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Abstract 
 
This article studies specific aspects of the joint replenishment problem in a real supply chain setting. 
Particularly we analyze the effect on inventory performance of having minimum order quantities for the 
different products in the joint order, given a complex transportation cost structure. The policies suggested 
have been tested in a simulation model with real data. 
 
Keywords: Inventory, joint replenishment, minimum order quantities, supply chain management 
 
 
 
1. Introduction 
 
One of the most important aspects affecting the performance of a given supply chain is the 
management of inventories, since the decisions taken in this respect have a significant 
impact on material flow time, throughput and availability of product. Particularly 
interesting and very often found in real supply chains, is the problem of coordination in the 
replenishment of multiple products when they share common resources (i.e. same mode of 
transportation or same stocking location), with the idea of benefiting from the savings in 
fixed costs. Special attention has been turned to this problem in the literature for the last 
three decades. Nevertheless, few studies relate the mathematical models so far developed 
with real supply chains or inventory applications. Most of the models encountered in the 
literature for the joint replenishment problem are based on assumptions that do not always 
hold in real settings. For instance they ask for the specification of minor set-up cost for the 
replenishment of an item, i.e., fixed costs associated with each particular product, which for 
real supply chains are difficult to estimate. 
 
In consequence, the objective of this article is to study the impact of joint replenishment 
policies in a real supply chain, and the effect of non-linear transportation costs. We 
investigate how inventory performance is affected by minimum order quantities for the 
individual items. Classical theoretical models overlook this important aspect. 
 
In the next section we describe the case study. Section 3 presents a literature review on joint 
replenishment. Section 4 describes the simulation model and its main assumptions. In 
section 5 we discuss the results of the experiments carried out with the simulation tool. 
Sections 6 presents analytical considerations using the EOQ procedure, and the final 
conclusions are presented in section 7. 
 
2. Case study 
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The company 
We consider a start-up company that commercializes gift items in The Netherlands and 
Belgium. The company orders the items from a manufacturer located in China, who in turn 
receives raw material and components from a variety of suppliers (see product description). 
The company keeps inventory of items at a Distribution Center (DC) in The Netherlands by 
means of a Vendor-Managed Inventory contract with the distributor, who is responsible of 
sending out the items to the final retailers. The items are shipped to The Netherlands by 
container (either full container or less-than-a-full container) and once in the port of 
Rotterdam a third party trucking company brings the items to the DC. 
 
The product 
The items are produced in 23 different types and consist of a chip (which contains a music 
song) and other components. The items are homogeneous for transportation. The minimum 
order quantity for a specific chip is 10,000. There are eight different chips, each of them 
containing one specific song. Each chip is used in a family of different items (see table 2 in 
section 4). The manufacturing process for the chips comprises two steps, namely the 
masking of the chip, which needs to be done only once, and the production process itself. 
Once the chip has been masked its production time is 20 days. 
 
Lead times 
Other lead times are as follows: the time to assemble the items is 14 days and transportation 
from China to the port of Rotterdam adds another 18-22 days. Finally, 3 to 5 days are 
needed to take the items from Rotterdam to the DC. Thus, we have a maximum total lead 
time for the items of 61 days (all days considered are calendar days). Shipping the items by 
air would reduce the lead time considerably, but due to the high costs associated it is not 
considered as an option. There is, however, another way for the company to reduce the total 
lead time by keeping inventories of certain subassemblies in order to speed up the 
production process. We consider this option to reduce the total lead time to 39 days. 
 
Stock control 
In the retail stores a rack with 20 different gift items with 5 copies of each is displayed. 
During the week, the distributor checks the inventory of items at the stores. In case of 
stockouts or low stocks it replenishes the racks with available inventory from the DC. Since 
not all the 23 different items can be displayed in any particular rack, they are evenly 
distributed among the stores, in order to have all items selling to final customers. Stockouts 
may occur but since no track of backorders is kept at the selling points we have no form of 
evaluating stockout costs, also because substitution of items may occur in such case. 
Therefore, we consider a lost sales inventory system. The only report about the inventory 
status is generated at the DC according to the stock policy of the distributor described 
above. This is the only source of demand information. Accordingly, we are interested in the 
customer service level only at this point of the supply chain, measured as the ready rate, 
which can be translated into a fill rate by assuming a constant demand rate at the DC. 
 
Problem definition 
The main problem is to coordinate the replenishment of orders for groups or chip-families 
of items while keeping total costs low (transportation and holding costs) and achieving a 
certain customer service level at the DC. The main constraints are specified minimum order 
quantities for the production of families of items at the assembly plant due to the chip lot 
sizes, and different shipment sizes due to the use of half or full containers for transporting 
the items from China to The Netherlands. 
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Cost structure 
 
Transportation costs 
We can identify two main components in the transportation cost for the items: the shipping 
cost from China to Rotterdam (R’dam) and the cost associated with the handling of the 
items from the time they reached the port of R’dam until they finally arrive at the DC 
(including the transportation cost form R’dam to the DC). Thus, the first component 
represents the sea transportation cost and is included in the cost of the items, since the 
manufacturer charges this cost free on board (FOB) in Rotterdam, provided that a 
minimum order quantity is ensured by the company. Accordingly, if a replenishment order 
is between 45,000 and 52,000 items a full container is used and the manufacturer charges 
1.25 USD per item (we use a conversion rate of 1 USD = 1 euro). If the company decides to 
order less than 45,000 items, a less-than-a-full container (LFC) is sent and the price charged 
by the manufacturer is 1,27 USD per item. No shipments with less than 10,000 items is 
allowed. In consequence, we include in the transportation cost a penalty cost of 0,02 USD 
per item for not using a full container. 
 
The second component is our real set-up cost, and is incurred by the company in any 
replenishment occasion once a shipment arrives in the port of R’dam, according to the 
following: 
 
If a full container arrives the associated cost is 700 euros, which includes the handling 
container-related cost and the transportation from the port of R’dam to the DC. For orders 
which contains less than 45,000 items the cost associated with a LFC is given by: 
 
Cost of handling and transportation for LFC = (210 + y) + 5.45x   euros 
 
where x is the total number of items (in thousands) in the shipment and y is given by the 
following rule: 
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Note: If more than one container is needed, then always one will be full and the total cost 
will be the sum of the costs associated with the container sizes involved in the shipment 
according to the rules previously presented. 
 
Set-up costs were not identified and not charged. 
 
Holding costs 
As a consequence of keeping stock of items at the DC, the company incurs a holding cost 
which includes the storage cost and the cost of capital invested in inventory. Of the two 
components, the latter is the most important, since the money borrowed by the company for 
working capital has a high risk due to the fact that the company is starting to be positioned 
in the market. We use an annual holding cost rate of 25%. 
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An inventory of chips may be held at the assembly plant. In that case the company will 
have a VMI contract with the manufacturer with two main advantages: the reduction of the 
total lead time for the production process and the relaxation of the minimum order 
quantities for the items. The holding cost for the company in this case is only the cost of 
capital tied up in inventory, which is 20% annually. The cost of the chips is as follows: 
 

Orders from 10,000 to 40,000 chips:  0.400 USD per chip 
From 50,000 chips on:   0.375 USD per chip 

 
Administration related costs are negligible compared with transportation or holding costs, 
so for the sake of simplicity we don’t take them into account. 
 
Demand data 
When dealing with joint replenishment one of the important aspects to consider is whether 
the different products are homogeneous in terms of demand. We performed an analysis of 
demand data for individual items to evaluate the differences between items and to check 
whether it was possible to group them according to their demand rates. 
 
We consider the demand generated at the DC as real demand. We classified the items 
according to their demand rates in fast movers (FM), medium-high movers (MHM), 
medium-low movers (MLM) and slow movers (SM). These four categories were clearly 
identified from the histogram of the demand distribution. Moreover, no seasonal patterns or 
correlations were detected for the demand of items. Although one could not really expect 
that demand would behave stationary, we did not have indications to model that explicitly. 
We performed a normality test for the aggregated demand in the categories to see whether 
this could be a reasonable assumption for the demand of items in our simulation model. The 
null hypothesis of normality was not rejected at 5% significance level with a p-value of 
0.20. We established a weekly total average demand of 2,942 items and we found an 
empirical ratio for the 4 categories of items of 3.1:2.5:1.8:1 (FM:MHM:MLM:SM). The 
demand rates for the four categories are shown in Table 1, where the C.V. (coefficient of 
variation) is also reported (see table 2 in section 4 for composition of families). 
 
 
 

 
Table 1 

 
 Category  Average weekly  Weekly standard  C.V. 

      demand per item  deviation per item 
FM (4 items)          202           131  0.649 
MHM (4 items)          166           106  0.638 
MLM (7 items)           121             83  0.686 
SM (8 items)            65             44  0.677 

 
 
 
3. Literature Review 
 
Inventory models found in papers related to the JRP literature basically fall in two main 
categories according to the nature of demand: deterministic and stochastic models. In the 
deterministic methods it is assumed that the major ordering cost is charged at a basic cycle 
time T and that the ordering cycle of each item is some integer kj multiple of T, which is 
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called a (kj, T) policy. In this line of research Goyal [4] proposed a solution method for the 
JRP based on enumeration, and therefore only suitable for small instances of the size 
problem. Moreover, he did not specify bounds for the problem and therefore one cannot test 
for optimality. Wildeman et al. [11] presented a more suitable optimal solution method for 
larger problems based on Lipschitz optimisation. Other authors focused on heuristic 
procedures. All of the methods suggested by these authors ask for the allocation of minor 
set up costs, which in our case were not present. Another important short coming of these 
methods is the treatment of the major ordering cost, which is often presented as a constant 
cost regardless of the number of items included in the order. 
 
In the stochastic arena, Balintfy [2] first introduced the use of (S,c,s) systems or “can-order” 
systems, in which items are replenished up to level S if they reach a reorder level s. 
Coordination is achieved by including in the order any other item of the same family whose 
inventory level is below its can order level c. Later, Silver [7] proposed a method to 
determine in an optimal way the parameters of the (S,c,s) system. Although this policy 
performs relatively well, Ignall [5] showed that optimality cannot be guaranteed. 
Alternatively to (S,c,s) systems, for which a continuous review policy is needed, Atkins and 
Iyogun [1] proposed the use of periodic replenishment policies, where all items or specific 
subsets of them are ordered in every replenishment opportunity up to a base stock level S. 
Here the objective is to select optimal values of the review time and the order up to level S. 
Eynan and Kropp [3] presented an algorithm to find optimal values of the review time 
under stochastic demands using firstly a single item model and then extending it to the 
multi-item case. Although this algorithm could be used in real applications, the authors 
don’t consider a complex structure of the fixed cost. 
 
Viswanathan & Piplani [10] and Ramirez & Espinosa [6] discuss some real applications of 
coordination, by means of quantity discounts and capacity constraints in transportation. 
However, they do not consider minimum order quantities or a staircase transportation cost 
function. 
 
 
The methods found in the JRP literature are important from a theoretical perspective. Few 
studies of the joint replenishment problem have been related to real supply chains, and to 
the best of our knowledge there are no methods available in the literature when minimum 
order quantities are a restriction of the system. 
 
 
4. Simulation model 
 
A simulation model was built to analyze the problem in which the net inventory and 
inventory position are controlled individually for each item with a time step of one week. 
Demands not met from stock are lost. The demand of each item is considered normally 
distributed with parameters given in table 1. For demands with large value of C.V. we cut 
off the negative part of the left tail of the normal distribution by setting to zero all negative 
demands, which caused only a marginal distortion. In table 2 we present the families of 
items considered in the simulation model. 
 
 

Table 2. Families of items 
 
 Family    Type of item 

(chip #)      FM  MHM  MLM  SM 
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IC 1          6     14    23 
IC 2    7       20    15 
IC 3    8       16 
IC 4                       13, 15, 22 
IC 5        11   3, 19 
IC 6                           4, 12, 21 
IC 7    1    17          9 
IC 8    2    10     18 

 
 
Two inventory policies are considered, according to the following: 
 
Case 1. (kj, T) joint replenishment with minimum order quantities for the chips. 
 
(a) The system is controlled at chip level, using feasible subsets of chips for the joint 
replenishment. We consider a base replenishment time of T weeks and a frequency factor kj 
for chip j. The quantities ordered for the families of items have to satisfy the minimum 
order quantity for the chip and the lot sizes for individual items are determined by ensuring 
an equal number of days in stock according to average demand. This is done in the 
following way: we search for kj and T such that the service level is at least 90%. Due to the 
discrete nature of demand, we applied enumeration instead of continuous optimization to 
determine optimal policy parameters. What follows is the detail description of the 
algorithm considered. 
 
STEP 0. Select an appropriated set of values of the frequencies kj, using the following 
initial criterion: Set kj = 1 for the family with the highest rate of average demand, kj = 2 for 
the family with the second higher rate of average demand and so on. Define AddQj as an 
additional quantity of chip j and set its value initially equal to zero. 
 
STEP 1. For each selected set of values of the kj run the simulation using different values of 
T, starting with a value of one week and then increasing its value in steps of one week. 
Order the following quantity for item i inside family j (or equivalent containing chip j): 
 
Qij = ijj wAddQMOQ )( +  

 
where MOQ is the minimum order quantity per family and the weights wij are evaluated 
according to average demand as follows: 
 

jA

ij
ij D

D
w

,

=     and   1=∑
i

ijw        for all chip j 

 
where ijD  is the weekly accumulated average demand of item i inside family j, and  jAD ,  is 

the weekly aggregated average demand of family j. 
 
STEP 2. For each run of the simulation model evaluate the average annual transportation 
cost using the cost structure presented in section 2, and the average annual holding cost of 
the system. Compute for each item i inside family j the % of time that the net inventory is 
zero. Compute the % of time that the net inventory of the system (all families) is zero by 
averaging values for each family. 
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STEP 3. For all values of T for which the % of time that the net inventory of the system is 
zero is less than 10%1, compute the total average costs as the sum of the average 
transportation cost and the average holding cost. 
 
STEP 4. Select new values of the kj using the following general rule: families with higher 
rates of demand will have lower values of kj and families with lower rates of demand will 
have higher values of the kj. 
 
STEP 5. Repeat steps 1 through 4 trying for different values of AddQj, according to the 
following rule: for each family whose maximum % of time out of stock over all items 
inside that family at the end of the simulation run is higher than 10%, increase AddQj in 
steps of 500 chips (the minimum number allowed for a set of production in the masking 
process) until an acceptable value of the % of time out of stock is reached. 
 
STEP 6. Select the best values of the kj and T for which the average total cost is the lowest 
of all trials. 
  
(b) Same considerations as in part (a) but with pre-determined sizes of container to be used 
in the replenishments. This set of experiments is motivated by the idea that using the 
algorithm presented in part (a) we could get a solution in which different sizes of containers 
are used in every replenishment opportunity, which from the point of view of transportation 
efficiency is not optimal. We define the following structure of experiments: 
 
A. Experiments using only one specific size of container (see table 2): 
 
FC: Full container (45,000-52,000). Includes: FC1, FC2, FC3 and FC4. 
LFC40: Less-than-a-full-container with 40,000 items. 
LFC30:     “                   30,000     “  .  
LFC20:     “                   20,000     “  . 
LFC10:    “                   10,000     “  . 
 
B. Experiments with containers of different sizes (Table 3). 
 
The choice made for the container sizes is based on proper combinations of containers that 
allow to distribute the families in the different replenishments according to their average 
rate of demand in order to better control the stockouts and to keep inventory levels not too 
high, and at the same time on the efficient use of the transportation system. We consider the 
following experiments: (as before, the letters indicate the type of container followed by the 
number in thousands of the units it contains) 
 
(FC50+LFC30). Full container plus one LFC in every replenishment. We send always a 
coordinated replenishment of all items, and we exploit the advantages of using always a full 
container. 
 
(FC50, LFC30, LFC30). Full container and two LFC’s sent alternately. The use of the LFC 
allow us to better match supply with demand of the families with low rates of demand, 
namely for chips 4 and 6. On the other hand we exploit the advantage of using a full 
container in every three replenishments. 

                                                 
1 We set the value of 10% according to the customer service level required at the DC as an equivalent measure 
of the fill rate. 
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(FC50, LFC30). In this experiment we try to reduce the % time out of stock for chips 4 and 
6 by sending them in every two replenishment and at the same time still exploiting the full 
container economical advantage. 
 
(LFC30, LFC30, LFC20). We sacrifice the use of full container for using only LFC’s that 
better allow us to distribute the items according to their rates of demand. 
 
(FC50, LFC30, LFC45). We exploit economies of scale offered by the use of full container 
but to use it alternately with LFC to better match supply and demand for the fast and slow 
movers. 
 
Case 2. Joint replenishment with no constraint of minimum order quantities for the chips, 
because of keeping stock of chips at the assembly plant, but with a minimum order quantity 
for the total replenishment lot size (container constraint). 
 
The system is controlled using an order-up-to-level inventory policy considering a 
customer service level to be guaranteed at the DC. We compare the performance of the 
system using the following two control policies: 
a)  (T,S),  b)  (T,s,S). 
 
In case (a) the system is reviewed every T time units. The lot sizes for the individual items 
are evaluated according to the order-up-to-level Si of each item. The replenishment will be 
effective only if the total replenishment size is at least equal to the minimum order quantity 
required by the container. Using the simulation we search for the best values of the 
parameters T and S that gives the minimum annual total cost, given 10% as the maximum 
allowable percentage of time that the system is out of stock (the same customer service 
level used in case 1). One way to choose the order-up-to-level Si for item i is to relate its 
value to the average demand of the item during the review time T plus the lead time. 
Accordingly, we start out our search of the parameter Si by initially setting its value using 
the following equation: 
 

LTzLTDS iii +++= σ)(     (3) 

 
where Di and i are the annual average demand and standard deviation of item i, L is the 
total lead time, and z is a multiplier of  that determines the cycle service level. 
 
We run the simulation for the (T,S) policy using the same cost structure as the one in case 1, 
namely the transportation cost structure presented in section 2. We search for the best value 
of Si by varying the value of z. 
 
In case (b) the coordination is performed using the following strategy: the inventory 
position of each item inside its family is checked with a constant review time T equal for all 
items. When the inventory position of an item drops below its reorder point si, it triggers the 
replenishment order for the family to which it belongs. The lot sizes for the items inside the 
family are evaluated again according to the order-up-to-level Si of each item and the 
replenishment is finally effective only if the minimum order quantity for the container is 
satisfied. We look for the best possible values of the parameters T, s and S by trying 
different values and computing total average annual cost. 
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Whichever policy is used, every time a replenishment of items is ordered, the system incurs 
a transportation cost according to the underlying cost structure. After a constant lead time, 
the replenishment arrives to the system and the status of all inventories is updated. The 
simulation model evaluates the holding cost associated with the average inventory held per 
year at the DC plus the holding cost associated with the average number of chips in stock at 
the assembly plant. To keep things not too complex in the simulation model, we do not 
keep track of the inventory of chips, we rather calculate the average stock directly while 
assuming an initial value of 25,000 chips. 
 
 
5. Experiments and discussion of results 
 
Case 1 (a). No intermediate stocks. MOQ for the chips. Experiment with free values of kj 

(see Table 1) 
 
We vary the review time T and evaluate for each value the following: 
 

• Average total cost of the system per year = Average annual transportation cost + 
Average annual holding cost 

• Average % time out of stock over all items 
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Summary of simulation results      
         
Table 1. Experiments varying frequencies kj     

         
Definition of experiments        

Chips {7,8}  {2,5}   {1,3}   {4,6}  
Average total               

demand  978  796  675  390  

(items/week)               

Ratios 1 : 1.2 : 1.45 : 2.5  

                

Experiment #                                kj values          

1 1  2   3   4  

2 1  2   2   3  

3 1  1   2   3  

4 1  1   1   2  

5 2  3   3   4  

6 2  2   3   4  

         

Results          

T Average Annual  Average Annual   Average Annual   Average  

(weeks) Transp. Cost  Holding Cost  Tot. Cost  % Out of  

  (euros)  (euros)   (euros)   Stock  

Experiment # 1*: {7,8} kj=1;  {2,5} kj=2;  {1,3} kj=3;  {4,6} kj=4;  All AddQj=0      

14 4,567   31,710   36,277   8.8  

  (185)*  (247)   (354)   (0.3)  

Experiment # 2: {7,8} kj=1;  {2,5} kj=2;  {1,3} kj=2;  {4,6} kj=3;  All AddQj=0      

18 3,593   19,618   23,211   9.4  

  (229)  (236)   (406)   (1.9)  

Experiment # 3: {7,8} kj=1;  {2,5} kj=1;  {1,3} kj=2;  {4,6} kj=3 AddQj=500     

18 4,088   31,424   35,512   6.0  

  (178)  (417)   (520)   (2.3)  

Experiment # 4: {7,8} kj=1;  {2,5} kj=1;  {1,3} kj=1;  {4,6} kj=2;  All AddQj=0      

24 3,120   23,033   26,153   8.9  

  (228)  (359)   (489)   (1.6)  

Experiment # 5: {7,8} kj=2;  {2,5} kj=3;  {1,3} kj=3;  {4,6} kj=4 AddQj=1,000      

10 4,668   24,466   29,135   5.8  

  (260)  (297)   (409)   (1.6)  

Experiment # 6: {7,8} kj=2;  {2,5} kj=2;  {1,3} kj=3;  {4,6} kj=4 AddQj=1,000       

12 3,661   20,242   23,903   6.1  

  (143)  (296)   (310)   (1.4)  

         

                                      Total cost and % out of stock for the experiments     

T 10  12   14   18 24 

           

Exp. 1  73,282     (1.8%)   49,378    (4.6%)    36,277    (8.8%)   20,485   (17.5%)  -  

Exp. 2  90,415     (0.9%)   62,651    (2.1%)    42,962    (3.4%)   23,211   (9.4%)  12,447   (27.5%)  

Exp. 3 126,725    (0.3%)  89,974     (1.1%)   65,652    (1.9%)  35,512   (6.0%)  15,042   (19.5%) 

Exp. 4  173,052   (1.8%)   131,717  (1.3%)    98,704   (1.6%)   55,132    (3.0%)  26,153   (8.9%)  

Exp. 5  29,135     (5.8%)   20,429   (12.0%)    16,346   (17.6%)   12,179   (25.2%)    -  

Exp. 6 36,604     (3.6%)   23,903    (6.1%)     17,402   (14.9%)    13,012   (26.1%)    -  

         
*) The numbers in parenthesis are the standard deviations of the average values.  
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Summary of simulation results   

     

Table 2. Experiments with one type of container  
     

T Average Annual Average Annual Average Annual Average 
(weeks) Transp. Cost Holding Cost Total Cost % Out of 

  (euros) (euros) (euros) Stock 
FC1 Two subsets of 4 chips with kj = 2 for all chips and additional chip in each  

  replenishment with frequency factor pj = 8: {1,2,3,4,Xpj}, {5,6,7,8,Xpj}. 
16 2,222  36,028  38,251  7.6 

  (135)* (120) (189) (0.9) 
FC2 Two subsets with chips 7 and 8 (higher demand) with kj = 1 and the 

  remaining chips with kj = 2: {7,8,1,2,4}, {7,8,3,5,6}.   
16 2,222  33,307  35,529  7.2 

  (134) (260) (312) (1.0) 
FC3 Two subsets of 4 chips with kj = 2 for all chips and 10,000 additional items  

  in the replenishment (the additional items are distributed among the families 
  according to relative average demand): {1,2,3,4}+10000, {5,6,7,8}+10000. 

16 2,222  31,666  33,889  7.2 
  (112) (187) (254) (0.7) 

FC4 Two subsets of 3 chips with kj = 3 and 20,000 additional items in the replenishment 
  (same consideration as in FC1.3), and one subset of 2 chips with kj = 3 and 30,000 
  additional items: {1,2,4}+20000, {3,5,6}+20000, {7,8}+30000.   

16 2,222  34,365  36,587  7.8 
  (139) (205) (289) (0.6) 

LFC40 LFC with 40,000 items.      
  Two subsets of 4 chips with kj = 2: {1,2,3,5}, {4,6,7,8}.   

14 5,265 24,872 30,137 7.7 
  (126) (142) (183) (0.8) 

LFC30 LFC with 30,000 items.      
  Two subsets of 3 chips each with kj = 3 and one subset of 2 chips with kj = 3 and 
  10,000 additional items in the replenishment: {1,2,4}, {3,5,6}, {7,8}+10000. 

10 5,844  27,794  33,638 5.7 
  (209) (310) (398) (0.6) 

LFC20 LFC with 20,000 items.     
  Four subsets of 2 chips each with kj = 4: {1,2}, {3,4}, {5,6}, {7,8}.  

6 7,434  37,753  45,188  4.2 
  (114)* (157) (377) (0.4) 

LFC10 LFC with 10,000 items.     
  8 subsets of 1 chip each with kj = 8: {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}. 

4 7,188  20,567  27,755  12.8 
  (191) (108) (291) (1.4) 
     
     
*) The numbers in parenthesis are the standard deviations of the average values. 
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Sumary of simulation results    

     

     
     

Table 3. Experiments with different size of container   
     
     
     
     

T Average Annual Average Annual Average Annual Average 
(weeks) Transp. Cost Holding Cost Total Cost % Out of 

  (euros) (euros) (euros) Stock 
(FC50+LFC30) Full container and one LFC with 30,000 items. One subset containing 

  all chips with kj = 1: {1,2,3,4,5,6,7,8}.     
26 3,354  30,776  34,130  9.3 

  (129)* (266) (387) (0.8) 
(FC50,LFC30,LFC30) Full container and two LFC with 30,000 alternately. Chips 1,2,3,5,7 and 

  8 with kj = 2 and chips 4,6 with kj = 3, to get the following sequence of 
  replenishments:      
  {4,6,5,7,8}, {1,2,3}, {5,7,8}, {4,6,1,2,3}, {5,7,8}, {1,2,3}, {4,6,5,7,8}, … 

14 3,684  20,351  24,034  8.3 
  (162) (237) (364) (1.4) 

(FC50,LFC30) Full container and one LFC with 30,000 alternately. One subset with  
  5 chips and one subset with 3 chips and all kj = 2: {1,2,3,4,5}, {6,7,8}. 

14 3,354  27,839  31,193  9.6 
  (149) (369) (470) (1.2) 
(LFC30,LFC30,LFC20) Two LFC with 30,000 items and one LFC with 20,000, alternately.  

  Two subsets with 3 chips and one subset with two chips and all kj = 3: 
  {2,4,7}, {3,6,8}, {1,5}.       

10 5,390  20,693  26,083  8.4 
  (198) (155) (267) (1.6) 

(FC50,LFC30,LFC45) Full container, LFC with 30,000 and LFC with 45,000, alternately. Set kj = 3  
  for chips 4,5 and 6, and kj = 2 for chips 1,2,3,7 and 8 to get the sequence: 
  {4,6,7,8}+10000, {1,2,3}, {5,7,8}+15000, {1,2,3,4,6}, {7,8}+10000, {1,2,3,5}+5000, 
  {4,6,7,8}+10000, {1,2,3}, {5,7,8}+15000, {1,2,3,4,6}, …   

16 2,697  20,638  23,335  9.7 
  (233) (374) (499) (1.4) 

     
     

     
*) The numbers in parenthesis are the standard deviations of the average values. 
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Summary of simulation results      

        

Table 4. Experiments for the system with no minimum order quantities  

a) (T,S) Policy     
    

 

 
MOQ_Container = 10,000 items, lead time (L) = 6 weeks     

Cycle Average Annual Average Annual Average Annual Average Average Average # Average # 
Service Transp. Cost Holding Cost Tot. Cost % Out of TRS of chips/year of FC/year 

Level (%) (euros) (euros) (euros) Stock       
T=1               

99.87                 6,318                 5,248              11,566         10.6       11,450         25,000  0 
                   (240)* (68) (298) (1.5) (136)     

99.93                 6,591                 5,479              12,070           8.6       11,303  " 0 
  (139) (88) (207) (1.0) (118)     

  T=2               
99.53                 5,958                 5,450              11,409         11.7       12,539  " 0 

  (158) (46) (195) (1.0) (154)     
99.74                 6,369                 5,792              12,161           8.9       12,415  " 0 

  (182) (120) (257) (1.3) (310)     
  T=4               
98.61                 5,975                 6,285              12,260         11.7       15,060         25,000  0 

  (177) (85) (212) (1.4) (682)     
99.18                 6,374                 6,773              13,147           8.0       14,371  " 0 

  (282) (192) (359) (2.2) (571)     
  T=6               
94.52                 6,357                 7,636              13,993           9.2       16,888         35,000  0 

  (425) (355) (570) (3.5) (613)     
96.41                 6,281                 7,824              14,105           7.3       17,540  " 0 

  (479) (431) (704) (3.4) (785)     
  T=8               
94.52                 5,481                 8,617              14,098         10.1       22,991  " 0 

  (435) (472) (758) (4.1) (1504)     
96.41                 5,807                 9,337              15,144           5.3       22,384  " 0 

  (138) (242) (368) (1.6) (621)     
  T=10               
88.49                 5,361                 9,806              15,168           8.7       26,687         50,000  0 

  (146) (230) (368) (2.2) (303)     
91.92                 5,459               10,282              15,741           6.3       27,252  " 0 

  (111) (223) (328) (1.8) (475)     
  T=12               
88.94                 5,070               10,704              15,774           8.2       31,909         50,000  0.2 

  (70) (142) (169) (0.8) (353)     
91.92                 5,115               11,239              16,354           6.3       32,761  " 0.2 

  (66) (197) (156) (0.8) (342)     
T=14               
84.13                 4,756               11,865              16,621           9.9       36,813         60,000  0.2 

  (150) (169) (242) (0.8) (330)     
88.49                 4,853               12,234              17,087           8.3       37,801  " 0.2 

  (122) (123) (90) (0.6) (385)     
        

*) The numbers in parenthesis are the standard deviations of the average values.   

LTzLTDS +++= σ)(
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Table 4. Cont.       

b) (T,s,S) Policy        
        
MOQ_Container = 10,000 items, lead time (L) = 6 weeks     

Cycle Average Annual Average Annual Average Annual Average Average Average # Average # 
Service Transp. Cost Holding Cost Tot. Cost % Out of TRS of chips/year of FC/year 

Level (%) (euros) (euros) (euros) Stock       
 

T=2,                
99.74                6,383                5,775              12,158          8.9     12,363         25,000  0 

  (224) (57) (245) (1.3) (301)    
99.87                6,531                6,026              12,557          7.9     12,420  " 0 

  (192) (137) (313) (1.2) (210)    
T=2, s=.8S               

99.74                6,425                5,763              12,188          8.8     12,290         25,000  0 
  (229) (154) (367) (1.7) (307)    

99.87                6,572                6,038              12,610          7.5     12,508  " 0 
  (161) (125) (251) (1.0) (370)    

  T=2, s=.7S               
99.87                6,277                5,876              12,153        10.0     13,404         25,000  0 

  (212) (127) (324) (1.5) (385)    
99.93                6,434                6,155              12,589          8.1     13,903  " 0 

  (87) (93) (1390 (1.0) (417)    
  T=4, s               
99.74                5,702                6,686              12,388          9.4     19,011         30,000  0 

  (110) (140) (232) (1.1) (674)    
99.87                5,757                6,981              12,738          7.7     19,716  " 0 

  (63) (173) (227) (1.40 (659)     
  T=4, s=.8S               

99.18                6,156                6,684              12,840          9.1     15,262         25,000  0 
  (216) (188) (403) (1.8) (622)    

99.53                6,466                7,122              13,588          7.0     14,471  " 0 
  (350) (220) (552) (1.2) (1086)    

   T=4, s=.7S                
99.74                5,899                7,221              13,120          9.1     17,716         30,000  0 

  (88) (120) (196) (0.9) (343)    
99.87                5,885                7,454              13,339          8.0     18,231  " 0 

  (123) (100) (194) (1.0) (426)    
T=6, s               
99.87                5,364                8,417              13,781          9.5     23,294         30,000  0 

  (359) (80) (364) (0.4) (469)    
99.93                5,275                8,683              13,958          8.4     25,710  "   

  (306) (182) (471) (1.1) (764)    
  T=6, s=.8S               

94.52                6,172                6,959              13,131          8.7     16,730         30,000  0 
  (268) (274) (532) (2.5) (725)    

96.41                6,517                7,576              14,093          5.5     16,631  " 0 
  (100) (149) (239) (0.96) (241)    

 
 
 

LzDLs σ+=
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We use the average % time out of stock at the DC as an indirect measure of the fill rate to 
measure customer service level, rather than using the fill rate itself, because we do not 
model demands at the DC. Following the algorithm presented in the last section we defined 
the six experiments showed in Table 1, starting out with experiment 1 in which we selected 
the initial values for the ki and then we try to improve them by using different subsets of the 
frequencies as defined by experiments 2 through 6. 
 
The best strategy was found setting kj=1 for chips {7,8}, kj=2 for chips {1,2,3,5} and kj=3 
for chips {4,6} and T=18 weeks, with total associated average costs of 23,211 euros and 
average ready rate of 9.4%. This policy produces a replenishment strategy in which a 
combination of full containers and different sizes of LFC are sent alternately. In this way 
we exploit the advantages of sending full containers. On the other hand, the use of LFC 
allows more flexibility to better control the inventory levels of items according to their rate 
of demand. 
 
Case 1 (b). Experiments with predetermined size of container (Tables 2 and 3) 
The experiments that used only one size of container resulted in very high annual costs, 
mainly because of the high holding costs involved. By using different sizes of container we 
can produce better strategies. The best one found was in experiment (FC50, LFC30, 
LFC45) with associated average costs of 23,335 euros and average ready rate of 9.7% (see 
Table 3), slightly worse than in case 1(a). This strategy allows to closely match the supply 
of items with the differences in average demand of the families by balancing better the 
amount of items sent in each shipment. 
 
Case 2. Experiments using (T,S) and (T,s,S) policies (Table 4) 
 
For both control policies (T,S) and (T,s,S) we vary the control parameters and evaluate for 
each case the following: 
 

• Average total cost of the system per year = Average annual transportation cost + 
Average annual holding cost of items + Average annual holding cost of chips 

• Average % time out of stock over all items2 
• Average total replenishment size (TRS) 
• Average number of chips held in stock 
• Average number of full containers used per year 

 
For all the experiments we set a maximum allowable average % time out of stock of 10% at 
the DC, which is in accordance with the customer service level needed for the system. We 
run the simulation for 5 years. 
 
For the (T,S) policy we found that the best performance of the system is achieved with low 
values of the review time T. Although in this case the transportation costs are relatively 
high because of frequent delivery of LFC’s, the use of such values for T allow us to keep 
the holding costs low, which are of greater impact in this case. We can see that the use of 
such a policy outperforms any possible strategy when the minimum order quantities are 

                                                 
2 Although in equation (3) we implicitly use the probability of no stock out in each replenishment cycle as a 
measure of service level, during the simulation we rather look at the fraction of time during which the net 
stock is zero. We do this because of ease of evaluation and to be in accordance with the type of customer 
service measure defined for the case study and also used in case 1. 
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present. This is explained by the fact that the relaxation of the minimum order quantities let 
us have a better control of the individual inventories of items according to the differences in 
the demand patterns of the product. From the experiments we obtained that for about the 
same level of customer service level we save approximately 70% in holding costs by 
keeping the stock of chips and using a (T,S) policy rather than the policies considered in 
case 1. For T=1 and a value of z=3.2, the use of this policy resulted in average total costs of 
12,070 euros with average ready rate of 8.6%, much lower than the corresponding values 
for case 1. 
 
If we use a reorder point strategy, i.e., a (T,s,S) policy, the performance of the system is 
very close to that of the (T,S) policy as we can see from the results. The best performance 
was found using T=2 and a reorder level s equal to average demand over the lead time plus 
the safety stock, with associated average costs of 12,158 euros and average ready rate of 
8.9%. Recall that when using a reorder point we cannot order unless any of the items 
belonging to a family is below its reorder point. In such a case we lose the opportunity of 
trigger orders until the next replenishment epoch, in which some of the items in the system 
are already out of stock, and this explains why the best performance of the system is found 
under low values of the review time, although the effect of low holding cost is also 
important as in the (T,S) case (Table 4). 
 
 
6. Some considerations using the EOQ method. 
 
Assuming a deterministic demand and a constant set-up cost, we perform some calculations 
using the EOQ procedure to investigate the behavior of the system when using a full 
container under minimum order quantities. Accordingly, consider the following data from 
the case study: 
 
Total average demand of the system: D = 2,942 items/week 
Set-up cost for an order: A = 700 euros (for a full container) 
Annual holding rate at the DC: h = 25% 
Unit cost: c = 1.25 euros 
 
and apply the EOQ formula to evaluate the optimal replenishment size (1 year = 52 weeks): 
 

entreplenishmperitems
hc

AD
EOQ 180,26

2 ==  

 
with associated holding and transportation costs: 
 

eurosADhc 180,82 = , which are slightly higher than the corresponding average costs 
obtained for the (T,S) or (T,s,S) policies showed in table 4. 
 
From the previous calculations we can see that the EOQ formula gives a lot size that does 
not meet the required size of a full container. If we further assume 4 to 5 chips in the 
replenishment, we can also see that imposing minimum order quantities tends to increase 
the lot size and consequently the average stock of items at the DC. 
 
 
7. Conclusions 
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For a real supply chain we showed that in the presence of minimum order quantities for the 
items to be included in the replenishments, we can achieve coordination of orders and at the 
same time exploit the economies of scale of a transportation system with non-linear cost 
structure. Particularly, we found that a (kj, T) policy performs better than focusing directly 
on a specific container size. The (kj, T) method does have a varying order size. For this 
policy we showed that minimum order quantities can be incorporated in a JRP by a manual 
enumeration method even with complex transportation costs. 
 
We considered the use of intermediate stocks of chips to relax the minimum order 
quantities and we showed that this action facilitates a better control of the supply chain 
because of shorter lead times and more effective inventory strategies. Particularly, we 
successfully apply a (T,S) and a (T,s,S) inventory policy with savings up to 44% in total 
costs. 
 
We can generalize the conclusions found for our product to other similar supply chains for 
which we have a competitive product that is differentiated in families according to specific 
characteristics of the subassemblies. Today many items are produced in Asia because of 
low labor costs and then sent to Europe or US by sea in large quantities. 
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