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We investigate whether risk seeking or non-concave utility functions can help to explain
the cross-sectional pattern of stock returns. For this purpose, we analyze the stochastic
dominance efficiency classification of the value-weighted market portfolio relative to
benchmark portfolios based on market capitalization, book-to-market equity ratio and
momentum. We use various existing and novel stochastic dominance criteria that account
for the possibility that investors exhibit local risk seeking behavior. Our results suggest
that Markowitz type utility functions, with risk aversion for losses and risk seeking for
gains, can capture the cross-sectional pattern of stock returns. The low average yield on
big caps, growth stocks and past losers may reflect investors twin desire for downside
protection in bear markets and upside potential in bull markets.

THE TRADITIONAL M EAN-VARIANCE CAPITAL ASSET PRICING MODEL (MV CAPM) by
Sharpe (1964) and Lintner (1965) fares poorly in explaining observed cross-sectional
stock returns. Specifically, market beta seems to explain only a small portion of the
cross-sectional variation in average returns, while factors like market capitalization
(size), book-to-market equity ratio (BE/ME) and momentum systematically appear to
affect asset prices (see e.g. Fama and French, 1992, and Jagadeesh and Titman, 1993).
Related to this, the value-weighted market portfolio of risky assets seems highly
mean-variance inefficient, and it is possible to achieve a substantially higher mean
and/or a substantially lower variance with portfolios with a higher weight of small
caps, value stocks (high BE/ME stocks) and past winners.

One way to extend the MV CAPM is by changing the maintained assumptions
on investor preferences. If we do not restrict the shape of the return distribution, then
MV CAPM is consistent with expected utility theory only if utility takes a quadratic
form. (Less restrictive assumptions are obtained if we do restrict the shape of the
return distribution; see e.g. Berk (1997)). Extensions of the MV CAPM can be
obtained by using alternative classes of utility. For example, Friend and Westerfield
(1980) and Harvey and Siddique (2000) assume that utility can be approximated using
a third-order polynomial, and Dittmar (2002) uses a fourth-order polynomial.? The
higher-order polynomials better fit stock return data than the standard quadratic utility
functions do. Still, the market portfolio remains inefficient and size, value and
momentum effects remain. Two potential problems of the extended models may help
to explain this result:

1. Risk seeking. The extended models typically maintain the assumption that
investors are globally risk averse and that utility is everywhere concave (i.e.
marginal utility is diminishing). However, there is evidence that decision makers
are not globally risk averse, but rather they exhibit local risk seeking behavior
(i.e. the utility function has convex segments). For example, Friedman and
Savage (1948) and Markowitz (1952) argue that the willingness to purchase both
insurance and lottery tickets implies that marginal utility is increasing over a
range (see Hartley and Farrell, 2001, for a recent discussion). Similarly, active
stock traders seem to play negative-sum games and their behavior is sometimes
best described as ‘gambling’ (see e.g. Statman, 2002). In addition, psychologists
led by Kahneman and Tversky (1979) find experimental evidence for local risk
seeking behavior.

2 Similarly, Bansal and Viswanathan (1993) and Chapman (1997) use polynomial approximations in
the context of Arbitrage Pricing Theory and consumption-based CAPM respectively.



2. Specification error. A difficulty in changing the preference assumptions is the
need to give a parametric specification of the functiona form of the utility
function or to specify the maximum order of the approximating polynomial.
Unfortunately, economic theory gives minima guidance for functiona
specification, and there is a substantial risk of specification error. For example,
the fourth-order polynomia used in Dittmar (2002) implies that investors care
only about the first four central moments of the return distribution (mean,
variance, skewness and kurtosis). This approach is problematic if investors care
about the higher central moments or about lower partial moments (see e.g. Bawa
and Lindenberg, 1977), which generally cannot be expressed in terms of the first
four central moments. Another problem associated with low order polynomials is
the difficulty to impose restrictions on the derivatives that apply globally. For
example, we cannot impose ronsatiation by restricting a quadratic polynomial to
be monotone increasing and we cannot impose risk aversion by restricting a cubic
polynomial to be globally concave (see e.g. Levy, 1969).

To circumvent these problems, we may use criteria of Stochastic Dominance (SD; see
e.g. Levy, 1992, 1998). Attractively, SD criteria do not require a parameterized utility
function, but rather they rely only on general preference assumptions.® Put differently,
SD effectively considers the full house of all moments of the return distribution rather
than afinite set. The SD literature involves a multitude of different criteria, associated
with different sets of preference assumptions. The traditional First-order Stochastic
Dominance (FSD) criterion assumes only nonsdatiation i.e. utility is monotone
increasing. The Second-order Stochastic Dominance (SSD) criterion adds the
assumption of global risk-aversion. Recently, a number of intermediate criteria have
been developed based on non-concave utility functions. Most notably, Levy (1998)
developed Prospect Stochastic Dominance (PSD), which assumes a Sshaped utility
function that is convex for losses and concave for gains. In addition, Levy and Levy
(2002) developed Markowitz Stochastic Dominance (MSD), which assumes a reverse
S-shaped utility function that is concave for losses and convex for gains.

In this paper, we use various existing and novel SD criteria to analyze asset
pricing. To focus on the role of preference assumptions, we largely adhere to the
remaining assumptions of the MV CAPM: we use a single-period, portfolio-oriented
model of a frictionless and competitive capital market with a large number of
expected utility investors. Within this model, we test whether the value-weighted
market portfolio is efficient relative to benchmark portfolios formed on size, BE/ME
and momentum. For this purpose, we assume a ssmple data generating process with a
serialy independent and identical distribution for the excess returns. Of course, there
are good reasons to doubt our maintained assumptions, and to believe that our results
are affected by these assumptions in a nontrivial way. Still, we believe that our
approach is useful, as we have to ‘walk before we can run’, and the analysis can form

3 For the sake of analytical simplicity, we phrase in terms of expected utility theory. However, SD rules
are economically meaningful also for many non-expected utility theories that account for e.g.
subjective probability distortion (see e.g. Starmer, 2002). For example, it is easily verified that the
MSD efficiency criterion is not affected by subjective transformations of the CDF that are increasing
and concave over losses and increasing and convex over gains, and hence MSD allows for subjective
overweighing of small probabilities of large gains and losses and underweighing of small and
intermediate probabilities of small and intermediate gains and losses. Interestingly, empirical studies
suggest that this reverse Sshape is the most common pattern of probability transformation (see e.g.
Tversky and Kahneman, 1992).



the starting point for further research based on more general economic and statistical
assumptions.

The remainder of this paper is structured as follows. Section | introduces a
general SD efficiency criterion and it discusses the special cases used in our study.
Section |1 discusses the issue of empirical testing. Specifically, we develop a general
Linear Programming (LP) test for fitting SD efficiency criteria to empirical data and
we derive the asymptotic sampling distribution of the test results. This section
effectively generalizes Post’s (2001) treatment of SSD efficiency towards our general
SD efficiency criterion. Section 11 presents the empirical application. Finally, Section
IV gives concluding remarks and suggestions for further research. The Appendix
gives the formal proofs for our theorems.

|. STOCHASTIC DOMINANCE EFFICIENCY CRITERIA

We consider a single-period, portfolio-based model of a competitive capital market
that satisfies the following assumptions:

Assumption 1 The investment universe consists of N assets, one of which is ariskless
asset. Throughout the text, we index the assets by 1° {i}.,. The excess returns
x1 A are treated as random variables with a continuous joint cumulative
distribution function (CDF) G:AM ® [0,1] # Investors may diversify between the
assets, and we will use | T AN for a vector of portfolio weights. The portfolio
possibilities are represented by the simplex L © {I TAN:el =15

Assumption 2 Investors select investment portfolios | T L to maximize the expected

vaue of a once directionaly differentiable, strictly increasing utility function

u:A ® A tha is defined over portfolio return x'l .° We represent all admitted

u(x+1)-u(x)
I

utility functions by U,° {u:fu(x)3 1 " xi A}, with fu(x)° lim
for the directional derivative or ‘marginal utility’ a xI A .’
We may characterize different SD efficiency criteria by different classes of utility

functions, characterized by different sets of (conditional) linear restrictions on
marginal utility. Formally, we will denote different classes of utility functions by

* Throughout the text, we will use AN for an N-dimensional Euclidean space, and A" denotesthe positive

orthant. To distinguish between vectors and scalars, we use a bold font for vectors and a regular font for
scaars. Further, al vectors are column vectors and we use x' for the transpose of x . Finally, e is a unity
vector with dimensions conforming to the rules of matrix algebra.

® By using the simplex L , we exclude short selling. Short selling typically is difficult to implement in
practice due to margin requirements and explicit or implicit restrictions on short selling for institutional
investors (see e.g. Sharpe, 1991, and Wang, 1998). Still, we may generalize our analysis to include
(bounded) short selling. In fact, the analysis applies for an arbitrary polytope if we replace | with the
set of extreme points of the polytope.

® We use a directional derivative to allow for kinked utility functions, including piecewise-linear utility
functions (see the proof to Theorem 1).

"u , restricts marginal utility to exceed unity. This restriction effectively standardizes the test statistic

x(t,Y) (see Section I1) and forces it away from zero if the evaluated portfolio is inefficient. Still, the

restriction is harmless because SD rules are invariant to strictly positive affine transformation i.e.
ul U(Y)p bul U(Y) foral b>0



Uy o{ul Uy i ue) e Tuly) " (xy)T Y, r=1---R}.Hee Y °{Y}_ with
Y, I A? for a polyhedron that represents the r-th restriction on marginal utility

(special cases are given belowg. Using this notation, we may define the following
general SD efficiency criterion:

DEFINITION 1 Portfolio t T L is U(Y)-SD efficient if and only if it is optimal
relative to some utility functionsul U (Y),i.e.

@ min imax{eux MG(X) - GIXTEMG(X)ff = 0.

ulu(Y) ITL

Assumption 3 The vaue-weighted market portfolio of risky assets, say il L, is
U (Y )-SD efficient.

In asset pricing theories, efficiency of the market portfolio generally is not an
assumption but rather a prediction that follows from underlying assumptions on the
return distribution and investor preferences. For example, following Rubinstein
(1974), efficiency of the market follows from assuming that the preferences of the
different investors are sufficiently similar. In this case, we may use the utility function
of arepresentative agent whose preferences are an aggregate of the preferences of the
actual investors. In this paper, we do not take this route, because detailed distribution
and preference assumptions are not consistent with the SD approach of using minimal
assumptions. Rather, our analysis builds on revealed preferences. Specifically, our
motivation for assuming market efficiency lies in the popularity of passive mutual
funds and exchange traded funds that track broad value-weighted equity indexes. In
other words, (some) investors reveal a preference for market indexes, and our
objective is to rationalize their choice and to analyze their preferences.® Of course, we
could directly analyze the efficiency of actual funds. Still, for the sake of data
availability and comparability, we focus on the Fama and French market portfolio
(see Section 111), which is used in many comparable studies (e.g. Harvey and Siddique
(2000) and Dittmar (2002)). Further, many actual funds, including total market index
funds based on the very broad Wilshire 5000 index (e.g. the Vanguard Total Stock
Market Index Fund) are likely to be very highly correlated with the Fama and French
market portfolio.

Special Cases

8 We focus on a definition in terms of utility functions, because we analyze the role of preference
assumptions. SD may be defined equivalently in terms of distribution functions or their quantiles (see
e.g. Levy, 1992, 1998). In fact, the LP dua of test statistic (9) formulates in terms of quantiles;

associated with each primal variable , tT Q,isadual restriction on the running mean é[_ X7t It

s=1
% If the investment universe includes a riskless asset, then a sufficient condition for Assumption 3 is
that some investor holds a combination of the market portfolio and the riskless asset. Let
mi=nk +(1- k)d, for some k| (01] with d_ to denote a coordinate vector of zeros with a unity

valuefor therisklessasset F 1 | . If ¢ isthe optimal solution for yj U(Y), then rr isoptimal relative
to v(x) © u(kx +(1- k)x.)T U(Y) and hence efficient.



In our empirical analysis we will use various different SD criteria based on different
sets of preference assumptions. Table 1 summarizes the criteria, the assumptions and

the associated restrictions on marginal utility, as represented by Y, .

(Insert Table 1 about here)

The traditional criterion of Second-order Stochastic Dominance (SSD) assumes risk
aversion for the entire domain of returns, or equivalently risk aversion for losses, risk
aversion for gains and ‘loss aversion’ (marginal utility of losses exceeds margina
utility for gains):

2 Yo {Y,Y,YJ}X

Models of decisionmaking and equilibrium under uncertainty traditionally use utility
functions from U(Yy,). However, as discussed in the Introduction, there is

compelling evidence that many decision makers are risk seeking over arange.

The psychological experiments by Kahneman and Tversky (1979) and
Kahneman and Tversky (1992) suggest that preferences are best described by a S
shaped function that is convex for losses and concave for gains, and that is steeper for
losses than for gains (‘loss aversion’). In recent years, Prospect Theory has attracted
much attention as a framework for understanding investor behavior and for explaining
financial market anomalies (see e.g. Benartzi and Thaler (1995), Barberis et al.
(2001), and Barberis and Huang (2001)). In this gudy, we consider two SD criteria
that are based on Prospect Theory.'! Prospect Sochastic Dominance with Loss
Aversion (PSDL) assumes a S-shaped utility function with risk seeking for losses, risk
aversion for gains and loss aversion:

B Yoo o {Y1 Y5 Y}

If we drop loss aversion, then we obtain Prospect Stochastic Dominance (PSD; Levy,
1998):

10 Gains and losses are typically measured relative to a subjective reference point. For simplicity, we
set the reference point at zero. The use of excess returns implies that the reference point that
distinguishes gains from losses effectively equals the riskless rate. However, a follow-up analysis
demonstrates that the empirical results are not significantly affected by using alower reference point of
zero or a higher reference point the average return on the market portfolio. If the reference point is not
known, it can be included as an additional model variable (at the cost of a possible loss of power).

M 1n contrast to Expected Utility Theory, Prospect Theory uses value functions with subjective decision
weights that overweight or underweight the true probabilities. Levy and Wiener (1998) demonstrate
that the PSD efficiency criterion is not affected by subjective transformations of the CDF that are
increasing and convex over losses and increasing and concave over gains, and hence PSD allows for
subjective underweighing of small probabilities of large gains and losses and overweighing of small
and intermediate probabilities of small and intermediate gains and losses. However, this pattern is
counterfactual (see e.g. Footnote 3) and rejection of PSD efficiency may mean rejection of Sshaped
probability transformations rather than S-shaped preferences. Still, there are good reasons to expect that
subjective probability distortion is less severe for investment choices than for some other choices. For
example, investors can extract information about the return distribution from historical return data and
from fundamental economic data. In addition, if large amounts of money are at stake, then there is a
large incentive to gather and process such data so as to €liminate subjective probability distortions.



4) Yop © {Y31Y4}-

Recent experiments by Levy and Levy (2002) suggest that the Kahneman and
Tversky experiments may be biased by the research design. Specifically, bias may
originate from framing effects (unlike actual investments, the prospects involve either
only positive or only negative outcomes, but no mixed outcomes) and subjective
probability distortion (the prospects involve extremely small and large probabilities).
After correcting for these sources of bias, Levy and Levy find evidence against
Kahneman and Tversky type preferences, a large majority of subjects in ther
experiments select PSD inefficient prospects. In fact, the Levy and Levy results
support a reverse S-shaped utility function with risk aversion for losses and risk
seeking for gains, i.e. exactly the opposite of Kahneman and Tversky type
preferences. Interestingly, Markowitz (1952) already suggested this type of utility
function.*? In this study, we consider two SD criteria that build on Markowitz type
preferences. Markowitz Stochastic Dominance with Loss Aversion (MSDL) assumes a
reverse S-shaped utility function with risk aversion for losses, risk seeking for gains
and loss aversion:

G Yo ° {YL YY)

If we drop loss aversion, then we obtain Markowitz Stochastic Dominance (MSD;
Levy and Levy, 2002):

6 Yo °{Y. Y.

Figure 1 shows examples of non-concave utility functions that satisfy the assumptions
of PSDL, PSD, MSDL and MSD.

(Insert Figure 1 about here)

1. EMPIRICAL TESTING

In practical applications, the CDF generaly is not known. Rather, information
typicaly is limited to a discrete set of time series observations, say C°© (X,:--X;)

with x, © (%, -X,)", andindexed by Q° {t}".

Assumption 4 The observations are independent random draws from the CDF. 13

12 Markowitz (1952) actually proposed a utility function with two S-shaped segments. Such a utility
function has a convex segment for ‘large’ losses and a convex segment for ‘small and moderate’ gains.
Hence, MSD is consistent with Markowitz type utility only if all outcomes are ‘small or moderate’
gains or losses. This assumption seems reasonable for our application, because we compare well-
diversified benchmark portfolios; for the full sample period (July 1963 — October 2001), the minimum
monthly excess return is -34.32 percent and the maximum excess return is 38.82 percent (see Table
2A-B).

13 There are compelling theoretical and empirical arguments in favor of a time varying return
distribution. Unfortunately, the search for a satisfactory specification of the return dynamics is still far
from accomplished. In fact, Ghysels (1998) finds that ill-specified conditional asset pricing models in
many cases yield greater pricing errors than unconditional models. For this reason, we use an
unconditional model here. Still, further research could relax the 11D assumption. One possible approach



Since, by assumption, the timing of the draws is inconsequential, we are free to label
the observations by their ranking with respect to the evaluated portfolio, i.e.
Xt < xjt <---<xit .M Using the observations, we can construct the empirical
distribution function (EDF):

7 FX)°cad{tl Q:x £x}/T®

By usng EDF F(x) in place of CDF G(x), we arrive at the following empirical
definition of SD efficiency:

DEFINITION 2 Portfolio t T L isempirically U (Y )-SD efficient if and only if:

@®  min imax{ux 1 IF(X) - IXOTF (0} =

UYL

_)_\—/

m
ul U(Y ) |

_) ——

x| & (U(x1 )~ u(xt »/T§§=

i Q

Linear Programming Formulation
We will test for efficiency by using the following test statistic:

9 x{t,Y)° q:ab,(xt-x)/T+q30 "il |
I

bi B(Y)

_)_\_;

o

with
(10) B(Y)°{oT [L¥) b, 2 b, "tsT Q:(xt,xI)T Y, r=1-R}.
We can derive the following result for this test statistic:

THEOREM 1 Portfolio t T L is empirically U(Y)-D efficient if and only if
xt,Y)=0

The test statistic x(t ,Y ) basically checksif there existsavector b © (b,---b;)" that

represents the gradient vector a&¢ X 't for a utility function ul U(Y) that satisfies
the first-order condition for portfolio optimality (see the proof in the Appendix).*®

is to use econometric time series estimation techniques to estimate a conditional CDF. Our empirical
tests can then be applied to random samples from the estimated CDF rather than the EDF.

14 Since we assume a continuous return distribution, ties do not occur. Still, the analysis can be
extended in a straightforward way to cases where ties do occur e.g. due to a discrete return distribution
or due to measurement problems or rounding; see Post (2001).

S weuse card{>} for the cardinality or the number of elements of a set.

18 The theorem extends Post’s (2001) Theorem 2 for SSD, and it exploits the result that the necessary
and sufficient first-order optimality condition applies not only for concave utility functions, but also for
more general pseudoconcave utility functions (see e.g. Mangasarian, 1969).



The test statistic involves a linear objective function and a finite set of linear
constraints. Hence, the test statistic can be solved using straightforward Linear
Programming (LP). The model always has a feasible solution (e.g. R =€) and the
solution is bounded from below by zero (the case of efficiency) and bounded from

above by rrlﬁxé (x, - Xt)/T (the case with R=¢€). For small data sets up to
fQ

hundreds of observations and/or assets, the problem can be solved with minimal
computational burden, even with desktop PCs and standard solver software (like LP
solvers included in spreadsheets). Still, the computational complexity, as measured by
the required number of arithmetic operations, and hence the run time and memory
Space requirement, increases progressively with the number of variables and
restrictions. Therefore, specialized hardware and solver software is recommended for
large-scale problems involving thousands of observations and/or assets.

The polyhedron B(Y) involves constraints on pairs of observations s,t1 Q.
This suggests that the number of constraints increases quadratically with the number
of observations. However, many of the constraints are redundant, and the effective
number of constraints increases linearly with the number of observations. For
example, using zI1 | for the first observation in the domain of gains, i.e.

Xt <O£ xt ,itiseasly verified that:

(11) B(Yep) ={oT AT:b,3 -3 b, 3 1;

(12) B(Ype) ={bT A" :b, £b, £---£b, ;b3 -3 b 3 1};
(13) B(Yep)={b1 AT :1£b,£--£b, ;b,3 -3 b, 3 1};
(14) B(YMSDL)={bT A":b,3.-.3 b, 3 bT;1£bZ£...£bT} :

(15) B(Yyue)={b1 AT:b,3 -3 b, 31£b, £ £hb,}.

Statistical I nference

We have thus far discussed SD efficiency relative to the EDF F(x) rather than the
CDF G(x). Generally, the EDF is very sensitive to sampling variation and the test

results are likely to be affected by sampling error in a nonttrivial way. The applied
researcher must therefore have knowledge of the sampling distribution in order to
make inferences about the true efficiency classification. The remainder of this section
therefore develops an asymptotic hypothesis testing procedure for the test statistic
x(t,Y).}” The test procedure is based on two simplifications: (1) the use of a
restrictive null hypothesis and (2) the use of the limiting least favorable distribution.

Our null (H,) isthat the assets have an equal and finite mean, i.e. E[x] =me, m< ¥,

17 The results extend Post’s (2001) Theorem 3 for SSD, and they exploits the result that x@,Y) is

bounded from above by \y; ) o max} 8 (% - Xt) /TU (see the proof in the Appendix). This argument
I '
appliesnot only for y _, but also more generally for all v .



and a covariance matrix E[(x- m)(x- m']=W with finite elements w; <¥,
i,jI 1. This null is restrictive, because it gives a sufficient but not necessary
condition for efficiency. In fact, under the null, al portfolios | T L are efficient,
because they optimize expected utility for u(x) = x, i.e. for risk neutral investors. The
shape of the distribution of x(t ) under the null generaly depends on the shape of
G(x). Our approach will be to focus on the least favorable distribution, i.e. the

distribution that maximizes the size or relative frequency of Type | error (reecting the
null when it is true). This approach stems from the desire to be protected against Type
| error. For each G(X), the size is aways smaller than the size for the least favorable
distribution. Naturally, this approach comes at the cost of a high frequency of Type Il
error (accepting the null when it is not true) or a low power (1- the relative frequency
of Typell error).

Using C° (I - et 7), we can summarize the asymptotic sampling distribution
of our SSD test statistic as follows: 2

THEOREM 2 For the asymptotic least favorable distribution, the p-value

Prix(t,Y) >yH,l, y2 0, equalstheintegral (1- (fF 4(2)), with F4(2) for a N-
zEye

dimensional multivariate normal distribution function with zero means and

covariance matrix S° (CWC")/T .

The theorem shows the crucial role of the length of the time series (T) and the length
of the cross-section (N); the p-values decrease as the time series grows, and increase
as the cross section grows. We may test efficiency by comparing the p-value for the
observed value of x(t,Y) with a predefined level of significance; we may reject
efficiency if the p-value is smaller than or equal to the significance level.

Computing the p-value requires the unknown covariance terms w;; . We may

estimate these parameters in a distribution-free and consistent manner using the
sample equivalents:

(16) Wij © é. (Xt - é Xit/T)(th - é th/T)/T .
thQ thQ I Q

We stress that the asymptotic p-values rely on a restrictive null and on the least
favorable distribution. For this reason, the p-values may involve low power in small
samples. An alternative approach is to approximate the sampling distribution by
means of bootstrapping. Bootstrapping can deal directly with the true null (SD
efficiency) and with the true distribution, and hence it can yield more powerful
results. Of course, this benefit has to be balanced against the additional computational
burden of using computer ssimulations.

I11. ANALYZING AGGREGATE INVESTOR PREFERENCES

We analyze investor preferences by testing if differert SD criteria (characterized by
different sets Y ) can rationalize the market portfolio. For this purpose, we need a

18 Weuse | for an identity matrix with dimensions conforming to the rules of matrix algebra.

10



proxy for the market portfolio and proxies for the individual assets in the investment
universe. We will use the Fama and French market portfolio, which is the value-
weighted average of all NYSE, AMEX, and NASDAQ stocks. Further, we use the
one-month US Treasury hill as the riskless asset. Finally, for the individual risky
assets, we use three sets of benchmark portfolios:

1. The 25 Famaand French benchmark portfolios constructed as the intersections of
5 quintile portfolios formed on size and 5 quintile portfolios formed on BE/ME.
We use data on monthly returns (month-end to month-end) from July 1963 to
October 2001 (460 nonths) obtained from the data library on the homepage of
Kenneth French.1%%° Also, we analyze the stability of the results by applying the
test to 2 nonoverlapping subsamples of equal length (230 months): (1) July
1963-August 1982 and (2) September 1982—October 2001.

2. A set of 30 industry momentum portfolios constructed from 30 Fama and French
benchmark portfolios based on industry classification. The momentum portfolios
are based on the ranking of the returns over the past 6 months, momentum
portfolio no. 1 equals the Fama and French industry portfolio with the lowest past
return, and portfolio no. 30 equals the industry portfolio with the highest past
return.?! The portfolios are rebalanced yearly in July.?* As for the set of 25 size
value portfolios, we use data on monthly excess returns (monthend to month
end) from July 1963 to October 2001 (460 months), and we also consider the
subsamples July 1963-August 1982 and September 1982—October 2001. The raw
data on the industry portfolios are obtained from the homepage of Kenneth
French.

3. The set of 27 benchmark portfolios described in Carhart et al. (1996) and used in
Carhart (1997). The portfolios are formed using a three-way classification based
on size, BE/ME and momentum. These portfolios are formed by dividing all
stocks into thirds based on B/M. Each of the three first-level portfolios is then
divided into three portfolios based on size. Finally, each of the nine second-level
portfolios is divided into ‘past losers’, ‘middle’ and ‘past winners'. We use data
on monthly returns (month-end to month-end) from July 1963 to December 1994
(378 months), as well as the subsamples from July 1963 to March 1979 (189
months) and from April 1979 to December 1994 (189 months).

These three sets of benchmark portfolios provide a chalenge, because many studies
indicate that the cross-sectional pattern of returns across size, BE/ME and momentum
portfolios cannot be explained by the traditional approach based on concave utility
functions. Tables 2A-C show some descriptive statistics for the excess returns of the
benchmark portfolios for the full sample.

(Insert Table 2A-C about here)

19 The datalibrary is found at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french.

2 The data set starts in 1963 because the COMPUSTAT data used to construct the benchmark
portfolios are biased towards big historically successful firms for the earlier years (see Fama and
French, 1992).

2L Similar results are obtained for portfolios based on the returns over the past 3, 9 and 12 months.

22 The literature generally analyzes momentum in firmespecific returns. However, Moskowitz and
Grinblatt (1999) demonstrate that momentum also exists in industry portfolios and they suggest that
industry momentum in fact accounts for much of firm-specific momentum.
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To give some fedling for the data, Figures 2A-C show mean variance diagrams
including the individual benchmark portfolios (the bright dots), the market portfolio
(M) and the mean-variance efficient frontier (OA).?® Clearly, the market portfolio is
highly inefficient in terms of meanvariance analysis in al cases. Roughly speaking,
there exist portfolios with the same standard deviation as the market portfolio but
twice the average excess return, and there exist portfolios with the same average
excess return as the market portfolio but only half the standard deviation. This result
violates the central prediction of the MV CAPM: meanvariance efficiency of the
market portfolio.

(Insert Figure 2A-C about here)

The maintained preference assumptions of MV CAPM are a possible explanation for
this violation; variance does not fully capture the risk profile of assets unless investor
utility is quadratic. This provides the motivation for testing if the market portfolio is
efficient in terms of SD criteria. We employ the SD efficiency criteria discussed in
Section II: SSD, PSDL, PSD, MSDL and MSD. For each criterion, we compute the
value of the test statistic x(m,Y) and the associated asymptotic least favorable p-

value. We rgject efficiency if the p-value is smaller than or equal to the significance
level of 10 percent. Tables 3A-C show the test results for the 3 sets of benchmark
portfolios. The results vary across the different sets of benchmark portfolios and the
different sample periods. However, the relative goodness of the different SD criteriais
remarkably robust across benchmark portfolios and sample periods;, PSDL and PSD
perform worst and MSD performs best.

The market portfolio is significantly SSD inefficient relative to the Fama and
French size-BE/ME portfolios and the Carhart size-BE/ME momentum portfolios.
Based on this finding, we regject the SSD criterion. Harvey and Siddique (2000) and
Dittmar (2002) find that concave third-order and fourth-order polynomia utility
functions substantially better explain the cross-sectional variation of stock returns
than quadratic utility functions do. Our results suggest that no concave utility function
can rationalize the market portfolio. Under our maintained assumptions, this implies
that investors that hold the market portfolio are not globally risk averse and utility is
not everywhere concave, and we have to account for (local) risk seeking behavior.
Thisresult isin line with the experimental results by Levy and Levy (2001); they find
that a majority of subjects are not globally risk averse, even when controlling for
effects of framing and probability distortion.

(Insert Table 3A-C about here)

Prospect Theory offers an aternative to the traditional approach based on concave
utility. However, we find strong evidence against two key elements of Prospect
Theory: risk seeking for losses and loss aversion. Both criteria that impose risk
seeking for losses (PSD and PSDL) are rejected for all sets of benchmark portfolios.
This implies that no Sshaped utility function can rationalize the market portfolio.
Thisfinding isin line with the experimental evidence by Levy and Levy (2002) that a
large majority of subjects select PSD inefficient prospects. Similarly, we reject al

2 Note that this is the frontier for the case without short selling. Again, we focus on the case where
portfolio possibilities are described by all convex combinations of the individual assets (see Section ).



three criteria that assume loss aversion (SSD, PSDL and MSDL). Barberis and Huang
(2001) found that a model with loss aversion couldn’t reproduce the empirical cross
sectional pattern of stock returns. They used a simple utility function formed from one
linear line segment for losses and one for gains, and hence investors are assumed
locally risk neutral over gains and over losses. Our results suggest that their
conclusion is robust for more general preference assumptions; cross-sectional stock
returns are not consistent with loss aversion.

Only the MSD criterion is consistent with the data for all sets of benchmark
portfolios and for all sample periods. This suggests that Markowitz type reverse S
shaped utility functions can rationalize the market portfolio, and that risk aversion
over losses and risk seeking over gains helps to explain the cross-sectional pattern of
stock returns. If investors are risk averse for losses and risk seeking for gains, then
they will pay (ask) a premium for stocks that have low (high) downside risk in bear
markets and high (low) upside potential in bull market. Hence, stocks with low (high)
downside risk bear markets and high (low) upside potentia provide low (high)
expected returns. This explanation is consistent with the experimental evidence by
Levy and Levy (2002) that a large majority of subjects select MSD efficient
prospects. Our results suggest that actual stock returns are also consistent with this
explanation.

For illustration, Figure 3A-C shows example utility functions that rationalize
the market portfolio relative to the benchmark assets. These particular utility functions
are piecewise-linear functions that are formed from the from the optimal solution

b" T B(Y s) 3

i a,+b;x x£xt

fa, +b/x X't <xExNt <0
an p(x|b*)::|[ az_1+b%1x XI-JEX:O

i a,+b,x O0Ex<xt

:::at+bt*x 0<x/t £x<xt

f a; +b;x x3 x/t

with a © (@, ---a;)" such that the linear line segments are connected i.e.
a,+b/x=a,, +b,,x foral tT Q\T,and a,=0. We stress that these utility
functions are not unique, as we can construct alternative utility functions with the
same gradient vector a X't . Also, these utility functions are likely to be very

sensitive to estimation error and we cannot claim any confidence in their statistical
estimation. Still, the utility functions do suggest that the market portfolio is optimal,
and hence the benchmark assets are correctly priced, for investors that are very
sensitive to large losses, say returns of less than -10 percent per month, and to large
gains, say returns of more than 10 percent.

(Insert Figure 3A-C about here)
Some further results

Further support for Markowitz type preferences can be found by analyzing the
relationship between average return and measures of downside risk and upside
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potential. Two simple measures are ‘downside beta’ (market beta for periods with a
negative market return) and ‘upside beta (market beta for periods with a positive
market return); see eg. Bawa and Lindenberg (1977). Risk aversion for losses
suggests a positive relation between expected return and downside beta, and risk
seeking for gains suggests a negative relation between expected return and upside
beta. For the sake of illustration, we estimated the downside and upside betas of the
27 Carhart benchmark portfolios using OLS regression for the full sample. (Very
similar results are obtained for the 25 Fama and French benchmark portfolios and the
30 industry momentum portfolios). Figure 3 shows the results.

(Insert Figure 4 about here)

Obviously, beta risk generadly is highly asymmetric across falling and rising
markets.** In addition, the differences between downside and upside betas seem to
support Markowitz type preferences, i.e. high downside beta portfolios generally have
high average returns, while high upside betas portfolios have low average returns. For
example, the ‘high yield’ portfolio of small value winner stocks (with an average
monthly excess return of 1.341) has a downside beta of 1.409 and an upside beta of
0.883, while the ‘low yield' portfolio of the big growth loser stocks (with average
0.105) has a downside beta of 0.849 and an upside beta of 1.119. We may use
regression analysis to analyze if this pattern applies for the entire sample. Specifically,
using OL S regression analysis, we find the following cross-sectional relation between

average excess return 11 © é X, /T and estimated downside beta Bi' and upside beta
thQ
b," (standard errors within brackets):*

(18) = 1633+ 0.856 b, - 1.938 b R?=0.601.
(0.233) (0.060)  (0.154)

The signs of the coefficients are consistent with Markowitz type preferences: a
positive coefficient for downside beta and hence risk aversion for losses, and a
negative coefficient for upside beta and hence risk seeking for gains. Of course, these
results may be sensitive to the parametric specification (a linear relationship between
expected return and the downside and upside betas) and to the estimation method
(estimation based on e.g. generalized methods of moments or maximum likelihood
procedures may give different results). Also, strictly speaking, we have to reject the
two-beta specification, because it does not give a perfect fit (the betas explain only 60
percent of the variation in average return) and because the intercept (the average
excess return of a zero-beta portfolio) is significantly higher than zero. Still, the
regression results do provide indirect support for our explanation based on risk
seeking for gains.

24 several authors have found similar differences in upside and downside risk measures (see e.g. Ang
et al., 2001). These findings are sometimes interpreted as evidence for Prospect Theory. By contrast,
we find evidence against two key elements of Prospect Theory -risk seeking for losses and loss
aversion- and our explanation rests on risk seeking for gains.

% The cross-sectional regression gives a Fama and McBeth (1973) type test with betas assumed
constant over time. The assumption of constant betas is needed for comparison with the SD tests that
build on the assumption that the excess returns are serially 11D (Assumption 4).
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V. CONCLUSIONS

We cannot reject MSD efficiency of the market portfolio relative to benchmark
portfolios formed on size, BE/ME and momentum. Hence, Markowitz type reverse S-
shaped utility functions may rationalize the market portfolio. By contrast, the
alternative criteria of SSD, PSDL, PSD and MSDL are rejected and utility functions
with global risk aversion, risk seeking over losses or |oss aversion cannot rationalize
the market portfolio. These results suggest that the individua choice behavior
observed in the experiments by Levy and Levy (2002) can also help to explain
aggregate investor behavior. If investors are risk averse for losses and risk seeking for
gains, then they are willing to pay a premium for stocks that give downside protection
in bear markets and upside potential in bull markets. Our results suggest that this
explanation is consistent with the cross-sectional pattern of stock returns. Roughly
speaking, stock returns suggests that investors are driven by the twin desires for
security and potertial, and that investment portfolios are designed to avoid poverty
and to give a chance at riches. In this respect, our findings are consistent with the
predictions of several behavioral finance models, like the behavioral portfolio theory
(BPT) by Shefrin and Statman (2000). However, contrary to BPT, our results are
derived within the context of expected utility theory, and we do not explicitly account
for subjective probability transformation (see Footnote 3 and Footnote 11).

Of course, our results may be biased by our maintained assumptions: we used
a single-period, portfolio-oriented model with a large number of expected utility
maximizers and without market frictions (apart from short selling restrictions). In
addition, we assumed a simple data generating process with a serialy independent
and identical distribution for the excess returns. There are good reasons to doubt these
maintained assumptions. Further research could focus on relaxing our economic
assumptions (e.g. by considering the multiperiod consumption-investment problem,
imperfect competition, market imperfections like transaction costs and taxes, and non
expected utility theories with bounded rationality and/or imperfect information) ard
on relaxing our statistical assumptions (e.g. by using econometric time series
estimation techniques to estimate a conditiona CDF). Still, at the very least, our
results suggest that Markowitz type utility functions are capable of capturing the
cross-sectional pattern of stock returns even under very simple economic and
statistical assumptions.

We hope that our results provide a stimulus for further research based on
Markowitz type utility functions (and non-concave utility functions in general). Also,
we hope that this study contributes to the further proliferation of the SD methodology.
Since large, satistically representative samples often are available in financial
economics, the ‘nonparametric’ SD approach is a useful complement to existing
parametric approaches.
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APPENDIX

Proof to Theorem 1: The problem rlnIaLxé u(x'1 )/T, ul U(Y), maximizesa
th Q
strictly increasing and hence pseudoconcave objective over a polytope. Hence, t T L
is the optimal portfolio i.e. t ° argAmaxé‘ u(x/1)/T if and only if all assets are

L ﬂQ

enveloped by the tangent hyperplane, i.e.
(190 & M) (Xt - x)/T30 "il 1.

thQ
By construction, Nu(X 't ) © (u(xt )---u(xt )", ul U(Y), is afeasible solution,
i.e. Nu(X't)T B(Y). Optimality condition (19) implies that this solution is
associated with a solution value of zero. Hence, we find the necessary condition; t is
U (Y )-SD efficient only if x(t,Y) =0.

To establish the sufficient condition, use b” ° (b, ---b;)" for the optimal
solution. It is easy to verify that we can aways find some ul U(Y) with
Nu(X "t) =b". For example, consider the piecewise-linear function
i a,+b;x Xx£xt
-:-at +bh,x x/t <x£x/t <0
i a,,+b, x x.t £x<0
: a,+b,x O0E£x<xt
:::at +b/x 0<x[t£x<xt
f a; +b;x x3 xjt
with a © (@, ---a;)" such that the linear line segments are connected i.e.
a,+bx=a,, +b  x foral tT Q\T. Itiseasy to verify that p(x|b*) belongs to
UV so) U(Ver) U(Yee), U(Yyep ), and U(Yyg). Applying optimality

condition (19), we find that t is optimal relative to u(x) i.e t =argmaxu(x/l).
ITL

p(xb") =

Hence, portfoliot T L is U (Y )-SD efficient if x(t,Y) =0. Q.E.D.

16



Proof of Theorem 2. Since the unity vector is a feasible solution to the primal

problem, i.e. el B, we know that x(t ,Y)£w()?° mlallx:é (%, - xtTt)/Tg,). Known
S RERe)
results can derive the exact asymptotic sampling distribution of w(t) . Under the null
H,:E[x] =me, the Cx,=((%, - X1)-(Xy- Xt)", tT Q, ae seridly 11D
random vectors with zero mean and covariance matrix CWC'. Hence, the
LindebergLevy  central limit  theorem implies that the  vector
CCe/T =(§ (X, - Xt )/ T (Xy - Xt)/T)" obeys an asymptoticaly joint
thQ thQ

normal distribution with zero mean and covariance matrix S° (CWC')/T . Hence,
w(t) asymptotically behaves as the largest order statistic of N random variables with

a multivariate normal distribution, and Pr[w(t)>y|H0]: 1- Pr[CCe/TE ye]
asymptoticaly equas the multivariate norma integra 1- (yF (). Since

zEye
Xt,Y)Ew(), Prxt,Y)> y|H0] is bounded from above by Pr{w(t ) > y|H0] for
all return distributions G(x) . Moreover, it is easily verified that there exist G(x) for
which x(t,Y) approximates w(t ) , and therefore the asymptotic distribution of w (t)
also represents the asymptotic least favorable distribution for x(t,Y). Q.E.D.
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Table 1: Preference Assumptions

The preference assumptions underlying the criteria of Second-order Stochastic Dominance (SSD),
Prospect Stochastic Dominance with Loss Aversion (PSDL), Prospect Stochastic Dominance (PSD),
Markowitz Stochastic Dominance with Loss Aversion (MSDL), and Markowitz Stochastic Dominance
(MSD). Each assumption, r =1,...,5, is represented by a polyhedron vy | A?; each assumption
effectively imposes the restriction qu(x) 3 fu(y) foral (x,y)T v, -

Criterion
r | Assumption Y SsD | PSDL | PSD | MSDL | MSD
1 | LossAversion | {x,y)i A " A} X X X
Risk Aversion
2 | for Losses {(x, i1 AZ:x£ y} X X X
Risk Seeking
3 | for Losses {x y1 A2:x2 y} X X
Risk Aversion
4 | for Gains {x y1 A2:x£y} X X X
Risk Seeking
5 | for Gains {x 1 AZ:x3 y} X X
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Utility

F:DL lg FiD
=

Losses Cains Loszes Cains

MSDL MsD

Utility
Utility

Lozzes Cains Lozses

Figure 1. Example non-concave utility functions that are consistent with the assumptions of Prospect
Stochastic Dominance with Loss Aversion (PSDL), Prospect Stochastic Dominance (PSD), Markowitz
Stochastic Dominance with Loss Aversion (MSDL), and Markowitz Stochastic Dominance (MSD).



Table 2A: Descriptive Statistics Size-BE/ME Portfolios

Monthly excess returns (month-end to month-end) from July 1963 to October 2001 (460 months) for
the value-weighted Fama and French market portfolio and 25 value-weighted benchmark portfolios
based on market capitalization (size) and/or book-to-market equity ratio (BE/ME). Excess returns are
computed from the raw return observations by subtracting the return on the one-month US Treasury
bill. All data are obtained from the data library on the homepage of Kenneth French.

Mean St. Dev.  Skewness Kurtosis Minimum Maximum
Market Port folio 0.462 4.461 -0.498 2.176 -23.09 16.05
Benchmark Portfolios
BE/ME Size
Growth Small 0.235 8.246 0.003 2.466 -34.32 38.82
2 Small 0.733 7.064 0.037 3.338 -31.30 36.67
3 Small 0.815 6.140 -0.087 3.233 -29.17 27.86
4 Small 0.998 5.724 -0.149 3.636 -29.47 27.43
Value Small 1.075 5.943 -0.098 4.128 -29.45 31.83
Growth 2 0.359 7.494 -0.316 1.673 -33.21 29.62
2 2 0.622 6.120 -0.472 2.778 -32.50 26.25
3 2 0.842 5.410 -0.488 3.739 -28.10 26.78
4 2 0.913 5.154 -0.385 3.979 -27.09 26.70
Value 2 0.966 5.660 -0.243 4.245 -29.83 29.43
Growth 3 0.380 6.908 -0.342 1.365 -29.96 23.39
2 3 0.665 5.511 -0.624 3.051 -29.65 23.35
3 3 0.673 4,962 -0.621 2.984 -25.56 21.14
4 3 0.818 4710 -0.327 3.029 -23.20 22.61
Value 3 0.953 5.297 -0.423 4,384 -27.79 27.30
Growth 4 0.506 6.146 -0.182 1.683 -26.02 25.01
2 4 0.433 5.218 -0.571 3.317 -29.62 20.46
3 4 0.651 4.855 -0.423 3.348 -26.13 22.87
4 4 0.820 4,622 0.035 2.394 -18.30 24.57
Value 4 0.880 5.347 -0.198 2.697 -25.36 26.20
Growth Big 0.442 4,841 -0.177 1.676 -22.15 21.70
2 Big 0.441 4,588 -0.334 1.897 -23.21 16.05
3 Big 0.493 4,344 -0.243 2.639 -22.47 18.22
4 Big 0.603 4,289 0.056 1574 -15.35 18.85
Value Big 0.583 4,645 -0.146 0.944 -19.28 15.39
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Table 2B: Descriptive Statistics Industry Momentum Por tfolios

Monthly excess returns (month-end to month-end) from July 1963 to October 2001 (460 months) for
the value-weighted Fama and French market portfolio and 30 value-weighted benchmark portfolios
formed on industry momentum. The portfolios are constructed based on the past performance ranking
of 30 Fama and French industry portfolios; momentum portfolio no. 1 equals the Fama and French
industry portfolio with the lowest return over the past 6 months, and portfolio no. 30 equals the
industry portfolio with the highest past return. The portfolios are rebalanced yearly in July. Excess
returns are computed from the raw return observations by subtracting the return on the one-month US
Treasury bill. Raw data on industry portfolios are obtained from the data library on the homepage of
Kenneth French.

Mean St. Dev.  Skewness Kurtosis Minimum Maximnum
Market Portfolio 0.462 4,461 -0.498 2.176 -23.09 16.05
Benchmark Portfolios

1 0.700 6.510 0.297 1.922 -26.43 29.20
2 -0.080 5.986 -0.442 2.205 -31.05 19.96
3 0.153 6.288 -0.402 3.070 -32.10 22.82
4 0.560 5.721 -0.252 2.436 -31.59 18.48
5 0.257 5.563 -0.152 1.398 -21.56 19.97
6 0.337 5.500 0.159 0.782 -19.69 19.92
7 0.218 5.558 -0.030 1.210 -21.08 21.77
8 0.259 6.276 -0.443 2.021 -28.40 25.18
9 0.333 5.828 -0.258 1.281 -21.66 19.08
10 0.408 5.925 -0.011 1.630 -22.25 25.91
11 0.623 5.486 0.021 3.714 -27.67 28.10
12 0.442 5.836 -0.404 3.033 -32.69 19.17
13 0.318 5.662 -0.239 2.394 -28.83 24.48
14 0.358 5.634 -0.098 1.616 -24.17 19.77
15 0.570 5714 0.033 0.824 -20.90 19.56
16 0.566 5.972 0.318 1.523 -18.74 29.07
17 0.679 5.950 0.118 3.179 -28.60 31.84
18 0.775 5.776 -0.341 2.465 -31.96 22.67
19 0.169 5.523 -0.502 1.852 -27.93 16.53
20 0.475 5.819 -0.415 2.496 -29.59 23.24
21 0.850 5.576 -0.706 3.297 -32.14 17.01
22 0.809 6.460 -0.142 3.500 -33.22 30.36
23 0.491 5.676 -0.252 1.372 -26.40 18.57
24 0.485 5.586 -0.303 1.186 -25.91 17.14
25 0.657 5.529 -0.358 2.385 -28.60 21.84
26 0.680 6.077 0.096 1.901 -19.31 28.44
27 0.683 6.456 0.640 6.429 -28.70 45,92
28 0.986 6.152 -0.082 3.037 -33.02 28.19
29 1.092 7.030 -0.450 2.078 -31.76 23.56
30 0.949 7.319 0.178 2.823 -32.91 37.57
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Table 2C: Descriptive Statistics Size-Value-Momentum Portfolios

Monthly excess returns from July 1963 to December 1994 (378 months) for the value weighted Fama
and French market portfolio and 27 value weighted benchmark portfolios based on market
capitalization (size), book-to-market equity (BE/ME) and momentum. The 27 portfolios are formed by
dividing all stocks into thirds based on B/M. Each of the three first-level portfoliosisthen divided into
three portfolios based on size. Finally, each of the nine second-level portfolios is divided into ‘past
losers', ‘middle’ and ‘past winners'. Excess returns are computed from the raw return observations by
subtracting the return on the one-month US Treasury bill. Data on the 27 portfolios are courtesy of
Mark Carhart. The remaining data on the market portfolio and the Treasury bill. All other data are
obtained from the homepage of Kenneth French.

Mean St.Dev Skewness  Kurtosis Minimum Maximum
Market Portfolio 0.387 4,399 -0.394 2.600 -23.09 16.05
Benchmark Portfolios
BE/ME Size Momentum
Growth Small L oser -0.279 6.644 0.003 2.784 -31.41 30.45
Neutral Small L oser 0.306 5.975 0.474 5.363 -24.81 37.51
Value Small L oser 0.552 6.440 0.974 7.774 -28.26 4534
Growth Small Middle 0.349 6.070 -0.461 3.194 -31.33 27.54
Neutral Small Middle 0.631 4,957 -0.201 5.038 -27.05 27.02
Vaue Small Middle 1.062 5.583 0.199 6.219 -29.09 33.99
Growth Small Winner 0.933 6.755 -0.704 2.492 -33.52 19.45
Neutral Small Winner 1.157 6.088 -0.730 3.569 -32.60 23.17
Value Small Winner 1.341 6.246 -0.289 4.564 -32.00 30.20
Growth  Medium L oser -0.089 5.952 0.088 2.757 -26.49 27.54
Neutral  Medium L oser 0.400 5.396 0.501 3.468 -19.08 31.20
Value Medium L oser 0.582 6.078 0.469 4.678 -25.79 38.07
Growth  Medium Middle 0.143 5.341 -0.461 2.207 -26.81 18.96
Neutral  Medium Middle 0.513 4.498 -0.344 4,720 -25.68 23.05
Vaue Medium Middle 0.909 5.303 -0.016 6.042 -28.30 31.03
Growth  Medium Winner 0.895 6.033 -0.550 2.261 -29.90 20.73
Neutra  Medium Winner 0.772 5.325 -0.896 3.683 -30.54 17.52
Vaue Medium Winner 1.287 5.881 -0.806 5.234 -33.86 25.76
Growth Big L oser 0.105 5.218 0.178 2.208 -20.40 25.40
Neutral Big L oser 0.438 4.801 0.477 2.287 -19.66 21.74
Vaue Big L oser 0.600 5.569 0.718 4.414 -16.99 35.34
Growth Big Middle 0.250 4,507 -0.161 1.885 -20.73 17.86
Neutral Big Middle 0.367 4,211 0.158 2.307 -15.57 21.03
Vaue Big Middle 0.589 4,752 -0.053 2.717 -23.47 20.41
Growth Big Winner 0.611 5.348 -0.298 2.035 -23.68 21.21
Neutral Big Winner 0.595 4.856 -0.347 2.565 -24.00 19.95
Vaue Big Winner 0.923 5.352 -0.254 2.846 -24.78 22.84
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Figure 2A: Mean-variance diagram for the historical excess returns of

the 25 Fama and French size-BE/ME portfolios (the bright dots) and the

Fama and French market portfolio (M). OA represents the efficient frontier
(with the US Treasury bill, short sales not allowed).
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Figure 2B: Mean-variance diagram for the historical excess returns of
the 30 industry momentum portfolios (the bright dots) and the Fama and
French market portfolio (M). OA represents the efficient frontier (with the
US Treasury bill, short sales not allowed).
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Figure 2C: Mean-variance diagram for the historical excess returns of
the 27 Carhart size-BE/M E-momentum portfolios (the bright dots) and the
Fama and French market portfolio (M). OA represents the efficient frontier
(with the US Treasury bill, short sales not allowed).
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Table 3A: Test Results Size-Value Portfolios

We test whether the Fama and French market portfolio is U (v )-SD efficient relative to

al portfolios formed from a US Treasury hill and 25 benchmark portfolios formed on
market capitalization (size) and book-to-market-equity ratio (BE/ME). Each cell shows
the observed value for the test statistic x(m B(Y)), a well as the asymptotic least

favorable p-value (within brackets). We use a bold font if results are statistically

significant at alevel of significance of 90 percent.

Jul 1963 - Jul 1963 - Sep 1982 -

Oct 2001 Aug 1982 Oct 2001
Y 0.434 0.585 0.299
SO (0.031) (0.034) (0.490)
Y 0.613 0.918 0.387
PSDL (0.002) (0.000) (0.243)
Y 0.432 0.905 0.356
PSD (0.031) (0.000) (0.324)
Y 0.434 0.585 0.299
MSDL (0.031) (0.034) (0.490)
Y 0.207 0.226 0.192
MSD (0.501) (0.748) (0.865)




Table 3B: Test Results Industry Momentum Portfolios

We test whether the Fama and French market portfolio is U (v )-SD efficient relative to
al portfolios formed from a US Treasury bill and 30 benchmark portfolios formed on
industry momentum. Each cell shows the observed value for the test statistic x (m B(Y))

as well as the asymptotic least favorable p-value (within brackets). We use a bold font if
results are statistically significant at alevel of significance of 90 percent.

Jul 1963 - Jul 1963 - Sep 1982 -

Oct 2001 Aug 1982 Oct 2001
Y 0.376 0.604 0.492
SSD (0.375) (0.214) (0.479)
Y 0.595 0.995 0.484
PSDL (0.026) (0.011) (0.508)
v 0.595 0.749 0.350
PSD (0.026) (0.057) (0.915)
Y 0.376 0.604 0.492
MSDL (0.375) (0.214) (0.479)
Y 0.344 0.568 0.356
MSD (0.510) (0.295) (0.892)




Table 3C: Test Results Size-Value-M omentum Portfolios

We test whether the Fama and French market portfolio is U (v )-SD efficient relative to

al portfolios formed from a US Treasury bill and 27 benchmark portfolios formed on
size, value and momentum. Each cell shows the observed value for the test statistic
x(m B(Y)) , aswell asthe asymptotic least favorable p-value (within brackets). We use a

bold font if results are statistically significant at alevel of significance of 90 percent.

Jul 1963 - Jul 1963 - Apr 1979 —
Dec 1994 Mar 1979 Dec 1994
% 0.469 0.780 0.442
S (0.013) (0.004) (0.169)
Y% 0.954 1.171 0.737
PSDL (0.000) (0.000) (0.004)
% 0.861 0.930 0.737
PSD (0.000) (0.000) (0.004)
Y 0.469 0.780 0.442
MSDL (0.013) (0.004) (0.169)
% 0.291 0.346 0.384
MSD (0.275) (0.547) (0.300)
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Figure 3A: Optimal piecewiselinear MSD utility function. This utility function
rationalizes the Fama and French market portfolio relative to the 25 Fama and French size-
BE/ME portfolios. The utility function is constructed from the optimal solution b" 1 B(Y,,s,)
to (9) as

i a, +b;x x£xt
| ;
ja thix xt <x£xit <0
o fa,+b,,x x.t £x<0
pdp )y =i T Tt R
i a,+tb;x O£ x<xt
:::al +b'x 0<x[tE£x<x'
f a; +brx x3 xjt
with g © @, ---a;)" such that the linear line segments are connected i.e.

a,+b/x=a, +b  xforal tT Q\T,andwitha =0.
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Figure 3B: Optimal piecewiselinear M SD utility function. This utility function rationalizes
the Fama and French market portfolio relative to the 30 industry momentum portfolios. The
utility function is constructed from the optimal solution b" 1 B(Y,,y,) t0(9) as

i a, +b;x x£xt
:-a1+b:x X[t <xXE£ x/t <0
. T a,,+b.,x xIt £x<0

p(><1b ) =i z-1 z*l z1 )

i a,+b,x O£ x<x;t

,:.at+bt*x O<x/t £x<xlt

t ar; +brx x3 xqt
with g © @, ---a;)" such that the linear line segments are connected i.e.
a,+b/x=a, +b  xforal tT Q\T,andwitha =0.
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Figure 3C: Optimal piecewiselinear MSD utility function. This utility function
rationalizes the Fama and French market portfolio relative to the 27 Carhart size-BE/ME-
momentum portfolios. The utility function is constructed from the optimal solution
b"T B(Y,q) t0(9)as

i a, +b;x x£xt
:-a1+b:x X[t <xXE£ x/t <0
. T a,,+b.,x xIt £x<0

p(><1b ) =i z-1 z*l z1 )

i a,+b,x O£ x<x;t

,:.at+bt*x O<x/t £x<xlt

t ar; +brx x3 xqt
with g © @, ---a;)" such that the linear line segments are connected i.e.
a,+b/x=a, +b  xforal tT Q\T,andwitha =0.
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Figure 4. Upside and downside market beta’s for the 27 Carhart size-BE/ME
momentum portfolios. The dark dots represent the 9 portfolios with the highest average
returns, the bright dots are the 9 portfolios with the lowest average returns and the grey
dots are the remaining 9 portfolios with medium average returns. Beta's are computed
using OLS regression and using the full samples of monthly excess returns from July
1963 to December 1994.



