
kn(γ̂n − γ)

γ

log x√
kn

+
√

kn(γ̂n − γ)
log x√

kn

) xγ

√
kn

√

knδn(1 + op(1))

P−→ 0

as n → ∞ uniformly for x ∈ [λn, 1] by the choice of λn. 2

Lemma 2.5.2. Under the conditions of Lemma 2.5.1 one has for all ε > 0:

(i) If γ > 0, then x−1/2+ε
(

Wn(yn(x)) − Wn(x)
) P−→ 0 as n → ∞ uniformly for

x ∈ (0, 1].

(ii) If −1/2 < γ ≤ 0, then x−1/2+ε
(

Wn(yn(x)) − Wn(x)
) P−→ 0 as n → ∞

uniformly for x ∈ [λn, 1].
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Proof. Let un > 0, n ∈ N, be an arbitrary sequence converging to 0. According
to Lemma 2.5.1 and the law of iterated logarithm

x−1/2+ε
(

Wn(yn(x))−Wn(x)
)

=
(yn(x))1/2−ε/2

x1/2−ε

Wn(yn(x))

(yn(x))1/2−ε/2
− Wn(x)

x1/2−ε

P−→ 0

uniformly for x ∈ (0, un] if γ > 0, and uniformly for x ∈ [λn, un] if −1/2 < γ ≤
0. Since, due to the continuity of Wn and Lemma 2.5.1,

sup
u≤x≤1

x−1/2+ε
∣

∣Wn(yn(x)) − Wn(x)
∣

∣

P−→ 0

for all u ∈ (0, 1], the assertion follows readily. 2

Lemma 2.5.3. Under the conditions of Lemma 2.5.1 one has for all ε > 0:
(i) For γ > 0

x−1/2+ε
(

(yn(x))γ+1Kγ,ρ

( 1

yn(x)

)

− xγ+1Kγ,ρ

(1

x

)

)

P−→ 0

as n → ∞ uniformly for x ∈ (0, 1].
(ii) For −1/2 < γ ≤ 0

x−1/2+ε
(

(yn(x))γ+1Kγ,ρ

( 1

yn(x)

)

− xγ+1Kγ,ρ

(1

x

)

)

P−→ 0

as n → ∞ uniformly for x ∈ [λn, 1].

Proof. (i). We only consider the case γ > 0 = ρ; the assertion can be proved
similarly in the case γ > 0 > ρ. Equation (2.5.2) implies

log
yn(x)

x
= O

(

log
( γ

γ̂n
An,kn

))

+ O
(( γ̂n

γ
− 1

)

log x
)

+ O(∆n,x)

= OP

(

k−1/2
n (1 + | log x|)

)

uniformly for x ∈ (0, 1]. Hence, by the definition of Kγ,0 and Lemma 2.5.1(i),

x−1/2+ε
(

(yn(x))γ+1Kγ,0

( 1

yn(x)

)

− xγ+1Kγ,0

(1

x

)

)

= x−1/2+ε
(

− yn(x) log(yn(x))

γ
+

x log x

γ

)

= −1

γ

(

x−1/2+εyn(x) log
yn(x)

x
+ x−1/2+ε(yn(x) − x) log x

)

= −1

γ

(

xε−1yn(x)x1/2OP

(

k−1/2
n (1 + | log x|)

)

+ xε−1(yn(x) − x)x1/2 log x

)

P−→ 0
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as n → ∞ uniformly for x ∈ (0, 1].
(ii). In the case γ = 0 > ρ, according to the definition of K0,ρ, Lemma 2.5.1(ii)
and the mean value theorem, there exists θn,x ∈ (0, 1) such that

x−1/2+ε
(

yn(x)K0,ρ

( 1

yn(x)

)

− xK0,ρ

(1

x

)

)

= x−1/2+ε
((yn(x))1−ρ

ρ
− x1−ρ

ρ

)

=
1 − ρ

ρ
x1/2+ε yn(x) − x

x

(

x + θn,x(yn(x) − x)
)−ρ

P−→ 0

as n → ∞ uniformly for x ∈ [λn, 1].
In the other cases the assertion can be proved likewise. 2

Remark 2.5.1. The part (ii) of Lemma 2.5.1 with weight function xε−1−γ

instead of x−1/2+ε, and of the Lemmas 2.5.2 and 2.5.3 also hold true for −1 <
γ ≤ 0.

Lemma 2.5.4. Suppose pn → 0, npn → 0, and k
−1/2
n log2(npn) → 0 as n → ∞.

Define

x̂pn :=
( kn

npn
)γ̂n − 1

γ̂n
â(

n

kn
) + b̂(

n

kn
).

Then, under the conditions of Proposition 2.2.1 for −1
2 < γ ≤ 0, P{x̂pn ≤

Xn,n} → 0 as n → ∞.

Proof. According to Theorem 1 of de Haan and Stadtmüller (1996), one has

a(tx)
xγa(t) − 1

A(t)
→ xρ − 1

ρ

as t → ∞. By similar arguments as used by Drees (1998) and Cheng and Jiang
(2001) it follows that, for all 0 < ε < 1

2 , there exists tε > 0 such that for all
t ≥ tε and x ≥ 1

∣

∣

∣

∣

a(tx)
xγa(t) − 1

A(t)
− xρ − 1

ρ

∣

∣

∣

∣

≤ εxρ+ε.

Hence

a(n)

kγ
na(n/kn)

= 1 + A
( n

kn

)kρ
n − 1

ρ
+ o

(

A
( n

kn

)

kρ+ε
n

)

→ 1 (2.5.6)

because ρ ≤ 0 and
√

knA(n/kn) = O(1).
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Now, we distinguish two cases.

Case (i): −1/2 < γ < 0.
Then

x̂pn − Xn,n

a(n/kn)

= −1

γ

( â(n/kn)

a(n/kn)
− 1

)

+
1

γ̂n

â(n/kn)

a(n/kn)

( kn

npn

)γ̂n

+
â(n/kn)

a(n/kn)

(1

γ
− 1

γ̂n

)

+
b̂(n/kn) − b(n/kn)

a(n/kn)
−

(b(n) − b(n/kn)

a(n/kn)
+

1

γ

)

− Xn,n − b(n)

a(n)
· a(n)

a(n/kn)

=: T1 + T2 + T3 + T4 − T5 − T6.

Assumption (2.5.1) implies T1 + T3 + T4 = OP (k
−1/2
n ) = op(k

γ
n) and

T2 = OP

(

( kn

npn

)γ
exp

(

(γ̂n − γ) log
kn

npn

)

)

= OP

(

( kn

npn

)γ
)

= oP (kγ
n)

because npn → 0 and k
−1/2
n log(npn) → 0.

Since, in view of (2.5.6) and the definition of b(n),

U(n) − b(n)

a(n/kn)
=

a(n)

a(n/kn)
· A(n)

γ + ρ
1{ρ < 0} = o(kγ

n),

approximation (2.2.5) yields

T5 =
kγ

n − 1

γ
+ o

(

kγ+ρ+ε
n A

( n

kn

))

+ o(kγ
n) +

1

γ
=

kγ
n

γ
+ o(kγ

n).

Finally, k−γ
n T6 converges to Gγ in distribution because of F ∈ D(Gγ) and

(2.5.6).

Summing up, one obtains

x̂pn − Xn,n

kγ
na(n/kn)

d−→ −
(

M +
1

γ

)

for a Gγ-distributed r.v. M . Now the assertion follows from the fact that
−(M + 1/γ) > 0 a.s.

Case (ii): γ = 0.
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By similar arguments as in the first case one obtains

x̂pn − Xn,n

a(n/kn)

=

(

(

kn
npn

)γ̂n − 1

γ̂n
− log

kn

npn

)

â(n/kn)

a(n/kn)
+

( â(n/kn)

a(n/kn)
− 1

)

log kn +
â(n/kn)

a(n/kn)
log

1

npn

+
b̂(n/kn) − b(n/kn)

a(n/kn)
−

(b(n) − b(n/kn)

a(n/kn)
− log kn

)

− Xn,n − b(n)

a(n)
· a(n)

a(n/kn)

= oP (1) + oP (1) + log
1

npn
(1 + oP (1)) + OP (k−1/2

n ) + o(1) + OP (1)

= log
1

npn
(1 + oP (1))

P−→ ∞

from which the assertion is obvious. 2

Proof of Proposition 2.2.1.

Recall the definition

yn(x) :=

(

1 + γ(
b̂( n

kn
) − b( n

kn
)

a( n
kn

)
+

â( n
kn

)

a( n
kn

)

x−γ̂n − 1

γ̂n
)

)−1/γ

.

Observe that

I : = x−1/2+ε

(

√

kn

[ n

kn
F̄n

(

â
( n

kn

)x−γ̂n − 1

γ̂n
+ b̂

( n

kn

)

)

− x
]

− Wn(x) − L(γ)
n (x) −

√

knA
( n

kn

)

xγ+1Kγ,ρ

(1

x

)

)

=
x−1/2+ε

(yn(x))−
1+ε
2

(yn(x))−
1+ε
2

(

√

kn

[ n

kn
F̄n

(

a
( n

kn

)(yn(x))−γ − 1

γ
+ b

( n

kn

)

)

− yn(x)
]

− Wn(yn(x)) −
√

knA
( n

kn

)

(yn(x))γ+1Kγ,ρ

( 1

yn(x)

)

)

+ x−1/2+ε
(

√

kn(yn(x) − x) − L(γ)
n (x)

)

+ x−1/2+ε
(

Wn(yn(x)) − Wn(x)
)

+ x−1/2+ε
(

√

knA
( n

kn

)

(yn(x))γ+1Kγ,ρ

( 1

yn(x)

)

−
√

knA
( n

kn

)

xγ+1Kγ,ρ

(1

x

)

)

: = I1 + I2 + I3 + I4

Now we distinguish three cases.

Case (i): γ > 0.
By Lemma 2.5.1(i), supx∈(0,1] x

−1/2+ε/(yn(x))−1/2+ε/2 is stochastically bounded.
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Combining this with Theorem 2.2.1, we obtain supx∈(0,1] |I1| → 0 in probability
as n → ∞. An application of Lemma 2.5.1(i), Lemma 2.5.2(i), and Lemma
2.5.3(i) gives

sup
x∈(0,1]

|I2| d−→ 0, sup
x∈(0,1]

|I3| P−→ 0, sup
x∈(0,1]

|I4| P−→ 0,

respectively. Hence supx∈(0,1] |I| → 0 in probability as n → ∞.

Case (ii): −1/2 < γ < 0, or γ = 0 and ρ < 0.

Let λn := 1/(kn log kn). Obviously λn → 0, k
−1/2
n λγ

n → 0 and k
−1/2
n log2 λn → 0

as n → ∞, and hence the Lemmas 2.5.1, 2.5.2 and 2.5.3 apply. Like in case (i),
we obtain supx∈(λn,1] |I| → 0 in probability as n → ∞.

It remains to prove that supx∈(0,λn] |I| → 0 in probability. To this end, let

pn := 1/(n log kn), and so npn → 0 and k
−1/2
n log2(npn) → 0 as n → ∞. Thus,

for x ∈ (0, λn],

zn(x) : = â
( n

kn

)x−γ̂n − 1

γ̂n
+ b̂

( n

kn

)

≥ â
( n

kn

)λ−γ̂n
n − 1

γ̂n
+ b̂

( n

kn

)

= â
( n

kn

)

(

kn
npn

)γ̂n − 1

γ̂n
+ b̂

( n

kn

)

,

and so by Lemma 2.5.4

P
{

zn(x) < Xn,n for some x ∈ (0, λn]
}

→ 0.

Let

τn := sup
x∈(0,λn]

x−1/2+ε n√
kn

F̄n

(

â
( n

kn

)x−γ̂n − 1

γ̂n
+ b̂

( n

kn

)

)

.

By the definition of F̄n, zn(x) < Xn,n for some x ∈ (0, λn] is equivalent to τ 6= 0.
Therefore,

P{τn 6= 0} → 0 (2.5.7)

as n → ∞.

Furthermore, it is easy to check that

x−1/2+ε
√

knx → 0, x−1/2+εWn(x)
P−→ 0,

x−1/2+εL(γ)
n (x)

P−→ 0, x−1/2+ε
√

knA
( n

kn

)

xγ+1Kγ,ρ

(1

x

)

→ 0
(2.5.8)

uniformly for x ∈ (0, λn] as n → ∞. For example, the second convergence is
an immediate consequence of the law of the iterated logarithm, and in the case
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−1/2 < γ < 0

sup
x∈(0,λn]

x−1/2+ε|L(γ)
n (x)|

≤ sup
x∈(0,λn]

1

|γ|x
1/2+ε

∣

∣

∣

1

γ
Γ(Wn) − α(Wn)

∣

∣

∣
+ sup

x∈(0,λn]

1

|γ| |Γ(Wn)|x1/2+ε log x

+ sup
x∈(0,λn]

1

|γ|x
1/2+γ+ε

∣

∣

∣γβ(Wn) +
1

γ
Γ(Wn) − α(Wn)

∣

∣

∣

P−→ 0.

In view of (2.5.7) and (2.5.8), the assertion supx∈(0,λn] |I| → 0 in probability is
immediate.

Case (iii): γ = ρ = 0.
According to Lemma 2.5.1, yn(x)/x → 1 in probability uniformly for x ∈ [λn, 1]
with λn := 1/(kn log kn), and hence

(1 + | log x|)τ

(1 + | log yn(x)|)τ
=

( 1 + | log x|
1 + | log x| + oP (1)

)τ
= OP (1)

uniformly for x ∈ [λn, 1]. Therefore, one can argue as in case (ii) (using Corol-
lary 2.2.1 instead of Theorem 2.2.1) to establish the assertion. 2

Proof of Theorem 2.2.2.

By Proposition 2.2.1 one has

(

√

kn

[ n

kn
F̄n

(

â
( n

kn
)
x−γ̂n − 1

γ̂n
+ b̂

( n

kn

)

)

− x
]

)2

=

(

Wn(x) + L(γ)
n (x) +

√

knA
( n

kn

)

xγ+1Kγ,ρ

(1

x

)

+
op(1)

h(x)

)2

.

(2.5.9)

Using the law of iterated logarithm, it is readily checked that

∫ 1

0

(

Wn(x) + L(γ)
n

)2
xη−2 dx = OP (1)

∫ 1

0

(

xγ+1Kγ,ρ

(1

x

)

)2
xη−2 dx < ∞

∫ 1

0

xη−2

h2(x)
dx < ∞

for η > 0, and η ≥ 1 if γ = ρ = 0. Hence the assertion is an immediate
consequence of (2.5.9) and

√
knA(n/kn) → 0. 2
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γ = 2 1.5 1 0.5 0.25 0 −0.25 −0.375 −0.499
p
0.995 0.545 0.513 0.507 0.525 0.553 0.621 0.672 0.739 0.909
0.99 0.477 0.462 0.459 0.474 0.494 0.554 0.604 0.667 0.795
0.975 0.408 0.389 0.383 0.390 0.409 0.459 0.510 0.558 0.657
0.95 0.349 0.337 0.330 0.337 0.355 0.390 0.431 0.468 0.552
0.9 0.289 0.281 0.278 0.285 0.295 0.318 0.355 0.381 0.444
0.8 0.231 0.227 0.224 0.229 0.239 0.254 0.280 0.299 0.343
0.7 0.197 0.193 0.191 0.195 0.201 0.213 0.235 0.253 0.286
0.6 0.171 0.168 0.166 0.169 0.175 0.185 0.204 0.217 0.243
0.5 0.151 0.148 0.147 0.149 0.154 0.162 0.178 0.189 0.211
0.4 0.132 0.131 0.130 0.132 0.136 0.144 0.157 0.164 0.183
0.3 0.116 0.114 0.114 0.116 0.120 0.126 0.135 0.144 0.158
0.2 0.100 0.099 0.098 0.100 0.103 0.108 0.116 0.122 0.134
0.1 0.083 0.082 0.081 0.082 0.085 0.089 0.095 0.099 0.106
0.05 0.071 0.070 0.070 0.071 0.073 0.078 0.080 0.083 0.090
0.025 0.062 0.062 0.062 0.063 0.064 0.068 0.071 0.073 0.078
0.01 0.053 0.054 0.054 0.055 0.056 0.059 0.060 0.062 0.067
0.005 0.048 0.049 0.049 0.050 0.051 0.052 0.054 0.055 0.060

Table 2.1: Quantiles Qp,γ of the limit distribution of knTn.

2.6 Simulations

First we want to calculate the limiting distribution of the test statistic knTn

defined by (2.1.4), where we use the maximum likelihood estimator γ̂n, â(n/kn)
and b̂(n/kn) described in Example 2.2.1. Here we have chosen η = 1, thus
giving maximal weight to deviations in the extreme tail region that is possible
in the framework of Theorem 2.2.2 for all values of γ > −1/2.

To simulate
∫ 1
0 (Wn(x) + L

(γ)
n (x))2x−1 dx, the Brownian motion Wn on the

unit interval is simulated on a grid with 50 000 points. Then the integral is
approximated by a Riemann sum for the extreme value indices γ = 2, 1.5, 1,
0.5, 0.25, 0, −0.25, −0.375 and −0.499. Note that for γ < −1/2 the term

L
(γ)
n is not defined since the integral Sn =

∫ 1
0 tγ−1Wn(t) dt defined in Example

2.2.1 may not exist. The empirical quantiles of the integral statistic obtained in
20 000 runs are reported in Table 2.1. It is not surprising that the extreme upper
quantiles increase rapidly as γ < 0 decreases, since |Sn| → ∞ in probability as
γ ↓ −1/2, and thus the limit distribution of knTn converges weakly to ∞, too.

Next we investigate the finite sample behavior of the test described in section
2.2, that rejects the hypothesis that F ∈ D(Gγ) for some γ > −1/2 if knTn

exceeds Q̂1−ᾱ,γ̃n . Here we use the maximum likelihood estimator for γ also
as the pilot estimator, that is, γ̃n = γ̂n; the estimates are calculated using
Grimshaw’s (1993) algorithm. Since we have approximately determined the
quantiles Qp,γ only for 9 different values of γ, we use linear interpolation to
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approximate the quantiles for intermediate values of γ, that is, for γ̃n ∈ [γ1, γ2]
we define

Q̂p,γ̃n = Qp,γ1 +
γ̃n − γ1

γ2 − γ1
(Qp,γ2 − Qp,γ1)

where Qp,γi denote the quantiles given in Table 2.1. Moreover, we define
Q̂p,γ̃n := Qp,2 if γ̃n > 2.

As usually in extreme value theory, the choice of the number kn of order
statistics used for the inference is a crucial point. Here we consider kn =
25, 50, . . . , 150 for sample size n = 200, and kn = 25, 50, . . . , 400 for sample size
n = 1000.

We have drawn 1000 samples from each of the following distribution func-
tions belonging to the domain of attraction of Gγ for some γ > −1/2:

• Cauchy distribution (γ = 1, ρ = −2):

F (x) =
1

2
+

1

π
arctan x, x ∈ R.

• Burr(β, τ, λ) distribution (γ = 1/(τλ), ρ = −1/λ):

F (x) = 1 −
(

β

β + xτ

)λ

, x > 0,

with (β, τ, λ) = (1, 2, 2).

• Extreme value distribution EV (γ) (γ ∈ R, ρ = −1):

F (x) = exp
(

− (1 + γx)−1/γ
)

, 1 + γx > 0,

with γ = 0.25 and γ = 0.

• Weibull(λ, τ) distribution (γ = 0, ρ = 0):

F (x) = 1 − exp(−λxτ ), x > 0,

with (λ, τ) = (1, 0.5).

• Reversed Burr(β, τ, λ) distribution (γ = −1/(τλ), ρ = −1/λ):

F (x) = 1 −
(

β

β + (x∗ − x)−τ

)λ

, x < x∗,

with (β, τ, λ) = (1, 4, 1) and x∗ = 1.
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In some simulations either there exists no solution to the likelihood equa-
tions, or the maximum likelihood estimate of γ is less than −1/2, so that the
test cannot be applied. The relative frequency of simulations in which this hap-
pened are given in the Tables 2.2–2.5; for all other values of kn not mentioned
in these tables, the test could be performed in at least 99.6% of the simula-
tions, except for the reversed Burr distribution and sample size n=1000 where
in up to 2% of the simulations the estimate for the extreme value index was
less than −1/2 in the cases not mentioned in Table 2.5. For this distribution,
one gets estimates of γ less than −1/2 in at least 1% of the simulations for all
values of kn and in more than 30% of all simulations with n = 200, while for
all other distributions this happened only if a small proportion of the data is
used for the inference. It is obvious that the problem of pilot estimates of γ
being smaller than −1/2 becomes more and more acute as the true extreme
value index approaches −1/2; this is particularly true for small sample sizes.

In the Tables 2.6 and 2.7 the empirical size of the test with nominal size
ᾱ = 0.05 is reported, that is, the relative frequency of simulations in which the
hypothesis is rejected. These frequencies are based only on those simulations
in which the test could actually be applied. In addition, in 10 000 simulations
for each d.f. and each kn, we determine the number of order statistics for which
the maximum likelihood estimator of γ has minimal mean squared error. The
corresponding empirical sizes are given in bold face.

With the exception of the Weibull distribution for n = 1000, the number
of order statistics which is optimal for the maximum likelihood estimator of γ
is approximately equal to the value of kn where the empirical size of the test
starts to grow rapidly, while for smaller values of kn the empirical size is quite
close to the nominal value. This indicates that the test statistic Tn can indeed
be used to choose the sample fraction on which extreme value estimators are
based.

This conclusion is also supported by Figure 2.1 that displays both the em-
pirical size of the test and the mean squared error of γ̂n versus k for the Cauchy
distribution and sample size n = 1000. The mean squared error is minimal for
about k = 250 which is also the point where the empirical size increases sharply.

At first glance, it might be surprising that, unlike estimators of γ, the test
behaves equally well for small and large values of |ρ|. However, recall that for
the actual size to be close to the nominal value it is not important how accurate
the estimators are but only how precise the Gaussian approximation for the tail
empirical distribution function with estimated parameters is. While the rate of
convergence of estimators of the extreme value index deteriorates as ρ tends to
0, this is not necessarily true for the accuracy of the normal approximation.

Acknowledgment: Part of the work of Holger Drees and Laurens de
Haan was done while visiting the Stochastics Center at Chalmers University
Gothenburg. Grateful acknowledgement is made for hospitality particularly to
Holger Rootzén. During that time Holger Drees was supported by the Euro-
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kn Cauchy Burr(1,2,2) EV(0.25) EV(0) Weibull(1,0.5) Rev. Burr(1,4,1)
25 0.000 0.0003 0.002 0.018 0.004 0.090

Table 2.2: Relative frequency of simulations in which no maximum likelihood
estimate was found for sample size n = 200.

kn Cauchy Burr(1,2,2) EV(0.25) EV(0) Weibull(1,0.5) Rev. Burr(1,4,1)
25 0.000 0.013 0.035 0.097 0.014 0.343
50 0.000 0.000 0.000 0.025 0.001 0.317

kn 75 100 125 150
Rev. Burr(1,4,1) 0.351 0.523 0.796 0.973

Table 2.3: Relative frequency of simulations in which γ̂n < −0.5 for sample size
n = 200.

kn Cauchy Burr(1,2,2) EV(0.25) EV(0) Weibull(1,0.5) Rev. Burr(1,4,1)
25 0.000 0.001 0.006 0.026 0.005 0.073

Table 2.4: Relative frequency of simulations in which no maximum likelihood
estimate was found for sample size n = 1000.

kn Cauchy Burr(1,2,2) EV(0.25) EV(0) Weibull(1,0.5) Rev. Burr(1,4,1)
25 0.001 0.004 0.020 0.091 0.025 0.274
50 0.000 0.000 0.002 0.012 0.000 0.157
75 0.000 0.000 0.000 0.004 0.000 0.077

kn 75 100 125 150
Rev. Burr(1,4,1) 0.077 0.043 0.031 0.020

Table 2.5: Relative frequency of simulations in which γ̂n < −0.5 for sample size
n = 1000.

kn Cauchy Burr(1,2,2) EV(0.25) EV(0) Weibull(1,0.5) Rev. Burr(1,4,1)
25 0.044 0.034 0.036 0.024 0.042 0.018
50 0.055 0.044 0.046 0.028 0.056 0.035
75 0.083 0.061 0.054 0.034 0.087 0.065
100 0.253 0.065 0.074 0.061 0.141 0.177
125 0.721 0.099 0.107 0.116 0.264 0.505
150 0.990 0.180 0.183 0.259 0.517 0.778

Table 2.6: Empirical size the one-sided test with nominal size ᾱ = 0.05 for
sample size n = 200.
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kn Cauchy Burr(1,2,2) EV(0.25) EV(0) Weibull(1,0.5) Rev. Burr(1,4,1)
25 0.045 0.033 0.031 0.032 0.035 0.023
50 0.047 0.036 0.040 0.044 0.046 0.021
75 0.051 0.038 0.028 0.043 0.041 0.030
100 0.058 0.039 0.051 0.049 0.047 0.031
125 0.047 0.042 0.049 0.044 0.059 0.043
150 0.053 0.047 0.054 0.048 0.082 0.042
175 0.056 0.050 0.061 0.042 0.086 0.040
200 0.055 0.047 0.058 0.049 0.098 0.062
225 0.059 0.052 0.060 0.054 0.110 0.066
250 0.073 0.050 0.060 0.052 0.120 0.098
275 0.100 0.064 0.061 0.052 0.130 0.119
300 0.115 0.068 0.058 0.063 0.158 0.147
325 0.146 0.068 0.073 0.063 0.204 0.189
350 0.203 0.065 0.068 0.081 0.235 0.273
375 0.280 0.068 0.071 0.088 0.275 0.350
400 0.345 0.093 0.083 0.113 0.319 0.445

Table 2.7: Empirical size of the one-sided test with nominal size ᾱ = 0.05 for
sample size n = 1000.

0 50 100 150 200 250 300 350 400
0

0.05

0.1

Figure 2.1: Empirical size of the test with nominal size ᾱ = 0.05 (solid line)
and the mean squared error of γ̂n (dashed line) as a function of kn for Cauchy
samples of size n = 1000.
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Chapter 3

On Large Deviation for

Extremes

co-authors: Holger Drees and Laurens de Haan

Abstract. Recently a weighted approximation for the tail empirical distribution

function has been developed (chapter 2). We show that the same result can also be

used to improve a known uniform approximation of the distribution of the maximum of

a random sample. From this a general result about large deviations of this maximum

is derived. In addition, the relationship between two second order conditions used in

extreme value theory is clarified.

3.1 Introduction

Let {Xn, n ≥ 1} be independent identically distributed random variables with
common distribution function F (x). Suppose F is in the domain of attraction
of the extreme value distribution with index γ ∈ R

Gγ(x) := exp
(

−(1 + γx)−1/γ
)

, 1 + γx > 0,

that is, there exist normalizing constants an > 0 and bn ∈ R such that

P (Mn ≤ anx + bn) → Gγ(x), x ∈ R, (3.1.1)

as n → ∞, where Mn := max(X1, X2, ..., Xn).
Since the limit function Gγ is continuous, we have

lim
n→∞

sup
x∈R

|Fn(anx + bn) − Gγ(x)| = 0.

Cheng and Jiang (2001) proved that under the second order strengthening
(3.1.4) of condition (3.1.1) one can find a sequence A(n) satisfying A(n) → 0, as

45
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n → ∞ and A is regularly varying with index ρ ≤ 0 and normalizing constants
ãn > 0 and b̃n ∈ R such that

lim
n→∞

sup
x∈R

∣

∣

∣

∣

∣

Fn(ãnx + b̃n) − Gγ(x)

A(n)
+ (1 + γx)−1/γ−1Gγ(x)H̄γ,ρ((1 + γx)1/γ)

∣

∣

∣

∣

∣

= 0,

(3.1.2)

where the function H̄γ,ρ is defined in (3.3.1) below, and where the last item is
defined by continuity when 1+γx → 0. De Haan and Resnick (1996) established
a similar approximation under a somewhat stronger second order condition. We
will show that, under the same condition but with slightly different normalizing
constants, a weighted version of this result holds, that is more accurate for
values of x close to the right endpoint 1/(−γ) ∨ 0) of Gγ , that is, ∞ if γ ≥ 0
and 1/(−γ) if γ < 0.

From this result it is easily deduced that

lim
n→∞

1 − Fn(anxn + bn)

1 − Gγ(xn)
= 1 (3.1.3)

for all sequences xn ↑ 1/((−γ) ∨ 0). Convergence (3.1.3), which can be con-
sidered a result about large deviations of the maximum Mn from its ‘typical’
behavior, was also studied in Section 2.3 of the monograph by Resnick (1987).
There, for different normalizing constants an and bn, quite complicated neces-
sary and sufficient conditions on the maximal rate at which xn may tend to
1/((−γ) ∨ 0) were given such that (3.1.3) holds. In contrast, for our choice of
the normalizing constants, the large deviations result (3.1.3) holds for all se-
quences xn ↑ 1/((−γ) ∨ 0), provided the second order condition (3.1.4) is met
with ρ < 0.

Condition (3.1.1) is equivalent to the existence of a positive function a∗ such
that

lim
t→∞

V (tx) − V (t)

a∗(t)
=

xγ − 1

γ

for all x > 0, where the function V is defined as a generalized inverse:

V (t) :=

(

1

− log F

)←
(t) = F←(e−1/t).

Cheng and Jiang (2001) proved that the following second order condition is
necessary for a uniform approximation of type (3.1.2): there exists a (positive
or negative) function A∗ and a parameter ρ ≤ 0 such that for all x > 0

lim
t→∞

V (tx)−V (t)
a∗(t) − xγ−1

γ

A∗(t)
= Hγ,ρ(x) :=























xγ+ρ−1
γ+ρ , ρ < 0, γ + ρ 6= 0,

log x, ρ < 0, γ + ρ = 0,
1
γ xγ log x, ρ = 0 6= γ,
1
2 log2 x, ρ = 0 = γ.

(3.1.4)
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Then there exist functions a and A satisfying a(t) ∼ a∗(t) and A(t) ∼ A∗(t)
as t → ∞, such for all ǫ > 0 there exists a constant tǫ > 0 such that for all
t, tx ≥ tǫ

x−(γ+ρ)e−ǫ| log x|

∣

∣

∣

∣

∣

∣

V (tx)−V (t)
a(t) − xγ−1

γ

A(t)
− Hγ,ρ(x)

∣

∣

∣

∣

∣

∣

< ǫ (3.1.5)

(see Drees (1998)). Cheng and Jiang (2001) gave explicit representations of the
functions a and A in terms of F . Under this second order condition, following
the lines of chapter 2, one may prove a weighted approximation to the tail of
the empirical distribution function which will be central for the proof of our
main result.

While here we work with a second order condition for the function V , usually
the analogous condition for U := (1/1 − F )← is considered. The relationship
between these two conditions is clarified in the Appendix.

3.2 Main results

Our main result is a weighted approximation to the normalized distribution
function Fn(anx + bn) of the maximum Mn where the additive constant bn is
chosen equal to V (n). Before stating the main result we make the following
conventions:

(1 + γx)1/γ =











exp(x) if γ = 0,

0 if γ > 0 and 1 + γx ≤ 0,

∞ if γ < 0 and 1 + γx ≤ 0.

By this convention, we have

Gγ(x) =

{

0 if γ > 0 and 1 + γx ≤ 0,

1 if γ < 0 and 1 + γx ≤ 0.

Theorem 3.2.1. Assume that V satisfies (3.1.4) with γ 6= 0 or ρ < 0. Define
for n ∈ N

an :=

{

a(n)
(

1 + γ
γ+ρA(n)

)

if ρ < 0, γ + ρ 6= 0,

a(n) otherwise,

bn := V (n)

and

H̃γ,ρ(x) :=

{

xγ+ρ−xγ

γ+ρ if ρ < 0, γ + ρ 6= 0,

Hγ,ρ(x) otherwise.
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Then for each ǫ > 0

sup
x< 1

(−γ)∨0

max
(

1,
(

(1 + γx)1/γ
)1−ǫI{ρ=0}

)

×

×
∣

∣

∣

∣

Fn(anx + bn) − Gγ(x)

A(n)
+ Gγ(x)(1 + γx)−1/γ−1H̃γ,ρ((1 + γx)1/γ)

∣

∣

∣

∣

= o(1)

as n → ∞.

The proof of Theorem 3.2.1 is based on a similar approximation where
a less natural additive constant b̄n and the scaling constant ān = a(n) are
used (see Proposition 3.3.1). At first glance, seemingly one has to pay for the
natural choice bn = V (n) by a more complicated scaling constant an. However,
(3.1.5) also holds when a(t) is replaced with a(t)(1+ γ/(γ + ρ)A(t)) in the case
ρ < 0, γ + ρ 6= 0 and Hγ,ρ is replaced with H̃γ,ρ. Hence there is nothing special
about the normalizing function a (and hence also about ān = a(n)), but its
particular form is only due to the quite arbitrary choice of the limiting function
Hγ,ρ often considered in the literature.

From the weighted approximation established in Theorem 3.2.1, results on
the relative error of the extreme value approximation of Fn and on large devi-
ations follow readily:

Corollary 3.2.1. Under the conditions of Theorem 3.2.1 with ρ < 0 one has

sup
− 1

γ∨0
<x< 1

(−γ)∨0

∣

∣

∣

∣

∣

∣

1−F n(anx+bn)
1−Gγ(x) − 1

A(n)
− Gγ(x)

1 − Gγ(x)
(1 + γx)−1/γ−1H̃γ,ρ((1 + γx)1/γ)

∣

∣

∣

∣

∣

∣

= o(1)

as n → ∞. In particular,

lim
n→∞

1 − Fn(anxn + bn)

1 − Gγ(xn)
= 1

for any sequence xn ↑ 1/((−γ) ∨ 0).

In fact the restriction x < 1/((−γ) ∨ 0) in Theorem 3.2.1 is not essential:

Remark 3.2.1. If γ < 0, then

sup
x≥−1/γ

∣

∣

∣

∣

Fn(anx + bn) − Gγ(x)

A(n)
+ Gγ(x)(1 + γx)−1/γ−1H̃γ,ρ((1 + γx)1/γ)

∣

∣

∣

∣

is zero for sufficiently large n.
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3.3 Proofs

The main ingredient of the proof of Theorem 3.2.1 is an approximation similar
to the one asserted in Theorem 3.2.1 but using different normalizing constants
and, as a consequence, the following modification of the limiting function:

H̄γ,ρ(x) :=

{

xγ+ρ

γ+ρ if ρ < 0, γ + ρ 6= 0,

Hγ,ρ(x) otherwise.
(3.3.1)

Proposition 3.3.1. Suppose that not γ = ρ = 0. Let

ān := a(n),

b̄n :=

{

V (n) − 1
γ+ρa(n)A(n) if ρ < 0, γ + ρ 6= 0,

V (n) otherwise.

Then, under the conditions of Theorem 3.2.1,

sup
(1+γx)−1/γ≤− log A2(n)

max
(

1,
(

(1 + γx)1/γ
)1−ρ−ε )

×

×
∣

∣

∣

∣

Fn(ānx + b̄n) − Gγ(x)

A(n)
+ Gγ(x)(1 + γx)−1/γ−1H̄γ,ρ((1 + γx)1/γ)

∣

∣

∣

∣

= o(1)

as n → ∞.

Proof. By the very same arguments as used in the proof of the Propositions
2.3.1 and 2.3.2 (see chapter 2), one obtains

sup
x∈D̃n,ρ

w(x)
∣

∣

∣

n(− log F (ānx + b̄n)) − (1 + γx)−1/γ

A(n)

− (1 + γx)−1/γ−1H̄γ,ρ((1 + γx)1/γ)
∣

∣

∣
= o(1)

with w(x) :=
(

(1 + γx)1/γ
)1−ρ−ε

and

D̃n,ρ :=

{

{x : (1 + γx)−1/γ ≤ cn−δ+1} ρ < 0,

{x : (1 + γx)−1/γ ≤ |A(n)|−c} ρ = 0.

In particular,

sup
(1+γx)−1/γ≤− log A2(n)

w(x)
∣

∣

∣

n(− log F (ānx + b̄n)) − (1 + γx)−1/γ

A(n)

− (1 + γx)−1/γ−1H̄γ,ρ((1 + γx)1/γ)
∣

∣

∣ = o(1).

This implies

Fn(ānx + b̄n) = exp
(

n log F (ānx + b̄n)
)

= exp

(

−(1 + γx)−1/γ − A(n)Φ(x) − o(1)
A(n)

w(x)

)

= Gγ(x) exp

(

−A(n)Φ(x) − o(1)
A(n)

w(x)

)

(3.3.2)
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as n → ∞, where the o(1)-term is uniform in x and

Φ(x) : = (1 + γx)−1/γ−1H̄γ,ρ((1 + γx)1/γ)

=















(1+γx)(ρ−1)/γ

γ+ρ ρ < 0, γ + ρ 6= 0

(1 + γx)−1/γ−1 log((1 + γx)1/γ) ρ < 0, γ + ρ = 0
1
γ (1 + γx)−1/γ log((1 + γx)1/γ) ρ = 0 6= γ.

Now let’s look at the item

A(n)Φ(x) + o(1)
A(n)

w(x)
.

In case of ρ < 0, γ + ρ 6= 0,

|A(n)Φ(x)| = |A(n)| · |(1 + γx)(ρ−1)/γ

γ + ρ
|

≤ 1

|γ + ρ| |A(n)|
(

− log A2(n)
)1−ρ

→ 0

as n → ∞ uniformly in x. Further for ε < 1 − ρ

|A(n)

w(x)
| = |A(n)| ·

(

(1 + γx)−1/γ
)1−ρ−ε

≤ |A(n)|
(

− log A2(n)
)1−ρ−ε

→ 0

as n → ∞ uniformly in x. Hence

A(n)Φ(x) + o(1)
A(n)

w(x)
→ 0 (3.3.3)

as n → ∞ uniformly in x. In other cases, the proofs of (3.3.3) are similar.
Because of

1 − x ≤ e−x ≤ 1 − x + x2

for −1 ≤ x ≤ 1, we have eventually

1 − A(n)Φ(x) − o(1)
A(n)

w(x)

≤ exp

(

−A(n)Φ(n) − o(1)
A(n)

w(x)

)

≤ 1 − A(n)Φ(x) − o(1)
A(n)

w(x)
+

(

A(n)Φ(x) + o(1)
A(n)

w(x)

)2

.
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It’s easy to check that (A(n)Φ(x))2 = o(1)A(n)/w(x) uniformly in x. Hence
by (3.3.3), in view of (3.3.2),

Fn(ānx + b̄n) = Gγ(x)

(

1 − A(n)Φ(x) − o(1)
A(n)

w(x)

)

as n → ∞, uniformly for (1 + γx)−1/γ ≤ − log A2(t). Hence

max
(

1,
(

(1 + γx)1/γ
)1−ρ−ε )

∣

∣

∣

∣

Fn(ānx + b̄n) − Gγ(x)

A(n)
+ Gγ(x)Φ(x)

∣

∣

∣

∣

= max
(

1, w(x)
)Gγ(x)

w(x)
|o(1)|

uniformly in x. Since max
(

1, w(x)
)

Gγ(x)/w(x) is bounded uniformly in x, the
statement follows. 2

For the proof of Theorem 3.2.1 we need two additional lemmas. Define

x̃ := x + ∆xA(n) with ∆x :=
1 + γx

γ + ρ
I{ρ<0,γ+ρ 6=0}. (3.3.4)

Lemma 3.3.1.

sup
− 1

γ∨0
<x< 1

(−γ)∨0

∣

∣

∣

∣

∣

(1 + γx̃)−1/γ/(1 + γx)−1/γ − 1

A(n)
+

1

γ + ρ
I{ρ<0,γ+ρ 6=0}

∣

∣

∣

∣

∣

= o(1).

Proof. Suppose γ 6= 0. Since ∆x/(1 + γx) is constant, a Taylor expansion
yields

(1 + γx̃)−1/γ = (1 + γx + γ∆xA(n))−1/γ

= (1 + γx)−1/γ

(

1 + γ
∆x

1 + γx
A(n)

)−1/γ

= (1 + γx)−1/γ

(

1 − ∆xA(n)

1 + γx
+ o(A(n))

)

and hence the assertion. The proof is similar in the case γ = 0. 2

Next define for the ease of writing

y := (1 + γx)1/γ and ỹ := (1 + γx̃)1/γ .

Then Lemma 3.3.1 can be reformulated as follows:

lim
n→∞

sup
y>0

∣

∣

∣

∣

y/ỹ − 1

A(n)
+

1

γ + ρ
I{ρ<0,γ+ρ 6=0}

∣

∣

∣

∣

= 0. (3.3.5)
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Lemma 3.3.2.

lim
n→∞

sup
y>0

ye1/(3y)

∣

∣

∣

∣

∣

e−1/ỹ − e−1/y

A(n)
− e−1/y

y
· 1

γ + ρ
I{ρ<0,γ+ρ 6=0}

∣

∣

∣

∣

∣

= 0. (3.3.6)

Proof. We prove the statement by two steps.

(i) For y ≥ (− log A2(n))−1, we have by (3.3.5) and |A(n)|/y ≤ − log A2(n)|A(n)| →
0 that y−1(ỹ/y − 1) → 0 uniformly. Hence

e−1/ỹ − e−1/y = e−1/y

(

exp

(

−y/ỹ − 1

y

)

− 1

)

= e−1/y

(

A(n)

y(γ + ρ)
I{ρ<0,γ+ρ 6=0}(1 + o(1))

)

where the o(1)-term is uniformly in y. Hence

lim
n→∞

sup
y≥(− log A2(n))−1

ye1/(3y)

∣

∣

∣

∣

∣

e−1/ỹ − e−1/y

A(n)
− e−1/y

y
· 1

γ + ρ
I{ρ<0,γ+ρ 6=0}

∣

∣

∣

∣

∣

= lim
n→∞

sup
y≥(− log A2(n))−1

|o(1)|e−2/(3y) = 0.

(ii) Now let’s consider 0 < y ≤ (− log A2(n))−1. We consider the various terms
of (3.3.6) separately. Note that

ye1/(3y) · e−1/ỹ

|A(n)| = ye1/(3y) · e−(1+O(A(n)))/y

|A(n)|
= ye−1/(2y)e−(1/6+O(A(n))/y/|A(n)|
≤ (− log A2(n))−1e

1
2

log A2(n)) c/|A(n)|
= c(− log A2(n))−1 → 0

as n → ∞ uniformly in y. In a similar, we check that

ye1/(3y) · e−1/y

A(n)
→ 0, ye1/(3y) · e−1/y

y
→ 0

as n → ∞ uniformly in y. Hence

lim
n→∞

sup
0<y≤(− log A(n))−1

ye1/(3y)

∣

∣

∣

∣

∣

e−1/ỹ − e−1/y

A(n)
− e−1/y

y
· 1

γ + ρ
I{ρ<0,γ+ρ 6=0}

∣

∣

∣

∣

∣

= 0.

Combining (i) and (ii), we get (3.3.6). 2

Proof of Theorem 3.2.1. We prove the statement by three steps.
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(i) We’ll prove that

sup
y≥(− log A2(n))−1

max
(

1, y1−εI{ρ=0}

)

×

×
∣

∣

∣

∣

∣

Fn(anx + bn) − e−1/y

A(n)
+ e−1/yy−γ−1H̃γ,ρ(y)

∣

∣

∣

∣

∣

= o(1).

(3.3.7)

In view of Lemma 3.3.1, Proposition 3.3.1 implies that

sup
(1+γx̃)−1/γ≤− log A2(n)

max
(

1,
(

(1 + γx̃)1/γ
)1−ρ−ε

)

×

×
∣

∣

∣

∣

Fn(ānx̃ + b̄n) − Gγ(x̃)

A(n)
+ Gγ(x̃)(1 + γx̃)−1/γ−1H̄γ,ρ((1 + γx̃)1/γ)

∣

∣

∣

∣

= o(1).

Note that ānx̃+ b̄n = anx+ bn, so that the last approximation can be rewritten
as

sup
ỹ≥(− log A2(n))−1

max
(

1, ỹ1−ρ−ε
)

∣

∣

∣

∣

∣

Fn(anx + bn) − e−1/ỹ

A(n)
+ e−1/ỹỹ−γ−1H̄γ,ρ(ỹ)

∣

∣

∣

∣

∣

= o(1).

Now by (3.3.5) we have

sup
y≥(− log A2(n))−1

max
(

1, y1−εI{ρ=0}
)

max
(

1, ỹ1−ρ−ε
) < ∞, (3.3.8)

and by Lemma 3.3.2, we have

max
(

1, y1−εI{ρ=0}
)

∣

∣

∣

∣

∣

e−1/ỹ − e−1/y

A(n)
− e−1/y

y
· 1

γ + ρ
I{ρ<0,γ+ρ 6=0}

∣

∣

∣

∣

∣

= max
(

1, y1−εI{ρ=0}
)

}e−1/(3y)

y
|o(1)| → 0

(3.3.9)

uniformly in y. Combining (3.3.7), (3.3.8) and (3.3.9) we see that it suffices to
prove that

sup
y≥(− log A2(n))−1

max
(

1, y1−εI{ρ=0}
)

∣

∣

∣e−1/ỹỹ−γ−1H̄γ,ρ(ỹ)

− e−1/yy−γ−1H̃γ,ρ(y) − e−1/y

y
· 1

γ + ρ
I{ρ<0,γ+ρ 6=0}

∣

∣

∣
→ 0.

(3.3.10)

Check that the term the absolute value of which is considered can be rep-
resented as g(ỹ) − g(y) with

g(t) =











1
γ+ρ tρ−1e−1/t, ρ < 0, γ + ρ 6= 0,

t−γ−1 log t e−1/t, ρ < 0, γ + ρ = 0,
1
γ t−1 log t e−1/t, ρ = 0 6= γ.
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By the mean value theorem, the left-hand side of (3.3.10) equals

sup
y≥(− log A2(n))−1

max
(

y, y2−εI{ρ=0}
)

∣

∣

∣
g′(ȳ)

( ỹ

y
− 1

)∣

∣

∣

for some ȳ between y and ỹ. Now (3.3.5) implies that y/ỹ → 1 uniformly.
Further using (3.3.5), we get

sup
y≥(− log A2(n))−1

max
(

y, y2−εI{ρ=0}
)

|g′(ȳ)|

= sup
ȳ≥(− log A2(n))−1

max
(

ȳ, ȳ2−εI{ρ=0}
)

|g′(ȳ)|(1 + o(1)).

It is checked easily that this is bounded. Hence (3.3.7) holds.

(ii) We’ll prove that

sup
(1+γx)−1/γ≥− log A2(n)

∣

∣

∣

∣

Fn(anx + bn) − Gγ(x)

A(n)

+Gγ(x)(1 + γx)−1/γ−1H̃γ,ρ((1 + γx)1/γ)
∣

∣

∣
= o(1).

(3.3.11)

We consider the various terms of (3.3.11) separately. Define xn such that
(1 + γxn)−1/γ = − log A2(n). By (3.3.2)

sup
(1+γx)−1/γ≥− log A2(n)

Fn(anx + bn)

|A(n)|

≤ sup
(1+γx̃)−1/γ≥− log A2(n)

Fn(ānx̃ + b̄n)

|A(n)|

≤ Fn(ānxn + b̄n)

|A(n)|

= Gγ(xn) exp

(

−A(n)Φ(xn) − o(1)
A(n)

w(xn)

)

1

|A(n)|

= exp(log A2(n)) exp

(

−A(n)Φ(xn) − o(1)
A(n)

w(xn)

)

1

|A(n)| .

Since

exp(log A2(n))

|A(n)| → 0 and − A(n)Φ(xn) − o(1)
A(n)

w(xn)
→ 0

as n → ∞ (cf. (3.3.2)), we get Fn(anx + bn)/|A(n)| → 0 as n → ∞ uniformly
in x. In a similar, we can also prove that

Gγ(x)

A(n)
→ 0 and Gγ(x)(1 + γx)−1/γ−1H̃γ,ρ((1 + γx)1/γ) → 0
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as n → ∞ uniformly in x. Hence (3.3.11) holds.

Combining (i) and (ii), we have proved that

sup
− 1

γ∨0
<x< 1

(−γ)∨0

max
(

1,
(

(1 + γx)1/γ
)1−εI{ρ=0}

)

×

×
∣

∣

∣

∣

Fn(anx + bn) − Gγ(x)

A(n)
+ Gγ(x)(1 + γx)−1/γ−1H̃γ,ρ((1 + γx)1/γ)

∣

∣

∣

∣

= o(1)

as n → ∞. For γ ≤ 0, It is same as the statement of Theorem 3.2.1. For γ > 0,
we need to prove that

sup
x<−1/γ

|Fn(anx + bn) − Gγ(x)|/|A(n)| = o(1) (3.3.12)

as n → ∞ since Gγ(x)(1 + γx)−1/γ−1H̃γ,ρ((1 + γx)1/γ) = 0 for all x < −1/γ.

(iii) γ > 0, x < −1/γ. Let δn = (− log A2(n))−γ/γ > 0 and xn = −1/γ + δn,
then (1 + γxn)−1/γ = − log A2(n). By (i) and (ii)

sup
x<−1/γ

|Fn(anx + bn) − Gγ(x)|/|A(n)|

= sup
x<−1/γ

Fn(anx + bn)/|A(n)|

≤ Fn(anxn + bn)/|A(n)|
≤ Gγ(xn)/|A(n)| + |Gγ(xn)(1 + γxn)−1/γ−1H̃γ,ρ((1 + γxn)1/γ)| + |o(1)|.

It’s easy to check that

Gγ(xn)

A(n)
→ 0 and Gγ(xn)(1 + γxn)−1/γ−1H̃γ,ρ((1 + γxn)1/γ) → 0

as n → ∞. Thus (3.3.12) holds, and assertion of Theorem 3.2.1. 2

Proof of Corollary 3.2.1. The first assertion follows from Theorem 3.2.1 and
the boundness of max(1, (1 + γx)1/γ)(1 − Gγ(x)) uniformly for − 1

γ∨0 < x <
1

(−γ)∨0 . The second assertion is now obvious since

Gγ(x)

1 − Gγ(x)
(1 + γx)−1−1/γH̃γ,ρ((1 + γx)1/γ)

is bounded uniformly for − 1
γ∨0 < x < 1

(−γ)∨0 . 2

Proof of Remark 3.2.1. Note the fact: for x ≥ −1/γ

Gγ(x)(1 + γx)−1/γ−1H̃γ,ρ((1 + γx)1/γ) = 0.
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For any positive sequence Mn, let δn = − exp(γ max(n, Mn))/γ > 0 and
xn := −1/γ − δn, then (1 + γxn)−1/γ = exp(−max(n, Mn)). For x ≥ −1/γ, by
Theorem 3.2.1

|Fn(anx + bn) − Gγ(x)|/|A(n)|
≤ (1 − Fn(anxn + bn))/|A(n)|
= (1 − Gγ(xn))/|A(n)| + Gγ(xn)(1 + γxn)−1/γ−1H̃γ,ρ((1 + γxn)1/γ)

+ o(1)(1 + γxn)−(1−ε)/γ .

Note that

Mn(1 − Gγ(xn))/A(n) = Mn(1 − exp(− exp(−max(n, Mn))))/A(n)

= Mn exp(−max(n, Mn))(1 + o(1))/A(n) → 0

and

Mn(1 + γxn)−(1−ε)/γo(1) = Mn exp(−(1 − ε)max(n, Mn))o(1) → 0

and also

MnGγ(xn)(1 + γxn)−1/γ−1H̃γ,ρ((1 + γxn)1/γ) → 0

as n → ∞. Thus

Mn · sup
x≥−1/γ

∣

∣

∣

∣

Fn(anx + bn) − Gγ(x)

A(n)

∣

∣

∣

∣

= o(1) (3.3.13)

as n → ∞. The assertion now follows by contradiction. If Remark 3.2.1 is not
true, relation (3.3.13) does not hold for

Mn := n/ sup
x≥−1/γ

∣

∣

∣

∣

Fn(anx + bn) − Gγ(x)

A(n)

∣

∣

∣

∣

.

2

3.4 Appendix

In the present paper we use the second order condition (3.1.4) on
V = (1/(− log F ))←(t), while the analogous condition on U = (1/(1−F ))←(t) is
more common in the literature. In this appendix, we will discuss the relationship
between these two conditions. To this end, we first examine the effect of certain
transformations on the so-called second order extended regular variation, that
is, condition (3.1.4) in a slightly more abstract framework.
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Proposition 3.4.1. Suppose g ∈ ERV (2)(γ1, ρ1) with γ1 ∈ R, ρ1 ≤ 0, i.e.

g(tx)−g(t)
a1(t) − xγ1−1

γ1

A1(t)
→ Hγ1, ρ1(x) (3.4.1)

and f satisfies

f(tx)
f(t) − xγ2

A2(t)
→ xγ2

xρ2 − 1

ρ2
(3.4.2)

with γ2 > 0 and |A2| ∈ RV (ρ2) for some ρ2 ≤ 0 and A(t) → 0 as t → ∞. If

A1(f(t))

A2(t)
→ c (3.4.3)

as t → ∞ for some c ∈ [−∞, +∞], then

g(f(tx))−g(f(t))
γ2a1(f(t)) − xγ1γ2−1

γ1γ2

|A1(f(t))| + |A2(t)|

→ sgn(A2)

(

1

1 + |c| ·
xγ1γ2

γ2

xρ2 − 1

ρ2
+

c

1 + |c| ·
1

γ2
Hγ1,ρ1(x

γ2)

)

(3.4.4)

with sgn(A2) denoting the eventually constant sign of A2(t) and c/(1 + |c|)
defined as ±1 for c ±∞.

Corollary 3.4.1. (i) Suppose U ∈ ERV (2)(γ, ρ) with γ ∈ R, ρ ≤ 0 and
auxiliary functions a and A. If 2tA(t) → c ∈ [−∞, +∞] \ {1 − γ}, then

V (tx)−V (t)
a∗(t) − xγ−1

γ

A∗(t)
→ Hγ,ρ∗(x) (3.4.5)

as t → ∞ for all x ∈ R with

ρ∗ = max(ρ,−1),

a∗(t) =
(

1 − γ

1 + |c|A0(t)
)

a
( 1

1 − e−1/t

)

,

A∗(t) =
γ − 1 + c

1 + |c| A0(t),

A0(t) =
∣

∣

∣
A

( 1

1 − e−1/t

)∣

∣

∣
+

1

2t
.

(ii) Conversely, suppose V ∈ ERV (2)(γ, ρ) with γ ∈ R, ρ ≤ 0 and auxiliary
functions a and A. If 2tA(t) → c ∈ [−∞, +∞] \ {γ − 1}, then

U(tx)−U(t)
a∗(t) − xγ−1

γ

A∗(t)
→ Hγ,ρ∗(x)
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as t → ∞ for all x ∈ R with

ρ∗ = max(ρ,−1),

a∗(t) =
(

1 +
γ

1 + |c|A0(t)
)

a
( 1

1 − e−1/t

)

,

A∗(t) =
1 − γ + c

1 + |c| A0(t).

Remark 3.4.1. In case of c = γ−1, V may or may not belong to ERV (2)(γ, ρ∗)
for some ρ∗ ≤ 0 if U ∈ ERV (2)(γ, ρ).

Proof of Proposition 3.4.1. Because (3.4.2) with γ2 > 0 implies f(t) → ∞
as t → ∞ and convergence (3.4.1) holds locally uniformly, one has for fixed
x > 0

g(f(tx)) − g(f(t))

a1(f(t))

=
g(f(tx)

f(t) · f(t)) − g(f(t))

a1(f(t))

=
(f(tx)

f(t) )γ1 − 1

γ1
+ A1(f(t))Hγ1, ρ1

(

f(tx)

f(t)

)

+ o(A1(f(t)))

= xγ1γ2 ·
( f(tx)

xγ2f(t))
γ1 − 1

γ1
+

xγ1γ2 − 1

γ1
+ A1(f(t))Hγ1, ρ1

(

f(tx)

f(t)

)

+ o(A1(f(t))).

(3.4.6)

By (3.4.2), one has for fixed x > 0

f(tx)

xγ2f(t)
= 1 + A2(t)

xρ2 − 1

ρ2
+ o(A2(t)).

Hence

( f(tx)
xγ2f(t))

γ1 − 1

γ1
= A2(t)

xρ2 − 1

ρ2
+ o(A2(t)). (3.4.7)

From (3.4.6) and (3.4.7), one may conclude

g(f(tx)) − g(f(t))

γ2a1(f(t))
− xγ1γ2 − 1

γ1γ2

=
xγ1γ2

γ2

(

A2(t)
xρ2 − 1

ρ2
+ o(A2(t))

)

+
1

γ2
A1(f(t))Hγ1,ρ1(x

γ2) + o(A1(f(t))).

(3.4.8)

By (3.4.3), we can easily get (3.4.4). 2
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Proof of Corollary 3.4.1.
(i) The function f defined by f(t) = 1/(1 − e−1/t) satisfies (3.4.2) with γ2 =
1, ρ2 = −1, and A2(t) = −1/2t. Since V (t) = U(f(t)) and A(f(t))/A2(t) =
−2tA(t)(1 + o(1)), Proposition 3.4.1 yields

V (tx)−V (t)
a(f(t)) − xγ−1

γ

A0(t)
→ 1

1 + |c|(x
γ−1 − xγ) +

c

1 + |c|Hγ,ρ(x).

Hence, because of 1/(1 + y) = 1 − y + o(y) as y → 0,

V (tx) − V (t)

a∗(t)

=
xγ − 1

γ

(

1 +
γ

1 + |c|A0(t) + o(A0(t))
)

+
( 1

1 + |c|(x
γ−1 − xγ) +

c

1 + |c|Hγ,ρ(x)
)

A0(t) + o(A0(t))

=
xγ − 1

γ
+

( 1

1 + |c|(x
γ−1 − 1) +

c

1 + |c|Hγ,ρ(x)
)

A0(t) + o(A0(t)).

(3.4.9)

If γ = 1 then xγ−1 − 1 vanishes, and the assertion is obvious, because c is
assumed unequal to 1 − γ = 0.

If γ 6= 1, then xγ−1 − 1 = (γ − 1)Hγ,−1(x). So if |c| = ∞ (which implies
ρ ≥ −1) or c = 0 (and hence ρ ≤ −1), then (3.4.5) is immediate from (3.4.9).
Finally, if c ∈ R \ {0, 1− γ}, then necessarily ρ = −1 and γ − 1 + c 6= 0, so that
again the assertion follows from (3.4.9).

(ii) The proof is very similar to the one of (i). Here we use f(t) = 1/(− log(1−
1/t)), satisfying (3.4.2) with γ2 = 1, ρ2 = −1, and A2(t) = 1/2t. 2

Note. Chapter 3 is based on the paper Drees, de Haan and Li (2003).
Here we present a little stronger results and add more remarks.





Chapter 4

Weighted Approximations of

Tail Copula Processes with

Application to Testing the

Multivariate Extreme Value

Condition

co-authors: John Einmahl and Laurens de Haan

Abstract. Consider n i.i.d. random vectors on R
2, with unknown, common dis-

tribution function F . Under a sharpening of the extreme value condition on F , we
derive a weighted approximation of the corresponding tail copula process. Then we
construct a test to check whether the extreme value condition holds by comparing two
estimators of the limiting extreme value distribution, one obtained from the tail copula
process and the other obtained by first estimating the spectral measure which is then
used as a building block for the limiting extreme value distribution. We derive the
limiting distribution of the test statistic from the aforementioned weighted approxima-
tion. This limiting distribution contains unknown functional parameters. Therefore we
show that a version with estimated parameters converges weakly to the true limiting
distribution. Based on this result, the finite sample properties of our testing procedure
are investigated through a simulation study. A real data application is also presented.

4.1 Introduction

Let (X, Y ), (X1, Y1), ..., (Xn, Yn) be i.i.d. random vectors with continuous dis-
tribution function (d.f.) F . Suppose that there exist norming constants an, cn >
0 and bn, dn ∈ R such that the sequence of d.f.’s

P

(

max1≤i≤n Xi − bn

an
≤ x,

max1≤i≤n Yi − dn

cn
≤ y

)

61
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converges to a limit d.f., say G(x, y), with non-degenerate marginal d.f., that
is,

lim
n→∞

Fn(anx + bn, cny + dn) = G(x, y) (4.1.1)

for all but countably many x and y. Then, for a suitable choice of an, bn, cn

and dn, there exist γ1, γ2 ∈ R such that

G(x,∞) = exp
(

−(1 + γ1x)−1/γ1

)

, G(∞, y) = exp
(

−(1 + γ2y)−1/γ2

)

.

The d.f. G is called an extreme value d.f. and γ1, γ2 are called the (marginal)
extreme value indices.

Any extreme value d.f. G can be represented as

G

(

x−γ1 − 1

γ1
,

y−γ2 − 1

γ2

)

= exp

(

−
∫ π/2

0
(x(1 ∧ tan θ)) ∨ (y(1 ∧ cot θ)) Φ(dθ)

)

,

(4.1.2)

with Φ the d.f. of the so-called spectral measure. There is a one-to-one corre-
spondence between extreme value d.f.’s G and finite measures with d.f. Φ that
satisfy

∫ π/2

0
(1 ∧ tan θ)Φ(dθ) =

∫ π/2

0
(1 ∧ cot θ)Φ(dθ) = 1,

via (4.1.2).
Alternatively one can characterize the extreme value d.f.’s G by: there is a

measure Λ on [0,∞]2 \ {(∞,∞)} such that, with

l(x, y) := − log G

(

x−γ1 − 1

γ1
,

y−γ2 − 1

γ2

)

, (4.1.3)

we have

1. l(x, y) = Λ
(

{(u, v) ∈ [0,∞]2 : u ≤ x or v ≤ y}
)

,

2. l(tx, ty) = tl(x, y) for t, x, y > 0.
(4.1.4)

Combining the two characterizations we find

l(x, y) =

∫ π/2

0
(x(1 ∧ tan θ)) ∨ (y(1 ∧ cot θ)) Φ(dθ). (4.1.5)

Relation (4.1.1) implies (cf. Einmahl, de Haan and Piterbarg (2001))

lim
t↓0

t−1P ((1 − F1(X)) ∧ (1 − F2(Y )) ≤ t, 1 − F2(Y ) ≤ (1 − F1(X)) tan θ) = Φ(θ)
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(4.1.6)

for continuity points θ ∈ (0, π/2] of Φ, where F1(x) := F (x,∞) and F2(y) :=
F (∞, y). Also

lim
t↓0

t−1P (1 − F1(X) ≤ tx or 1 − F2(Y ) ≤ ty) = l(x, y) (4.1.7)

for (x, y) ∈ [0,∞)2. More generally

lim
t↓0

t−1P ((1 − F1(X), 1 − F2(Y )) ∈ tA) = Λ(A) (4.1.8)

for any Borel set A in [0,∞]2 \ {(∞,∞)} (with tA := {(tx, ty) : (x, y) ∈ A})
provided Λ(∂A) = 0.

A non-parametric estimator for Φ, suggested by the limit relation (4.1.6) is
(Einmahl et al. (2001))

Φ̂(θ) :=
1

k

n
∑

i=1

I{RX
i ∨RY

i ≥n+1−k, n+1−RY
i ≤(n+1−RX

i ) tan θ} (4.1.9)

where RX
i is the rank of Xi among X1, X2, ..., Xn, RY

i is the rank of Yi among
Y1, Y2, ..., Yn. Similarly a non-parametric estimator for l, suggested by the limit
relation (4.1.7) is (Huang (1992), see also Drees and Huang (1998))

l̂2(x, y) :=
1

k

n
∑

i=1

I{Xi>Xn+1−⌈kx⌉:n or Yi>Yn+1−⌈ky⌉:n} (4.1.10)

=
1

k

n
∑

i=1

I{RX
i >n+1−kx or RY

i >n+1−ky},

where X1:n ≤ · · · ≤ Xn:n are the order statistics of the Xi, i = 1, 2, . . . , n
(similarly for the Yi), with ⌈z⌉ the smallest integer ≥ z.

The mentioned papers give asymptotic normality results for Φ̂ and l̂2 under
certain conditions and with sequences k = k(n) satisfying k(n) → ∞, k(n)/n →
0, as n → ∞. Another way of estimating l is via (4.1.5) and (4.1.9):

l̂1(x, y) :=

∫ π/2

0
(x(1 ∧ tan θ)) ∨ (y(1 ∧ cot θ)) Φ̂(dθ). (4.1.11)

The multivariate extreme value framework that we sketched is the appro-
priate one when one, e.g., wants to estimate the probability of extreme sets
i.e., sets outside the range of the observations.; see de Haan and Sinha (1999).
Condition (4.1.1) is fulfilled for many standard distributions but not for all
distributions. Hence before using this framework to estimate probabilities of
extreme sets, it is important to check whether (4.1.1) is a reasonable assump-
tion for the data set at hand. And one wants to do this beforehand, without
specifying the exact structure of the limiting distribution.
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A promising approach to this testing problem seems to be to see if the
two estimators l̂1 and l̂2 for l, that have a different background, are not too
different. The estimator l̂2 is a natural one mimicking more or less the tail of
the distribution itself. But this estimator does not necessarily satisfy condition
2 of (4.1.4). On the other hand l̂1 does satisfy condition 2 of (4.1.4) but the
estimator itself is of a somewhat more complicated nature. So one can maintain
that such a test would check whether condition 2 of (4.1.4) holds.

The proposed test statistic is of Anderson-Darling type:

Ln :=

∫∫

0<x,y≤1

(

l̂1(x, y) − l̂2(x, y)
)2

(x ∨ y)−β dxdy (4.1.12)

for certain β ≥ 0. The test statistic is similar to those used for testing a para-
metric null hypothesis (like testing for normality), where the empirical distri-
bution function is compared with the true distribution function with estimated
parameters. Here, however, the estimated parameter Φ is a function (and we
only deal with the tail of the distribution). Also note that our methods allow
us to deal with other test statistics than Ln as well.

Note that this test checks whether the dependence structure is of the right
type. It is only based on the relative positions (ranks) of the data and com-
pletely independent of the marginal distributions of F for which tests have been
developed already in Drees, de Haan and Li (2004) and Dietrich, de Haan and
Hüsler (2002).

We shall establish the asymptotic distribution of kLn as n → ∞ under
(4.1.1) and some extra conditions stemming from Huang (1992) and Einmahl
et al. (2001), thus providing a basis for applying a test.

Note that the test statistic Ln is based on observations for which at least
one component exceeds a certain threshold. Since the estimators depend on
this threshold, one can plot Ln as a function of k. This plot can be used as an
exploratory tool for determining from which threshold on the two estimators l̂1
and l̂2 are close to each other suggesting that the approximations (4.1.6) and
(4.1.7) can be trusted, and hence yields a heuristic procedure for determining
k. So this a second use of the test statistic Ln.

The weak convergence of kLn is stated in Theorem 4.2.3. For the proof
of this theorem the known asymptotic normality result for Φ̂ (Einmahl et al.
(2001)) is sufficient but not the known one for l̂2 (Huang (1992)). Hence as a
preliminary but important result, we first develop a Gaussian approximation
for the weighted tail copula process on (0, 1]2

√
k

(

l̂2(x, y) − l(x, y)
)

/(x ∨ y)η, 0 ≤ η < 1/2,

thus extending significantly the result of Huang (1992) where η = 0. This
result, which seems to be useful in other contexts as well, is stated in Theorem
4.2.2. The proofs are given in section 4.3.



4.2 Main results 65

The limiting random variable in Theorem 4.2.3 is determined as an integral
of a combination of Gaussian processes. They are parametrized by functions
which can be estimated consistently. In section 4.4 it is proved that the prob-
ability distribution of the limiting random variable with these functions esti-
mated converges to the distribution of the limiting random variable with these
functions equal to the actual ones, which makes the procedure applicable in
practice. In section 4.5 simulation results and an application to real data are
reported.

4.2 Main results

Before stating the main results, we introduce some notation. Define WΛ to be
a Wiener process indexed by the Borel sets in [0,∞]2 \ {(∞,∞)}, depending
on the parameter Λ from (4.1.4), which is a measure and we assume it has a
density λ, in the following way: WΛ is a centered Gaussian process and for
Borel sets C and C̃: EWΛ(C)WΛ(C̃) = Λ(C ∩ C̃). Define the sets Cθ by

Cθ = {(x, y) ∈ [0,∞]2 : x ∧ y ≤ 1, y ≤ x tan θ}, θ ∈ [0,
π

2
],

and the process Z by

Z(θ) =

∫ 1∨ 1
tan θ

0
λ(x, x tan θ)(W1(x) tan θ − W2(x tan θ)) dx

− W2(1)

∫ ∞

1∨ 1
tan θ

λ(x, 1) dx − I(π
4
, π
2
](θ)W1(1)

∫ tan θ

1
λ(1, y) dy, θ ∈ [0,

π

2
),

Z
(π

2

)

= −W2(1)

∫ ∞

1
λ(x, 1) dx − W1(1)

∫ ∞

1
λ(1, y) dy,

(4.2.1)

where λ is the density of Λ, with W1(x) = WΛ([0, x] × [0,∞]) and W2(y) =
WΛ([0,∞] × [0, y]).

Define for x, y > 0

WR(x, y) = WΛ([0, x] × [0, y]), R(x, y) = Λ([0, x] × [0, y]) (4.2.2)

and

R1(x, y) = ∂R(x, y)/∂x, R2(x, y) = ∂R(x, y)/∂y. (4.2.3)

Theorem 4.2.1. Assume that condition (4.1.8) and Conditions 1 and 2 of
Einmahl et al. (2001) hold, and that Λ has a continuous density λ on [0,∞)2 \
{(0, 0)}. Then for a special construction

sup
0<x,y≤1

∣

∣

∣

√
k(l̂1(x, y) − l(x, y)) − A(x, y)

∣

∣

∣

x ∨ y

P→ 0
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as n → ∞, where

A(x, y) :=






x(WΛ(Cπ
2
) + Z(π

2 )) + y
∫ arctan y

x

π/4
1

sin2 θ
(WΛ(Cθ) + Z(θ))dθ, if y ≥ x,

x(WΛ(Cπ
2
) + Z(π

2 )) − x
∫ π/4

arctan y
x

1
cos2 θ

(WΛ(Cθ) + Z(θ))dθ, if y < x.

Let

Ui = 1 − F1(Xi), Vi = 1 − F2(Yi), i = 1, 2, ..., n. (4.2.4)

Let C(x, y) is the distribution function of (Ui, Vi). By (4.1.8) and (4.2.2) we
have R(x, y) = limt↓0 t−1C(tx, ty). We assume, as in Huang (1992), that for
some α > 0

t−1C(tx, ty) − R(x, y) = O(tα) as t ↓ 0, (4.2.5)

uniformly for x ∨ y ≤ 1, x, y ≥ 0.

Theorem 4.2.2. Assume that conditions (4.1.8) and (4.2.5) hold and that

k = o
(

n
2α

1+2α

)

. If R1 and R2 are continuous, then we have for 0 ≤ η < 1/2

and for a special construction

sup
0<x,y≤1

∣

∣

∣

√
k(l̂2(x, y) − l(x, y)) + B(x, y)

∣

∣

∣

(x ∨ y)η

P→ 0

as n → ∞, where

B(x, y) := WR(x, y) − R1(x, y)W1(x) − R2(x, y)W2(y).

Theorem 4.2.3. Assume the conditions of Theorems 4.2.1 and 4.2.2 hold.
Then for each 0 ≤ β < 3

∫∫

0<x,y≤1

k
(

l̂1(x, y) − l̂2(x, y)
)2

(x ∨ y)β
dxdy

d→
∫∫

0<x,y≤1

(A(x, y) + B(x, y))2

(x ∨ y)β
dxdy

(4.2.6)

as n → ∞, and the limit is finite almost surely.

Remark 4.2.1. The case β = 0 is similar to the Cramér-von Mises test. Note
that for β < 2, Theorem 4.2.3 easily follows from an unweighted approximation
in Theorems 4.2.1 and 4.2.2. Therefore the case β = 2(!) is similar to the
Anderson-Darling test.
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Remark 4.2.2. Note that we do not merely test the multivariate extreme value
condition but also the refined conditions of Theorem 4.2.3. Hence we actually
test a smaller null hypothesis. But such a smaller hypothesis is needed for
statistical applications, since these refined conditions are the ones that yield
that the normalized tail of F is sufficiently close to G.

Remark 4.2.3. The random variable on the right in Theorem 4.2.3 has a con-
tinuous distribution function. This follows from a property of Gaussian mea-
sures on Banach spaces: the measure of a closed ball is a continuous function
of its radius, see, e.g., Paulauskas and Račkauskas (1989), Chapter 4, Theorem
1.2.

Remark 4.2.4. Since x ∨ y ≤ l(x, y) ≤ x + y ≤ 2(x ∨ y), (4.2.6) remains
true with x ∨ y replaced with l(x, y) or x + y, but when choosing l(x, y), the
left-hand-side of (4.2.6) is not a statistic and l has to be estimated.

4.3 Proofs

Before proving Theorem 4.2.1, we first present two lemmas and a proposition.

Lemma 4.3.1.

l(x, y) =







xΦ(π
2 ) + y

∫ arctan y
x

π/4
1

sin2 θ
Φ(θ)dθ, if y ≥ x,

xΦ(π
2 ) − x

∫ π/4

arctan y
x

1
cos2 θ

Φ(θ)dθ, if y < x.

Proof. Since

l(x, y) =

∫ π/2

0
(x(1 ∧ tan θ)) ∨ (y(1 ∧ cot θ)) Φ(dθ)

=

∫ π/4

0
(x tan θ) ∨ y Φ(dθ) +

∫ π/2

π/4
x ∨ (y cot θ) Φ(dθ)

and

x tan θ > y ⇔ x > y cot θ ⇔ θ > arctan
y

x
,

then

l(x, y) =

∫ π
4
∧arctan y

x

0
y Φ(dθ) +

∫ π
4

π
4
∧arctan y

x

x tan θ Φ(dθ)

+

∫ π
4
∨arctan y

x

π/4
y cot θ Φ(dθ) +

∫ π/2

π
4
∨arctan y

x

xΦ(dθ)

=







∫ π/4
0 y Φ(dθ) +

∫ arctan y
x

π/4 y cot θ Φ(dθ) +
∫ π/2

arctan y
x

xΦ(dθ), if y ≥ x,
∫ arctan y

x
0 y Φ(dθ) +

∫ π/4

arctan y
x

x tan θ Φ(dθ) +
∫ π/2
π/4 xΦ(dθ), if y < x.



68 4 Approximations, Tail Copula Processes

In case of y ≥ x, via integration by parts, one has

l(x, y) = yΦ(
π

4
) − yΦ(0) + y cot(arctan

y

x
)Φ(arctan

y

x
) − y cot

π

4
Φ(

π

4
)

− y

∫ arctan y
x

π/4
Φ(θ)(− 1

sin2 θ
)dθ + xΦ(

π

2
) − xΦ(arctan

y

x
)

= xΦ(
π

2
) + y

∫ arctan y
x

π/4

1

sin2 θ
Φ(θ)dθ.

In case of y < x, via integration by parts again, one has

l(x, y) = yΦ(arctan
y

x
) − yΦ(0) + x tan

π

4
Φ(

π

4
) − x tan(arctan

y

x
)Φ(arctan

y

x
)

− x

∫ π/4

arctan y
x

Φ(θ)
1

cos2 θ
dθ + xΦ(

π

2
) − xΦ(

π

4
)

= xΦ(
π

2
) − x

∫ π/4

arctan y
x

1

cos2 θ
Φ(θ)dθ.

2

Write

Rn(x, y) =
n

k
C

(

kx

n
,
ky

n

)

, Tn(x, y) =
1

k

n
∑

i=1

I{Ui<
kx
n

, Vi<
ky
n
} (4.3.1)

vn(x, y) =
√

k(Tn(x, y) − Rn(x, y)), vn,η(x, y) =
vn(x, y)

(x ∨ y)η
(4.3.2)

and

vn,η,1(x) =
vn(x,∞)

xη
, vn,η,2(y) =

vn(∞, y)

yη
, vn,j = vn,0,j , j = 1, 2. (4.3.3)

Proposition 4.3.1. Let T > 0. For 0 ≤ η < 1/2

(vn,η(x, y), x, y ∈ (0, T ], vn,η,1(x), x ∈ (0, T ], vn,η,2(y), y ∈ (0, T ])

converges in distribution to

(

WR(x, y)

(x ∨ y)η
, x, y ∈ (0, T ],

W1(x)

xη
, x ∈ (0, T ],

W2(y)

yη
, y ∈ (0, T ]

)

as n → ∞.

Proof. Define

Zn,i =
1√
k
δ(n

k
Ui,

n
k

Vi)
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and for all 0 < x, y ≤ T define the functions

fx,y = I[0,x)×[0,y)/(x ∨ y)η, f (1)
x = I[0,x)×[0,∞]/xη, f (2)

y = I[0,∞]×[0,y)/yη.

All these f ’s form the class F . We equip F with the semi-metric d defined by

d(fx,y, fu,v) =

√

E

(

WR(x, y)

(x ∨ y)η
− WR(u, v)

(u ∨ v)η

)2

,

d(fx,y, f (1)
u ) =

√

E

(

WR(x, y)

(x ∨ y)η
− W1(u)

uη

)2

,

etc.
For any ε > 0, the bracketing number N[ ](ε,F , Ln

2 ) is the minimal number

of sets Nε in a partition F =
⋃Nε

j=1 Fεj of the index set into sets Fεj such that,
for every partitioning set Fεj

n
∑

i=1

E∗ sup
f,g∈Fεj

|Zn,i(f) −Zn,i(g)|2 ≤ ε2. (4.3.4)

We will use Theorem 2.11.9 in van der Vaart and Wellner (1996): For each
n, let Zn,1,Zn,2, . . . ,Zn,n be independent stochastic processes with finite second
moments indexed by a totally bounded semimetric space (F , d). Suppose

n
∑

i=1

E∗‖Zn,i‖F1{‖Zn,i‖F>λ} → 0, for every λ > 0,

where ‖Zn,i‖F = supf∈F |Zn,i(f)|, and

∫ δn

0

√

log N[ ](ε,F , Ln
2 )dε → 0, for every δn ↓ 0.

Then the sequence
∑n

i=1(Zn,i − EZn,i) is asymptotically tight in ℓ∞(F) and
converges weakly, provided the finite-dimensional distributions converge weakly.

We briefly sketch the total boundedness of (F , d). We only consider the
subclass F2 of F consisting of the bivariate fx,y’s; moreover we restrict ourselves
to the case x ≥ y, u ≥ v and x ≥ u, y ≥ v. For any δ > 0, assuming |x− u| ≤ δ
and |y − v| ≤ δ, one has

d2(fx,y, fu,v) = E

(

WR(x, y)

(x ∨ y)η
− WR(u, v)

(u ∨ v)η

)2

= E

(

uηWR(x, y) − xηWR(u, v)

(xu)η

)2

=
u2ηR(x, y) − 2xηuηR(u, v) + x2ηR(u, v)

(xu)2η
.
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If u ≤ δ, then

d2(fx,y, fu,v) ≤
R(x, y)

x2η
+

2R(u, v)

u2η
+

R(u, v)

u2η

≤ x1−2η + 3u1−2η

≤ (2δ)1−2η + 3δ1−2η ≤ 5δ1−2η.

If u > δ, then, since

R(x, y) ≤ R(u, v) + Λ([u, x] × [0,∞]) + Λ([0,∞] × [v, y])

≤ R(u, v) + 2δ,

we have

d2(fx,y, fu,v) ≤
R(u, v)(uη − xη)2

(xu)2η
+

2δu2η

(xu)2η

≤ u1−4η(uη − xη)2 + 2δ1−2η

≤ u1−4ηx2η−2(x − u)2 + 2δ1−2η

≤ u−1−2η(x − u)2 + 2δ1−2η ≤ 3δ1−2η.

So, since 1 − 2η > 0, we see that for every ε > 0 we can find a δ > 0 such that
for |x − u| ≤ δ and |y − v| ≤ δ, d2(fx,y, fu,v) < ε. Hence, since [0, T ]2 is totally
bounded with respect to the Euclidean metric, we obtain the total boundedness
of (F , d).

Observe that

Zn,i(fx,y) =
1√
k
I{Ui<

k
n

x, Vi<
k
n

y}/(x ∨ y)η,

n
∑

i=1

(Zn,i − EZn,i)(fx,y) = vn,η(x, y)

and similarly for the marginal processes. First we have to show that for every
λ > 0

n
∑

i=1

E||Zn,i||FI{||Zn,i||F>λ} → 0 (4.3.5)

as n → ∞. Again we will restrict ourselves to the subclass F2. For the univari-

ate f
(1)
x ’s and f

(2)
y ’s, it can be shown in a similar but easier way.

Note that

sup
fx,y∈F2

1√
k
I{Ui<

k
n

x, Vi<
k
n

y}/(x ∨ y)η ≤ 1√
k

1

(n
k (Ui ∨ Vi))η

,
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so for each λ > 0

n
∑

i=1

E||Zn,i||F2I{||Zn,i||F2
>λ}

≤ n√
k
E

1

(n
k (Ui ∨ Vi))η

I{n
k
(Ui∨Vi)<(

√
kλ)−1/η}

=
n√
k

∫ (
√

kλ)−1/η

0
x−ηdC

(k

n
x,

k

n
x
)

=
n√
k

(√
kλC

(k

n
(
√

kλ)−1/η,
k

n
(
√

kλ)−1/η
)

+ η

∫ (
√

kλ)−1/η

0
C

(k

n
x,

k

n
x
)

x−η−1dx
)

≤ n√
k

(√
kλ

k

n
(
√

kλ)−1/η + η

∫ (
√

kλ)−1/η

0

k

n
x−ηdx

)

= λ1−1/ηk1−1/(2η) +
√

k
η

1 − η
(
√

kλ)1−1/η

=
1

1 − η
λ1−1/ηk1−1/(2η) → 0, (η < 1/2).

Next we want to show
∫ δn

0

√

log N[ ](ε,F , Ln
2 ) dε → 0 (4.3.6)

for every δn ↓ 0. We present the proof for T = 1 for notational convenience; for
general T > 0 the proof is similar. Let ε > 0 be small, define a = ε3/(1−2η) and
θ = 1 − ε3. We again consider only F2; the univariate f ’s are easier to handle.
Define

F(a) = {fx,y ∈ F2 : x ∧ y ≤ a},
F(l, m) = {fx,y ∈ F2 : θl+1 ≤ x ≤ θl, θm+1 ≤ y ≤ θm}.

Then

F2 = F(a)
⋃







[ log a
log θ

]
⋃

m=0

[ log a
log θ

]
⋃

l=0

F(l, m)







First check (4.3.4) for F(a):

n
∑

i=1

E sup
f,g∈F(a)

(Zn,i(f) − Zn,i(g))2 = nE sup
f,g∈F(a)

(Zn,i(f) − Zn,i(g))2

≤ 4nE sup
f∈F(a)

Z2
n,i(f) =

4n

k
E sup

x,y>0
x∧y≤a

I{Ui<
kx
n

,Vi<
ky
n
}/(x ∨ y)2η

≤ 4n

k
E (

n

k
Ui)

−2ηI{n
k

Ui<a} =
4n

k

∫ ak/n

0
(
n

k
x)−2η dx =

4

1 − 2η
a1−2η ≤ ε2.
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Now we consider (4.3.4) for the F(l, m); w.l.o.g. we take l ≤ m:

n
∑

i=1

E sup
f,g∈F(l,m)

(Zn,i(f) − Zn,i(g))2

≤ nE

(

sup
f∈F(l,m)

Zn,i(f) − inf
f∈F(l,m)

Zn,i(f)

)2

≤ n

k
E

(

I{Ui<
k
n

θl, Vi<
k
n

θm}/(θl+1 ∨ θm+1)η − I{Ui<
k
n

θl+1, Vi<
k
n

θm+1}/(θl ∨ θm)η
)2

=
n

k
E

(

I{Ui<
k
n

θl, Vi<
k
n

θm}(
1

θη(l+1)
− 1

θηl
)

+(I{Ui<
k
n

θl, Vi<
k
n

θm} − I{Ui<
k
n

θl+1, Vi<
k
n

θm+1})
1

θηl

)2

≤ 2n

k

(

C(
k

n
θl,

k

n
θm)

1

θ2ηl
(

1

θη
− 1)2 +

[

C(
k

n
θl,

k

n
θm) − C(

k

n
θl+1,

k

n
θm+1)

]

1

θ2ηl

)

≤ 2n

k

(

k

n

θl

θ2ηl
(

1

θη
− 1)2 +

2k

n

θl

θ2ηl
(1 − θ)

)

≤ 2

(

1

θ1/2
− 1

)2

+ 4(1 − θ) ≤ ε6 + 4ε3 ≤ ε2.

It is easy to see that the number of elements of the ”partition” of F2 is
bounded by ε−7, which yields (4.3.6). Hence we proved the asymptotic tightness
condition.

It remains to prove that the finite-dimensional distributions of our process
converge weakly. This follows from the fact that multivariate weak convergence
follows from weak convergence of linear combinations of the components and
the univariate Lindeberg-Feller central limit theorem. It is easily seen that the
Lindeberg condition is satisfied for these linear combinations since the elements
of F are weighted indicators and hence bounded. 2

Lemma 4.3.2. For 0 ≤ η < 1/2

P



 sup
x∨y≤ε
x,y>0

|WR(x, y)|
(x ∨ y)η

≥ λ



 ≤ 16

∞
∑

m=0

exp

(

−λ2

2

2m(1−2η)

ε1−2η

)

.

Proof. For m = 0, 1, 2, ... define

Am = {(x, y) :
ε

2m+1
≤ x ≤ ε

2m
,

ε

2m+1
≤ y ≤ ε}.
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Then, with Z a standard normal random variable,

P






sup

x∨y≤ε
0<x≤y

|WR(x, y)|
(x ∨ y)η

≥ λ






= P






sup

x∨y≤ε
0<x≤y

|WR(x, y)|
yη

≥ λ







≤ P

(

sup
m∈{0,1,2,...}

sup
(x,y)∈Am

|WR(x, y)|
yη

≥ λ

)

≤
∞

∑

m=0

P

(

sup
(x,y)∈Am

|WR(x, y)| ≥ λ
( ε

2m+1

)η
)

≤ 4
∞

∑

m=0

P
(

|WR(
ε

2m
, ε)| ≥ λ

( ε

2m+1

)η)

≤ 4
∞

∑

m=0

P

(

|Z| ≥ λ

2η

(

2m

ε

)1/2−η
)

≤ 8
∞

∑

m=0

exp

(

−λ2

2

2m(1−2η)

ε1−2η

)

,

where the third inequality follows for instance from an adaptation of Lemma 1.2
in Orey and Pruitt (1973) and the last inequality from Mill’s ratio. A symmetry
argument completes the proof. 2

By Theorem 2 in Einmahl et al. (2001) and Proposition 4.3.1 (and their
proofs) it follows that

(√
k(Φ̂(θ) − Φ(θ)), vn,η(x, y), vn,η,1(u), vn,η,2(v)

)

d→
(

WΛ(Cθ) + Z(θ)),
WR(x, y)

(x ∨ y)η
,
W1(u)

uη
,
W2(v)

vη

)

,

on D[0, π/2] × D[0, T ]2 × D[0, T ] × D[0, T ]. By the Skorohod construction,
there exists now a probability space carrying Φ̂∗, v∗n, v∗n,1, v∗n,2, W ∗

Λ(C·), Z∗,
W ∗

R, W ∗
1 and W ∗

2 such that

(

Φ̂∗, v∗n, v∗n,1, v
∗
n,2

)

d
=

(

Φ̂, vn, vn,1, vn,2

)

,

(

W ∗
Λ(C·), Z

∗, W ∗
R, W ∗

1 , W ∗
2

) d
=

(

WΛ(C·), Z, WR, W1, W2

)

and for 0 ≤ η < 1/2

Dn := sup
0≤θ≤π/2

∣

∣

∣

√
k(Φ̂∗(θ) − Φ(θ)) − (W ∗

Λ(Cθ) + Z∗(θ))
∣

∣

∣ = oP (1), (4.3.7)

sup
0<x,y≤T

|v∗n(x, y) − W ∗
R(x, y)|

(x ∨ y)η
= oP (1), (4.3.8)

sup
0<x≤T

|v∗n,1(x) − W ∗
1 (x)|

xη
= oP (1), (4.3.9)
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sup
0<x,y≤T

|v∗n,2(y) − W ∗
2 (y)|

yη
= oP (1), (4.3.10)

as n → ∞. Henceforth we will work on this probability space, but drop the ∗

from the notation.

Proof of Theorem 4.2.1. By Lemma 4.3.1

√
k(l̂1(x, y) − l(x, y))

=







x
√

k(Φ̂(π
2 ) − Φ(π

2 )) + y
∫ arctan y

x

π/4
1

sin2 θ

√
k(Φ̂(θ) − Φ(θ))dθ, if y ≥ x,

x
√

k(Φ̂(π
2 ) − Φ(π

2 )) − x
∫ π/4

arctan y
x

1
cos2 θ

√
k(Φ̂(θ) − Φ(θ))dθ, if y < x.

Now, let’s first consider the case y ≥ x.

sup
0<x≤y≤1

∣

∣

∣

∣

∣

√
k(l̂1(x, y) − l(x, y)) − A(x, y)

x ∨ y

∣

∣

∣

∣

∣

=
1

x ∨ y

∣

∣

∣
x

(√
k(Φ̂∗(

π

2
) − Φ(

π

2
)) − (W ∗

Λ(Cπ
2
) − Z∗(

π

2
)
)

+y

∫ arctan y
x

π/4

1

sin2 θ

(√
k(Φ̂∗(θ) − Φ(θ)) − (W ∗

Λ(Cθ) − Z∗(θ))
)

dθ

∣

∣

∣

∣

∣

+ oP (1)

≤ xDn

x ∨ y
+

yDn

x ∨ y

∫ π/2

π/4

1

sin2 θ
dθ + oP (1) → 0,

in probability as n → ∞. In case of y < x, the proof is similar. 2

Let Q1n and Q2n be the empirical quantile functions of the {Ui}n
i=1 and

{Vi}n
i=1, respectively. Define

R̂(x, y) =
1

k

n
∑

i=1

I{Ui<Q1n(kx/n), Vi<Q2n(ky/n)}.

Note that by (4.1.10)

l̂2(x, y) =
1

k

n
∑

i=1

I{Ui<Q1n(kx/n) or Vi<Q2n(ky/n)}.

Proof of Theorem 4.2.2. It is easily seen that l̂2(x, y) + R̂(x, y) = (⌈kx⌉ +
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⌈ky⌉ − 2)/k ≤ ([kx] + [ky])/k, for each x, y ∈ (0, 1], almost surely. So we have

sup
0<x,y≤1

x∨y≥1/k

|
√

k(l̂2(x, y) − l(x, y)) +
√

k(R̂(x, y) − R(x, y))|
(x ∨ y)η

a.s.
= sup

0<x,y≤1

x∨y≥1/k

∣

∣

∣

√
k( 1

k (⌈kx⌉ + ⌈ky⌉ − 2) − (x + y))
∣

∣

∣

(x ∨ y)η

≤ k−η sup
0<x,y≤1

√
k(x + y − ([kx] + [ky])/k)

≤ 2
√

k · kη−1 = 2kη−1/2 → 0.

Write Sjn(x) = n
k Qjn( k

nx), j = 1, 2. Then we have

sup
0<x,y≤1

x∨y≥1/k

|
√

k(l̂2(x, y) − l(x, y)) + WR(x, y) − R1(x, y)W1(x) − R2(x, y)W2(y)|
(x ∨ y)η

a.s.
= sup

0<x,y≤1

x∨y≥1/k

|
√

k(R̂(x, y) − R(x, y)) − WR(x, y) + R1(x, y)W1(x) + R2(x, y)W2(y)|
(x ∨ y)η

+ o(1)

= sup
0<x,y≤1

x∨y≥1/k

|
√

k(R̂(x, y) − Rn(S1n(x), S2n(y))) − WR(x, y)|
(x ∨ y)η

+ sup
0<x,y≤1

x∨y≥1/k

|
√

k(Rn(S1n(x), S2n(y))) − R(S1n(x), S2n(y))|
(x ∨ y)η

+ sup
0<x,y≤1

x∨y≥1/k

|
√

k(R(S1n(x), S2n(y)) − R(x, y)) + R1(x, y)W1(x, y) + R2(x, y)W2(y)|
(x ∨ y)η

+ o(1)

=: D1 + D2 + D3 + o(1).

We will show that Dj → 0 in probability, j = 1, 2, 3. We have

D1 = sup
0<x,y≤1

x∨y≥1/k

|
√

k(Tn(S1n(x), S2n(y)) − Rn(S1n(x), S2n(y))) − WR(x, y)|
(x ∨ y)η

≤ sup
0<x,y≤1

x∨y≥1/k

|
√

k(Tn(S1n(x), S2n(y)) − Rn(S1n(x), S2n(y))) − WR(S1n(x), S2n(y))|
(S1n(x) ∨ S2n(y))η

·
(

S1n(x) ∨ S2n(y)

x ∨ y

)η

+ sup
0<x,y≤1

x∨y≥1/k

|WR(S1n(x), S2n(y)) − WR(x, y)|
(x ∨ y)η
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≤ sup
0<s,t≤2

|vn(s, t) − WR(s, t)|
(s ∨ t)η

· sup
0<s,t≤k/n

s∨t≥1/n

(

Q1n(s) ∨ Q2n(t)

s ∨ t

)η

+ sup
0<x,y≤1

x∨y≥1/k

|WR(S1n(x), S2n(y)) − WR(x, y)|
(x ∨ y)η

=: D11 · D12 + D13,

where the last inequality holds with arbitrarily high probability. Then D11 → 0
in probability because of (4.3.8) with T = 2. It is well known that

sup
s≥1/n

Qjn(s)

s
= OP (1), j = 1, 2 (4.3.11)

(see Shorack and Wellner (1986), p. 419). Hence D11 ·D12 → 0, in probability.
Now consider for each ε > 1/k

D13 ≤ sup
0<x,y≤1
x∨y≥ε

|WR(S1n(x), S2n(y)) − WR(x, y)|
εη

+ sup
0<x,y≤1

1/k≤x∨y≤ε

|WR(S1n(x), S2n(y))|
(S1n(x) ∨ S2n(y))η

· sup
s,t≥1/n

(

Q1n(s) ∨ Q2n(y)

s ∨ t

)η

+ sup
0<x,y≤1

1/k≤x∨y≤ε

|WR(x, y)|
(x ∨ y)η

=: D14 + D15 + D16.

By the (uniform) continuity of WR and the fact that

sup
0<t≤k/n

n

k
|Qjn(t) − t| → 0, a.s., j = 1, 2, (4.3.12)

D14 → 0 in probability a.s. for any ε > 0. Let δ > 0, by (4.3.11) and Lemma
4.3.2 we see that for large n, P (D15 ≥ δ) ≤ δ for ε > 0 small enough. Again
from Lemma 4.3.2 we have P (D16 ≥ δ) ≤ δ. Hence D13 → 0 in probability and
consequently D1 → 0, in probability.

Consider D2. Take (a, b) with a ∨ b = u. Then according to (4.2.5)

1

t
C(ta, tb) =

u

ut
C(tu

a

u
, tu

b

u
)

= uR(
a

u
,
b

u
) + u1+αO(tα)

= R(a, b) + (a ∨ b)1+αO(tα).

Now with arbitrarily high probability

D2 ≤ sup
0<x,y≤2

|
√

k(Rn(x, y) − R(x, y))|
(x ∨ y)η

· sup
s∨t≥1/n

(

Q1n(s) ∨ Q2n(t)

s ∨ t

)η

.
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We have seen before that second term of this product is OP (1). So it is suffices
to show that the first term is o(1):

sup
0<x,y≤2

|
√

k(Rn(x, y) − R(x, y))|
(x ∨ y)η

=

(

sup
0<x,y≤2

√
k(x ∨ y)1+α

(x ∨ y)η

)

O

((

k

n

)α)

= O

(

kα+1/2

nα

)

= o(1),

by assumption. Hence D2 → 0 in probability.
It remains to show that D3 → 0 in probability. By two applications of the

mean-value theorem we obtain

R(S1n(x), S2n(y)) − R(x, y)

= R(S1n(x), S2n(y)) − R(x, S2n(y)) + R(x, S2n(y)) − R(x, y)

= R1(θ1n, S2n(y))(S1n(x) − x) + R2(x, θ2n)(S2n(y) − y)

with θ1n between x and S1n(x) and θ2n between y and S2n(y). So

D3 ≤ sup
0<x,y≤1

x∨y≥1/k

|R1(θ1n, S2n(y))
√

k(S1n(x) − x) + R1(x, y)W1(x)|
(x ∨ y)η

+ sup
0<x,y≤1

x∨y≥1/k

|R2(x, θ2n)
√

k(S2n(y) − y) + R2(x, y)W2(y)|
(x ∨ y)η

.

We consider only the first term in the right hand side of this expression; the
second one can be dealt with similarly. Write zn(x) =

√
k(S1n(x) − x). From

(4.3.9) with η = 0 it follows that

sup
0<x≤1

|zn(x) + W1(x)| → 0

in probability. From this it can be shown that for 0 ≤ η < 1/2

sup
1/k≤x≤1

|zn(x) + W1(x)|
xη

→ 0 (4.3.13)

in probability (see, e.g., Einmahl (1992)). Now

sup
0<x,y≤1

x∨y≥1/k

|R1(θ1n, S2n(y))zn(x) + R1(x, y)W1(x)|
(x ∨ y)η

≤ sup
0<x,y≤1

R1(θ1n, S2n(y)) · sup
1/k≤x≤1

|zn(x) + W1(x)|
xη

+ sup
0<x,y≤1

|R1(x, y) − R1(θ1n, S2n(y))| · sup
0<x≤1

|W1(x)|
xη

=: D31 + D32.
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Since R1 is continuous on [0, 2]2 it is uniformly continuous and bounded.
This together with (4.3.13) yields D31 → 0 in probability. The uniform conti-
nuity of R1 together with (4.3.12) and the fact that

sup
0<x≤1

|W1(x)|
xη

< ∞ a.s.,

yields D32 → 0 in probability and consequently D3 → 0 in probability.

Finally we show that

sup
0<x,y<1/k

|
√

k(l̂2(x, y) − l(x, y)) + B(x, y)|
(x ∨ y)η

= oP (1).

Observing that sup0<x,y<1/k l̂2(x, y) = 0 a.s., this follows easily. 2

Proof of Theorem 4.2.3. For each 0 ≤ β < 3, there exist α ∈ [0, 2) and
η ∈ [0, 1/2) such that β = α + 2η. By Theorem 4.2.1 and Theorem 4.2.2, and

∫ 1

0

∫ 1

0

1

(x ∨ y)α
dxdy < ∞,

it follows that as n → ∞

∫∫

0<x,y≤1

k
(

l̂1(x, y) − l̂2(x, y)
)2

(x ∨ y)β
dxdy

= oP (1)

∫∫

0<x,y≤1

1

(x ∨ y)α
dxdy +

∫∫

0<x,y≤1

(A(x, y) + B(x, y))2

(x ∨ y)β
dxdy

d→
∫∫

0<x,y≤1

(A(x, y) + B(x, y))2

(x ∨ y)β
dxdy .

2

4.4 Approximating the limit

For testing purposes, we have to find the probability distribution of the limiting
random variable in Theorem 4.2.3. This can be done by simulating the pro-
cesses A and B, but unfortunately their distributions depend on the unknown
measure Λ. Therefore, we generate approximations An and Bn, respectively, of
the processes A and B, not with parameter Λ but with approximated param-
eter Λn. In this section, we consider the convergence of the sequence of these
approximated limiting random variables. Until further notice, we take {Λn}n≥1

to be a sequence of deterministic measures.
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Define

R1n(x, y) :=
1

2
k1/5Λn([x − k−1/5, x + k−1/5] × [0, y)),

R2n(x, y) :=
1

2
k1/5Λn([0, x) × [y − k−1/5, y + k−1/5]),

W1n(x) := WΛn([0, x] × [0,∞]), W2n(y) := WΛn([0,∞] × [0, y]),

WRn(x, y) := WΛn([0, x] × [0, y]),

and the process Bn by

Bn(x, y) := WRn(x, y) − R1n(x, y)W1n(x) − R2n(x, y)W2n(y).

Based on the definition of Z in (4.2.1) and the homogeneity property of λ (i.e.,
λ(tx, ty) = 1

t λ(x, y)), we define the approximating process Zn by

Zn(θ) =


































































λn(1, tan θ) tan θ

∫ 1
tan θ

0

W1n(x)

x
dx − λn(1, tan θ)

∫ 1

0

W2n(x)

x
dx

− W2n(1)

∫ ∞

1
tan θ

λn(x, 1)dx, θ ∈ [0,
π

4
]

λn(
1

tan θ
, 1)

∫ 1

0

W1n(x)

x
dx − λn(

1

tan θ
, 1)

1

tan θ

∫ tan θ

0

W2n(x)

x
dx

− W2n(1)

∫ ∞

1
λn(x, 1)dx − W1n(1)

∫ tan θ

1
λn(1, y)dy, θ ∈ (

π

4
,
π

2
)

− W2n(1)

∫ ∞

1
λn(x, 1)dx − W1n(1)

∫ ∞

1
λn(1, y)dy, θ =

π

2

(4.4.1)

where λn is the approximation of λ defined by

λn(1, y) :=
1

4
k1/3Λn([1 − k−1/6, 1 + k−1/6] × [y − k−1/6, y + k−1/6]), y > 0,

λn(x, 1) :=
1

4
k1/3Λn([x − k−1/6, x + k−1/6] × [1 − k−1/6, 1 + k−1/6]), x > 0.

Finally define the process An by

An(x, y) :=






x(WΛn(Cπ
2
) + Zn(π

2 )) + y
∫ arctan y

x

π/4
1

sin2 θ
(WΛn(Cθ) + Zn(θ))dθ if y ≥ x,

x(WΛn(Cπ
2
) + Zn(π

2 )) − x
∫ π/4

arctan y
x

1
cos2 θ

(WΛn(Cθ) + Zn(θ))dθ if y < x.

First we consider the weak convergence of the weighted approximating pro-
cesses. We write D2 := D([0, 1]2) for the generalization of D[0, 1] to dimension
2, and Ld for the Borel σ-algebra on (D2, d), where d is the metric on D2 defined
in Neuhaus (1971).
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Proposition 4.4.1. Let Λ be as in Theorem 4.2.3. Suppose that {Λn}n≥1 is a
sequence of measures on [0,∞]2 \ {(∞,∞)} satisfying that for each x, y ≥ 0

Λn([0, x] × [0,∞]) = [kx]/k, Λn([0,∞] × [0, y]) = [ky]/k (4.4.2)

and

sup
0<x,y≤1

|Λn([0, x] × [0, y]) − Λ([0, x] × [0, y])| → 0 (4.4.3)

as n → ∞. Further suppose that

sup
0<x≤1

|λn(x, 1) − λ(x, 1)| → 0, sup
0<y≤1

|λn(1, y) − λ(1, y)| → 0, (4.4.4)

sup
0<x,y≤1

|Rjn(x, y) − Rj(x, y)| → 0, j = 1, 2, (4.4.5)

as n → ∞. Then for each 0 ≤ η < 1/2

{

An(x, y) + Bn(x, y)

(x ∨ y)η
, (x, y) ∈ [0, 1]2

}

→
{

A(x, y) + B(x, y)

(x ∨ y)η
, (x, y) ∈ [0, 1]2

}

,

weakly in D2.

Before proving this proposition, we present three corollaries. The last one
is the main result of this section.

Corollary 4.4.1. Under the conditions of Proposition 4.4.1 for each 0 ≤ β < 3

∫∫

0<x,y≤1

(An(x, y) + Bn(x, y))2

(x ∨ y)β
dxdy

d→
∫∫

0<x,y≤1

(A(x, y) + B(x, y))2

(x ∨ y)β
dxdy

(4.4.6)

as n → ∞.

Let QΛn be the quantile function of the random variable on the left hand
side of (4.4.6) and QΛ the quantile function of the random variable on the right
hand side of (4.4.6).

Corollary 4.4.2. Under the conditions of Proposition 4.4.1, for each 0 ≤ β < 3
and for each continuity point 1 − α (0 < α < 1) of QΛ,

lim
n→∞

QΛn(1 − α) = QΛ(1 − α).
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Next, with abuse of notation, we estimate Λn from the data, so it becomes
random. In Einmahl et al. (2001), Λn is defined as

Λn(A) :=
1

k

n
∑

i=1

I k
n

A





1

n

n
∑

j=1

I(−∞,Ui](Uj),
1

n

n
∑

j=1

I(−∞,Vi](Vj)



 (4.4.7)

=
1

k

n
∑

i=1

IkA

(

n + 1 − RX
i , n + 1 − RY

i

)

where Ui := 1−F1(Xi), Vi := 1−F2(Yi) for i = 1, 2, ..., n. Note that for x, y > 0

Λn([0, x) × [0, y)) =
1

k

n
∑

i=1

I{Ui<Q1n(kx/n), Vi<Q2n(ky/n)}.

So Λn([0, x) × [0,∞]) = (⌈kx⌉ − 1)/k ≤ [kx]/k = Λn([0, x] × [0,∞]) a.s. and
Λn([0,∞] × [0, y)) = (⌈ky⌉ − 1)/k ≤ [ky]/k = Λn([0,∞] × [0, y]) a.s.

The final and main corollary deals with the random measures Λn, where
the functions derived from Λn, like λn, are defined as before. In particular, we
define QΛn , as the quantile function of the random variable on the left hand
side of (4.4.6), conditional on Λn, so it is also random.

Corollary 4.4.3. Let Λn be as in (4.4.7). Under the conditions of Theorem
4.2.3, we have for each 0 ≤ β < 3 and each continuity point 1 − α (0 < α < 1)
of QΛ, that

QΛn(1 − α)
P→ QΛ(1 − α), as n → ∞.

For testing purposes, Corollary 4.4.3 shows that simulation of the limiting
random variable in Theorem 4.2.3 with Λ replaced with the estimated Λn is
asymptotically correct.

Now we turn to the proofs. In order to prove Proposition 4.4.1, by Pro-
horov’s theorem it is necessary and sufficient to prove that

(i) The finite-dimensional distributions of {(An(x, y)+Bn(x, y))/(x∨y)η, (x, y) ∈
[0, 1]2}n≥1 converge to those of {(A(x, y) + B(x, y))/(x ∨ y)η, (x, y) ∈ [0, 1]2},

(ii) {(An(x, y)+Bn(x, y))/(x∨y)η, (x, y) ∈ [0, 1]2}n≥1 is relatively compact.

For the relative compactness, we need several lemmas. First we present in
Lemma 4.4.1 sufficient conditions for relative compactness ; the proof is similar
to that of Theorem 15.5 in Billingsley (1968), see also Neuhaus (1971).

Lemma 4.4.1. Let Pn be probability measures on (D2,Ld). Suppose that, for
each positive η, there exists an M > 0 such that

Pn(x ∈ D2 : |x(0, 0)| > M) ≤ η, n ≥ 1.
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Suppose further that, for each positive ε and η, there exist a δ, 0 < δ < 1, and
an integer n0 such that

Pn(x ∈ D2 : sup
|u1−u2|≤δ,|v1−v2|≤δ

|x(u1, v1) − x(u2, v2)| > ε) ≤ η, n ≥ n0.

Then {Pn}n≥1 is relatively compact.

Lemma 4.4.2. Under the conditions of Proposition 4.4.1, for each c, a > 0

(i)
∫ c
0

Wjn(t)
t dt ∼ N(0, σ2

n), with σ2
n ≤ 2c, j = 1, 2,

(ii) P (supt≥c |
Wjn(t)

t | ≥ a) ≤ 2P (|W (2/c)| ≥ a), j = 1, 2, where W is a
standard Wiener process.

Proof. (i) This follows from Proposition 1, page 42, in Shorack and Wellner
(1986).

(ii) Let W be a standard Wiener process. Since {W (t)/t, t ≥ c} =d {W (1/t), t ≥
c}, then

P (sup
t≥c

|W (t)/t| ≥ a) = P ( sup
0<s≤1/c

|W (s)| ≥ a) ≤ 2P (|W (1/c)| ≥ a).

Write Λ1n(t) for Λn([0, t]× [0,∞]). Since {W1n(t), t > 0} d
= {W (Λ1n(t)), t > 0},

then

P (sup
t≥c

|W1n(t)/t| ≥ a) = P (sup
t≥c

∣

∣

∣

∣

W (Λ1n(t)) · Λ1n(t)

Λ1n(t) · t

∣

∣

∣

∣

≥ a)

≤P ( sup
Λ1n(t)≥c/2

|W (Λ1n(t))/Λ1n(t)| ≥ a) ≤ 2P (|W (2/c)| ≥ a),

eventually (since t − 1/k ≤ Λ1n(t) ≤ t). For j = 2 the proof is the same. 2

Lemma 4.4.3. Define

Hn := sup
θ∈[0,π/2]

|WΛn(Cθ) + Zn(θ)|.

Then under the conditions of Proposition 4.4.1, there exists an n0 ∈ N such
that

sup
n≥n0

P (Hn ≥ a) = O(e−a) as a → ∞.

Proof. Define H1n := supθ∈[0,π/4] |WΛn(Cθ)+Zn(θ)|, H2n := supθ∈(π/4,π/2) |WΛn(Cθ)+
Zn(θ)|, and H3n := |WΛn(Cπ/2)+Zn(π/2)|. It suffices to verify that there exists
an n0 ∈ N such that

sup
n≥n0

P (Hjn ≥ a) = O(e−a), j = 1, 2, 3

as a → ∞. Here we only check it in case of j = 1. For the other two cases, the
proofs are similar.
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Since for all n ≥ 1

{WΛn(Cθ), θ ∈ [0, π/2]} d
= {W (Λn(Cθ)), θ ∈ [0, π/2]},

with W a standard Wiener process, we have

P (H1n ≥ a) ≤ P ( sup
θ∈[0,π/4]

|W (Λn(Cθ))| ≥ a/2) + P ( sup
θ∈[0,π/4]

|Zn(θ)| ≥ a/2)

≤ 2P (|W (Λn(Cπ/4))| ≥ a/2) + P ( sup
θ∈[0,π/4]

|Zn(θ)| ≥ a/2).

Clearly Λn(Cπ/4) ≤ 1 for all n ≥ 1, and hence supn≥1 P (|W (Λn(Cπ/4))| ≥
a/2) = O(e−a), as a → ∞.

From Einmahl et al. (2001), one has supx>0 λ(x, 1) < ∞ and supy>0 λ(1, y) <
∞. Then by (4.4.4) there exists a constant λ0 > 0 such that sup0<x≤1 λn(x, 1) <
λ0 and sup0<y≤1 λn(1, y) < λ0 for large n. Using (4.4.2) and the fact that Λn

is a step function, one can prove with some effort that
∫ ∞
1 λn(x, 1)dx ≤ 2 and

∫ ∞
1 λn(1, y)dy ≤ 2 for sufficiently large n, hence by the definition of Zn(θ), one

has

sup
θ∈[0,π/4]

|Zn(θ)|

≤ λ0

∣

∣

∣

∣

∫ 1

0

W1n(x)

x
dx

∣

∣

∣

∣

+ λ0 sup
θ∈[0,π/4]

∣

∣

∣

∣

∣

tan θ

∫ 1/ tan θ

1

W1n(x)

x
dx

∣

∣

∣

∣

∣

+ λ0

∣

∣

∣

∣

∫ 1

0

W2n(x)

x
dx

∣

∣

∣

∣

+ 2 |W2n(1)|

≤ λ0

∣

∣

∣

∣

∫ 1

0

W1n(x)

x
dx

∣

∣

∣

∣

+ λ0 sup
x≥1

∣

∣

∣

∣

W1n(x)

x

∣

∣

∣

∣

+ λ0

∣

∣

∣

∣

∫ 1

0

W2n(x)

x
dx

∣

∣

∣

∣

+ 2 |W2n(1)| ,

for sufficiently large n. By Lemma 4.4.2(i),
∫ 1
0

W1n(x)
x dx and

∫ 1
0

W2n(x)
x dx have

centered normal distributions with uniformly bounded variances for all n ≥ 1.
By Lemma 4.4.2(ii) there exist an n0 ∈ N such that

sup
n≥n0

P (λ0 sup
x≥1

|W1n(x)|/x ≥ a/8) ≤ 2P (W (2) ≥ a/(8λ0)) = O(e−a)

as a → ∞. Hence

sup
n≥n0

P ( sup
θ∈[0,π/4]

|Zn(θ)| ≥ a/2) = O(e−a)

as a → ∞. So supn≥n0
P (H1n ≥ a) = O(e−a) as a → ∞. 2

Lemma 4.4.4. Under the conditions of Proposition 4.4.1, for each 0 ≤ η < 1/2
{

Bn(x, y)

(x ∨ y)η
, (x, y) ∈ [0, 1]2

}

n≥1

is relatively compact.
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Proof. By the definition of R1n and R2n, one has

R1n(x, y) =
1

2
k1/5Λn([x − k−1/5, x + k−1/5] × [0,∞])

=
1

2
k1/5

(

[k(x + k−1/5)]

k
− [k(x − k−1/5)]

k

)

≤ 1 + 1/k4/5 ≤ 2 if k ≥ 1.

Also R2n(x, y) ≤ 2 for k ≥ 1. Hence it is sufficient to prove

{WRn(x, y)/(x ∨ y)η, x, y ∈ [0, 1]}n≥1,

{W1n(x)/xη, x ∈ [0, 1]}n≥1,

{W2n(y)/yη, y ∈ [0, 1]}n≥1

are relatively compact. Here we only show the proof of the first one. The proofs
of the others are similar.

Setting 0/0 = 0, by Lemma 4.4.1 it suffices to prove that for each positive
ε, there exist a δ (0 < δ < 1) and n0 ∈ N (n0 may depend on δ) such that

P



 sup
x,y,u,v∈[0,1]

|x−u|≤δ,|y−v|≤δ

∣

∣

∣

∣

WΛn([0, x] × [0, y])

(x ∨ y)η
− WΛn([0, u] × [0, v])

(u ∨ v)η

∣

∣

∣

∣

> ε



 ≤ ε, n ≥ n0.

(4.4.8)

We partition the square [0, 1]× [0, 1] into m2 (m ∈ N) small squares, say [0, 1]×
[0, 1] =

⋃m
i=1

⋃m
j=1 ∆ij , with ∆ij := {(x, y) : iδ ≤ x ≤ (i+1)δ, jδ ≤ y ≤ (j+1)δ},

δ := 1/m and i, j = 0, 1, ..., m− 1. In order to prove (4.4.8), it suffices to prove
that for each positive ε, there exist a δ (0 < δ < 1) and n0 = n0(δ) ∈ N such
that

m−1
∑

i=0

m−1
∑

j=0

P

(

sup
∆ij

∣

∣

∣

∣

WΛn([0, x] × [0, y])

(x ∨ y)η
− WΛn([0, iδ] × [0, jδ])

δη(i ∨ j)η

∣

∣

∣

∣

> ε

)

≤ ε, n ≥ n0.

(4.4.9)

We consider the case i ∨ j ≥ 1 and the case i = j = 0 separately. Let’s first
look at the case i ∨ j ≥ 1. Assume i > j. Let S(x, y) := [0, x] × [0, y]. Note
that for (x, y) ∈ ∆ij

∣

∣

∣

∣

WΛn([0, x] × [0, y])

(x ∨ y)η
− WΛn([0, iδ] × [0, jδ])

δη(i ∨ j)η

∣

∣

∣

∣

=

∣

∣

∣

∣

WΛn(S(x, y))

xη
− WΛn(S(iδ, jδ))

(iδ)η

∣

∣

∣

∣

=
|(iδ)ηWΛn(S(iδ, jδ)) + (iδ)ηWΛn(S(x, y)\S(iδ, jδ)) − xηWΛn(S(iδ, jδ))|

xη(iδ)η

≤ |(iδ)ηWΛn(S(x, y)\S(iδ, jδ)) − (xη − (iδ)η)WΛn(S(iδ, jδ))|
(iδ)2η
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(since x ≥ iδ ≥ y). Hence

P

(

sup
∆ij

∣

∣

∣

∣

WΛn([0, x] × [0, y])

(x ∨ y)η
− WΛn([0, iδ] × [0, jδ])

δη(i ∨ j)η

∣

∣

∣

∣

> ε

)

≤ P
(

sup
∆ij

|WΛn(S(x, y)\S(iδ, jδ))

(iδ)η
| >

ε

2

)

+ P
(

sup
∆ij

|x
η − (iδ)η

(iδ)2η
WΛn(S(iδ, jδ))| >

ε

2

)

≤ 4P
(

|WΛn(S((i + 1)δ, (j + 1)δ)\S(iδ, jδ))

(iδ)η
| >

ε

4

)

+ P
(

|(1 + 1/i)η − 1

(iδ)η
WΛn(S(iδ, jδ))| >

ε

2

)

.

Since Λn(S((i + 1)δ, (j + 1)δ)\S(iδ, jδ)) ≤ 2δ + 4/k for all i∨ j ≥ 1, there exist
n∗ = n∗(δ) ∈ N such that k∗ = k(n∗) ≥ 1/δ and hence

Λn(S((i + 1)δ, (j + 1)δ)\S(iδ, jδ)) ≤ 6δ, n ≥ n∗.

uniformly in i∨ j ≥ 1. It follows that (iδ)−ηWΛn(S((i+1)δ, (j +1)δ)\S(iδ, jδ))
has a normal distribution with mean zero and variance σ2

n(i, j) satisfying σ2
n(i, j) ≤

6δ1−2η for all i > j, i ≥ 1, and n ≥ n∗. Hence for all ε > 0

sup
n≥n∗

sup
i>j, i≥1

P
(

|(iδ)−ηWΛn(S((i+1)δ, (j+1)δ)\S(iδ, jδ))| > ε/4
)

= O(e−δη−1/2
)

as δ → 0. On the other hand, note that (1+1/i)η−1
(iδ)η WΛn(S(iδ, jδ)) has a nor-

mal distribution with mean zero and variance σ̃2
n(i, j) satisfying σ̃2

n(i, j) ≤
(iδ)1−2η((1 + 1/i)η − 1)2 ≤ 4δ1−2η. So

sup
n≥n∗

sup
i>j, i≥1

P
(

|(1 + 1/i)η − 1

(iδ)η
WΛn(S(iδ, jδ))| > ε/2

)

= O(e−δη−1/2
)

as δ → 0.
In case of j > i, j ≥ 1 and case of i = j ≥ 1, we can get similar results as

above. Hence

sup
n≥n∗

m−1
∑

i∨j≥1

P

(

sup
∆ij

∣

∣

∣

∣

WΛn([0, x] × [0, y])

(x ∨ y)η
− WΛn([0, iδ] × [0, jδ])

δη(i ∨ j)η

∣

∣

∣

∣

> ε

)

= O(δ−2e−δη−1/2
)

(4.4.10)

as δ → 0.
Now let us look at the case i = j = 0. By Lemma 4.3.2 (in fact we can

replace R by Λn in that lemma), one has

sup
n≥1

P

(

sup
x∨y≤δ

∣

∣

∣

∣

WΛn([0, x] × [0, y])

(x ∨ y)η

∣

∣

∣

∣

> ε

)

= O(e−δη−1/2
) (4.4.11)

as δ → 0.
Since (4.4.10) and (4.4.11) imply (4.4.9), the result follows. 2
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Lemma 4.4.5. Under the conditions of Proposition 4.4.1, for each 0 ≤ η < 1

{

An(x, y)

(x ∨ y)η
, (x, y) ∈ [0, 1]2

}

n≥1

is relatively compact.

Proof. The proof is similar to that of Lemma 4.4.4. We use the same notation
for ∆ij and S. We only need to check that for each positive ε, there exist a δ
(0 < δ < 1) and n0 = n0(δ) ∈ N such that

m−1
∑

i=0

m−1
∑

j=0

P

(

sup
∆ij

∣

∣

∣

∣

An(x, y)

(x ∨ y)η
− An(iδ, jδ)

δη(i ∨ j)η

∣

∣

∣

∣

> ε

)

≤ ε, n ≥ n0. (4.4.12)

We consider the case i ∨ j ≥ 1 and the case i = j = 0 separately. Let us first
look at the case i ∨ j ≥ 1. In case of i > j, i ≥ 1, note that for (x, y) ∈ ∆ij

|An(x, y)/(x ∨ y)η − An(iδ, jδ)/((iδ) ∨ (jδ))η|

=
∣

∣

∣(x1−η − (iδ)1−η)(WΛn(Cπ/2) − Zn(π/2))

− (x1−η − (iδ)1−η)

∫ π/4

arctan y/x

1

cos2 θ
(WΛn(Cθ) + Zn(θ)) dθ

+ (iδ)1−η

∫ arctan y/x

arctan j/i

1

cos2 θ
(WΛn(Cθ) + Zn(θ)) dθ

∣

∣

∣

≤ (iδ)1−η((1 + 1/i)η − 1)(1 + π/2)Hn + (iδ)1−η

(

arctan
j + 1

i
− arctan

j

i

)

2 Hn

where Hn is defined in Lemma 4.4.3. Since (iδ)1−η((1 + 1/i)η − 1) = O(δ1−η)
and (iδ)1−η(arctan j+1

i −arctan j
i ) = O(δ1−η) as δ → 0 and uniformly in i, j (i >

j, i ≥ 1), then by Lemma 4.4.3 there exists n∗ = n∗(δ) ∈ N such that

sup
n≥n∗

sup
i>j, i≥1

P
(

|An(x, y)/(x ∨ y)η − An(iδ, jδ)/((iδ) ∨ (jδ))η| > ε/2
)

= O(e−δ(η−1)/2
)

(4.4.13)

as δ → 0.
In case of j > i, j ≥ 1 and case of i = j ≥ 1 we can get a similar result as

(4.4.13). Hence there exists n01 = n01(δ) ∈ N such that

sup
n≥n01

m
∑

i∨j≥1

P
(

|An(x, y)/(x ∨ y)η − An(iδ, jδ)/((iδ) ∨ (jδ))η| > ε
)

= O(δ−2e−δ(η−1)/2
)

(4.4.14)

as δ → 0.
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Now let’s consider the case i = j = 0 and w.l.o.g. assume y ≥ x. Then for
0 ≤ x ≤ y ≤ δ

|An(x, y)/(x ∨ y)η|

=
∣

∣

∣xy−ηWΛn(Cπ/2) + Zn(π/2)) + y1−η

∫ arctan y/x

π/4
sin−2 θ(WΛn(Cθ) + Z(θ))dθ

∣

∣

∣

≤ δ1−η(1 + π/2)Hn.

Hence there exists n02 = n02(δ) ∈ N such that

sup
n≥n02

P
(

sup
x∨y≤δ

|An(x, y)/(x ∨ y)η| > ε) = O(e−δ(η−1)/2)

(4.4.15)

as δ → 0.

Now (4.4.14) and (4.4.15) imply (4.4.12). 2

Proof of Proposition 4.4.1. By Lemmas 4.4.4 and 4.4.5,

{

An(x, y) + Bn(x, y)

(x ∨ y)η
, (x, y) ∈ [0, 1]2

}

n≥1

(4.4.16)

is relatively compact. It is easy to check that the finite-dimensional distributions
of our estimated processes in (4.4.16) converge to those of the limiting process,
which completes the proof. 2

Proof of Corollary 4.4.1. After applying a Skorohod construction to the
weak convergence statement of Proposition 4.4.1, the proof is similar to that of
Theorem 4.2.3. 2

Proof of Corollary 4.4.2. Proposition 4.4.1 implies the weak convergence
of the distribution function of the left hand side of (4.4.6) to the distribution
function of the right hand side of (4.4.6). This property carries over to the
inverse functions QΛn and QΛ. 2

Proof of Corollary 4.4.3. From another Skorohod construction we obtain an
a.s. version of the statement of Theorem 4.2.2; without changing the notation
we now work with this construction. Since for 0 < x, y ≤ 1

Λ([0, x] × [0, y]) = x + y − l(x, y),

Λn([0, x] × [0, y]) = ⌈kx⌉/k + ⌈ky⌉/k − l̂2(x, y) − δn(x, y)/k

(δn(x, y) takes values in {0, 1, 2}), it follows that for each ε > 0

sup
0<x,y≤1

k1/2−ε
∣

∣

∣
Λn([0, x] × [0, y]) − Λ([0, x] × [0, y])

∣

∣

∣
→ 0 a.s. (4.4.17)

as n → ∞.
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We now show that (4.4.2), (4.4.3), (4.4.4), (4.4.5) hold a.s. We already saw,
below (4.4.7), that (4.4.2) holds a.s. and the a.s. version of (4.4.3) follows
immediately from (4.4.17).

By (4.4.17) and (4.4.2), it is easily follows that

sup
E∈E

k1/2−ε
∣

∣

∣
Λn(E) − Λ(E)

∣

∣

∣
→ 0 a.s. (4.4.18)

as n → ∞, where E := {E| E = [x1, x2] × [y1, y2], 0 < x1 ≤ x2 ≤ 2, 0 < y1 ≤
y2 ≤ 2}. Let En(x) = [x − k−1/6, x + k−1/6] × [1 − k−1/6, 1 + k−1/6]. Then

sup
0<x≤1

|λn(x, 1) − λ(x, 1)|

= sup
0<x≤1

|1
4
k1/3Λn(En(x)) − 1

4
k1/3Λ(En(x)) +

1

4
k1/3Λ(En(x)) − λ(x, 1)|

≤ sup
0<x≤1

1

4
k1/3|Λn(En(x)) − Λ(En(x))| + sup

0<x≤1
|1
4
k1/3Λ(En(x)) − λ(x, 1)|

→ 0 a.s. as n → ∞,

as n → ∞, by (4.4.18) and λ(0, 1) = 0. The proofs of sup0<y≤1 |λn(1, y) −
λ(1, y)| → 0 a.s. and sup0<x,y≤1 |Rjn(x, y) − Rj(x, y)| → 0, j = 1, 2, a.s. are
similar. Hence (4.4.4) and (4.4.5) hold a.s.

According to Corollary 4.4.2 we have

QΛn(1 − α) → QΛ(1 − α) a.s.

as n → ∞, hence also in probability. 2

4.5 Simulation study and real data application

In this section we present a small simulation study, making use of the results of
section 4.4. We will consider one distribution satisfying the domain of attraction
condition and one that fails to satisfy it. At the end of the section, we will apply
our procedure to financial data. Throughout we take β = 2 in the test statistic
of (4.1.12).

Consider the bivariate Cauchy distribution restricted to the first quadrant,
with density

f(x, y) =
2

π(1 + x2 + y2)
3
2

, x, y > 0.

It readily follows that

Λ([0, x] × [0, y]) = x + y −
√

x2 + y2, λ(x, y) =
xy

(x2 + y2)3/2
, x, y > 0.
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This distribution satisfies the conditions of Theorem 4.2.3; in particular (4.2.5)
holds with α = 2 (see Einmahl et al. (2001), pp. 1409-1410). First we present
in Table 4.1 the quantiles of the limiting random variable

∫∫

0<x,y≤1

(A(x, y) + B(x, y))2

(x ∨ y)2
dxdy,

using the approximation of section 4.4. We used 100,000 replications. With
high probability these quantiles are accurate up to 0.01.

p 0.25 0.50 0.75 0.90 0.95
Q(p) 0.10 0.14 0.22 0.34 0.44

Table 4.1: Quantiles of the limiting r.v. for β = 2 for the Cauchy distribution.

Now for sample size n = 2000, we simulate 1000 times the test statistic

k

∫∫

0<x,y≤1

(l̂1(x, y) − l̂2(x, y))2

(x ∨ y)2
dxdy,

for various values of k. Using the 0.95-th quantile above, we find the simulated
type-I error probabilities; see Table 4.2. In the ideal situation the number of

k 20 40 60 80 100 125 150 175 200 250 300 400
α̂ .049 .048 .055 .039 .038 .049 .046 .055 .049 .060 .055 .082

Table 4.2: Simulated type-I error for the Cauchy distribution: n = 2000 and
α = 0.05.

rejections is a binomial r.v. with parameters 1000 and 0.05. So the numbers in
the table are remarkably close to 0.05. Only for k = 400, the bias seems to set
in. In addition, in Figure 4.1 we see, for various k, on the left for one sample
of size n = 2000 the values of the test statistic and on the right the median
and 0.95-th quantile for the test statistic based on 800 samples. Note that the
behavior of the test statistic fluctuates with k, but that for all k in the figure
the value is far below 0.44, the 0.95-th quantile of the limiting random variable.

Next we consider a distribution with uniform-(0, 1) marginals (a copula),
which does not satisfy the bivariate domain of attraction condition. Since both
marginals are uniform, they are in the univariate domain of attraction of the
reverse Weibull law. So it is the dependence structure that causes the failure.
The distribution is an adaptation of a distribution in Schlather (2001): take a
density of 3/2 on the following rectangles: [2−(2m+1), 2−(2m)]× [2−(2r+1), 2−(2r)]
, for m = 0, 1, 2, . . . and r = 0, 1, 2, . . .; in this way a probability mass of 2/3
is assigned. The remaining 1/3 is assigned by taking the uniform distribution
on the line segments from (2−(2m+2), 2−(2m+2)) to (2−(2m+1), 2−(2m+1)), m =
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Figure 4.1: Cauchy distribution: test statistic (left) and quantiles of the test
statistic (right).
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Figure 4.2: Alternative distribution: test statistics and 0.95-th quantiles of 2
samples.

0, 1, 2, . . ., such that the mass of the m-th segment is equal to 2−(2m+2). In
Figure 4.2, we see for varying k the test statistics and simulated 0.95-th quantiles
of two samples of size n = 2000 from this distribution. Again the test statistics
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fluctuate with k, but from a certain k on (and for most values of k), the null
hypothesis is clearly rejected.

Finally, we apply the test to real data, similarly as we just did for the
simulated data sets in Figure 4.2. The data are 3283 daily logarithmic equity
returns over the period 1991-2003 for two Dutch banks, ING and ABN AMRO
bank. The bivariate, heavy-tailed data are shown in Figure 4.3 on the left;
on the right we see again the test statistic and 0.95-th quantile. Since the
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Figure 4.3: Daily equity returns of two Dutch banks (left) and test statistics
and 0.95-th quantiles (right).

test statistic is everywhere clearly below the quantile, we cannot reject the null
hypothesis. This is a satisfactory result, because it allows us to analyze these
data further, using statistical theory of extremes.





Chapter 5

Comparison of Estimators in

Multivariate EVT

co-authors: M. Isabel Barão and Laurens de Haan

Abstract. Several methods to generate samples from distributions in the domain

of attraction of multivariate extreme value distributions are proposed and used for

comparison of estimators by simulation.

5.1 Introduction

One of the main purposes of multivariate extreme value theory (EVT) is to
estimate the probability of an extreme set when i.i.d. observations are available
from a distribution in the domain of attraction of an extreme value distribu-
tion. In order to do so one has to estimate the dependence structure of the
limiting distribution . In fact, as in the one-dimensional case, one does the
extrapolation via the associated generalized Pareto distribution (GPD) rather
than the extreme value distribution itself: the GPD is 1 + log G(x) for all x

with 0 < G(x) < 1 with G the extreme value distribution. We shall concentrate
on the dependence structure abstracted from the form of the marginal distri-
butions: all marginal distributions will have the form 1 − 1/x (x ≥ 1) which is
the one-dimensional GPD with extreme value index 1.

We are going to compare two estimators for the dependence structure:

(i) the maximum likelihood estimator derived in a specific parametric method
called the logistic method which is generated by one parameter α ∈ (0, 1]
(cf. Tawn (1988)), but used also for distributions outside this class.

(ii) the nonparametric estimator proposed and studied by Huang and Mason
(see Huang (1992)).

93
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How do we compare the two estimation procedures? For this we need to be
more concrete about the model.

We restrict ourselves to the two-dimensional space and generate i.i.d. ran-
dom vectors

(X1, Y1), (X2, Y2), ... , (Xn, Yn)

with distribution function F which is in the domain of attraction of some ex-
treme value distribution G, and G being of Fréchet marginal distributions with
index 1, i.e. G(x,∞) = G(∞, x) = exp(−1/x) for x > 0. This distribution
function can be written

G(x, y) = exp
(

−l(x−1, y−1)
)

, x, y > 0,

where l is a homogeneous function of order 1, i.e. for a, x, y > 0

l(ax, ay) = a l(x, y).

Moreover there is a measure Λ such that

l(x, y) = Λ
(

{(s, t) ∈ R
2
+| 0 ≤ s ≤ x or 0 ≤ t ≤ y}

)

and for each Borel set B ⊂ R
2
+ with Λ(∂B) = 0 and for each a > 0

Λ(aB) = aΛ(B).

We introduce the level sets of the function l:

Qc := {(s, t) ∈ R
2
+| l(s, t) = c}

where c > 0. In fact this ”Q-curve” is the graph of a function q, say, which is
characterized by

(1) q(0) = c, q(c) = 0

(2) q is concave.

Conversely any function q with the indicated properties gives rise, via the func-
tion l, to an extreme value distribution (page 40 in Huang (1992)).

Next we introduce the spectral measure. In order to be able to connect the
two estimation procedures we shall provide two forms of the spectral measure.

(i) Each extreme value distribution gives rise to an unique probability dis-
tribution P concentrated on [0, 1] with mean 1/2 as follows (cf. Pickands
(1981)):

G(x, y) = exp
(

− 2

∫ 1

0

(w

x
∨ 1 − w

y

)

H(d w)
)

, (5.1.1)

where H is the distribution function of the probability distribution P ,
and ∨ means maximum.
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(ii) Each extreme value distribution gives rise to an unique finite measure on
the interval [0, π/2] with distribution function Φ such that

∫ π/2

0
(1 ∧ tan θ) Φ(d θ) =

∫ π/2

0
(1 ∧ cot θ)Φ(d θ) = 1.

The functions G and Φ are related in the following way:

G(x, y) = exp
(

−
∫ π/2

0

(1 ∧ tan θ

x
∨ 1 ∧ cot θ

y

)

Φ(d θ)
)

, (5.1.2)

where ∧ means minimum.

The connection between the two forms of the spectral measure, namely those
with distribution functions H and Φ (there are more!) is given in Lemma 5.2.1
below.

What is our comparison criterion for the two estimation procedures? There
will be two:

(i) Comparing the estimators for the Q-curve with the real Q-curve.

(ii) Comparing the estimators for the spectral measure with the real spectral
measure (For this purpose we choose the spectral measure with distribu-
tion function Φ).

The comparison will be done by simulation. Generating samples from a
multidimensional distribution is not completely straightforward. We developed
two methods to generate distributions in the domain of attraction of an extreme
value distribution in Lemma 5.2.2 and 5.2.3.

The two estimation methods give markedly different results for distributions
that are not very smooth and symmetric.

5.2 The estimators; some useful Lemmas

First we describe the estimators for the function l. Recall that

l(x, y) = 2

∫ 1

0
((xw) ∨ (y(1 − w))) H(d w) (5.2.1)

=

∫ π/2

0
((x(1 ∧ tan θ)) ∨ (y(1 ∧ cot θ))) Φ(d θ). (5.2.2)

Maximum likelihood (ML) methods in two-dimensional extreme value the-
ory have been well developed recently. The logistic model has appeared in many
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articles: see, for example, Tawn (1988), Coles and Tawn(1994). Assume (X, Y )
has the distribution function F satisfying

F (x, y) = exp
(

−l(x−1, y−1)
)

for x > u, y > u

for large u, where function l has the following form

l(x, y) = (x1/α + y1/α)α, α ∈ (0, 1].

Then for each x, y > 0 and n = 1, 2, ...

Fn(nx, ny) = G(x, y) = exp
(

−l(x−1, y−1)
)

.

In particular both marginal distribution functions are exp(−1/x), x > 0. Hence
F is in the domain of attraction of G. The index α reflects the degree of de-
pendence. α → 0 and α = 1 correspond to perfect dependence and exact
independence respectively. Coles, Heffernan and Tawn (1999) derived the cor-
responding distribution function H(w) (= H(w, α))

H(w, α) =
1

2

(

(w(1−α)/α − (1 − w)(1−α)/α) · (w1/α + (1 − w)1/α)α−1 + 1
)

.

In ML-estimation, the contribution to the likelihood function of each observa-
tion is defined by

L(Xi, Yi; α) =























F (u, u) for Xi ≤ u, Yi ≤ u,

(∂F (x, u)/∂x)x=Xi
for Xi > u, Yi ≤ u,

(∂F (u, y)/∂y)y=Yi
for Xi ≤ u, Yi > u,

(

∂2F (x, y)/∂x∂y
)

x=Xi, y=Yi
for Xi > u, Yi > u .

In our simulation, we choose u = (Xn−k,n+Yn−k,n)/2, where Xn−k,n and Yn−k,n

are the k-th largest order statistics of X1, ..., Xn and Y1, ..., Yn respectively. By
maximizing the likelihood function

L((Xi, Yi)1≤i≤n; α) :=

n
∏

i=1

L(Xi, Yi; α),

the ML-estimator α̂ of α, is obtained. Then the ML-estimator of l(x, y) is

l̂ML(x, y) = (x1/α̂ + y1/α̂)α̂ (5.2.3)

and the ML-estimator of Φ(θ) is

Φ̂ML(θ) = 2

∫ 1/(1+cot θ)

0

(

w ∨ (1 − w)
)

H(d w, α̂) (5.2.4)

by Lemma 5.2.1 (below).
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Nonparametric estimation was proposed and studied by Huang and Mason
(cf. Huang (1992) and Drees and Huang (1998)). The nonparametric estimator
of l(x, y) is

l̂NP (x, y) :=
1

k

n
∑

i=1

I{RX
i >n−kx or RY

i >n−ky} (5.2.5)

and the nonparametric estimator of Φ(θ) is

Φ̂NP (θ) :=
1

k

n
∑

i=1

I{RX
i ∨RY

i ≥n+1−k and n+1−RY
i ≤(n+1−RX

i ) tan θ} (5.2.6)

where (X, Y ), (X1, Y1), ... , (Xn, Yn) are i.i.d. r.v., and (X, Y ) is in the domain
of attraction of G, RX

i = rank(Xi) among (X1, X2, ..., Xn) and RY
i = rank(Yi)

among (Y1, Y2, ..., Yn), and k satisfies k → ∞, k/n → 0 (Einmahl, de Haan and
Piterbarg (2001)). The only requirement is that the underlying distribution
function is in some domain of attraction.

Second we introduce some useful Lemmas. Lemma 5.2.1 gives the relation
between H and Φ. Lemma 5.2.2 and Lemma 5.2.3 can be used to generate
distributions which are in the domain of attraction of a multivariate extreme
distribution G.

Lemma 5.2.1. Suppose (5.2.1) and (5.2.2) hold, then

Φ(θ) = 2

∫ 1/(1+cot θ)

0
(w ∨ (1 − w)) H(dw). (5.2.7)

Proof. Let w = 1
1+cot θ , then by (5.2.1)

l(x, y) = 2

∫ π
2

0

( x

1 + cot θ
∨

(

y(1 − 1

1 + cot θ
)
)

)

H
(

d(
1

1 + cot θ
)
)

= 2

∫ π
2

0
((x sin θ) ∨ (y cos θ))

1

sin θ + cos θ
H

(

d(
1

1 + cot θ
)
)

= 2

∫ π
2

0

(

(x(1 ∧ tan θ)) ∨ (y(1 ∧ cot θ))
) sin θ ∨ cos θ

sin θ + cos θ
H

(

d(
1

1 + cot θ
)
)

=:

∫ π
2

0

(

(x(1 ∧ tan θ)) ∨ (y(1 ∧ cot θ))
)

Φ(dθ).

Then

Φ(θ) = 2

∫ θ

0
(sin u + cos u)−1(sinu ∨ cos u)H

(

d(
1

1 + cotu
)
)

.

Let w = 1/(1 + cotu), by (sinu + cos u)−1(sinu ∨ cos u) = w ∨ (1 − w), then

Φ(θ) = 2

∫ 1/(1+cot θ)

0
(w ∨ (1 − w))H(dw).

2
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Lemma 5.2.2. Suppose V is a r.v. with distribution function FV (v) = 1 −
2
v , v ≥ 2, W is a r.v. with values in [0, 1] and distribution function H(w),
EW = 1

2 , and V, W are independent. Define X := V W, Y := V (1−W ). Then
(X, Y ) is in the domain of attraction of the extreme value distribution G and
G has form (5.1.1).

Proof. For each x ≥ 2, y ≥ 2,

P
(

X ≥ x or Y ≥ y
)

= P
(

V W ≥ x or V (1 − W ) ≥ y
)

= P
(

V ≥
( x

W
∧ y

1 − W

)

)

= EW

( 2
x
W ∧ y

1−W

)

= 2EW

(W

x
∨ 1 − W

y

)

= 2

∫ 1

0

(w

x
∨ 1 − w

y

)

H(dw).

Let F (x, y) := P (X ≤ x, Y ≤ y), It’s easy to check that for x, y > 0

lim
t→∞

t(1 − F (tx, ty)) = 2

∫ 1

0

(w

x
∨ 1 − w

y

)

H(dw).

Hence (X, Y ) or F is in the domain of attraction of G. 2

Lemma 5.2.3. Suppose V is a r.v. with distribution function FV = 1− 1
v , v ≥ 1,

A is a r.v. with distribution function FA satisfying EA = 1, A ≥ 0 a.s. and V, A
are independent. Define X := V , Y := AV , then (X, Y ) is in the domain of
attraction of an extreme value distribution G, and G has form (5.1.1) with

H(d w) = − 1

2w
FA

(

d(
1

w
− 1)

)

(5.2.8)

or the form (5.1.2) with

Φ(d θ) = −(1 ∨ cot θ)FA(d cot θ). (5.2.9)
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Proof. For each x ≥ 1, y > 0

P (X ≥ x or Y ≥ y)

= P
(

V ≥ x or V ≥ y

A

)

= P
(

V ≥ (x ∧ y

A
)
)

= EA

( 1

x ∧ (y/A)

)

=

∫ ∞

0

(1

x
∨ a

y

)

dFA(a)

= 2

∫ ∞

0

( 1

x(1 + a)
∨ a

(1 + a)y

)1 + a

2
dFA(a).

Let F (x, y) := P (X ≤ x, Y ≤ y), it’s easy to check that for x, y > 0

lim
t→∞

t(1 − F (tx, ty)) = 2

∫ ∞

0

( 1

x(1 + a)
∨ a

(1 + a)y

)1 + a

2
dFA(a).

Hence, (X, Y ) is in the domain of attraction of G, and

G(x, y) = exp
(

− 2

∫ ∞

0

( 1

x(1 + a)
∨ a

(1 + a)y

)1 + a

2
dFA(a)

)

. (5.2.10)

If transforming 1
1+a into w, G(x, y) has the form of (5.1.1) with

H(d w) = − 1

2w
FA

(

d(
1

w
− 1)

)

.

By Lemma 5.2.1, It’s easy to check that G(x, y) has the form of (5.1.2) with

Φ(d θ) = −(1 ∨ cot θ)FA(d cot θ).

2

Remark 5.2.1. Multivariate extensions of the constructions of Lemma 5.2.2
and Lemma 5.2.3 are as follows. Consider d-dimensional case with d ∈ N

and d > 2. In Lemma 5.2.2, let V be as before and take a random vector
(W1, W2, ..., Wd), independent of V , with distribution function H satisfying

∫ 1

0
· · ·

∫ 1

0
wi H(dw1, dw2, ..., dwd) = 1/d, i = 1, 2..., d.

Take (X1, X2, ..., Xd) := V · (W1, W2, ..., Wd), then

P
(

d
⋃

i=1

{Xi ≥ xi}
)

= d

∫

w1+w2+...+wd≤1

(

d
∨

i=1

wi

xi

)

H(dw1, dw2, ..., dwd).
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In Lemma 5.2.3, take (X1, X2, ..., Xd) := V · (1, A1, ..., Ad−1), where V is as
before, (A1, A2, ..., Ad−1) is independent of V and Ai ≥ 0, EAi = 1 for i =
1, 2, ..., d − 1. Then

P
(

d
⋃

i=1

{Xi ≥ xi}
)

= E
( 1

x1

∨

(

d
∨

i=2

Ai−1

xi

)

)

.

Remark 5.2.2. Lemma 5.2.2 and Lemma 5.2.3 allow for the construction of
non-symmetric models. In particular, if A from Lemma 5.2.3 has a two-points
distribution, i.e. there exist 0 < a1 < 1 < a2 < ∞ and 0 < p1, p2 < 1, p1 +p2 =
1 such that

P (A = ai) = pi, i = 1, 2 and EA = 1

then

l(x, y) = p1(x ∨ (a1y)) + p2(x ∨ (a2y))

and the set {(x, y) ∈ R
2
+ | l(x, y) = 1} are the union of three subsets

{(x, y) ∈ R
2
+ | 0 ≤ x ≤ a1, y = 1}

{(x, y) ∈ R
2
+ | (y − 1)/(x − a1) = (1 − 1/a2)/(a1 − 1), a1 < x < 1}

{(x, y) ∈ R
2
+ | 0 ≤ y ≤ 1/a2, x = 1}.

Moreover, if A has a continuous distribution but the main probability mass is
on two small intervals around the two points a1, a2 such that the density of A
on some interval [b1, b2] ([b1, b2] ⊂ [a1, a2]) is very small, then the curve of
{(x, y) ∈ R

2
+ | l(x, y) = 1} is a smooth curve but the basic shape is similar as in

the case two-points distribution.

Example 5.2.1. If A has a standard exponent distribution, i.e. FA(a) =
1 − e−a, a > 0, then EA = 1 and

H(dw) =
1

2
w−3e1− 1

w dw,

Φ(dθ) = (sin θ)−3(sin θ ∨ cos θ)e− cot θdθ.

Example 5.2.2. If A has a Gamma(α) distribution, i.e. FA(a) = e−(Γ(− 1
α

+1)a)−α
,

a > 0. Let α = 2 (note that Γ(1/2) =
√

π), then EA = 1 and

H(dw) =
1

π
(1 − w)−3e−(

√
π( 1

w
−1))−2

dw,

Φ(dθ) = (sin θ)−3(sin θ ∨ cos θ)
2

π
(cot θ)−3e−(

√
π cot θ)−2

dθ.
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Example 5.2.3. If A has a R(µ) distribution, i.e. the density function of A

is fA(a) = a
µ2 e

− a2

2µ2 , a > 0. (EA =
√

π
2 µ, V ar A = 4−π

2 µ2). Let µ =
√

2
π , then

EA = 1 and

H(dw) =
π

w3
(
1

w
− 1)e−

π
4
( 1

w
−1)2dw,

Φ(dθ) = (sin θ)−3(sin θ ∨ cos θ)
π

2
cot θ e−

π
4

cot2 θdθ.

5.3 Simulation

We have compared the performance of the two estimation methods by simula-
tion. We consider three distributions obtained by the method of Lemma 5.2.2,
three distributions obtained by the method of Lemma 5.2.3, as well as the logis-
tic model on which the parametric method is based. Hence in total we consider
seven distributions (models).

A. In Lemma 5.2.2 we consider a random variables W with density

h(w) =











b
aw w ∈ [0, a],

b
1−a(1 − w) w ∈ (a, p],

b
1−a(1 − w) + c

1−p(w − p) w ∈ (p, 1],

with 0 < a < p < 1, positive real b and c. EW = 1/2 implies

b =
1 + 2p

1 + p − a
, c =

2 − b

1 − p
.

Consider two specific choices:

• A1 : a = 1/8 b = 3/2 c = 4/3 p = 5/8,

• A2 : a = 2/8 b = 18/11 c = 32/33 p = 5/8.

B. In Lemma 5.2.2 we consider a discrete distribution for W :

P (W = 3/8) = 3/4, P (W = 7/8) = 1/4.

C. In Lemma 5.2.3 we specify:

• C1 : A has a standard exponent distribution (Example 5.2.1),

• C2 : A has a Gamma(α) distribution with α = 2 (Example 5.2.2).
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D. Now we consider non-symmetric models constructed as in Lemma 5.2.3.
Using the technique of Remark 5.2.2 we construct the distribution of A in the
following way. First choose 0 < a1 < 1 < a2 < ∞; second choose positive p1

and p2 such that

p1 + p2 = 1, a1p1 + a2p2 = 1,

i.e.

p1 =
a2 − 1

a2 − a1
, p2 =

1 − a1

a2 − a1
;

third choose two independent random variables A1 and A2 on [0,∞] such that
E A1 = a1 and E A2 = a2; last define A = p1A1 + p2A2.

We consider specification: both with A1, A2 having R(µ) distributions (see
Example 5.2.3), A1, A2 independent, A1 ∼ R(µ1), A2 ∼ R(µ2) and a1 = 1/5,

a2 = 2, p1 = 5/9, p2 = 4/9, µ1 = 1
5

√

2
π , µ2 = 2

√

2
π .

E. In Lemma 5.2.2 we consider a random variable W with distribution func-
tion

H(w, α) =
1

2

(

(w(1−α)/α − (1 − w)(1−α)/α) · (w1/α + (1 − w)1/α)α−1 + 1
)

i.e.

l(x, y) = (x1/α + y1/α)α

with α = 0.5.

We generate r (r = 100) samples (X, Y ) for each model with sample size
n = 5000. There are many methods to determine optimal k. Here, it is reason-
able to choose optimal k via estimating l(1, 1). l(1, 1) is a possible measure of
dependence in the tail: in case of independence l(x, y) = x+y hence l(1, 1) = 2;
in case of full dependence l(x, y) = x ∨ y hence l(1, 1) = 1. For each model,
we first calculate the averages of the two estimators of l(1, 1), say mNP (1, 1)
and mML(1, 1), for varying k from 50 to 500 by increment 50. Here, for each
x, y > 0

mNP (x, y) :=
1

r

r
∑

i=1

l̂(i)
NP

(x, y), mML(x, y) :=
1

r

r
∑

i=1

l̂(i)
ML

(x, y),

with l̂(i)
NP

, l̂(i)
ML

meaning the non-parametric estimator and maximum likelihood
estimator of l for ith sample respectively. Then determine the optimal k, say
k0, by minimizing the absolute difference between real l(1, 1) and its estimator.
For each model, different methods may have different k0. After determining k0,
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we calculate the estimator of the dependence function l and the estimator of
the spectrum measure Φ for each model.

Table 5.1 (below) lists the mean, sample variance and mean squared error
for two estimations for each model. There, s2

NP
(1, 1) and σ2

NP
(1, 1) are defined

by

s2
NP

(1, 1) :=
1

r − 1

r
∑

i=1

(

l̂(i)
NP

(1, 1) − mNP (1, 1)
)2

,

σ2
NP

(1, 1) :=
1

r

r
∑

i=1

(

l̂(i)
NP

(1, 1) − l(1, 1)
)2

(similar definitions for s2
ML

(1, 1)) and σ2
ML

(1, 1)). Table 5.2 and Table 5.3 show
the corresponding results when replacing point (1, 1) by point (1, 1/2) and point
(1/2, 1) respectively.

For each model we plot two sets of Q-curves:

{(x, y) ∈ R
2
+| l(x, y) = c} and {(x, y) ∈ R

2
+| mNP (x, y) = c}

{(x, y) ∈ R
2
+| l(x, y) = c} and {(x, y) ∈ R

2
+| l̄ML(x, y) = c}

with c = 0.2, 0.4, ..., 1.0, and

l̄ML(x, y) = (x1/ᾱ + y1/ᾱ)ᾱ, ᾱ =
1

r

r
∑

i=1

αi,

where αi is the ML estimator of α for the ith sample. For each model, the value
of ᾱ is presented in Table 5.1.

For each model we also plot the following two sets of curves:

Φ(θ) and Φ̄NP (θ), θ ∈ [0, π/2]

Φ(θ) and Φ̄ML(θ), θ ∈ [0, π/2],

where Φ̄NP is the average of the estimators of Φ by the non-parametric method
and Φ̄ML is the spectral measure related to l̄.

The figures we display below are indicated by a groups of three symbols:
first the indication of the model, i.e. A1, A2, ..., E; then the indication of
the object to be estimated, i.e. Φ or Q (for the Q−curve); finally the in-
dication of the method of estimation, i.e. ML (maximum likelihood) or NP
(nonparametric). Example: A1 Q ML. Note that, for example in Figure 5.1,
A1 QNP , the intersection of the line y = x and the Q−curve with indication
”1” is (1/mNP (1, 1), 1/mNP (1, 1)). Also, in the Figure 5.1, A1 Φ NP , we find
Φ̄NP (π/2) = mNP (1, 1).

From Table 5.1-5.3 and Figure 5.1-5.7 it looks to us that the non-parametric
method is doing reasonably well throughout. The parametric method, which
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Model A1 A2 B C1 C2 D E
l(1, 1) 1.5179 1.4545 1.3750 1.3679 1.3024 1.4719 1.4142
k0 400 100 450 100 50 150 250

NP m
NP

(1, 1) 1.5187 1.4547 1.3743 1.3679 1.3046 1.4700 1.4146
s

NP
(1, 1) 0.0212 0.0432 0.0224 0.0362 0.0595 0.0345 0.0273

σ
NP

(1, 1) 0.0211 0.0430 0.0222 0.0360 0.0592 0.0344 0.0272
k0 400 350 350 150 450 200 50
m

ML
(1, 1) 1.5406 1.4671 1.3749 1.3707 1.3024 1.4727 1.4170

ML s
ML

(1, 1) 0.0161 0.0150 0.0143 0.0197 0.0095 0.0195 0.0410
σ

ML
(1, 1) 0.0279 0.0195 0.0142 0.0198 0.0095 0.0195 0.0409

ᾱ 0.6235 0.5529 0.4592 0.4548 0.3812 0.5583 0.5023

Table 5.1: Results for point (1, 1) with r = 100 samples and sample size n =
5000.

Model A1 A2 B C1 C2 D E
l(1, 1/2) 1.1602 1.1187 1.0000 1.0677 1.0785 1.0934 1.1180
m

NP
(1, 1/2) 1.1628 1.1224 1.0000 1.0681 1.0842 1.0949 1.1175

NP s
NP

(1, 1/2) 0.0169 0.0301 0.0000 0.0255 0.0413 0.0261 0.0182
σ

NP
(1, 1/2) 0.0171 0.0302 0.0000 0.0254 0.0415 0.0026 0.0181

m
ML

(1, 1/2) 1.1941 1.1490 1.0962 1.0940 1.0591 1.1524 1.1201
ML s

ML
(1, 1/2) 0.0101 0.0090 0.0078 0.0107 0.0045 0.0117 0.0233

σ
ML

(1, 1/2) 0.0353 0.0316 0.0305 0.0284 0.0020 0.0602 0.0233

Table 5.2: Results for point (1, 1/2) with r = 100 samples and sample size
n = 5000.

Model A1 A2 B C1 C2 D E
l(1/2, 1) 1.1881 1.1541 1.1563 1.1065 1.0294 1.1704 1.1180
m

NP
(1/2, 1) 1.1898 1.1578 1.1571 1.1081 1.0334 1.1697 1.1188

NP s
NP

(1/2, 1) 0.0184 0.0326 0.0149 0.0291 0.0257 0.0229 0.0200
σ

NP
(1/2, 1) 0.0184 0.0327 0.0145 0.0290 0.0259 0.0228 0.0199

m
ML

(1/2, 1) 1.1941 1.1490 1.0962 1.0940 1.0591 1.1524 1.1201
ML s

ML
(1/2, 1) 0.0101 0.0090 0.0078 0.0107 0.0045 0.0117 0.0234

σ
ML

(1/2, 1) 0.0117 0.0102 0.0606 0.0164 0.0030 0.0215 0.0234

Table 5.3: Results for point (1/2, 1) with r = 100 samples and sample size
n = 5000.
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Figure 5.1: Model A1 with r = 100 samples and sample size n = 5000.
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Figure 5.2: Model A2 with r = 100 samples and sample size n = 5000.
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Figure 5.3: Model B with r = 100 samples and sample size n = 5000.
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Figure 5.4: Model C1 with r = 100 samples and sample size n = 5000.
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Figure 5.5: Model C2 with r = 100 samples and sample size n = 5000.
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Figure 5.6: Model D with r = 100 samples and sample size n = 5000.
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Figure 5.7: Model E with r = 100 samples and sample size n = 5000.
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has been designed only for the logistic model, still gives good results when the
spectral distribution is quite smooth and symmetric.

Acknowledgment. We are grateful to two anonymous referees who pointed
out errors in several of our calculations.
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Alternative Conditions for

Attraction to Stable Vectors

co-authors: Laurens de Haan, Liang Peng and Helena Iglesias Pereira

Prob. Math. Stat. 22 2 (2002) pp. 303-317

Abstract. Relying on Geluk and de Haan (2000) we derive alternative necessary

and sufficient conditions for the domain of attraction of a stable distribution in Rd

which are phrased entirely in terms of (joint distributions of ) linear combinations of

the marginals. The conditions in terms of characteristic functions should be useful for

determining rates of convergence, as in de Haan and Peng (1999).

6.1 Introduction and Main Results

Let X1,X2, · · · be i.i.d. random vectors taken values in Rd. We consider the
sequence Sn := X1+· · ·+Xn, n = 1, 2, · · · , and suppose that for some sequences
of norming constants an > 0 and bn (n = 1, 2, · · · ) the sequence Sn/an − bn

has a limit distribution with non-degenerate marginals.
The limit distributions are called stable distributions and the set of distri-

butions such that Sn/an − bn converges to a particular stable distribution is
called its domain of attraction.

The indicated results have been developed a long time ago. The stable
distributions have been identified by E. Feldheim in 1937 under the direction
of P. Levy and the domain of attraction conditions by E.L. Rvaceva under the
direction of B.V. Gnedenko in 1950. A full account of the theory is Rvaceva
(1962). For stable stochastic processes see Samorodnitsky and Taqqu (1994).

Here we use the methods of Geluk and de Haan (2000) to arrive at alterna-
tive domain of attraction conditions based on the probability distributions of

113
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linear combinations of the marginal random variables. However the relation be-
tween our conditions and those of Rvaceva (1962) are not easy to derive directly.
We can prove only the implication in one direction, for the other direction we
use Feller’s methods (see Section 6.3).

We start by stating the general form of the characteristic function ψ of a
stable distribition: for 0 < α < 2 we have

ψ(θ) = exp
(

−
∫

S

(

|θTu|α+iθTu(1−α) tan
πα

2

|θTu|α−1 − 1

α − 1

)

µ(du)
)

, (6.1.1)

where

θ = (θ1, · · · , θd)
T , u = (u1, · · · , ud)

T ,

S := {x = (x1, · · · , xd)
T : xTx = 1},

and µ is a positive and finite measure on S, or any other distribution of the
same type.

For α = 2 we have

ψ(θ) = exp{−q(θ)}, (6.1.2)

where q(θ) = θ
TQθ and Q is symmetric and positive definite, or any other

distribution of the same type.
For α = 1 the function ψ is to be understood by continuity; so (|t|α−1 −

1)/(α − 1) becomes log |t| and (1 − α) tan(πα/2) becomes 2/π for α = 1.
We shall now state our results. For ease of writing only we restrict ourselves

to the two-dimensional case. So let (X1, X2), (X11, X21), · · · be i.i.d. random
vectors with distribution function F and characteristic function φ. As in Geluk
and de Haan (2000) we define for t > 0 and θ1θ2 6= 0

U(θ1,θ2)(t) := Reφ(θ1/t, θ2/t), V(θ1,θ2)(t) := Imφ(θ1/t, θ2/t),

cα :=

∫ ∞

1
x−α cos x dx +

∫ 1

0
x−α(cos x− 1) dx = Γ(1−α) sin

πα

2
− 1

1 − α
.

Theorem 6.1.1. Let the random vector (W1, W2) have characteristic function
ψ from (6.1.1) for some 0 < α < 2. The following statements are equivalent:
A. There exist sequences an > 0, bn and dn (n = 1, 2, · · · ) such that

(

n
∑

j=1

X1j/an − bn,
n

∑

j=1

X2j/an − dn

) d→ (W1, W2).

B. For all (θ1, θ2),

lim
t→∞

P (θ1X1 + θ2X2 > t)

P (|X1 + X2| > t)

=

∫

S
|θ1u1 + θ2u2|α(1 + sign(θ1u1 + θ2u2))µ(du1, du2)

2
∫

S
|u1 + u2|αµ(du1, du2)

,

(6.1.3)
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lim
t→∞

∫ 1
0

(

∆(θ1,θ2)(ts) − θ1∆(1,0)(ts) − θ2∆(0,1)(ts)
)

ds

P (|X1 + X2| > t)

= −
∫

S

( |θ1u1+θ2u2|α−1−1
α−1 (θ1u1 + θ2u2) − |u1|α−1−1

α−1 θ1u1 − |u2|α−1−1
α−1 θ2u2

)

µ(du1, du2)
∫

S
|u1 + u2|αµ(du1, du2)

,

(6.1.4)

where

∆(θ1,θ2)(t) = P (θ1X1 + θ2X2 > t) − P (θ1X1 + θ2X2 < −t).

C. For all (θ1, θ2),

lim
t→∞

1 − U(θ1,θ2)(t)

1 − U(1,1)(t)
=

∫

S
|θ1u1 + θ2u2|αµ(du1, du2)
∫

S
|u1 + u2|αµ(du1, du2)

, (6.1.5)

lim
t→∞

V(θ1,θ2)(t) − θ1V(1,0)(t) − θ2V(0,1)(t)

1 − U(1,1)(t)

= −(1 − α) tan
πα

2

(

∫

S

|u1 + u2|αµ(du1, du2)
)−1

×

×
∫

S

( |θ1u1 + θ2u2|α−1 − 1

α − 1
(θ1u1 + θ2u2) −

|u1|α−1 − 1

α − 1
θ1u1 −

|u2|α−1 − 1

α − 1
θ2u2

)

×

× µ(du1, du2).

(6.1.6)

Remark 6.1.1. The condition in (6.1.4) can be replaced by

lim
t→∞

E(θ1X1 + θ2X2)I(|θ1X1 + θ2X2| < t) − θ1EX1I(|X1| < t) − θ2EX2I(|X2| < t)

tP (|X1 + X2| > t)

= −
∫

S

(

|θ1u1+θ2u2|α−1−1
α−1 (θ1u1 + θ2u2) − |u1|α−1−1

α−1 θ1u1 − |u2|α−1−1
α−1 θ2u2

)

µ(du1, du2)
∫

S
|u1 + u2|αµ(du1, du2)

−
∫

S

(

|θ1u1 + θ2u2|α−1(θ1X1 + θ2X2) − θ1|u1|α−1u1 − θ2|u2|α−1u2

)

µ(du1, du2)
∫

S
|u1 + u2|α µ(du1, du2)

.

Remark 6.1.2. From Theorem 6.1.1 we conjecture that requiring a rate of
convergence in (6.1.3) and (6.1.4) will lead to a uniform rate of convergence in
statement A. This will be a part of our future research.

For 0 < α < 2, α 6= 1, the conditions in Theorem 6.1.1 can be simplified as
follows.
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Theorem 6.1.2. Let the random vector (W1, W2) have characteristic function
ψ from (6.1.1) for some 0 < α < 2, α 6= 1. The following statements are
equivalent:

A. There exist sequences an > 0, bn and dn (n = 1, 2, · · · ) such that

(

n
∑

j=1

X1j/an − bn,
n

∑

j=1

X2j/an − dn

) d→ (W1, W2).

B. For all (θ1, θ2),

lim
t→∞

P (θ1X1 + θ2X2 > t)

P (|X1 + X2| > t)
=

∫

S
|θ1u1 + θ2u2|α(1 + sign(θ1u1 + θ2u2))µ(du1, du2)

2
∫

S
|u1 + u2|αµ(du1, du2)

.

C. For all (θ1, θ2) 6= (0, 0),

lim
t→∞

1 − U(θ1,θ2)(t)

1 − U(1,1)(t)
=

∫

S
|θ1u1 + θ2u2|αµ(du1, du2)
∫

S
|u1 + u2|αµ(du1, du2)

,

and

lim
t→∞

V(θ1,θ2)(t)

1 − U(1,1)(t)

= tan
απ

2

∫

S
|θ1u1 + θ2u2|αsign(θ1u1 + θ2u2)µ(du1, du2)

∫

S
|u1 + u2|α µ(du1, du2)

if 0 < α < 1,

lim
t→∞

tV(θ1,θ2)(t) − θ1E(X1) − θ2E(X2)

t[1 − U(1,1)(t)]

= tan
απ

2

∫

S
|θ1u1 + θ2u2|αsign(θ1u1 + θ2u2)µ(du1, du2)

∫

S
|u1 + u2|α µ(du1, du2)

if 1 < α < 2.

Now we consider the normal limit distribution.

Theorem 6.1.3. Let the random vector (W1, W2) have characteristic function
ψ from (6.1.2). The following statements are equivalent:

A. There exist sequences an > 0, bn and dn (n = 1, 2, · · · ) such that

(

n
∑

j=1

X1j/an − bn,
n

∑

j=1

X2j/an − dn

) d→ (W1, W2).

B. For all (θ1, θ2),

lim
t→∞

∫ t
0 P

(

(θ1X1 + θ2X2)
2 > s

)

ds
∫ t
0 P

(

(X1 + X2)2 > s
)

ds
=

q(θ1, θ2)

q(1, 1)
. (6.1.7)
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C. For all (θ1, θ2),

lim
t→∞

1 − U(θ1,θ2)(t)

1 − U(1,1)(t)
=

q(θ1, θ2)

q(1, 1)
(6.1.8)

and

lim
t→∞

E(θ1X1 + θ2X2) − tV(θ1,θ2)(t)

1 − U(1,1)(t)
= 0. (6.1.9)

Remark 6.1.3. Relation (6.1.7) is equivalent to

lim
t→∞

E(θ1X1 + θ2X2)
2I(|θ1X1 + θ2X2| ≤ t)

E(X1 + X2)2I(|X1 + X2| ≤ t)
=

q(θ1, θ2)

q(1, 1)
. (6.1.10)

Section 6.2 contains proofs. In Section 6.3 we explore the relation between
relations B of Theorem 6.1.1 and the well known condition of Rvaceva (1962):

lim
t→∞

P (
√

X2
1 + X2

2 > tx, arctan(X2/X1) ∈ A)

P (
√

X2
1 + X2

2 > t)
= x−α µ(A)

µ(S)
(6.1.11)

for each x > 0 and each Borel subset A of S which is a continuity set for µ.

6.2 Proofs

Lemma 6.2.1. If f(t) ∈ RV0 and there exists {an} such that an → ∞,
an+1/an → 1 and f(an) → c as n → ∞, then limt→∞ f(t) = c.

Proof. For any ε, δ > 0, there exists t0 = t0(ε, δ) > 0 such that

|f(tx)/f(t) − 1| ≤ εmax(xδ, x−δ)

for all t, tx ≥ t0. For any sequence {tn} such that tn → ∞ as n → ∞, there
exists {kn} such that akn ≤ tn ≤ akn+1 . Let xn = tn/akn . Then limn→∞ xn = 1.
Hence there exists N such that for all n ≥ N

|f(tn)/f(akn) − 1| ≤ ε2δ,

i.e. |f(tn)/f(akn) − 1| → 0 as n → ∞. Since |f(akn) − c| → 0 as n → ∞, we
have

lim
n→∞

|f(tn) − c| = lim
n→∞

∣

∣

∣

f(tn)

f(akn)
f(akn) − c

∣

∣

∣ = 0.

Hence the lemma. 2
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Lemma 6.2.2. Let X be a random variable. Define U(t) = ReEeiX/t for t 6= 0.
The following are equivalent:

1. The function P (|X| > t) is regularly varying with index α ∈ (0, 2).
2. The function 1 − U(t) is regularly varying with index α ∈ (0, 2).

Moreover, both imply

lim
t→∞

1 − U(t)

P (|X| > t)
= Γ(1 − α) cos

πα

2
,

to be interpreted as π/2 for α = 1.

Proof. This is just part of the proof of (ii) ⇔ (iii) of Theorem 1 of Geluk and
de Haan (2000). 2

Proof of Theorem 6.1.1.
A ⇒ C. By the continuity theorem for characteristic functions statement A is
equivalent to

lim
n→∞

φn(θ1/an, θ2/an)e−ibnθ1e−idnθ2 = ψ(θ1, θ2) (6.2.1)

locally uniformly. Feller (1971, ChXVII, Section 1, Theorem 1) shows that this
is equivalent to

lim
n→∞

n
(

φ(θ1/an, θ2/an) − 1
)

− ibnθ1 − idnθ2 = log ψ(θ1, θ2)

locally uniformly or

lim
n→∞

n
(

1 − U(θ1,θ2)(an)
)

=

∫

S

|θ1u1 + θ2u2|αµ(du1, du2), (6.2.2)

lim
n→∞

nV(θ1,θ2)(an) − θ1bn − θ2dn

= −(1 − α) tan
απ

2

∫

S

|θ1u1 + θ2u2|α−1 − 1

α − 1
(θ1u1 + θ2u2)µ(du1, du2).

(6.2.3)

From relation (6.2.3) we have

lim
n→∞

nV(1,0)(an) − bn = −(1 − α) tan
απ

2

∫

S

|u1|α−1 − 1

α − 1
u1 µ(du1, du2),

lim
n→∞

nV(0,1)(an) − dn = −(1 − α) tan
απ

2

∫

S

|u2|α−1 − 1

α − 1
u2 µ(du1, du2).

(6.2.4)

Combination of (6.2.3) and (6.2.4) gives

lim
n→∞

n
(

V(θ1,θ2)(an) − θ1V(1,0)(an) − θ2V(0,1)(an)
)

= −(1 − α) tan
πα

2

∫

S

( |θ1u1 + θ2u2|α−1 − 1

α − 1
(θ1u1 + θ2u2)

− |u1|α−1 − 1

α − 1
θ1u1 −

|u2|α−1 − 1

α − 1
θ2u2

)

µ(du1, du2).

(6.2.5)
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We are now going to use one-dimensional results. It follows from (6.2.1) and
Theorem 1 of Geluk and de Haan (2000) that

1 − U(θ1,θ2)(t) ∈ RV−α, (6.2.6)

lim
t→∞

txV(θ1,θ2)(tx) − tV(θ1,θ2)(t)

t
(

1 − U(θ1,θ2)(t)
)

= (1 − α) tan
απ

2

|x|1−α − 1

1 − α

∫

S
|θ1u1 + θ2u2|αsign(θ1u1 + θ2u2)µ(du1, du2)

∫

S
|θ1u1 + θ2u2|α µ(du1, du2)

.

(6.2.7)

Since (6.2.6) holds in particular for (θ1, θ2) = (1, 1), we get

1 − U(θ1,θ2)(t)

1 − U(1,1)(t)
∈ RV0 (6.2.8)

By (6.2.2), (6.2.8) and Lemma 6.2.1

lim
t→∞

1 − U(θ1,θ2)(t)

1 − U(1,1)(t)
= lim

n→∞

1 − U(θ1,θ2)(an)

1 − U(1,1)(an)
=

∫

S
|θ1u1 + θ2u2|αµ(du1, du2)
∫

S
|u1 + u2|αµ(du1, du2)

,

(6.2.9)

i.e. (6.1.5) is proved. Now (6.2.7) allows us to replace the argument an in
(6.2.5) by anx in each of the three terms separately. This results in

lim
n→∞

xn
(

V(θ1,θ2)(xan) − θ1V(1,0)(xan) − θ2V(0,1)(xan)
)

= −(1 − α) tan
απ

2
|x|1−α

∫

S

( |θ1u1 + θ2u2|α−1 − 1

α − 1
(θ1u1 + θ2u2)

− |u1|α−1 − 1

α − 1
θ1u1 −

|u2|α−1 − 1

α − 1
θ2u2

)

µ(du1, du2)

for each x > 0. By Lemma 9 in Geluk and de Haan (2000), this implies

V(θ1,θ2)(t) − θ1V(1,0)(t) − θ2V(0,1)(t) ∈ RV−α

and we have

V(θ1,θ2)(t) − θ1V(1,0)(t) − θ2V(0,1)(t)

1 − U(1,1)(t)
∈ RV0. (6.2.10)

Using (6.2.2), (6.2.5), (6.2.10) and Lemma 6.2.1, we now get (6.1.6).

C ⇒ A. By taking (θ1, θ2) = (x, x) for some x > 0 in (6.1.5), we find that
1−U(1,1)(t) is regularly varying with index −α. Hence we can define sequences
an > 0, bn and dn such that

lim
n→∞

n
(

1 − U(1,1)(an)
)

=

∫

S

|u1 + u2|α µ(du1, du2),
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bn := nV(1,0)(an) + (1 − α) tan
απ

2

∫

S

|u1|α−1 − 1

α − 1
u1 µ(du1, du2),

dn := nV(0,1)(an) + (1 − α) tan
απ

2

∫

S

|u2|α−1 − 1

α − 1
u2 µ(du1, du2).

Combining the definition of an with relation (6.1.5) we get for any (θ1, θ2)

lim
n→∞

n
(

1 − U(θ1,θ2)(an)
)

=

∫

S

|θ1u1 + θ2u2|α µ(du1, du2). (6.2.11)

Further, combining (6.1.6) and the definitions of an, bn and dn, we get for any
(θ1, θ2)

lim
n→∞

(

nV(θ1,θ2)(an) − θ1bn − θ2dn

)

= lim
n→∞

n
(

V(θ1,θ2)(an) − θ1V(1,0)(an) − θ2V(0,1)(an)
)

− (1 − α) tan
απ

2

∫

S

|u1|α−1 − 1

α − 1
θ1u1 µ(du1, du2)

− (1 − α) tan
απ

2

∫

S

|u2|α−1 − 1

α − 1
θ2u2 µ(du1, du2)

= −(1 − α) tan
πα

2

∫

S

( |θ1u1 + θ2u2|α−1 − 1

α − 1
(θ1u1 + θ2u2)

− |u1|α−1 − 1

α − 1
θ1u1 −

|u2|α−1 − 1

α − 1
θ2u2

)

µ(du1, du2)

− (1 − α) tan
απ

2

∫

S

|u1|α−1 − 1

α − 1
θ1u1 µ(du1, du2)

− (1 − α) tan
απ

2

∫

S

|u2|α−1 − 1

α − 1
θ2u2 µ(du1, du2)

= −(1 − α) tan
απ

2

∫

S

|θ1u1 + θ2u2|α−1 − 1

α − 1
(θ1u1 + θ2u2)µ(du1, du2).

(6.2.12)

Hence by (6.2.11) and (6.2.12) statement A holds.

B ⇔ C. By Lemma 6.2.2, (6.1.5) is equivalent to

lim
t→∞

P (|θ1X1 + θ2X2| > t)

P (|X1 + X2| > t)
=

∫

S
|θ1u1 + θ2u2|αµ(du1, du2)
∫

S
|u1 + u2|αµ(du1, du2)

. (6.2.13)

C ⇒ B. Application of (6.1.6) to V(θ1/x,θ2/x)(t) = V(θ1,θ2)(tx) and V(θ1,θ2)(t) and
combination of the results gives for x > 0

lim
t→∞

txV(θ1,θ2)(tx) − tV(θ1,θ2)(t)

t
(

1 − U(θ1,θ2)(t)
)

= (1 − α) tan
απ

2

|x|1−α − 1

1 − α

∫

S
|θ1u1 + θ2u2|αsign(θ1u1 + θ2u2)µ(du1, du2)

∫

S
|θ1u1 + θ2u2|α µ(du1, du2)

.
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We also know 1−U(θ1,θ2)(t) ∈ RV−α by (6.1.5). Hence the conditions of Theorem
1, part (iii), of Geluk and de Haan (2000) are fulfilled. Thus for any (θ1, θ2) 6=
(0, 0) the random variable θ1X1+θ2X2 is in the domain of attraction of a stable
law. Then Theorem 1 of Geluk and de Haan (2000), part (ii), and relation (10),
give

lim
t→∞

P (θ1X1 + θ2X2 > t)

P (|θ1X1 + θ2X2| > t)

=

∫

S
|θ1u1 + θ2u2|α

(

1 + sign(θ1u1 + θ2u2)
)

µ(du1, du2)

2
∫

S
|θ1u1 + θ2u2|α µ(du1, du2)

(6.2.14)

and

lim
t→∞

V(θ1,θ2)(t) − t−1
∫ t
0 ∆(θ1,θ2)(s) ds

P (|θ1X1 + θ2X2| > t)

= cα

∫

S
|θ1u1 + θ2u2|αsign(θ1u1 + θ2u2)µ(du1, du2)

∫

S
|θ1u1 + θ2u2|α µ(du1, du2)

.

(6.2.15)

If we combine (6.2.14) with (6.2.13), we get (6.1.4). If we combine (6.2.15) with
(6.2.13), we get

lim
t→∞

V(θ1,θ2)(t) − t−1
∫ t
0 ∆(θ1,θ2)(s) ds

P (|X1 + X2| > t)

= cα

∫

S
|θ1u1 + θ2u2|αsign(θ1u1 + θ2u2)µ(du1, du2)

∫

S
|u1 + u2|α µ(du1, du2)

.

This, combined with (6.1.6) and Lemma 6.2.2, leads directly to (6.1.4).

B ⇒ C. Clearly from (6.1.3) we have (6.2.13), hence (6.1.5). Further (6.1.3)
implies that any random variable θ1X1 + θ2X2 is in the domain of attraction of
a stable law (see Geluk and de Haan (2000), Theorem 1, part (ii). Next relation
(10) of the same theorem, combined with (6.2.13), gives

lim
t→∞

V(θ1,θ2)(t) −
∫ 1
0 ∆(θ1,θ2)(st) ds

P (|X1 + X2| > t)

= cα

∫

S
|θ1u1 + θ2u2|αsign(θ1u1 + θ2u2)µ(du1, du2)

∫

S
|u1 + u2|α µ(du1, du2)

.

This, with (6.1.4), leads directly to (6.1.6). 2

Proof of Theorem 6.1.2.
A ⇒ B. It follows from corresponding part of Theorem 6.1.1.
B ⇒ C. Suppose 0 < α < 1. Statement B implies for (θ1, θ2) 6= (0, 0) that

P (|θ1X1 + θ2X2| > t) ∈ RV−α (6.2.16)
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and

lim
t→∞

P (|θ1X1 + θ2X2| > t)

P (|X1 + X2| > t)
=

∫

S
|θ1u1 + θ2u2|α µ(du1, du2)
∫

S
|u1 + u2|α µ(du1, du2)

, (6.2.17)

and hence

lim
t→∞

P (θ1X1 + θ2X2 > t)

P (|θ1X1 + θ2X2| > t)

=

∫

S
|θ1u1 + θ2u2|α

(

1 + sign(θ1u1 + θ2u2)
)

µ(du1, du2)

2
∫

S
|θ1u1 + θ2u2|α µ(du1, du2)

.

(6.2.18)

Relations (6.2.16) and (6.2.18) imply that any linear combination θ1X1 + θ2X2

with (θ1, θ2) 6= (0, 0) is in the domain of attraction of a stable distribution.
Hence by Theorem 1, part (iii), of Geluk and de Haan (2000) we have

lim
t→∞

V(θ1,θ2)(t)

1 − U(1,1)(t)
=

∫

S
|θ1u1 + θ2u2|αsign(θ1u1 + θ2u2)µ(du1, du2)

∫

S
|u1 + u2|α µ(du1, du2)

.

Also, relations (6.2.16) and (6.2.17) imply, in virtue of Lemma 6.2.2, that

lim
t→∞

1 − U(θ1,θ2)(t)

1 − U(1,1)(t)
=

∫

S
|θ1u1 + θ2u2|α µ(du1, du2)
∫

S
|u1 + u2|α µ(du1, du2)

.

This completes the proof for 0 < α < 1. The case 1 < α < 2 is similar.

C ⇒ A. Suppose 0 < α < 1. Define the sequence {an} by

lim
n→∞

n
(

1 − U(1,1)(an)
)

=

∫

S

|u1 + u2|α µ(du1, du2).

This makes sense since 1 − U(1,1)(t) ∈ RV−α. Then by statement C,

lim
n→∞

n
(

1 − U(θ1,θ2)(an)
)

=

∫

S

|θ1u1 + θ2u2|α µ(du1, du2).

Further by statement C,

lim
n→∞

nV(θ1,θ2)(an) = tan
απ

2

∫

S

|θ1u1 + θ2u2|αsign(θ1u1 + θ2u2)µ(du1, du2).

Since (6.2.2) and (6.2.3) are fulfilled, the proof is complete for 0 < α < 1. The
case 1 < α < 2 is similar. 2

Proof of Theorem 6.1.3.
A ⇔ C. From the equality

n
(

φ(θ1/an, θ2/an) − 1 − iµ1θ1 − iµ2θ2

)

= −q(θ1, θ2)
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with µ1 = E(X1) and µ2 = E(X2) we get

lim
n→∞

n
(

1 − U(θ1,θ2)(an)
)

= q(θ1, θ2) (6.2.19)

and

lim
n→∞

n
(

V(θ1,θ2)(an) − µ1θ2 − µ2θ2

)

= 0. (6.2.20)

As in the proof of Theorem 6.1.1 relation (6.2.19) implies

lim
t→∞

1 − U(θ1,θ2)(t)

1 − U(1,1)(t)
=

q(θ1, θ2)

q(1, 1)
.

Similarly, from (6.2.19) and (6.2.20) we get

lim
t→∞

tV(θ1,θ2)(t) − µ1θ1 − µ2θ2

1 − U(1,1)(t)
= 0 for all (θ1, θ2).

The converse implication is easy.

C ⇒ B. The distribution of any θ1X1 + θ2X2 satisfies the conditions of part
(iii) of Theorem 2 of Geluk and de Haan (2000). Relation (13) of this Theorem
states that

lim
t→∞

∫ t
0 sP (|θ1X1 + θ2X2| > s) ds

t2
(

1 − U(θ1,θ2)(t)
) = 1 for all (θ1, θ2) 6= (0, 0).

Hence, by statement C,

lim
t→∞

∫ t
0 sP (|θ1X1 + θ2X2| > s) ds
∫ t
0 sP (|X1 + X2| > s) ds

=
q(θ1, θ2)

q(1, 1)
for all (θ1, θ2) 6= (0, 0).

(6.2.21)

B ⇒ C. Condition B implies that each linear combination θ1X1+θ2X2 ((θ1, θ2) 6=
(0, 0)) is in the domain of attraction of a normal distribution (see Theorem 2,
part (ii) of Geluk and de Haan (2000)). Hence by that theorem

lim
t→∞

∫ t
0 sP (|θ1X1 + θ2X2| > s) ds

t2
(

1 − U(θ1,θ2)(t)
) = 1

and

lim
t→∞

tV(θ1,θ2)(t) − µ1θ1 − µ2θ2

t
(

1 − U(θ1,θ2)(t)
) = 0.

These two relations in combination with B imply C. 2



124 6 Alternative Conditions for Attraction to Stable Vectors

Proof of Remark 6.1.3.

Relation (6.1.7) implies that

∫ t

0
sP (|θ1X1 + θ2X2| > s) ds =

1

2

∫ t2

0
P ((θ1X1 + θ2X2)

2 > s) ds

is slowly varying.

Now, for any probability distribution function G the slow variation of
∫ t
0 (1−

G(s)) ds is equivalent to

t(1 − G(t))/

∫ t

0
(1 − G(s)) ds → 0,

as t → ∞, since on the one hand for any 0 < x < 1

t(1 − G(t))
∫ t
0 (1 − G(s)) ds

≤ 1

1 − x

∫ t
tx(1 − G(s)) ds

∫ t
0 (1 − G(s)) ds

and on the other hand for any 0 < x < 1

log

∫ t

0
(1 − G(s)) ds − log

∫ tx

0
(1 − G(s)) ds =

∫ t

tx

( s(1 − G(s))
∫ s
0 (1 − G(u)) du

)ds

s
.

Hence, since

∫ t

0
sP (|θ1X1 + θ2X2| > s) ds

=
1

2
t2P (|θ1X1 + θ2X2| > t) + E|θ1X1 + θ2X2|I(|θ1X1 + θ2X2| ≤ t),

by the result just proved, (6.1.7) and (6.1.10) are equivalent. 2

6.3 Rvaceva’s results

In this section we give a direct proof of the implication: Rvaceva’s condition
(i.e. (6.1.11)) for 0 < α < 2 implies our condition (i.e. (6.1.4)). We have
not been able to prove the converse implication for α = 1. For α 6= 1 the
implication follows from the work of Basrak, Davis and Mikosch (2000). For
completeness we include a proof of the necessity of Rvaceva’s condition based
on Feller’s proof (Feller(1971)) for one-dimensional case.

Proof of (6.1.11) ⇒ (6.1.4). For θ2
1 + θ2

2 = 1, by Rvaceva’s condition (6.1.11),
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we have

E(θ1X1 + θ2X2)I(|θ1X1 + θ2X2| ≤ t, X2
1 + X2

2 > t2)

P (|X1 + X2| > t)

=

∫ 1

0

P (ts < θ1X1 + θ2X2 < t, X2
1 + X2

2 > t2)

P (|X1 + X2| > t)
ds

−
∫ 0

−1

P (−t < θ1X1 + θ2X2 < ts, X2
1 + X2

2 > t)

P (|X1 + X2| > t)
ds

→
∫ 1

0
ν{(x1, x2) : s < θ1x1 + θ2x2 < 1, x2

1 + x2
2 > 1} ds

−
∫ 0

−1
ν{(x1, x2) : −1 < θ1x1 + θ2x2 < s, x2

1 + x2
2 > 1} ds,

(6.3.1)

where ν is defined by

ν{(x1, x2) : x2
1 + x2

2 > y2, arctan(x2/x1) ∈ A} = α−1y−αµ(A)

for y > 0 and any continuity set A of µ. The right hand side of (6.3.1) equals
∫

R2

(θ1x1 + θ2x2)I(|θ1x1 + θ2x2| ≤ 1, x2
1 + x2

2 > 1) ν(dx1, dx2)

=

∫

S
(θ1u1 + θ2u2)

∫

1<r<1/|θ1u1+θ2u2|
r−α drµ(du1, du2)

= −
∫

S
(θ1u1 + θ2u2)

|θ1u1 + θ2u2|α−1 − 1

α − 1
µ(du1, du2).

Now we can proceed to prove (6.1.4). Since |θ1X1+θ2X2| < t implies X2
1 +X2

2 <
t2, we have

E(θ1X1 + θ2X2)I(|θ1X1 + θ2X2| ≤ t)

− Eθ1X1I(|θ1X1| ≤ t) − Eθ2X2I(|θ2X2| ≤ t)

= E(θ1X1 + θ2X2)I(X2
1 + X2

2 ≤ t2)

+ E(θ1X1 + θ2X2)I(|θ1X1 + θ2X2| ≤ t, X2
1 + X2

2 > t2)

− Eθ1X1I(X2
1 + X2

2 ≤ t2) + Eθ1X1I(|θ1X1| ≤ t, X2
1 + X2

2 > t2)

− Eθ2X2I(X2
1 + X2

2 ≤ t2) + Eθ2X2I(|θ2X2| ≤ t, X2
1 + X2

2 > t2)

= E(θ1X1 + θ2X2)I(|θ1X1 + θ2X2| ≤ t, X2
1 + X2

2 > t2)

− Eθ1X1I(|θ1X1| ≤ t, X2
1 + X2

2 > t2) − Eθ2X2I(|θ2X2| ≤ t, X2
1 + X2

2 > t2).

If we divide this expression by P (|X1 +X2| > t), it converges, by the result just
proved, to

−
∫

S

(θ1u1 + θ2u2)
|θ1u1 + θ2u2|α−1 − 1

α − 1
µ(du1, du2)

−
∫

S

θ1u1
|θ1u1|α−1 − 1

α − 1
µ(du1, du2) −

∫

S

θ2u2
|θ2u2|α−1 − 1

α − 1
µ(du1, du2),
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which is equivalent to (6.1.4) (see Remark 6.1.1). 2

For completeness we add a proof of the implication: the statement of The-
orem 6.1.1 A implies (6.1.11) (Rvaceva’s condition), following the line of rea-
soning of Feller (1971, Ch. XVII). We start from

lim
n→∞

n
(

φ(θ1/an, θ2/an) − 1 − iθ1Imφ(1/an, 0) − iθ2Imφ(0, 1/an)
)

= log ψ(θ1, θ2),
(6.3.2)

locally uniformly. Denote the left-hand side by ψn(θ1, θ2) and define

ψ∗
n(θ1, θ2) = ψn(θ1, θ2) −

1

4

∫∫

|s1|<1,|s2|<1
ψn(θ1 + s1, θ2 + s2) ds1ds2.

An easy calculation shows that

ψ∗
n(θ1, θ2) =

∫ ∞

−∞

∫ ∞

−∞
ei(θ1x1+θ2x2)(x2

1 + x2
2)K(x1, x2)n F (andx1, andx2)

with

K(x1, x2) =
1 − sin x1

x1

sin x2
x2

x2
1 + x2

2

.

Note that limx1,x2→0 K(x1, x2) = 1/6 and limx2
1+x2

2→∞(x2
1 + x2

2)K(x1, x2) = 1.

Relation (6.3.2) implies

lim
n→∞

ψ∗
n(θ1, θ2)

= log ψ(θ1, θ2) −
1

4

∫∫

|s1|<1,|s2|<1
log ψ(θ1 + s1, θ2 + s2) ds1ds2

(6.3.3)

locally uniformly. Relation (6.3.3) for θ1 = θ2 = 0 implies that limn→∞ M∗
n(R2)

exists. Define

M∗
n(dx1, dx2) = n(x2

1 + x2
2)K(x1, x2)F (andx1, andx2).

By the continuity theorem for characteristic function the sequence of proba-
bility distributions M∗

n/M∗
n(R2) converges in distribution to some probability

distribution. It follows the two properties of K that

lim
n→∞

nE(X2
1 + X2

2 )I(X2
1 + X2

2 ≤ anx)

exists for all x > 0 and that

lim
n→∞

nP ((X1, X2) ∈ anAx1,x2)

converges for all but denumerably many real (x1, x2) 6= (0, 0) with Ax1,x2 :=
{(ax1, bx2) : a, b > 1}. The latter condition is easily seen to imply Rvaceva’s
condition (6.1.11).
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Nederlandse samenvatting

Het onderwerp van dit proefschrift is extreme waarden theorie, het onderdeel
van de statistiek dat gaat over het schatten van de kans op een zeldzame
gebeurtenis, één die bijvoorbeeld sinds mensenheugenis niet heeft plaatsgevon-
den. Het schatten van zo’n zeldzame gebeurtenis is alleen mogelijk onder
bepaalde zwakke voorwaarden op het onderliggende kansmodel. Ofschoon het
schatten van zo’n zeldzame gebeurtenis eigenlijk alleen zinvol is onder deze
voorwaarden (dat wil zeggen dat de voorwaarden eigenlijk onvermijdelijk zijn),
is het toch nuttig om na te gaan of in de praktijk aan deze voorwaarden voldaan
is.

Een dergelijke toetsing van de voorwaarden wordt behandeld in de hoofd-
stukken 2 en 4 van het proefschrift. De afleiding van de toets geeft bovendien
aanleiding tot het ontwikkelen van enige interessante theoretische resultaten
over de rand van de empirische verdelingsfunktie. Een afsplitsing van enige van
deze resultaten is te vinden in hoofdstuk 3.

Dan zijn er nog twee hoofdstukken die enigszins los staan van de andere, één
over het vergelijken van schatters in meerdimensionale extreme waarden theorie
en één over voorwaarden voor de zwakke convergentie van partiële sommen van
onafhankelijke en gelijk verdeelde stochastische grootheden.
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