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1. Introduction

The field of dynamic panel data models has received considerable attention in the last decade. A large

part of this attention has been devoted to the development of improved GMM-estimators (see e.g.

Blundell and Bond, 1998). However, despite the increasing sophistication of the GMM-estimators, at

least two important problems remain. First, there is an important upward bias of the GMM-estimator

in case the autoregressive parameter becomes close to unity (see Collado, 1997, Blundell and Bond,

1998, Kitazawa, 2001). Second, the performance of the GMM-estimators depends strongly upon the

ratio of the variance of the fixed effects across individuals and the variance of the error term. In case

the variance of fixed effects is much larger than that of the error term variance, the GMM-estimators

perform poorly (Kitazawa, Table 3).

Kiviet (1995) chose a different approach trying to correct the “Nickell bias” of the well-known least-

squares dummy variable (LSDV) approach. This paper is in line with this second approach but takes a

different approach to removing the bias. An important advantage of making use of bias-correcting the

LSDV estimator is that the performance of the estimators is independent of the ratio of the variance of

the fixed effects and the error term variance. I develop two estimators, a linearly and a quadratically

corrected LSDV estimator. Monte Carlo experiments show that they are (nearly) unbiased even for

small N and T. In addition they outperform the GMM-estimators in terms of root mean squared errors.

2. Nearly unbiased estimators for the autoregressive parameter

The dynamic panel data model with iη  as the fixed-effects and γ  as the AR(1)-parameter equals

(1) itit,iit yy νηγ ++= −1 for N,...,i 1=  and T,...,t 1= .

We assume that this process has been going on for a long time and that, hence, the initial condition is

(2) 
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The disturbance term itν  has zero mean and constant variance 2
νσ  for all observations. In addition,

0=][E jsitνν  in case ji ≠  or ts ≠ . Equation (2) requires that 1<|| γ . The least-squares dummy-

variable (LSDV) estimator for the parameters in equation (1) can be derived by first eliminating the

unknown individual effects:

(3) itt,iit
~y~y~ νγ += −1 for N,...,i 1=  and T,...,t 1=
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with iitit yyy~ −= , 111 −−− −= ,it,it,i yyy~  and iitit
~ ννν −= . The LSDV-estimators for γ  and the

individual effects are equal to
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The LSDV-estimators are biased because 1−t,iy~  and it
~ν  are correlated. Only when T tends to infinity

does this correlation disappear and in many practical applications where the time period is relatively

short the LSDV-estimators suffer from severe bias. Nickell (1981) has made an important contribution

by deriving the bias of the LSDV-estimator for γ  when N tends to infinity. The asymptotic bias of the

LSDV-estimator for a given T, also known as the “Nickell-bias” equals (see Nickell, 1981, Hsiao,

1986, p.74):
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Therefore, the asymptotic value of the LSDV-estimator γ̂ can be expressed as a function of γ  and the

number of periods T, say )T,(g γ . For example, for T=2 we find that 21 /)(ˆlimp −= γγ . Hence,

for T=2 and large N we may use 12 +γ̂  as a (nearly) unbiased estimate for γ . In general, it is possible

to express γ  as a function of γ̂limp  and T, say )T,ˆlimp(f
N

γγ
∞→

= , but with the function f unknown.

We will show that this function f can be approximated very well by a linear or quadratic specification.

Hence, for large N we may find the following nearly unbiased estimators as a function of the LSDV-

estimate γ̂ :1

(6) γγ ˆbaˆ TTlc +=

(7) 2γγγ ˆeˆdcˆ TTTqc ++=

                                                       
1 Bias correction of the autoregressive parameter in an AR(1) model has been dealt with in various papers, see
e.g. Andrews (1993) and MacKinnon and Smith (1998). Cermeño (1999) proposes to extend the Andrews
(1993)-bias correction to the case of panel data. However, no direct use is made of the “Nickell bias” then. In
addition, it would require researchers using this correction to first make simulations for a range of values for γ
for the specific values of N and T in their samples.



4

with Ta , Tb , Tc , Td  and Te  as constants different for different values of T. We use the term nearly

unbiased because N is finite and because the approximation of the function f is not perfect. Values for

the constants are given in Table 1. They are computed by taking one thousand values of γ  from 0.000

to 0.999 with step size 0.001, then calculating the corresponding “Nickell-bias” to find the

corresponding value of γ̂ , and then performing a least squares regression of γ  on a constant and γ̂  to

find Ta  and Tb  and a least squares regression of γ  on a constant, γ̂  and 2γ̂  to find Tc , Td  and

Te .2 The 2R  of this regression is 0.9990 or higher for the linear case and 0.9999 or higher for the

quadratic case. This very good fit indicates that very little bias-correction is lost when using either a

linear or quadratic approximation. Table 1 provides values for the constants up till T equal to thirty.

For values of T in excess of thirty the following approximations can be used:

(8) 
0832
55318390

.T

ˆ..
ˆˆ lc −

+
+=

γ
γγ for T > 30

(9) 
3972

256157509080 2

.T

ˆ.ˆ..
ˆˆ qc −

++
+=

γγ
γγ for T > 30

These approximations are found by using the combinations of γ  and the implied “Nickell bias” for all

values of T between 10 and 30 and again using (non-linear) regression (number of ‘observations’ is

21,000). The 2R  of regression outcome equation (8) is 0.9995 and for equation (9) it is 0.9999.

3. Monte Carlo experiments

The linearly and quadratically corrected estimators lcγ̂  and qcγ̂  are easy to compute and will have

low bias when N is not too small. However, it is a question (i) which of the two estimators performs

best; (ii) whether the estimators perform better than the recently developed GMM-estimators; (iii)

whether the estimators perform satisfactorily in case N is relatively small. The questions can be

addressed by performing Monte Carlo experiments. The Monte Carlo analysis are carried out using the

same framework as used by Blundell and Bond (1998) and Kitazawa (2001).

                                                       
2 It is assumed that γ  is zero or positive. It is also possible to consider negative values of γ  as well. This would

lead to different values of Ta , Tb , Tc , Td  and Te . The linear and quadratic approximations remain very
good. In most applications it can be considered prior knowledge that γ  is either zero or positive. Also, the
extent of the bias of the LSDV-estimators is increasing in γ .
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The experiments have itν  and iη  drawn as mutually independent i.i.d. N(0,1) random variables. That

is, 122 == ην σσ . Kitazawa (2001) also uses different values of 2
ησ  and finds GMM-estimators

performing poorly in case of high 22
νη σσ / -ratios (see his Table 3). Because in many applications the

variance of individual effects will exceed that of the disturbance term, the strong upward bias of the

GMM-estimators makes them less attractive. The LSDV-estimator is insensitive to the scaling of the

individual effects, and, hence its performance is independent of the value of  2
ησ  . This very desirable

property extends to the case of the linearly and quadratically corrected estimators lcγ̂  and qcγ̂ .

Blundell and Bond (1998) use values of γ  equal to 0.0, 0.3, 0.5, 0.8 and 0.9 and values of T equal to 3

(results reported in their Table 2(a)) and 10 (results reported in their Table 2(c)). They use three

different values for N, viz. 100, 200 and 500. Kitazawa (2001) uses values of γ  equal to 0.1, 0.3, 0.5,

0.7 and 0.9, N equal to 100 and a value of T equal to 6 (results reported in his Table 2). The Monte

Carlo exercise will use these same values to allow for the performance of the estimators to be

compared with the GMM-estimators of Blundell and Bond and Kitazawa. In addition Monte Carlo

results for the case of  γ  equal to 0.95 and for the cases of  N equal to 5, 10, 20 and 50 are presented.

The number of replications is 500 in each of the experiments.

Table 2 shows the mean and root mean squared error (RMSE) of the LSDV, the linearly corrected and

quadratically corrected estimators for each of the cases reported in Blundell and Bond, Tables 2(a) and

2(c). The means of lcγ̂  and qcγ̂  are very close to the value of γ  used in the experiments. Each of the

thirty experiments has a difference between the means of either of the two estimates and γ  less than

0.02. This confirms that the estimators are nearly unbiased, at least for large N. When we compare the

RMSE of lcγ̂  and qcγ̂  with the corrsponding values for the Blundell and Bond, GMM2 (ALL)-

estimator, we find that (i) the RMSE of qcγ̂  is lower than that of the GMM2 (ALL)-estimator in all

thirty cases; (ii) the RMSE of lcγ̂  is lower than that of the GMM2 (ALL)-estimator in twenty-five

cases, with the main exception being the experiments with γ  equal to zero; (ii) the relative

performance in terms of RMSE of the GMM (ALL)-estimator is relatively poor when compared to

lcγ̂  and qcγ̂  for values of γ  close to one.

The first five lines of Table 3 show the mean and root mean squared error of the LSDV and the two

corrected estimators for the cases reported in Table 2 of Kitazawa (2001). The various GMM-

estimators examined by Kitazawa show strong biases with the exception of the GMM (SYS)-

estimator. Both lcγ̂  and qcγ̂  have lower RMSE than this GMM (SYS)-estimator. The rest of Table 3

shows Monte Carlo experiments for lower values of N and T equal to six. The near unbiasedness of the

estimators appears to suffer from a decrease in N only in a limited way. For the quadratically corrected
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estimator qcγ̂  the difference between the average of the estimates and the value of  γ  remains less

than 0.03 except for the case of N equal to five and γ  equal to 0.95. For the linearly corrected

estimator lcγ̂  this difference exceeds 0.03 for γ  equal to 0.9 or higher already for the case of N equal

to 10. However, it is safe to conclude that the near unbiasedness remains present for the full range of

(positive) values of  γ  when N is as small as twenty. In addition, in case  γ  is less than 0.9, the near

unbiasedness remains present when N is as small as five.

The difference between the performance of the linearly and quadratically adjusted estimators is very

limited for most cases. In general, the quadratically adjusted estimator performs somewhat better, in

terms of RMSE, for values of γ  between zero and one half, while the reverse is the case for values of

γ  between one half and unity. In terms of the average bias, the quadratically adjusted estimator

performs somewhat better than the linearly adjusted one in case N is relatively small.

4. Conclusion

This paper introduces two easy to calculate estimators with desirable properties for the autoregressive

parameter in dynamic panel data models. The estimators are (nearly) unbiased, outperform GMM-

estimators and perform satisfactorily even for small samples in either the time-series or cross-section

dimension. The paper does not have exogenous variables incorporated into the model and future

research should seek to find the most adequate way to introduce them so as to find the nearly unbiased

estimators in a more general setting. The current contribution is important for two reasons. First, the

model without exogenous variables is of interest of itself because it is used in many empirical research

efforts. Hence, it is important to have sound estimators for this case. Second, the very finding of the

bias-corrected estimators to outperform the GMM-estimators in the simple case without exogenous

variables may indicate that such estimators would also be strong competitors for the GMM-estimators

in case of such variables included.
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Table 1: Linear and quadratic approximations of the f-function.

T Ta Tb 2
linearR Tc Td Te

3 0.565 1.716 0.9999 0.561 1.726 0.120
4 0.370 1.540 0.9995 0.365 1.508 0.201
5 0.268 1.426 0.9992 0.264 1.358 0.221
6 0.207 1.349 0.9990 0.207 1.259 0.217
7 0.168 1.294 0.9990 0.170 1.193 0.205
8 0.140 1.252 0.9990 0.145 1.147 0.191
9 0.121 1.221 0.9990 0.127 1.115 0.176
10 0.105 1.195 0.9991 0.113 1.091 0.163
11 0.094 1.175 0.9992 0.102 1.074 0.150
12 0.084 1.158 0.9992 0.093 1.060 0.139
13 0.077 1.144 0.9993 0.085 1.050 0.129
14 0.070 1.132 0.9993 0.079 1.042 0.120
15 0.065 1.122 0.9994 0.074 1.036 0.112
16 0.060 1.113 0.9994 0.069 1.031 0.105
17 0.056 1.105 0.9995 0.065 1.027 0.099
18 0.053 1.098 0.9995 0.061 1.024 0.093
19 0.050 1.092 0.9996 0.058 1.021 0.088
20 0.047 1.086 0.9996 0.055 1.019 0.083
21 0.045 1.082 0.9996 0.052 1.017 0.078
22 0.042 1.077 0.9997 0.050 1.015 0.074
23 0.040 1.073 0.9997 0.048 1.014 0.071
24 0.039 1.070 0.9997 0.046 1.013 0.067
25 0.037 1.066 0.9997 0.044 1.012 0.064
26 0.036 1.063 0.9997 0.042 1.011 0.061
27 0.034 1.061 0.9998 0.041 1.010 0.058
28 0.033 1.058 0.9998 0.039 1.009 0.056
29 0.032 1.056 0.9998 0.038 1.009 0.053
30 0.031 1.053 0.9998 0.037 1.008 0.051

Note: values of the constants are based upon the values of γ  for 0.000 (0.001) 0.999 and the implied

γ̂  based upon “Nickell bias”.
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Table 2: Monte Carlo results for the LSDV-estimator and the unbiased estimators

 T N gamma LSDV LSDVlc LSDVqc

mean rmse mean rmse mean rmse

 3 100 0.0 -0.33420.3390 -0.0086 0.0976 -0.00210.0932
 3 100 0.3 -0.16220.4668  0.2867 0.1130  0.2848 0.1115
 3 100 0.5 -0.03360.5380  0.5073 0.1178  0.5036 0.1178
 3 100 0.8  0.1268 0.6770  0.7827 0.1248  0.7825 0.1279
 3 100 0.9  0.1979 0.7054  0.9045 0.1171  0.9078 0.1211

 3 200 0.0 -0.33300.3351 -0.0064 0.0658 -0.00020.0629
 3 200 0.3 -0.15510.4574  0.2988 0.0788  0.2964 0.0777
 3 200 0.5 -0.03390.5361  0.5068 0.0840  0.5029 0.0839
 3 200 0.8  0.1372 0.6649  0.8004 0.0909  0.8004 0.0933
 3 200 0.9  0.1908 0.7111  0.8924 0.0892  0.8949 0.0919

 3 500 0.0 -0.33310.3340 -0.0066 0.0424 -0.00050.0401
 3 500 0.3 -0.15620.4571  0.2970 0.0488  0.2945 0.0482
 3 500 0.5 -0.03790.5387  0.5000 0.0505  0.4959 0.0507
 3 500 0.8  0.1371 0.6636  0.8003 0.0536  0.8000 0.0549
 3 500 0.9  0.1920 0.7088  0.8944 0.0565  0.8969 0.0582

10 100 0.0 -0.09870.1034 -0.0129 0.0392  0.0071 0.0336
10 100 0.3  0.1649 0.1392  0.3020 0.0400  0.2975 0.0384
10 100 0.5  0.3354 0.1675  0.5058 0.0375  0.4974 0.0374
10 100 0.8  0.5803 0.2217  0.7985 0.0352  0.8011 0.0377
10 100 0.9  0.6574 0.2443  0.8906 0.0365  0.9009 0.0385

10 200 0.0 -0.09930.1018 -0.0136 0.0302  0.0064 0.0247
10 200 0.3  0.1639 0.1380  0.3008 0.0274  0.2963 0.0265
10 200 0.5  0.3385 0.1632  0.5095 0.0289  0.5010 0.0275
10 200 0.8  0.5813 0.2196  0.7997 0.0240  0.8024 0.0258
10 200 0.9  0.6547 0.2461  0.8874 0.0273  0.8972 0.0266

10 500 0.0 -0.09980.1008 -0.0142 0.0221  0.0058 0.0161
10 500 0.3  0.1658 0.1350  0.3031 0.0178  0.2984 0.0168
10 500 0.5  0.3381 0.1626  0.5090 0.0198  0.5005 0.0177
10 500 0.8  0.5816 0.2189  0.8000 0.0166  0.8027 0.0180
10 500 0.9  0.6571 0.2433  0.8902 0.0179  0.9002 0.0163
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Table 3: Monte Carlo results for the LSDV-estimator and the unbiased estimators

 T N gamma LSDV LSDVlc LSDVqc

mean rmse mean rmse mean rmse

 6 100 0.1 -0.08380.1881  0.0939 0.0542  0.1034 0.0489
 6 100 0.3  0.0667 0.2373  0.2970 0.0585  0.2924 0.0563
 6 100 0.5  0.2258 0.2774  0.5116 0.0575  0.5072 0.0567
 6 100 0.7  0.3677 0.3353  0.7030 0.0604  0.6997 0.0635
 6 100 0.9  0.5017 0.4006  0.8838 0.0603  0.8936 0.0638
 6 100 0.95  0.5389 0.4134  0.9339 0.0599  0.9488 0.0638

 6  50 0.1 -0.08330.1919  0.0946 0.0768  0.1043 0.0696
 6  50 0.3  0.0713 0.2362  0.3032 0.0800  0.2987 0.0765
 6  50 0.5  0.2201 0.2867  0.5040 0.0841  0.4955 0.0844
 6  50 0.7  0.3613 0.3440  0.6944 0.0812  0.6910 0.0854
 6  50 0.9  0.5030 0.4013  0.8856 0.0811  0.8960 0.0874
 6  50 0.95  0.5334 0.4210  0.9265 0.0851  0.9410 0.0908

 6  20 0.1 -0.08500.2058  0.0923 0.1219  0.1033 0.1104
 6  20 0.3  0.0759 0.2410  0.3094 0.1198  0.3055 0.1145
 6  20 0.5  0.2173 0.2978  0.5002 0.1264  0.4928 0.1269
 6  20 0.7  0.3633 0.3496  0.6971 0.1269  0.6950 0.1332
 6  20 0.9  0.4967 0.4157  0.8771 0.1380  0.8881 0.1485
 6  20 0.95  0.5353 0.4246  0.9291 0.1248   0.9449 0.1355

 6  10 0.1 -0.08800.2261  0.0882 0.1698  0.1013 0.1536
 6  10 0.3  0.0670 0.2671  0.2973 0.1761  0.2960 0.1679
 6  10 0.5  0.2177 0.3118  0.5007 0.1788  0.4952 0.1788
 6  10 0.7  0.3529 0.3747  0.6831 0.1912  0.6827 0.1992
 6  10 0.9  0.4894 0.4325  0.8671 0.1862  0.8791 0.2004
 6  10 0.95  0.5213 0.4484  0.9102 0.1818  0.9260 0.1962

 6   5 0.1 -0.07790.2522  0.1019 0.2411  0.1171 0.2187
 6   5 0.3  0.0496 0.3127  0.2739 0.2540  0.2776 0.2401
 6   5 0.5  0.2012 0.3626  0.4784 0.2779  0.4782 0.2772
 6   5 0.7  0.3447 0.4016  0.6720 0.2540  0.6744 0.2629
 6   5 0.9  0.4847 0.4498  0.8608 0.2361  0.8746 0.2532
 6   5 0.95  0.4944 0.4979  0.8739 0.2815  0.8912 0.2979
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