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1. Introduction

Adverse selection is potentially a serious problem in any type of insurance market (see,
e.g. the seminal paper by Akerlof (1970)).} If agents have different risks and if insurance
companies are not able or are not allowed to distinguish between different risk categories,
“low-risk” agents may find the insurance premium too costly and will not fully insure
themselves, or in the extreme, will not take insurance at all. This mechanism of adverse
selection generally leads to welfare losses, as potential benefits from trade are not fully
realized by the market participants. One way to overcome the adverse selection problem in
insurance markets is through screening (Rothschild and Stiglitz, 1976): insurance
companies offer a variety of insurance contracts, each with a different premium and
coverage, and agents select the insurance contract that they like best. By employing
screening mechanisms, the market is able to re-gain part of the welfare loss due to
asymmetric information. Screening equilibria in competitive insurance markets may not
exist, however, and there is still a welfare loss associated with them (see Riley, 2001, for
an overview of the literature).?

Even though the probability of an accident is a recurrent one in most insurance
markets (with life insurance as an exception), the typical model of insurance markets
considers a static environment where agents incur a loss only once. This modeling
assumption may be justified if we want to explain the behavior of insurance companies as
quite a few insurance contracts are essentially static (with car insurance as a notable
exception): the terms of the insurance contract are independent of the time period and past
history. In this paper, we ask a normative question, namely whether Pareto-improvements
can be achieved if some kind of dynamic insurance would be provided.

We consider two types of dynamic insurance contracts. The first type, which we call
conditional dynamic contracts, allows insurance conditions in future periods to depend on
an agent’s accidental history. In such contracts, agents that from an ex ante point of view
take identical contracts may view different insurance terms in later periods when their
accidental history differs. The second type of dynamic contract is unconditional, as an
insurer is not able or not allowed to use an agent’s past accidental history. Unconditional
contract can still have a dynamic nature as the terms of the contract may depend on the

time period.

! A recent empirical confirmation can be found in Oosterbeek et al. (2001).
2 For alternative equilibrium definitions see the papers by Wilson (1977) and Riley (1979).



We consider these two types of dynamic contracts for the following reasons.
Conditional dynamic contracts are observed in the car insurance market with the infamous
bonusmalusrules. It isimportant to understand the welfare implications of such contracts.
We do not know of markets where unconditional dynamic contracts are offered, but they
may be considered in markets where conditional contracts are politically not viable, likein
some health insurance markets. In such markets it may be considered unfair if someone
has to pay a very high premium because she smply had bad luck and got many health
accidentsin arow. In some of these markets (e.g., the Dutch market for dental insurance;
see Oosterbeek et.al., 2001) there is a clear indication of adverse selection and one may
wonder whether unconditional dynamic contracts may help to overcome (partialy) the
adverse selection problem and improve welfare.

The model we consider is a generalized version of the well-known Rothschild-Stiglitz
(1976) world, where insurance contracts last for some finite number of periods. Agents
discount future utility and profit levels at a given discount rate. There are two types of risk-
averse agents. low-risk and high-risk. The probability that an accident happens to an
individual is constant and the same in every time period. This means that we abstract from
moral hazard issues. Low-risk agents have lower accidental probability than high-risk
agents and their expenditures in case of an accident are also not higher (and in most cases
lower). Although the formal model treats these expenditures as certain numbers, we like to
think of them in terms of expected values so that insurance companies cannot discriminate
between the two types of agents on the basis of the differences in expenditures.
Unconditional dynamic contracts only condition the terms of the insurance on the time
period. Conditional dynamic contracts can, in addition, condition the terms of the contract
on the accidental history.

Apart from allowing insurance companies to change the terms of the insurance
contract over time, a dynamic analysis may introduce also other complications. In
particular, agents may shift wealth from one period to another: insurance companies may
shift profits between different time periods so that competition doesn't need to result in
zero profitsin every time period, and consumers may save or borrow. In the main body of
the paper we abstract from these complications and concentrate only on the effect of
dynamic contracts on welfare. We do this by considering competitive Nash equilibria in
which insurance companies offer a set of dynamic contracts such that each type of agent
chooses an optimal contract from this set and no insurance company can unilaterally
benefit by adding contracts to this set. We analyze the properties of these equilibria in
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three different settings: a "static" setting where insurance companies offer the same terms
of the contract in every period, and the two dynamic settings.

We have several results. Firgt, in all three settings, competitive Nash equilibria only
exist for a relatively small fraction of low-risk agents in the population. Generally
speaking, competitive Nash equilibria with unconditional dynamic contracts exist for
larger fractions of low-risk agents than those equilibria with "static" contracts. Existence
conditions in the other settings cannot be easily compared. Second, high-risk agents get
full insurance, in all the equilibria in al three settings. Third, when they do exigt,
equilibria under conditional dynamic contracts yield a Pareto-improvement over static
equilibrium contracts and the optimal contract charges lower premiums to agents with
better accidental histories. The main reason is that the probability of having a better
accidental history is larger for low-risk agents than for high-risk agents allowing insurance
companies to screen the two types of agents more easily. For a certain class of utility
functions when the number of periods gets large, the welfare achieved through conditional
dynamic contracts approaches first-best welfare levels even if agents discount the future.
Fourth, unconditional dynamic contracts only provide a welfare improvement over static
contracts when low-risk agents have lower expenditures than high-risk agents. When this
is so, optimal unconditional contracts have some periods without insurance and much
better insurance conditions in the remaining periods. As expenditures differ, high-risk
agents are hurt more in periods without insurance than low-risk agents. This alows
unconditional dynamic contracts to better screen the different types of agents. Finally, by
means of simulations we show that the welfare improvements of using dynamic insurance
contracts can be considerable. Depending on the context and on the parameter values,
dynamic contracts can reduce the welfare loss for low-risk agents between the first-best
solution and the static equilibrium outcome by more than 60%.

The paper isrelated to different branches of literature (apart from the seminal paper by
Rothschild and Stiglitz, 1976). First, the paper is closely related to the literature on the use
of experience ratings in multi-period self-selection models, see, e.g., Dionne and Laserre
(1985) and Cooper and Hayes (1987). Theideain thisliterature is that the terms of future
coverage may depend on previous loss experience as, for example, in car insurances. This
is the setting we study when considering conditional dynamic contracts. Dionne and
Laserre (1985) study infinite horizon contracts where agents maximize average per period
utility. They show that in such a world, insurance companies can screen agents in such a

way that the first-best outcome is achieved. Cooper and Hayes (1987) study a similar
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problem in a two-period model. Their main focus is on the differences in equilibrium
outcomes under monopoly and perfect competition. Our main focus in this paper is
different. We want to understand why and under what conditions dynamic contracts are
welfare improving vis-a-vis static contracts: is it because of the state-dependent nature of
conditional contracts or is it because of the time (and not state) dependency that is aso
present in unconditional contracts. In so far as our paper deals with conditional dynamic
contracts we analyze the intermediate case of finite horizon contracts where, in addition,
agents discount future utility. We show that contrary to what is argued by Cooper and
Hayes (1987) in order to get close to the first-best, it is not necessary that agents do not
discount future payoffs. Moreover, by means of simulations we provide insight in the
guestion by how much welfare can be improved.

Part of the insurance literature studies the way probationary periods can be used to
separate agents with different risk profiles (see, e.g., Eeckhoudt et al. (1988) and Fluet
(1992) among others). The basic idea of a probationary period is that prior to the
reimbursement of losses incurred, the insurance company pays no indemnity. A
probationary period is one of the possibilities in our framework and we show that the
optimal unconditional contract has a probationary period. The literature on probationary
periods considers, however, a situation where agents incur only one loss over acertain time
period where the timing of the loss may be different for different types of agents. This
situation is relevant in life insurance markets. In contrast, our model considers situations
in which in any given period, agents have a certain probability of getting an accident
independent of previous accidents. Hence, our model does not cover life insurance
markets, but is more relevant in situations where agents may incur many losses at different
moments in time.

Finally, there is a series of articles (Janssen and Roy 1999a, 1999b, Janssen and
Karamychev, 2000) showing that through dynamic trading the competitive market
mechanism allows high quality sellers of a durable good to trade even in the presence of
asymmetric information. Dynamic equilibria typically involve increasing prices over time
and higher quality sellers waiting to sell in later periods. In other words, waiting time
before selling can act as a screening device in dynamic competitive markets with adverse
selection. Our analysis in the context of unconditional dynamic contracts has a similar
flavor: low-risk agents (i.e., "high quality" agents) incur an initial loss of not being insured

in order to get much better insurance conditions later on.



The rest of the paper is organized as follows. Section 2 discusses definitions and
notations that we will use in the rest of the paper. Section 3 briefly analyzes the static
model for reference purposes. Sections 4 and 5 consider the analysis of the dynamic world
of conditional and unconditional contracts respectively. Section 6 concludes with a

discussion of the results. Some of the more elaborate proofs are contained in the appendix.

2. Preliminaries

The environment studied here is a generalization of the model first described by Rothschild
and Stiglitz (1976). Individual agents come in two types, high-risk agents "H" and low-
risk agents "L". Everyone is endowed with some income level in every period, which is

normalized to be equal to 1. Eachtype i D{H , L} is characterized by alevel of (expected)
expenditure € in case of an accident, where 0<e <e, <1, and a probability of an
accident g, 0<qg, <q, < 1.2 The probability of an accident and the related expenditures

are private knowledge and constant through time. All agents are risk averse, they have the
same state independent strictly concave and increasing utility function u and for the sake of
convenience we assume that u(l)=0. Let a0(0,1) denote the share of low-risk agents
within the population.

On the supply side of the market there are a number of risk neutral insurance
companies competing with each other. These companies are not able to discriminate
between the different types. In what follows we will use the superscripts “S’ and “D” to
refer to static and dynamic variables, respectively, and we will compare the welfare

implications of two types of insurance contracts. static and dynamic. A static insurance

contract ©° = (P®,D®) consists of a constant premium P® and a constant deductible D*
such that in case of an accident an insured individual receives max{q - DS,(} from the
insurance company. By O =(0,oo) we denote an artificial contract, which gives no

insurance at all. The expected utility of type i wunder contract ©° is

Us(@°)=quft-P* - D%)+(1-q JulL-PS).

% Although formally, we treat the level of expenditures to be fixed numbers, we do not allow insurance
companies to offer insurance contracts that are able to discriminate between different types only because of
the differencesin fixed expenditures. For example, we do not allow to condition future terms of an insurance
contract on observed expenditure levels. One way to think of these expenditure levels is, therefore, as
expected values so that differences in types cannot be based on different realizations of expenditure levels.

6



A dynamic contract O° lasts T time periods and consists of T parts, each part
specifying the terms of the contract in that time period. Unlike a static contract, dynamic

contracts may offer different insurance conditions for an agent in time periods t =2,...,T
depending on her previous accidental history h, . Thus, a dynamic contract’s term in time
period t isaset of 2™ insurance policies that correspond to every h CJH,, where H, isa

set of all possible history realizations up to period t. For example, in period 1 a dynamic

contract ©° offers a simple static insurance policy ©, :(Pl,D ) in period 2 a (static)

policy % =(PY, DY) applies if there was an accident and O = (P, D) applies if
there was no accident. Hence, O, :{9(20),@(21)}. In a similar fashion
o, :{eg°v°>,ego'”,egw),eglvl)} and so on. We will cal such a contract

e° =(0,,0,,...,0,).

The ex ante expected utility of typei under acontract ©° is

i Eﬁt_l ; Pri (h[ )(Qiu(l_ R(ht) - Dt(ht))"‘ (1— q )u(l— F{(h‘)))g,
=1 [] h,OH, 0
and her expected per period utility is

OD _1_

sy s Pl auf-R-00)s (- a b= R

U
where d0(0,1) isthe common discount factor and Pr,(h ) isan i agent’s probability to end
up with a history h at time period t. For example, for h, = (O,LO), i.e.,, no accidents in
time periods 1 and 3 and an accident in time period 2, Pr.(h,)=q(1-q ).

One can see that for a dynamic contract with constant insurance conditions, i.e., for
oM =g, UiD( D) = Uf’(@*). This alows us to make welfare comparisons between static
and dynamic contracts.

Asexplained in the introduction, in certain cases an insurer is not able, or not alowed,
to use the information, which is obviously available to him, about an agent’s past accidents.
In this case the contract terms ©, are no longer sets of policies but ssimply a sequence of
static contracts ©, =(R,D,) and the expression for the expected per period utility

simplifiesto

UP(e°)=22 5 {57 (qua- 7 - D)+ - a )t~ R)}.




We will call such a contract an unconditional dynamic contract. The difference between
these contracts and the conditional dynamic contracts described above is that unconditional
contracts make the terms of the insurance contract in period t unconditional on the

accidenta history.

Let =2 bethe set of all T-period dynamic (conditional or unconditional, depending on
the context) insurance contracts. Then, the set =°, which is the set of all static insurance
contracts, coincides with = and, therefore, any static contract ©° can be treated as a
1-period dynamic contract. What we will do then in this paper is to describe welfare
properties and existence conditions of a competitive Nash equilibrium over the set =° for

an arbitrary but fixed T >1.
All insurance companies offer T-periods insurance contracts to the agents. Because of

competition insurance companies do not make any profit in equilibrium. Every agent
chooses the contract, possibly O, that maximizes her expected per period utility. The

formal definition of a (competitive Nash) equilibrium is as follows.

Definition 1. A T-period competitive Nash equilibrium is a subset of T-period insurance

contracts, W, 00 %2, present in the market satisfying the following conditions:

a) Each agent chooses an insurance contract that maximizes her per period utility, i.e.,

every type i O{H, L} choosesthe contract ©, Darg maxU, (©).

b) Any equilibrium contract is bought by a least one type, i.e, for any ©'OWY;
0 0{H,} suchthat ©@ =0©,.

c) Any equilibrium contract yields nonnegative profit to an insurer.

d) No insurance company can benefit by unilaterally offering a different insurance

contract, i.e., any insurance company offering a contract @' %> \W, such that for

some i O{H,} U, (e)> maxU, (©) makes strictly negative profit.

Standard arguments rule out any pooling insurance contract ©, to be a Nash
equilibrium. For static contracts, the argument is given by Rothschild and Stiglitz (1976).
In a dynamic world a similar argument holds true: for any (partial) pooling contract there

exists a contract that differs from it in only one time period in such a way that only low-



risk agents prefer the latter contract. Thisimplies that the deviation yields strictly positive
profit.

On the other hand, a separating Nash equilibrium (static or dynamic), which involves
two contracts ©,, and ©,_, may not exist if there exists a profitable pooling contract ©,
that gives a higher utility level to the low-risk agent than ©,. Hence, the existence of a
separating Nash equilibrium is guaranteed if any pooling contract yielding nonnegative
profit, ©, , givesless utility to low-risk type agentsthan O, i.e, U, (©,)<U (©,).

Throughout the following three sections we assume that an insurance company is
forced to price its contract in such away that it yields zero profit in every time period and
that agents are aso not allowed to transfer wealth between periods.

3. Static Insurance Contracts

In this section we start off by briefly generalizing the standard results of Rothschild and
Stiglitz (1976) to the case where types of agents differ not only in accidental probabilities
but also in their expenditures in case of an accident. Equilibria under static contracts,

which are considered here, are a benchmark for further analysis.

A competitive Nash equilibrium, if it exists, involves two contracts ©F, and ©] such
that they generate zero profit for the insurer. This implies that PJ =q,, (eH - Dj) and
P® = qL(eL - DLS) Moreover, it follows that high-risk agents take full insurance, i.e.,
OME (P:’ DS ) =(g,e,,0). Low-risk agents get at most partial insurance according to the
contract ©. This contract is such that high-risk agents are either indifferent between O
and ©7,i.e, US(OE,):US(OE), or strictly prefer ©F . Partial, or even no insurance, is the
price low-risk agents have to pay in order to be separated from high-risk agents. Existence

of equilibrium is guaranteed only, asis well known, for relatively small valuesof a . The

following proposition formally states this standard resullt.
Proposition 1. Let €5 =1- m(ﬁu(l— 0w €, )) where mis the inverse of the utility function
u. Then, there existsan a®0(0,1) such that:

a) For al aD(O,aS) there exists a unique separating competitive Nash equilibrium
W, ={03,05}. High-risk agents get full insurance © = (P$,D3)=(qy,e,.0) while



low-risk agents get partial insurance, i.e,©F = (R®,D?) and DSO(0,e), if € O

(e®,e,] and noinsurance, i.e., ) =07, if ¢ O[0,e’].
b) For all aD(aS,l) a separating competitive Nash equilibrium W, does not exist.
Proof. The utility low-risk agents get under ©7 does not depend on a , i.e, Uf(@f) isa

constant determined by the incentives compatibility constraint U$ (@S )=U$(@8). Given

PS =q, (g - D), US(©°) becomes adecreasing function of D° [0, ¢, ]:

903092 auuli- P 0%)+ g, o 7))
= _(qH (1_ a )u'(l_ P - DS)_ a. (1_ o )u'(l_ PS))< 0.
It takes its minimum vaue of q.ull-e) a DS=¢. Hence, if

Us(e8)=ult-a,e,)<q,ull-e) then any competitive contract providing partial
insurance to the low-risk agents is more attractive for the high-risk agents than U > (G)ﬁ )

S

and, therefore, @ = @;. This happensif e <1- m(ﬁ ul-q,e, ))E e>. If, on the other
hand, g >e® then the incentives compatibility constraint becomes binding that determines
DS0(0,¢ ) insuchaway that US (@5 )=U3(0?).

While Uf(@f) is independent on @ the maximum utility low-risk agents may ever

obtain from a competitive pooling contract ©3, i.e., U f’((:)ﬁ) = maxU f’(@ﬁ) does depend

on a as the "pooling price' P>, which is defined to be equa to
PS =aq (e -DS)+(-a)y, (e, -DS), depends on it. Solving the maximization
problem

max(g ulL- Ps - Dg)+ (- Jul-Rs))

st.: P> :cqu(eL - D,f‘)+(1—a')qH (eH - DS)
yields the first order condition

o psle) o) -l L sl
s S

which implicitly defines DS. Now, the first order derivative of U f(@)ﬁ) with respect to a
becomes

dus(6)_ouz(es)
da  da

= (qLU'(l_ ISPS B 65)"' (1_ o )u'(l_ ISPS) Ay (eH B 65)_% (eL - 65’))
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US(@)=const =US(0%)

Figure 1. Separating static insurance contracts.

One may easly see that %Uf(@)ﬁ)>0 for al 0< [3§seH. Finally, note that
Uf(@)ﬁl . <uf(@f)<uf(é)§,} - Thisimplies that there exists a unique a®0(0.1) such

thet US(F)=U (03], and the result follows, .

a=a

Figure 1 presents the main idea. It shows that there is no insurance for low-risk agents
if their expenditures are relatively small. In the figure {©,} and {©} are the sets of
competitive contracts designated for high- and low-risk agents respectively. These
contracts satisfy the zero-profit conditions P=gq,(e,-D) and P=q/(e -D),

respectively. Point A denotes the optimal contract for high-risk agents.
One may see that if the set of competitive contracts that can be offered to low-risk
agents only lies entirely below the indifference curve that passes through point A, as

depicted in Figure 1, i.e, when ¢ <e°, then any contract from the set {©,} is more
attractive for high-risk agents than ©°. Even the worst contract B, which gives zero
coverage, i.e., when D =g_, gives a higher utility level to high-risk agents than O} .
Hence, in the separating equilibrium there is no insurance for low-risk agents and we are in

a case of pure adverse selection. If, on the other hand, e > e, such that the set {0}
denoted by the dashed line intersects with the indifference curve that passes through point

A, then in equilibrium the low-risk agents get a contract C which gives partial insurance.

Since the model described here involves four parameters, namely q,, €,, g, and g,
for presentational purposes in what follows we fix ¢ and e, at arbitrary levels and

consider the parameter space (q,,.€ ) =[q,,1)x[0,e,]. For any fixed level of g, and e,
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Figure 2. Regions of parameter vgl_u&s_wherelow-risk agentsdo and do not get
positive insurance.
e® can be written as a strictly increasing function of q,,, (g, )=1- m(iu(l—quH)),
and ef(L)=¢, .
To get an idea about the relative importance of dynamic insurance contract, we have
done several simulations. In the context of static insurance contracts, the following

example shows for a particular choice of utility functions the region of the parameter

values where low-risk agents are partially insured.

Example 1. In order to get an idea of the range of parameter values that yields partial
insurance to the low-risk agents we calculated e%(q,,) for e, =0.9 and g, =0.1.
Figure 2 shows the functions e'f(qH ) for two different utility functions:
u,(m)=Inm and u,(m)=+/m-1. Below the curves, the expenditure of low-risk

agentsistoo low to give them any insurance in equilibrium. 1

4. Conditional Dynamic Contracts

We next study the properties and existence conditions of competitive Nash equilibriain a
setting where insurance companies can offer conditional dynamic contracts. As explained
in the Introduction, insurance conditions in this case may depend on the time period and on
the accidental history of insured agents, as is the case with car insurances. Although

insurance companies are not allowed to transfer profits between different periods, they
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may "transfer profits’ from one accidental history to another, i.e., competition between

insurance companies results in a zero-profit condition of the form

h; Pr(h)R" -ale -Dt))=0, t=1...T.

This means that even though insurance companies know that only a certain type i of
agents may decide to take a certain insurance contract, they may nevertheless find it
optimal to distinguish between agents who (by pure chance) have a different accidenta
history. Aswe will see, they may do so in order to better screen high and low-risk agents.

The proposition below states the main result for conditional dynamic contracts.
Wherever competitive Nash equilibria in this setting exist, they yield a Pareto-
improvement over the static equilibrium contracts. high-risk agents also get full insurance
in every period independent of their accidental history and low-risk agents get (at most)
partial insurance in every period and the insurance premium they pay is lower, the better
their accidental history. These equilibria exist wherever the fraction is small enough so
that no company wants to deviate by offering a pooling contract. Finaly, when the utility
level associated with very low income levels falls dramaticaly, formally when

lim #() = —o0, then when the time horizon is very large, it is possible to offer lower-risk

m -0

agents amost full insurance even if the fraction of low-risk agentsis high.

Proposition 2. For any T there existsan a2 (T)0(0,1) such that

a For 4l aD(O,ag ) there exist a separating competitive Nash equilibrium
W, :{Oﬁ,ef}. The contract O, is unique and coincides with ©;, ©F generally
need not to be unique but all multiple contracts ©F yield the same utility.

b) Fordl aO (a(':3 ,1) a separating competitive Nash equilibrium Y, does not exist.

0 If a<minfa®,ad} thenuP(@°)>U5(0?).

d) For any given time period t, if low-risk agents get positive insurance then the optimal
premium and deductible given a history of k accidents, P*, and Df,, satisfy the

following relation: P¥, = R'{* + D/".
e If limou(m)z—oo then limag(T):l and for any fixed a0O(0])

limu?(e?)=ufi-q.e).
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The proof of Proposition 2 isin the appendix. The result can be understood along the
following lines. For any difference between 4, and ¢,,, it is more likely that high-risk
agents get an accident than low-risk agents do. Accordingly, the terms of the insurance
contract after a few accidents gets a relatively smaller weight in the overall evaluation of
the insurance contract by a low-risk agent than by a high-risk agent. Hence, it is possible
to design a dynamic contract that low-risk agents prefer to the best static contract insurance
companies can offer, while high-risk agents still prefer the full insurance contract. Those
contracts give worse insurance conditions to agents that (just by chance) have had many
accidents (see property (d)). In expected terms, as the probability of an accident is
constant over time, insurance companies make losses over those agents with better
accidental histories, while they gain (in expected terms) on those agents with worse
histories.

Even though low-risk agents get a higher utility in the separating equilibrium under
conditional dynamic contracts than under static contracts, it is not guaranteed that this type
of equilibrium exists for a wider range of parameter values of a. The reason is that low-
risk agents also get a higher utility under possible conditional dynamic pooling contracts
than under possible static pooling contracts.

Finally, the result that when the number of periods is large, low-risk agents can get a
conditional dynamic contract that gives them a utility level aimost equal to the utility of

full insurance, is based on the following considerations. For any T >1 there exist a
contract ©° with full insurance at a premium 4,¢, in all periods 7=1...,7 -1, and full

insurance at arelatively high premium P* if the history was one with only accidents and a
relatively lower premium P~ otherwise in the last period. The premiums P* and P~ at
time period T are constructed such that the zero-profit condition holds as well as the
incentive compatibility constraint, i.e., high-risk agents prefer to take the full insurance
contract at a premium g, €, inall periods. The proof shows that when T becomes large,
P~ approaches ¢4,¢, , while P approaches 1, the full income level, in such a way that,
because of the difference between 4, and 4,,, the expected utility of this event for the
low-risk agent approaches 0, while it remains sufficiently negative for high-risk agents. As
contract (:)LD need not be the equilibrium contract, expected utility under the equilibrium

contract is even higher. Note that the result does not depend on agents not discounting

future utility.

14



It is important to understand the role of commitment on the part of the insurance
companies. |If they had not been committed to the contract, a company after one or more
periods could have offered better insurance conditions to those low-risk agents that had
been unlucky enough to get many accidents, e.g., they could have offered to start almost
the same contract from the beginning (as if there had been no bad accidental history) and
made a profit as high-risk agents had not been attracted at that moment. However, if high-
risk agents anticipate this behavior on the part of the insurance companies, then they would
not opt for the full insurance contract designed for them.

In this model, we have implicitly assumed that insurance companies and agents are
committed to the contracts they have signed and that if an agent switches to another
insurance company she will not start the contract from the beginning. In some markets,
like the one for car insurance, commitment on the part of insurance companies is achieved
as insurance companies share information about accidental history of their clients. It is
more difficult, however, to ensure that agents are committed to the contract.

If this form of commitment is not achievable, additional constraints have to be
imposed, namely after every history contract terms should be such that it is not possible to
design a profitable contract that agents prefer to continuing the existing contract.
Moreover, after every history we have to ensure that agents would like to stay insured
instead of quitting the insurance market altogether. In a T-period world, it is very difficult
to satisfy all those constraints* This is another reason why we consider unconditional
contracts in the next section.

Before we do so, we provide an estimate of the welfare improvements that are

possible for certain specific cases.

Example 1 continued. To determine by how much welfare could be improved by
conditional dynamic insurance contracts, we normalize the total low-risk welfare
loss due to asymmetric information to be 100% so that the static contract © gets
a score of 0% and full insurance under the full information gets a score of 100%.

ue(6p)-ucler)

S S

We then calculate the ratio
U(l— qLeL) -U L (G)L

) for fixed e, =0.9, g, =0.1 and

different values of ¢, 0[q.,1l) and e O[0,e,], where ©° is the static

* See Cooper and Hayes (1987) for some of the relevant considerations when T = 2.
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Figure 3. Welfareimprovements under conditional contracts ®7, e,=0.9, ¢ =0.1,

u(m)=In m, T=4.
equilibrium contract and C:)E is the contract mentioned above. The contract C:)E
is chosen, asisit difficult to calculate the equilibrium contract ©7 itself.

Figure 3 and Figure 4 show parameter regions, which yield different levels

of the welfare gain for low-risk agents for u(m)=Inm, =09 and T =4 and
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Figure 4. Welfareimprovements under conditional contracts ®7, e,=0.9, g, =0.1,
u(m)=In m, T=5.
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T =5 correspondingly. For larger values of T almost all parameter combinations
lead to almost 100% welfare improvement.

As the equilibrium conditional dynamic contract ©; gives an even higher

D

utility level for the low-risk type agents than éL, the potential welfare

improvement and the region where it is possible is even larger than presented. /l

5. Unconditional Dynamic Contracts

In the introduction we have explained that in certain markets, like health insurance
markets, conditional dynamic contracts may be considered unfair or politically not viable.
When, after a sequence of many accidents, car insurance becomes too expensive, a person
may always decide not to drive a car anymore. Thisis not true for health insurance. For
this reason we consider in this section whether unconditional dynamic contracts may
recoup part of the welfare loss due to adverse selection in the static equilibrium outcome.
Another advantage of unconditional contracts is that the commitment problem can be
easily avoided here.

It is clear from the outset that wherever they both exist, unconditional contracts yield
lower welfare than conditional contracts as the latter include the former. What is not clear
from the outset, however, is whether the equilibrium existence conditions are stricter for
the case of unconditional contracts. Thisis because the best unconditional pooling contract
for low-risk agents also yields lower utility than the best pooling contract in the ease of
conditional contracts. We start the analysis by considering the Rothschild-Stiglitz case in

which ¢, =¢,,. Inthis case, we have a straightforward negative result, which is that the

best unconditional contract is the repeated static contract. In other words, welfare gains are

not possible using unconditional dynamic contracts in such aworld.

Proposition 3. If ¢, =¢,, =¢ then for al aD(O,aS) there exists a unique separating
competitive Nash equilibrium that has the static insurance policies ©;, and ©; in any time

period. For al a (as,l) a separating competitive Nash equilibrium does not exist.

Proof. = We first show that ®IZE(®LH""’®T,H):(®X ,G)‘IY{). Maximizing

e

U, (@IZ): 1-¢ Zilﬁf‘lUg(@hH) with respect to al D, ,, [0,e] and subject to zero profit

1-57

condition R, :qH(e—Dt,H) yields D,,, =0 and R, =q,e for all t=1...,T, hence,
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0,=03 ad ULley)=use) On the other hand, maximizing

uP(er)=x2 57 5Us(e, ) with respect to dl D, 0[0€ ad subject to

T 15

P, = q.(e- Dt’L) and the incentive compatibility constraint Uﬁ(@f )s U’ (@f,) yields the
following Lagrangian:

L= % tT:ldt_l(qLu(l_ Ri- Dt,L)+ (1_ a. )u(l_ R,L))+

+ /](U i (93 )_ 11__; z::ldt_l(qHu(l_ RL- Dt,L)+ (1_ Q )u(l_ P’[L)))’

and the first order conditionsfor t =1,...,T are:

a. (1_ a. )(u’(l_ PL~ Dt,L)_ u'(l_ P )) = A(qH (1_ av )u’(l_ PL~ Dt,L)_ (1_ ay )qLu'(l_ PtL))
It immediately follows that the constraint is binding and the first order conditions become:

CIL(]-_ qL)u'(l_ R. D L)_ CIL(]-_ CIL)UI(]-_ R L) _
= : ! : = D L/ t= ,T .
o (1_ qL)u,(l_ R,L - Dt,L)_ o (1_ o )u'(l_ RL) ¢( ) ) -

As ¢’(DLL)>O foral D, 20, al D,, havetobeequal to each other,i.e., D, =D, for

A

al t and, therefore, © isjust arepetition of a static contract. But we know that the best

contract for the low-risk typeis ©F. Finally, ©° exigtsif and only if aD(O,aS). m

It isinteresting to better understand the reason for this result. A first reason is that we
require the zero-profit condition to hold in every period. This together with the fact that
the utility function is time-separable yields a set of first-order conditions, which are the
same for every period. The second reason is the concavity of the utility function, which
makes sure that less-risky outcomes with the same expected expenditures are preferred to
more risky outcomes.

This result also sheds another light on the positive result obtained for conditional
dynamic contracts. There are two important differences between the two settings when
e, =e¢, . First, with conditional contracts insurance companies are able to shift profits
between different accidental histories for every given time period. Second, even if
expected profits are zero after every history, insurance companies may give agents with
better histories contracts with more insurance (lower deductible and higher premium). In
these two ways insurance companies are able to relax the static incentives compatibility
constraint from the perspective of the low-risk agents. As the insurance company is risk-
neutral, it is indifferent between (i) a contract giving constant insurance conditions with

zero expected profit in each state, (ii) a contract making zero expected profits in each state
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(at different terms) or (iii) a contract making zero expected profitsin every period (but not
in every state). To the contrary, the low-risk agents make a distinction between these
cases.

Another point in the above intuitive explanation of Proposition 3 is that we have not

considered corner solutions of type D

z,

. =¢ Where no insurance is offered in certain

periods. Inthe case where e =¢e, thisisalso not realy necessary as both types of agents
have the same evaluation (utility) of no insurance: u(l-e,) =u(l-e ). When e _<e,,
thisis no longer the case and we may use "no insurance in certain periods" (a probationary

period) as a way to screen agents in order to reach welfare improvements. The next

proposition summarizes our results for this case.

Proposition 4. Thereexistsan a® O[a®1) and e° 0(0,e, ) such that:

a) Foral a0(0,a®)thereexistsa T such that for all T>T" there exists a separating
competitive Nash equilibrium W, :{G)ﬁ ,G)E}. High-risk agents get full insurance,
i.e, O :(G)f| G)ﬁ) The low-risk agents get acontract ©, such that

QP _d O, =0, fortONg,
- Epf,t:@L:(PL,DL),fortDNT\Nsep’

where N, is the separation phase of the contract. If e” O[e,e,] then N, =0,
D, =D and P, =P?, i.e, low-risk agents get static insurance 0. :(@fef) If,
on the other hand, € D(O,ef) then N, 20, 0sD_<D? and R >R®. Inthiscase
ul(ep)>usler)

b) Forany all (aD ,1) a separating competitive Nash equilibrium does not exist.

o) Foral q,0(q.1) €(a,)0(ef(a).e,) and €2(q, )= lime?(a)=e,.
The proof of Proposition 4 isin the appendix. Proposition 4 tells us that the results of
Proposition 3 are robust only in a (possibly small) neighborhood of e, =e,, i.e, when g

is close enough to e, . When g, falls outside this neighborhood, i.e., when e_<¢’, then

a Pareto-improvement is possible vis-avis the static outcome. The best screening contract

for low-risk agents involves a "separation phase” with no insurance and an "insurance
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phase" with better (and constant) insurance conditions than in the static contract.> The
range of fractions of low-risk agents in the population for which such a separating
equilibrium existsis also larger than in the case of a static separating equilibrium. Finally,

we are able to show that the neighborhood around e, for which no welfare improvements
vis-avis the static equilibrium are possible becomes very small when q,, iscloseto g, or

closeto 1 (part (c) of Proposition 4).

In order to better understand the reason for the "large T assumption”, we have to
explain a part of the more formal proof given in the Appendix. In the proof we write the
overal utility level low-risk agents get as a convex combination of the utility in the
separation and the insurance phase. The weights are expressed in terms of the discount
factor 0, the number of insurance periods T and the set of time periods in the separation

phase N,, . We show that in order to have a welfare improving contracts that satisfies the

incentive compatibility constraint this weight hasto bein acertain interval. As T isafinite
number, the weights can only take on a finite number of values. For any relatively small
value of T, it may happen that by none of the possible choices for the length of the
separation phase the weight of utility function falls in the required interval. When T is
large enough but still finite, thisis no longer the case. In summary, the requirement that T
be large enough has to do with the assumption that time is measured discretely, rather than
that we need the contract to last for avery long period of time.

We next show by means of an example for which region of parameter values welfare
can be improved and by how much it can be improved.

Example 1 continued. Example 1 showed parameter regions where low-risk agents

will (not) have some insurance contract under the static equilibrium. Figure 5
shows the functions €P(q,,) for the same two utility functions as studied in
Example 1 for the limit case when T - « and 6 =1. For all the parameter

values below the graph dynamic contracts alow for welfare improvements.
Parameter values above the graph are such that the dynamic and static
equilibrium contracts coincide, hence welfare improvement is not possible. One

> We implicitly assume that low-risk agents have to register with an insurance company even though they
don't get any insurance in the initial separation phase, i.e., before they are able to get to the good insurance
phase they already have to be known to the insurance company. At the same time, they can not buy an
insurance from another company. This is possible when insurance companies share information, a practice
that is common, for example, in the car insurance market.
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Figure 5. Region of parameter values where welfare can be improved using

can see that for the given utility functions the regions where welfare

improvements are possible are quite large. In particular, €° isquitecloseto e, .

insurance contracts, we follow the same procedure as in the example of Section 4.

Figure 6 and Figure 7 show parameter regions, which yield different levels of the

welfare gain for low-risk agents, for u(m)=Inm and u(m)=+/m-1,

To determine by how much welfare could be improved by dynamic

respectively.

O

unconditional dynamic contracts.
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Figure 6. Welfareimprovements under unconditional contract 7, e4=0.9, q.=0.1,

u(m)=Inm, T -  and 6=1.
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One can see that if e <e® and low-risk type gets no insurance in a static
equilibrium, then the welfare improvement dynamic insurance yields is very

sensitiveto g, whileif e >e° then the difference e, —e_ playsacrucia role.  //

6. Discussion and Conclusion

In this paper we studied a generaization of the Rothschild and Stiglitz model of a
competitive insurance market affected by adverse selection. We allowed agents to have
different expenditures and investigated the nature of dynamic contracts. We showed that
in the multi-period dynamic model a competitive Nash equilibrium exists as long as the
share of low-risk agents is sufficiently small. If such an equilibrium exists, it is Pareto-
superior to the static equilibrium if conditional contracts are allowed.

When contracts are unconditional, welfare improvements are only possible if
expenditures of the two groups are different. If thisis so, these equilibria exist for a larger
fraction of low-risk agents than static equilibria.  The optimal contract has a separation
phase offering no insurance and insurance phase offering much better insurance conditions.

Both conditional and unconditional dynamic contracts have been derived under the
assumption that they yield zero profit in every period and that agents are not allowed to
shift wealth between periods. Here we discuss a a more informal level how these
assumptions can be relaxed.
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We begin with the discussion of unconditional contracts. It is not difficult to see that
as before high-risk agents will get a purely static full insurance contract in equilibrium.
The equilibrium low-risk contract cannot be obtained explicitly, however. What can easily
be shown is that an optima contract that is Pareto-superior to the static equilibrium
contract exists. When the static equilibrium contract gives no insurance to low-risk agents,

i.e, e <e’(q,), then, like in the basic model, an insurer is able to separate the types by

offering a dynamic contract with a sufficiently long separation phase. Indeed, when the
length of the separating phase increases the incentive compatibility constraint can be easily

satisfied. On the other hand, as the dynamic contract is not worse than the static contract
©? during the whole term and is strictly better in the insurance phase, the contract is

Pareto-superior as well.

Hence, the set of Pareto-superior separating contracts is not empty and the equilibrium
dynamic contract is the one that maximizes the utility of low-risk agents. The existence of
such a contract is guaranteed by the continuity of both the objective function and the

incentive compatibility constraint and by the compactness of the feasible parameter set.
Therefore, for al parameter combinations, which lie below the curve g =¢e%(q,,) in
Figure 2, Pareto improvement by means of dynamic insurance is always possible. In the
example below we calculate the highest low-risk expenditure &> such that the welfare
improvement is possible in the whole interval (0,8°). Thus, the difference between &

and e reflects the sensitivity of the model with respect to savings.

Example 1 continued. Apart from the functions eLD(qH) that were already presented
in Figure 2 for two specific utility functions, Figure 8 presents functions &°(q,, )

for the same example. For all the model’s parameters below the graphs éLD(qH)
dynamic contracts allow welfare improvements to be made.
The figure shows that savings do not change the outcome significantly and

just change the set of parameters allowing for welfare improvement alittle bit. I

Given this result for unconditional contracts, we will be brief about conditional
contracts. As dynamic conditional contracts yield weakly higher utility for the low-risk
agents the region of possible welfare improvement is even wider. But, again, the pooling

low-risk utility maximizing conditional dynamic contract provides higher utility than the
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unconditional contractswith and without savings.

static pooling contracts. Hence, it is not guaranteed that this type of equilibrium exists for

awider range of parameter values of a.
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Appendix

Proof of Proposition 2. We begin by deriving a set of competitive contracts {G)ﬁ ,G)E}
satisfying the incentives compatibility constraints and maximizing ULD(G)E). Then we
derive a competitive pooling contract C:)P’t maximizing the low-risk utility. Finaly, we
show that there exist an a2 (0(0,1) such that for all a<al (a>al) ©,, gives alower

(higher) utility for the low-risk type than @ .

Contract  ©f =(0,,,.....0,,) with o, "}  ad o}, =(R".D,),

hOH,
maximizes U2 (©°), which is

1-0

S s Puler
subject to zero profit constraints

h;Pr” (h)P" -qy, (e, -D*))=0, t=1...,T.

ugle®)=

The Lagrange function and the first order conditions for the interior solution are:

L= RS 3 kR -0+ -, bR )
+ Zthl EAI h[;,PrH (h[ )(Rhl ~ Oy (eH - Dth[ ))E

0oL 1-0 . , ,
Hapn = _1_5T s PrH (h[)( nu (1_ PHh[,t - Dn,t)"' (1_qH )u (1_ PHh,t))+/]t PrH (hl) =0
|:| t
aL 1-5 . ,
a = 5thrH (h[)qHu(l_ PHh[,t _Dn,t)-'-/‘t PrH (ht)qH =0

D} 1-4'
Solving them together with zero profit conditions yields Dy}, =0 and P}, =q,e, for al t
and h, in other words, high-risk agents aways get full insurance in a separating
equilibrium, ©p = (G)ﬁ vy OF ) This solution is unique due to the global concavity of the
objective function and we do not need to look at corner solutions with some O = O3

Contract O :(G)L,l""’G)L,T) with O, :{@Et}nmm and O}, =(P",D" ), maximizes

uP(e°), whichis

26



otler)- 5 gttt )
subject to zero profit condition ;PrL (h)P" -q. (e, -D™))=0, t=1..,T and

incentives compatibility constraint U2 (©°)<U2(@8)=ul-q,e, ).

The Lagrange function for this problem is

= 5TZ_1E5‘1;F* Na.ut-R" -0 )+ (1- g, Jult- P“))E*

+ztl@) ;Pr e —D“))E’
ufbE(o2)- 22 5 5 k- -0+ -l )

The first order conditions for an interior solution are:

g PR -on )i
t

55 3" Pr (ht)(qHu’(l_ PLh,[t - DEt)+(1_qH )U'(l— PLrj[t)):o

0 AP

U
oL 1-5 o '
E@Dtn == 57 pr, (h)a.u'fL-PY DM )+
1-0 _._ '
D AP S a e (g Ry -0l =0

which can be rewritten as follows

| o) alig om0 )-vf-r)
% Pr, (h[) Ay (1_ ac )u’(l_ PLr}t - DEt)_ o0 (1 g, M ) (1 PLht)

0, _1-0 S (qH _,QL)U'(]-_ P - DY, (1_ PLr}t) .
g\t 1-0" a4 (1_qL)u'(1_ PLr,\t - Dlt\,t)_qL(l_qH )u'(l_ PLr}t)

Then, it follows that the incentive compatibility constraint is binding, otherwise it would

have been p=0, D} =0 for al t and h, and findly, R =qe tha yields
US(G)E)>UHD(G)3), acontradiction. Hence, D%, >0 for al tand h,.

One may note here that all R™ and D, depend only on Pr,(h) but not on h itself.
Hence, if, for instance, t =4 then h; =(0,0,1) and h] = (0,1,0) correspond to different states
of the world but Pr,(h;)=q(1-q ) =Pr(n;) and, therefore, P =P" and D, =D,

that allows us to change notations. by ﬁ[ =k we will denote al states of the world where
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there were exactly k accidents in time periods from 1 up to t—1. Then it follows that
Pr.(k) = C,a*(1-q )™, where CF, = 4= are binomial coefficients. Plugging it into
the above system yields

B,U - qu(l— a. )t_k_l a. (1_ CIL)(UI(]-_ PLk,t - Dt,t)_ U'(l— PLk,t ))
U o “ (1_ o )t_k_l o (1_ a. )U'(l— PLk,t - DII_(,t)_ a. (1_ o )u'(l_ PLk,t)
U ' k k \ o k

[] — 1-0 St (CIH - CIL)U (1_ PL,t - DL,t)J (1_ PL,t)

H/‘t 1-0" o (1_ a. )u'(l_ PLk,t - Dt,t)_ a. (1_ a4 )u'(l_ PLk,t)

Getting rid of A, and p leadsto

Equ(l_ aq )t_k_l U'(l— PLk,t B Df,t)_ U'(l— PLk,t) ) =

A ‘ (1_ On )t_k_l Ay (1_ v )u'(l_ PLk,t - Dt,t ) —q. (1_ Ay )u'(l_ PLk,t)

7 e f-a)” ulL- Ry - D) -ul- R

= a4 k_l(l_ Oy )t_k o (1_ o )u'(l_ PLk,t_l - Dlﬁl)— o (1_ o )U'(l— PLk,t_l)
B U'(l— PLk,t B Dli_(,t )Ll'(l— PLk,t) - .
EbH (1_ qL)u'(l_ PLk,t - Dt,t)_ A (1_ Ay )u'(l_ PLk,t)

B — u,'(l_ PLk,t_l B Dl‘f,_t‘l)u'(l_ PLk,t_l) ) .

H B o (1_ CIL)UI(]-_ PLk,t_l - Dll_(,;l)_ ac (1_ Ay )U'(l— PLk,t_l)

Both equations can be written as

E(qH (1_ av )u’(l_ PLk,t_l - Dt;l)_ av (1_ Ay )U'(l— PLk,t_l))'l’(l_ PLk,t - Dt,t):

H = (qH (1_ QL)U'(]-_ PLk,t - Dll_(,t )_ N (1_ Ay )u'(l_ PLk,t ))U'(l— PLk,t_l)

o (1_ a. )u’(l_ PLk,t_l - DlL(,:l)_ a. (1_ o )U'(l— PLk,t_l))J’(l_ PLk,t - Dll_(,t '(1_ PLk,t):

U

E = (qH (1_ QL)U'(]-_ PLk,t - DIL(,t )_ a. (1_ dy )u'(l_ PLk,t ))U'(l— PLk,t_l)J'(l_ PLk,t_l - Dll_(,;l)
Dividing the second equation by the first one we obtain P, = R;*+ D/ !, which together
with the zero profit condition yields

0 t-1 -1

Fi=ae -3 M (k)ErZ D[, +,Df,

0 = = O

R =RI+D
that defines P¥, (hence, P™) intermsof D,. The profit an insurer gets a time't from a
low-risk agent with ahistory kis

nft = PLk,t —q. (eL - DIL(,I): PLk,t_l + DIL(,;l —q (eL - DIL(,t):
= F)Lk,t_l —q. (eL - Dll_(,;l)*' (1_ qL)DIL(;l +q, DIL(,t = ﬂt;l + (1_ qL)DIL(,;l + qLDIL(,t’
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hence, 7} >...>m', >m >...>n),. Therefore, in accordance with the zero profit

condition Z:lPrL(k)nft =0, 717} >0 and 7, <0, in other words, an insurer makes

losses over those agents with better accidental histories, while they gain (in expected

terms) on those agents with worse histories.

It might happen that the solution © = (OL,l""’OL,T) Is just a local but not global
maximum. Hence, we may have to find al corner solutions imposing @}, = ©; for some

set of states of theworld H? O H,. The Lagrange function in this case becomes

o= RSl s ek o) G-ah-m

ROHAHY
S g e )R L 3 PR -a e o)
(o) 5 Sl 3 PR -00)+ (oo k-

1-0 7 1
_ﬂﬁ thl h[;[PrH (ht)qHu(l_eH)E

Consequently, the only difference from the previous analysis here is that the first order

conditions will involve the summation over the subset h OH, \ H? instead of the whole set
h OH,. Having been calculated for all H? 0 H, acontract ©7 is chosen in such a way
that, first, it satisfies D, <e, forall h OH, \H?, and, second, it maximizes UP(0°).

Thus, we have described a set of competitive contracts {Oﬁ,@f} satisfying the
incentive compatibility constraint and maximizing ULD(G)E). This set becomes a
competitive Nash equilibrium if no competitive pooling contract gives a higher utility level
for the low-risk agents. We will prove that for small enough values of o thisisthe case.

The utility low-risk agents get under ©; does not depend on o while the utility they

get under a pooling contract 9,'3=(®p,1,...®p¢) with O, :{@2‘,} and

h,OH,
@, = (P, DM, ) depends on it. Asthe low-risk agents’ utility
1-0 7

uP(e?)= ztzl(dt‘lzm Pr (W (e, ))

T 1-0"

istime-separable as well as the zero profit conditions, which are
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Y (Pr (h)P2 - (e -D2 )+ @-a)Pr, ()P - ay (e, DB ))=0, t=1...T,

h.0OH,

maximization of U (G),'S) over Dj*, 1[0, ] splitsinto T parts:

max zhtDHt Pr. (ht)J Ls(eg,t)’
st. 3 (aPr ()P ~a e - DB )+ @-a)Pr, (h)(P2 - a (e, - DR ))=0

h,OA,
and it has a unique solution due to the global concavity of the objective function and linear

constraints. The Lagrange function and the first order conditions are:

L= o P (o= B - DR )+ (-, e~ Rl )+

23 P 1) ~a e -0 -a)er ()P - -0, )

and

r (o £ - B2 )+ 0-a ul- P = Ao Pr () + (- a) P ()

o= B - B2, )= Ao P (o + - a)Pr (r)a) |
Solving them yields

H u’(l— ﬁ;'t) /\t(a+(1—a)%(2—t§%i—gf%)

Arfi- B - B0, )= 4 (o + (1- ) el

Pr (ht )QL

One may see that

U'(l— ISPth - [SSI) a+ (]_—a)ﬂ%ﬂ%‘ﬂ

Pr(h )a.

<1,

hence u’(l— Pt - [A),E"t)> u’(l— I3,I}t) and, therefore, D, >0.
If such an interior solution has D}, > ¢ then we have to look at the corner solutions,

where OF, =©F for some set of states of the world H? [ H,. In this case the Lagrange

function becomes:

L = z PrL(ht)(qLu(l_ P;‘t - Dgt,t)"' (1_ CIL)U(]-_ P;(t))"' z PrL(ht)qLu(l_ eL)+

h OH \H? h,OA?
+ /]t z (0’ Pr, (ht )(Pl:,!t - (eL - Dgl,t ))+ (1_ 0’) Pr, (ht )(Pll],lt — Oy (eH - Dgt,t )))'
hOH \H?

hence, the first order conditions remain the same but now only for h OH,\H?. Solving
them for ©,, for al H? 0 H, and taking one that maximizes UE(@,‘Z) gives us needed
contract.
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The contract conditions, hence, U” ((:),'3 ) now become functions of a. Taking the first

order derivative and using the envelope theorem and zero profit conditions in a form

a z Pr, (hr )(pr}t - q. (eL - Dg,t )) = _(1_ a) Z Pry (hr )(pr}t ~ 0y (eH - Dg,t )) yields:

hOHHY hOHH
)= L(es)-
= Atﬁ Pr. (ht )(PPt ac (eL - DP,t ))_ z Pry (ht )(PPh[t — 0y (eH - DP,t ))H:
OHH? hOHH?
= ]_i]ta %t_lhDHt\HF;rL (h[ )(ﬁph,tt - qL( L [A)Qt ))E
and, finally,
L P
1/—\ta 11—_; z:_l %t_lnDHt\HI?rL (h[ )(Ph o (eL ) f)gt))H:
= _% 11__; Zthl %t_lnmz,m?m (h )(ﬁpf}t ~ Oy (eH -Dp, ))E

Itis easily seenthat 5 Pr, ()(B - g (e, - B ))<0< 3 Pro(m)(B2 —ale - D).

h DY HO h OV HO

In other words, an insurer gets a positive profit from the low-risk type and a negative profit

from the high-risk type. Therefore, 2U°(62)>0 as A, >0.
Now, we will show that U'f(é)ﬁ}azo <U'L°(G)E)<U'L”(C:)$) and, therefore, there

a=1
exists an a2 0(0,) such that UE(@)ELZL@ =UP(@°) and the results (a) and (b) of the
proposition follow.

If a=1 then C:),'Z gives always the full insurance that leads to the first best outcome
UP(82),..=u(l-qe), hence, UP(B2),.,>UP(OP). What we will show is that
U/ (C:)? )azo >U/ (@f ) To this end we construct a competitive contract @° such that
U'LD(G)E)z Uf(éf)>UE(éE)a:o- Obviously, U,’f(@j?)z U,’f(@”) for any competitive
contract ®” by the construction of ®?.

As an example of such a contract ©° we take a contract that coincides with @2 for

al tand h, except one, i.e, weput O, =OF, fordltand h #h',and ©/, #©),,. Inthis
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uger )= const =uger)

leh* ] .
i LVJ .................

FigureA.l

state of the world h™ a policy CT)’E’t can offer a much better insurance for the low-risk type

than C:)?:,t which is calculated for the whole population that consists of high-risk agents
only. The following Figure A.1 represents the arguments. The downward-sloping lineisa

set of policiesin the state h™ making the whole contract (:)]’3 competitive. One point on the
line is the contract C:)?:,t that maximizes U/ (@f)’ ) and, therefore, Uf(@?) Two curves
represent high- and low-type indifference curves where the latter is tangent to the set {G)';t}

a ©,. The set of contracts {O{‘} satisfying zero profit condition for the low-risk type is

denoted by the dotted line. This set lies below the former set as al the profit obtained in
all the other time periods and states is transferred here.

One may easily verify that the contract éf can be chosen as any point from the set
{@'ﬂtt} that lies between the low- and high-risk indifference curve.  Hence,
u°(er)>ul(@?)..

Part (c) of the proposition is trivial as the contract ©° =(@f,...ef) was available
during the optimization procedure of searching ©_, hence, U” (@f )2 U’ (@’,‘1), and the
contract ©° :(ef,...ef) does not satisfies the first order conditions for ©7, those are
R, =R +D(', therefore, ULD(G)E)>ULS(G)E) unless those first order conditions

degenerate in aglobal corner solution ©p :(OS,...@(?).
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Finally, in order to prove that limag (T)=1 wewill show that for any T there exists a

contract C:)E satisfying both zero profit and the incentive compatibility constraints an such
that lime(C:)E): ull-qe). As UE(@E)zUE(@)E), limU'L’(G)E): ul-g.e ) holds as

well. Then, as U'LD(C:)E)< u(l-q.e ) for any « <1, thisimplies that lima('?(T):l.

N A

Let us consider a contract (:)f:(e)m,...,@w), where ©¢, =(g,¢,,0) for dll

r=1...,T-1, C:)f,,,5(13,,@,15,,‘?):@',0) for £=0,...,7-2 and é)’j:ﬂ:(PﬂO) for some

values of P~ and P*. The zero profit condition for the time period T requires that

N

Z:;PrL(é)(Pf_l - qLeL) =0, that makes P~ dependent on P":

T-15+
P_(P+):% (A.1)

L

hence P"<q,g for al P*>qe . On the other hand, the incentives compatibility

constraint requiresthat U} (@f,) =U}, (é)ﬁ ) therefore,

,,(]_— P‘)(]_—qHT_l)+ qHT_lp/(l— P+)= %(1_ %ﬁ’r‘)_ (”(1_ %ﬁ’r‘)_”(l_ qm’y))%-

Together with (A.1) this equation defines unique values of P~ <q,e and P" >q,e . To

see thiswe plug the (A.1) into the last equation:

u(l_ P (P+ ))(l_ qHT_l)"' qHT_lu(l_ P+) = u(l_ a.€& ) - (u(l_ qLeL) - u(l_ 0. €4 )) (1(i_5)55TT)—1 )

The left hand side, being a function of P* has the following properties:

a) LHS‘ P =q e = U(l— q.e )(1_ qHT_l)"' QHT_lu(l_ QLeL) = U(l— QLeL) >RHS.

b) 1t limu(m) =~ then lim LHs= - qHH)”%%E* 9 ,Eﬂjl”(l‘ P)=—c
I.

o dLHS _ 1y, - ‘I‘_l)ﬂ’(l—P')—%'(l_P+)E<O'

oF 9u =1 HT—l
dl Bqll (1 9. )

Hence, P* and P~ are uniquely defined. Now we take limits
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0.8 ~q

l@ﬂp_zﬁqﬂ_—I—;r————‘(hq_
and
yde 1qH ( P+):
-jma li-0e)-bi-a.e)-vi-a ) o) e oo
lim=-(u(L-a.e ) -ult-aue, ) (%1__{;)) -5 u(-q 6 )i~ qHH)E:
=~ (-5 U-ae)-u-a.e.)
Therefore,
mUD @D 4% ZPr,‘(,é)Ufl (@f)%:

(1-5)s"

= lTlfr:o (1_ qﬁL)"’W(”@_ P_)_”(l_ qLeL)+ QLT_lﬂ(l_ P*)— qLT_l”(l_ P_))Ez

T-1

= ”(1_ QL(?L) + m 1- g)gT_quT_lﬂ(l_ 1)+)qL—T—1 - (1_ 5)5T_17LT_1”(1_ qLeL)Ez

91
T-1
= ”(1_ qLeL)_lriEI:o(ﬂ(l_ %f'L)_”(l_ QH"H))% = ”(1_ %f'L):
H
that ends the proof. n

Proof of Proposition 4. As we have aready established in Proposition 3, the dynamic

contract maximizing the low-risk type utility and providing strictly positive insurance for
every period coincides with the static equilibrium contract ©7.

Now we will search for the best dynamic contract, which gives no insurance in a
separation phase N, O N, , which is a subset of all time periods N; ={}} ', and strictly
positive insurance in an insurance phase N; \ N, . The same arguments as in the proof of
Proposition 3 leads to the insurance conditions in the insurance phase are constant, i.e.,
©P =0=(P,D) for tON; \ N, . Hence,

§Z—1 §Z—1

K Tl Tl

which can be rewritten as




uP(e®)=(L-ws(ep)+wus(e)
where w= 5“@ H denotes the relative weight of the insurance phase of the
tONT

whole dynamic contract. In this notations a dynamic contract ©° is defined by P, D,
and w° .

Obviously, ®7 must have such P, D, and w° that maximize UE(@D) subject to
zero profit condition P:qL(eL —D) and the incentives compatibility constraint

U2(@°)<us(@5). Wewill look for such contracts that are also Pareto-superior to ©F,

e, UP(©°)=U%(@f). Thosetwo constraints can be rewritten as follows:

s ) =)

users)-usles) =w(D).

Uz(e)- UL( )

v

\W

Now we will consider the cases g <e°(q, ) and g >e€°(q, ) separately.
d) If e=<eg), then UE%)=us(O:) and, therefore, w(D)=0 while
us(@3)-us(e3)>0 and, therefore, W(D)>0, for al DO(0,e). Hence, any

dynamic contract with wi(0,w(D)) 0 (04) is strictly Pareto-superior to ©F.
e If g >e’(q,) then there exists a static contract ©° with DS <e and both w(D) and
o . . dus@) . ._ s
w(D) are strictly increasing functions as —4p <0, i=H,L for DO[O,DF]. For

al DO[0,D;) they belong to the range (0,1) and v_v(DLS):v_v(DLS):l. Hence, if there
exists a DO[O,D’) such that w(D)<w(D) then any dynamic contract with
w\w, v_v) is strictly Pareto-superior to the static contract ©7.

What we will show now is that the continuous function F(D) being defined as
F(D)=w(D)-w(D) is aways negative over D[0,D?) if g exceeds a certain
threshold level €7, i.e, if e >€”, and is strictly positive in some |eft neighborhood
DO(D, D)0 (0,D7) otherwise. To this end, using the implicit definition of D,

whichis
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Us(08)=a,ult-P3(Df)-Df)+ -, ul-Pe(DS)=us(es). »2)

wefirst rewrite F(D) as F(D)=w(D)-w(D)=F, [F, , where

O ol e o) ™
F.(0)=2= (U3 (e8)-us s ul-P)- (3 (eP)-us (05)hl-ro))+
+q.(U5(02)-u5 (@5 )ul-e )-ul1-e,))
As F, >0 over DO[0,D?], we have to show that the function F,(D) has the same
properties we require of the function F(D).
Firstly, as US(03)=U2(03), it follows that F,(DS)=0. Then, the first and

second order derivatives of F,(D) are

I

F, = (qH - qL)qL (u(l_ I:)LS - DLS)_ u(l_ €4 ))u’(l_ P) +
+(g, -0 )2- g ult-PSlr(t-P-D)+ (A.3)
+q, (u(t-e )-ult-e,))Na. (@-a, u@-P)-q,@-q Ju@-P-D))

and

1 = (ol ,) ==, ), 0 H) (L= P)+ g, (1- g, (- P - D))+
+(g, = 9.)0.200- P = D7) ==, (L~ P)+
+(7L_7H)(1 QL) (1 PL) (1 P—D),

As all the three terms in the above expression are negative, F2" <0.

Summarizing, F, is strictly concave over D[ 0,D°] and FZ(DE):O. Then it
immediately followsthat if F, (D)2 0 then F,(D)<0 for al D <D?, and F,(D)>0
in some neighborhood DD(Q, DLS)D[O, D°] otherwise. Therefore, we have to
investigate the sign of FZ'(DLS), which now becomes a function of the model
parameters and, in particular, afunction of e , i.e., F,(e )=F, (D3).

Firstly, we note from (A.3) that F,(e, )>0. Indeed,

F3(eH ) = (qH - QL)QL (u(l_ R’ - DLS)_ u(l_eH ))J'(l_ PLS)_
- (CIH -q. )(1_ a. )(U(l) - u(l_ PLS))J'(]-_ PLS - DLS)

Now, using the mean-value theorem we can write for some x[J (1— el-P°- DLS) and

yO({-Rsa):
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u’(x) u(l_PS DS) u(l eH) (1_PLS_DLS)_U(1_eH) and
L-r°-Df)-(-e,) (& -DSfi-a)

u,(y):u(l) u-R®) _ uft)-uft- )

1-{-r°)  (&-D )qL
Plugging them into the last expression for F,(e, ) wefinally obtain

F3(eH ) = (qH —q )(1_ a. )qL (e_ DLS)(U'(X)U'(]-_ PLS)_ u’(y)u’(l— PLS - DLS)) >0,

as u'(x)>u(l-R®-D?)>0 and u(1- R®)>u/(y)>0.

On the other hand, F3(ef’)< 0. Indeed, in this case Df(ef’): e’, PLS( S): 0 and
Fy(ef)= g, (1-a. @) -ul-eful-ef)-ula-e,)) <0.
Hence, continuous function F3(eH ) takes the opposite signed values at the ends of the
interval [e°,e,].
Secondly, differentiating (A.2) w.r.t. e yields

F __,  auf-R°-D)+f-gNl-R) o
de, - Q4 (1_ a. )u'(l_ I:)LS - DLS)_ (1_ Ay )qLU'(l_ PLS)

and, consequently, as P°>=gq, (eL - DLS) %u’(l— PLS)= u"(l— PLS)q ?ELS >0 and

- L
S
do V- -DZ)=-wli-P2-DZ)a-q )

<0. Using these expressions

alows usto writethe derivative F, asfollows:

F3' =q,(a, —q, )(u(l— PS - DS)—u(l—e ))lu’(l— PS)+
+q,q, (1-q,ull-e )-ult-e, )L uf-PS)+
+{-q, ), —a ul-R)L ul-Re-DF)+
+{1-q,)a.0. (u(t-e, )-ult-e ))& ufi-Rs-DF)+
+q, (o, @-a ut-P* -D)-q (-, - PSr(i-e,)-
~q.(a, —q w@-ps (1 P -DJ)

Asthe sum of the first four termsin the above expression is strictly positive we get:

F, > (0, (-0 wl-re-D)-a (- g, - R )ll-e ) -
-q. (qH - QL)UI(]-_ PLS)J'(]'_ PLS - DLS)
= CILZ(]-_ O )(u'(l_ PLS - Df)_ U'(l— PLS))UI(]-_ Q_) +
+ qL(qH - qL)u'(l_eL) - U'(l— I:)LS)U'(:L_ I:)LS - DLS)
>0.
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Hence, the function F,(e ) has aunique null in the interval (e®,e, ), which we denote
as €, i.e, F3(eLD):O. By construction of €, for al e D(ef‘,eLD) there exists an
interval (D,Dg)01(0,D8) such that for all DO(D,DF) 0<w(D)<w(D)<1 and,
therefore, any dynamic contract with w[J (\Lv v_v) is strictly Pareto-superior to ©°. If,
on the other hand, & 0(€°, e, ) then w(D)>w(D) for dl DO(0,D?) and there is no

dynamic contract which is Pareto-superior to ©7, that ends the case.

Hence, if and only if e <€ then the set of D and w that generate Pareto-superior

contracts is not empty. Obviously, an insurer is able to choose D arbitrarily. Asfor w, it

may only take discrete values.

H1-5 =
05—~ Yo*g  =w(s7).
Y %/DNT Nep QVL ONp ( )

When T - o this set gets an accumulation point w=1, in other words, the number of

elementsin any left neighborhood of w =1 increases unboundedly when T becomes larger.
This property allows an insurer to choose D sufficiently close but till smaller than D and
find such aw that » O (E(D),Z(D)h w(5,T). Therefore, for all T sufficiently large the

set of strictly Pareto-superior contracts is not empty and its closure, the set of weakly

Pareto-superior contracts, contains a welfare-maximizing contract ©7 .

Now we will show that eLD(qL):IimleLD(qH):eH. As for any g
an -

e(q.)0(e(q, )&, ) and the function e3(q, ) is continuous and e®(q, ) = e, , it follows that
IimleLD(qH):eH. If, on the other hand, g, =g, then
qu -

F (DEL T *(L-g)ult-g )-ult-e, )ul-re)-ul-R°-Dg))<o0
forany g, 0 €”(q.) = ¢ .

Finaly, we define a®. As © is the welfare maximizing dynamic contract, a
competitive separating Nash equilibrium exists as long as U'LD(G)E)z UZ(a), where U2 (a)
is the highest possible low-risk type utility under a pooling insurance contract. Similar
argument to those in the beginning of the proof show that this pooling contract is purely
static, i.e, D2, = DS and P2, =PS =aq, (6 - DS)+(1-a)q, (e, - D). Then, that highest
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utility level U2 (a)=UP(@2) either is smaler than US(OF) and there exists no
competitive pooling contract that is better than © for the low-risk type, or it is an
increasing function of a® Together with U2(0)<UP(6P) and UL()>UP(eP) this
implies that there exists a unique a® such that U2 (a®)>UP(@°(r)). The fact that

a® > a® follows from UE(@E)>ULS(OE). C

® See proof of Proposition 1.
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