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1. Introduction

Adverse selection is potentially a serious problem in any type of insurance market (see,

e.g. the seminal paper by Akerlof (1970)).1  If agents have different risks and if insurance

companies are not able or are not allowed to distinguish between different risk categories,

“low-risk” agents may find the insurance premium too costly and will not fully insure

themselves, or in the extreme, will not take insurance at all.  This mechanism of adverse

selection generally leads to welfare losses, as potential benefits from trade are not fully

realized by the market participants.  One way to overcome the adverse selection problem in

insurance markets is through screening (Rothschild and Stiglitz, 1976): insurance

companies offer a variety of insurance contracts, each with a different premium and

coverage, and agents select the insurance contract that they like best.  By employing

screening mechanisms, the market is able to re-gain part of the welfare loss due to

asymmetric information.  Screening equilibria in competitive insurance markets may not

exist, however, and there is still a welfare loss associated with them (see Riley, 2001, for

an overview of the literature).2

Even though the probability of an accident is a recurrent one in most insurance

markets (with life insurance as an exception), the typical model of insurance markets

considers a static environment where agents incur a loss only once.  This modeling

assumption may be justified if we want to explain the behavior of insurance companies as

quite a few insurance contracts are essentially static (with car insurance as a notable

exception): the terms of the insurance contract are independent of the time period and past

history.  In this paper, we ask a normative question, namely whether Pareto-improvements

can be achieved if some kind of dynamic insurance would be provided.

We consider two types of dynamic insurance contracts.  The first type, which we call

conditional dynamic contracts, allows insurance conditions in future periods to depend on

an agent’s accidental history.  In such contracts, agents that from an ex ante point of view

take identical contracts may view different insurance terms in later periods when their

accidental history differs.  The second type of dynamic contract is unconditional, as an

insurer is not able or not allowed to use an agent’s past accidental history.  Unconditional

contract can still have a dynamic nature as the terms of the contract may depend on the

time period.

                                                
1 A recent empirical confirmation can be found in Oosterbeek et al. (2001).
2 For alternative equilibrium definitions see the papers by Wilson (1977) and Riley (1979).
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We consider these two types of dynamic contracts for the following reasons.

Conditional dynamic contracts are observed in the car insurance market with the infamous

bonus/malus rules.  It is important to understand the welfare implications of such contracts.

We do not know of markets where unconditional dynamic contracts are offered, but they

may be considered in markets where conditional contracts are politically not viable, like in

some health insurance markets.  In such markets it may be considered unfair if someone

has to pay a very high premium because she simply had bad luck and got many health

accidents in a row.  In some of these markets (e.g., the Dutch market for dental insurance;

see Oosterbeek et.al., 2001) there is a clear indication of adverse selection and one may

wonder whether unconditional dynamic contracts may help to overcome (partially) the

adverse selection problem and improve welfare.

The model we consider is a generalized version of the well-known Rothschild-Stiglitz

(1976) world, where insurance contracts last for some finite number of periods.   Agents

discount future utility and profit levels at a given discount rate. There are two types of risk-

averse agents: low-risk and high-risk.  The probability that an accident happens to an

individual is constant and the same in every time period.  This means that we abstract from

moral hazard issues.  Low-risk agents have lower accidental probability than high-risk

agents and their expenditures in case of an accident are also not higher (and in most cases

lower).  Although the formal model treats these expenditures as certain numbers, we like to

think of them in terms of expected values so that insurance companies cannot discriminate

between the two types of agents on the basis of the differences in expenditures.

Unconditional dynamic contracts only condition the terms of the insurance on the time

period.  Conditional dynamic contracts can, in addition, condition the terms of the contract

on the accidental history.

Apart from allowing insurance companies to change the terms of the insurance

contract over time, a dynamic analysis may introduce also other complications.  In

particular, agents may shift wealth from one period to another: insurance companies may

shift profits between different time periods so that competition doesn’t need to result in

zero profits in every time period, and consumers may save or borrow.  In the main body of

the paper we abstract from these complications and concentrate only on the effect of

dynamic contracts on welfare.  We do this by considering competitive Nash equilibria in

which insurance companies offer a set of dynamic contracts such that each type of agent

chooses an optimal contract from this set and no insurance company can unilaterally

benefit by adding contracts to this set.  We analyze the properties of these equilibria in
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three different settings: a "static" setting where insurance companies offer the same terms

of the contract in every period, and the two dynamic settings.

We have several results.  First, in all three settings, competitive Nash equilibria only

exist for a relatively small fraction of low-risk agents in the population.  Generally

speaking, competitive Nash equilibria with unconditional dynamic contracts exist for

larger fractions of low-risk agents than those equilibria with "static" contracts.  Existence

conditions in the other settings cannot be easily compared.  Second, high-risk agents get

full insurance, in all the equilibria in all three settings.  Third, when they do exist,

equilibria under conditional dynamic contracts yield a Pareto-improvement over static

equilibrium contracts and the optimal contract charges lower premiums to agents with

better accidental histories.  The main reason is that the probability of having a better

accidental history is larger for low-risk agents than for high-risk agents allowing insurance

companies to screen the two types of agents more easily.  For a certain class of utility

functions when the number of periods gets large, the welfare achieved through conditional

dynamic contracts approaches first-best welfare levels even if agents discount the future.

Fourth, unconditional dynamic contracts only provide a welfare improvement over static

contracts when low-risk agents have lower expenditures than high-risk agents.  When this

is so, optimal unconditional contracts have some periods without insurance and much

better insurance conditions in the remaining periods.  As expenditures differ, high-risk

agents are hurt more in periods without insurance than low-risk agents.  This allows

unconditional dynamic contracts to better screen the different types of agents.  Finally, by

means of simulations we show that the welfare improvements of using dynamic insurance

contracts can be considerable.  Depending on the context and on the parameter values,

dynamic contracts can reduce the welfare loss for low-risk agents between the first-best

solution and the static equilibrium outcome by more than 60%.

The paper is related to different branches of literature (apart from the seminal paper by

Rothschild and Stiglitz, 1976).  First, the paper is closely related to the literature on the use

of experience ratings in multi-period self-selection models, see, e.g., Dionne and Laserre

(1985) and Cooper and Hayes (1987).  The idea in this literature is that the terms of future

coverage may depend on previous loss experience as, for example, in car insurances.  This

is the setting we study when considering conditional dynamic contracts.  Dionne and

Laserre (1985) study infinite horizon contracts where agents maximize average per period

utility.  They show that in such a world, insurance companies can screen agents in such a

way that the first-best outcome is achieved.  Cooper and Hayes (1987) study a similar
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problem in a two-period model.  Their main focus is on the differences in equilibrium

outcomes under monopoly and perfect competition.  Our main focus in this paper is

different.  We want to understand why and under what conditions dynamic contracts are

welfare improving vis-à-vis static contracts: is it because of the state-dependent nature of

conditional contracts or is it because of the time (and not state) dependency that is also

present in unconditional contracts.  In so far as our paper deals with conditional dynamic

contracts we analyze the intermediate case of finite horizon contracts where, in addition,

agents discount future utility.  We show that contrary to what is argued by Cooper and

Hayes (1987) in order to get close to the first-best, it is not necessary that agents do not

discount future payoffs.  Moreover, by means of simulations we provide insight in the

question by how much welfare can be improved.

Part of the insurance literature studies the way probationary periods can be used to

separate agents with different risk profiles (see, e.g., Eeckhoudt et al. (1988) and Fluet

(1992) among others).  The basic idea of a probationary period is that prior to the

reimbursement of losses incurred, the insurance company pays no indemnity.  A

probationary period is one of the possibilities in our framework and we show that the

optimal unconditional contract has a probationary period.  The literature on probationary

periods considers, however, a situation where agents incur only one loss over a certain time

period where the timing of the loss may be different for different types of agents.  This

situation is relevant in life insurance markets.  In contrast, our model considers situations

in which in any given period, agents have a certain probability of getting an accident

independent of previous accidents.  Hence, our model does not cover life insurance

markets, but is more relevant in situations where agents may incur many losses at different

moments in time.

Finally, there is a series of articles (Janssen and Roy 1999a, 1999b, Janssen and

Karamychev, 2000) showing that through dynamic trading the competitive market

mechanism allows high quality sellers of a durable good to trade even in the presence of

asymmetric information.  Dynamic equilibria typically involve increasing prices over time

and higher quality sellers waiting to sell in later periods.  In other words, waiting time

before selling can act as a screening device in dynamic competitive markets with adverse

selection.  Our analysis in the context of unconditional dynamic contracts has a similar

flavor: low-risk agents (i.e., "high quality" agents) incur an initial loss of not being insured

in order to get much better insurance conditions later on.
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The rest of the paper is organized as follows.  Section 2 discusses definitions and

notations that we will use in the rest of the paper.  Section 3 briefly analyzes the static

model for reference purposes.  Sections 4 and 5 consider the analysis of the dynamic world

of conditional and unconditional contracts respectively.  Section 6 concludes with a

discussion of the results.  Some of the more elaborate proofs are contained in the appendix.

2. Preliminaries

The environment studied here is a generalization of the model first described by Rothschild

and Stiglitz (1976).  Individual agents come in two types, high-risk agents "H" and low-

risk agents "L".  Everyone is endowed with some income level in every period, which is

normalized to be equal to 1.  Each type { }LHi ,∈  is characterized by a level of (expected)

expenditure ie  in case of an accident, where 10 <≤< HL ee , and a probability of an

accident iq , 10 <≤< HL qq .3  The probability of an accident and the related expenditures

are private knowledge and constant through time.  All agents are risk averse, they have the

same state independent strictly concave and increasing utility function u and for the sake of

convenience we assume that ( ) 01 =u .  Let ( )1,0∈α  denote the share of low-risk agents

within the population.

On the supply side of the market there are a number of risk neutral insurance

companies competing with each other.  These companies are not able to discriminate

between the different types.  In what follows we will use the superscripts “S” and “D” to

refer to static and dynamic variables, respectively, and we will compare the welfare

implications of two types of insurance contracts: static and dynamic.  A static insurance

contract ( )SSS DP ,=Θ  consists of a constant premium SP  and a constant deductible SD

such that in case of an accident an insured individual receives { }0,max S
i De −  from the

insurance company.  By ( )∞=Θ ,00
S  we denote an artificial contract, which gives no

insurance at all.  The expected utility of type i  under contract SΘ  is

( ) ( ) ( ) ( )S
i

SS
i

SS
i PuqDPuqU −−+−−≡Θ 111 .

                                                
3 Although formally, we treat the level of expenditures to be fixed numbers, we do not allow insurance
companies to offer insurance contracts that are able to discriminate between different types only because of
the differences in fixed expenditures.  For example, we do not allow to condition future terms of an insurance
contract on observed expenditure levels.  One way to think of these expenditure levels is, therefore, as
expected values so that differences in types cannot be based on different realizations of expenditure levels.
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A dynamic contract DΘ  lasts T time periods and consists of T parts, each part

specifying the terms of the contract in that time period.  Unlike a static contract, dynamic

contracts may offer different insurance conditions for an agent in time periods Tt ,,2 �=

depending on her previous accidental history th .  Thus, a dynamic contract’s term in time

period t  is a set of 12 −t  insurance policies that correspond to every tt Hh ∈ , where tH  is a

set of all possible history realizations up to period t.  For example, in period 1 a dynamic

contract DΘ  offers a simple static insurance policy ( )111 , DP=Θ , in period 2 a (static)

policy ( ) ( ) ( )( )1
2

1
2

1
2 , DP=Θ  applies if there was an accident and ( ) ( ) ( )( )0

2
0

2
0

2 , DP=Θ  applies if

there was no accident.  Hence, ( ) ( ){ }1
2

0
22 ,ΘΘ=Θ .  In a similar fashion

( ) ( ) ( ) ( ){ }1,1
3

0,1
3

1,0
3

0,0
33 ,,, ΘΘΘΘ=Θ  and so on.  We will call such a contract

( )T
D ΘΘΘ=Θ ,,, 21 � .

The ex ante expected utility of type i under a contract DΘ  is

( ) ( ) ( )( ) ( ) ( )( )( )∑ ∑
= ∈

−









−−+−−
T

t Hh

h
ti

h
t

h
titi

t

tt

ttt PuqDPuqh
1

1 111Prδ ,

and her expected per period utility is

( ) ( ) ( ) ( )( ) ( ) ( )( )( )∑ ∑
= ∈

−
−
−









−−+−−≡Θ
T

t Hh

h
ti

h
t

h
titi

tDD
i

tt

ttt
T PuqDPuqhU

1

1

1
1 111Prδ
δ
δ ,

where ( )1,0∈δ  is the common discount factor and ( )ti hPr  is an i  agent’s probability to end

up with a history th  at time period t.  For example, for ( )0,1,04 =h , i.e., no accidents in

time periods 1 and 3 and an accident in time period 2, ( ) ( )24 1Pr iii qqh −= .

One can see that for a dynamic contract with constant insurance conditions, i.e., for

( ) *Θ=Θ th
t , ( ) ( )*Θ=Θ S

i
DD

i UU .  This allows us to make welfare comparisons between static

and dynamic contracts.

As explained in the introduction, in certain cases an insurer is not able, or not allowed,

to use the information, which is obviously available to him, about an agent’s past accidents.

In this case the contract terms tΘ  are no longer sets of policies but simply a sequence of

static contracts ( )ttt DP ,=Θ  and the expression for the expected per period utility

simplifies to

( ) ( ) ( ) ( )( ){ }∑
=

−
−
− −−+−−=Θ

T

t
titti

tDD
i PuqDPuqU T

1

1

1
1 111δ
δ
δ .
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We will call such a contract an unconditional dynamic contract.  The difference between

these contracts and the conditional dynamic contracts described above is that unconditional

contracts make the terms of the insurance contract in period t unconditional on the

accidental history.

Let D
TΣ  be the set of all T-period dynamic (conditional or unconditional, depending on

the context) insurance contracts.  Then, the set SΣ , which is the set of all static insurance

contracts, coincides with D
1Σ  and, therefore, any static contract SΘ  can be treated as a

1-period dynamic contract.  What we will do then in this paper is to describe welfare

properties and existence conditions of a competitive Nash equilibrium over the set D
TΣ  for

an arbitrary but fixed 1≥T .

All insurance companies offer T-periods insurance contracts to the agents.  Because of

competition insurance companies do not make any profit in equilibrium.  Every agent

chooses the contract, possibly S
0Θ , that maximizes her expected per period utility.  The

formal definition of a (competitive Nash) equilibrium is as follows.

Definition 1.  A T-period competitive Nash equilibrium is a subset of T-period insurance

contracts, D
TT Σ⊂Ψ , present in the market satisfying the following conditions:

a) Each agent chooses an insurance contract that maximizes her per period utility, i.e.,

every type { }LHi ,∈  chooses the contract ( )Θ∈Θ
Ψ∈Θ ii U

T

maxarg .

b) Any equilibrium contract is bought by at least one type, i.e., for any TΨ∈Θ′

{ }LHi ,∈∃  such that iΘ=Θ′ .

c) Any equilibrium contract yields nonnegative profit to an insurer.

d) No insurance company can benefit by unilaterally offering a different insurance

contract, i.e., any insurance company offering a contract T
D
T ΨΣ∈Θ′ \  such that for

some { }LHi ,∈  ( ) ( )Θ>Θ′
Ψ∈Θ ii UU

T

max  makes strictly negative profit.

Standard arguments rule out any pooling insurance contract PΘ  to be a Nash

equilibrium.  For static contracts, the argument is given by Rothschild and Stiglitz (1976).

In a dynamic world a similar argument holds true: for any (partial) pooling contract there

exists a contract that differs from it in only one time period in such a way that only low-
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risk agents prefer the latter contract.  This implies that the deviation yields strictly positive

profit.

On the other hand, a separating Nash equilibrium (static or dynamic), which involves

two contracts HΘ  and LΘ , may not exist if there exists a profitable pooling contract PΘ

that gives a higher utility level to the low-risk agent than LΘ .  Hence, the existence of a

separating Nash equilibrium is guaranteed if any pooling contract yielding nonnegative

profit, PΘ , gives less utility to low-risk type agents than LΘ , i.e., ( ) ( )LLPL UU Θ≤Θ .

Throughout the following three sections we assume that an insurance company is

forced to price its contract in such a way that it yields zero profit in every time period and

that agents are also not allowed to transfer wealth between periods.

3. Static Insurance Contracts

In this section we start off by briefly generalizing the standard results of Rothschild and

Stiglitz (1976) to the case where types of agents differ not only in accidental probabilities

but also in their expenditures in case of an accident.  Equilibria under static contracts,

which are considered here, are a benchmark for further analysis.

A competitive Nash equilibrium, if it exists, involves two contracts S
HΘ  and S

LΘ  such

that they generate zero profit for the insurer.  This implies that ( )S
HHH

S
H DeqP −=  and

( )S
LLL

S
L DeqP −= .  Moreover, it follows that high-risk agents take full insurance, i.e.,

( ) ( )0,, HH
S
H

S
H

S
H eqDP ==Θ .  Low-risk agents get at most partial insurance according to the

contract S
LΘ .  This contract is such that high-risk agents are either indifferent between S

HΘ

and S
LΘ , i.e., ( ) ( )S

L
S
H

S
H

S
H UU Θ=Θ , or strictly prefer S

HΘ .  Partial, or even no insurance, is the

price low-risk agents have to pay in order to be separated from high-risk agents.  Existence

of equilibrium is guaranteed only, as is well known, for relatively small values of α .  The

following proposition formally states this standard result.

Proposition 1. Let ( )( )HHq
S
L equme

H
−−= 11 1  where m is the inverse of the utility function

u.  Then, there exists an ( )1,0∈Sα  such that:

a) For all ( )Sαα ,0∈  there exists a unique separating competitive Nash equilibrium

{ }S
L

S
H ΘΘ=Ψ ,1 .  High-risk agents get full insurance ( ) ( )0,, HH

S
H

S
H

S
H eqDP ==Θ  while
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low-risk agents get partial insurance, i.e., ( )S
L

S
L

S
L DP ,=Θ  and ( )L

S
L eD ,0∈ , if ∈Le

( H
S
L ee , ] and no insurance, i.e., SS

L 0Θ=Θ , if ∈Le [ S
Le,0 ].

b) For all ( )1,Sαα ∈  a separating competitive Nash equilibrium 1Ψ  does not exist.

Proof.  The utility low-risk agents get under S
LΘ  does not depend on α , i.e., ( )S

L
S
LU Θ  is a

constant determined by the incentives compatibility constraint ( ) ( )S
L

S
H

S
H

S
H UU Θ≥Θ .  Given

( )S
LL

S DeqP −= , ( )SS
HU Θ  becomes a decreasing function of ∈SD [ Le,0 ]:

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) .01111

111

<−′−−−−′−−=

=−−+−−=Θ

S
HL

SS
LH

S
H

SS
HS

SS
HS

PuqqDPuqq

PuqDPuq
dD

d
U

dD

d

It takes its minimum value of ( )LH euq −1  at L
S eD = .  Hence, if

( ) ( ) ( )LHHH
S
H

S
H euqequU −≤−≡Θ 11  then any competitive contract providing partial

insurance to the low-risk agents is more attractive for the high-risk agents than ( )S
H

S
HU Θ

and, therefore, SS
L 0Θ=Θ .  This happens if ( )( ) S

LHHqL eequme
H

≡−−≤ 11 1 .  If, on the other

hand, S
LL ee >  then the incentives compatibility constraint becomes binding that determines

( )L
S
L eD ,0∈  in such a way that ( ) ( )S

L
S
H

S
H

S
H UU Θ=Θ .

While ( )S
L

S
LU Θ  is independent on α  the maximum utility low-risk agents may ever

obtain from a competitive pooling contract S
PΘ , i.e., ( ) ( )S

P
S
L

S
P

S
L UU

S
P

Θ=Θ
Θ

maxˆ , does depend

on α  as the "pooling price" S
PP , which is defined to be equal to

( ) ( ) ( )S
PHH

S
PLL

S
P DeqDeqP −−+−= αα 1 , depends on it.  Solving the maximization

problem

( ) ( ) ( )( )
( ) ( ) ( )S

PHH
S
PLL

S
P

S
PL

S
P

S
PL

DeqDeqP

PuqDPuq

−−+−=

−−+−−

αα 1:s.t.

111max

yields the first order condition

( )( ) ( )
( )( ) ( )( )S

P
S

P
HL

HLS
P

S
P

S
P

L

L DPu
qq

qq
DDPu

q

q ˆˆ1
11

1ˆˆˆ1
1

−′
−+−

−+=−−′
− αα

αα
,

which implicitly defines S
PD̂ .  Now, the first order derivative of ( )S

P
S
LU Θ̂  with respect to α

becomes

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )S
PLL

S
PHH

S
PL

S
P

S
PL

S
P

S
L

S
P

S
L DeqDeqPuqDPuq

U

d

dU ˆˆˆ11ˆˆ1
ˆˆ

−−−−′−+−−′=
∂
Θ∂=Θ
αα

.
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One may easily see that ( ) 0ˆ >ΘS
P

S
Ld

d Uα  for all H
S
P eD ≤≤ ˆ0 .  Finally, note that

( ) ( ) ( )
10

ˆˆ
==

Θ<Θ<Θ
αα

S
P

S
L

S
L

S
L

S
P

S
L UUU .  This implies that there exists a unique ( )1,0∈Sα  such

that ( ) ( )
S

S
P

S
L

S
L

S
L UU

αα =
Θ=Θ ˆ  and the result follows.

Figure 1 presents the main idea.  It shows that there is no insurance for low-risk agents

if their expenditures are relatively small.  In the figure { }HΘ  and { }LΘ  are the sets of

competitive contracts designated for high- and low-risk agents respectively.  These

contracts satisfy the zero-profit conditions ( )DeqP HH −=  and ( )DeqP LL −= ,

respectively.  Point A denotes the optimal contract for high-risk agents.

One may see that if the set of competitive contracts that can be offered to low-risk

agents only lies entirely below the indifference curve that passes through point A, as

depicted in Figure 1, i.e., when S
LL ee ≤ , then any contract from the set { }LΘ  is more

attractive for high-risk agents than S
HΘ .  Even the worst contract B, which gives zero

coverage, i.e., when LeD = , gives a higher utility level to high-risk agents than S
HΘ .

Hence, in the separating equilibrium there is no insurance for low-risk agents and we are in

a case of pure adverse selection.  If, on the other hand, S
LL ee > , such that the set { } ′ΘL

denoted by the dashed line intersects with the indifference curve that passes through point

A, then in equilibrium the low-risk agents get a contract C which gives partial insurance.

Since the model described here involves four parameters, namely Hq , He , Lq  and Le ,

for presentational purposes in what follows we fix Lq  and He  at arbitrary levels and

consider the parameter space ( ) =LH eq , [ 1,Lq )x[ He,0 ].  For any fixed level of Lq  and He ,

Figure 1.  Separating static insurance contracts.

D

P

0
Le He

HH eq

LLeq

S
Le

A

B

C

( ) ( )S
H

S
H

S
H UconstU Θ==Θ

{ }LΘ { }HΘ { }′ΘL
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S
Le  can be written as a strictly increasing function of Hq , ( ) ( )( )HHqH

S
L equmqe

H
−−= 11 1 ,

and ( ) H
S
L ee =1 .

To get an idea about the relative importance of dynamic insurance contract, we have

done several simulations.  In the context of static insurance contracts, the following

example shows for a particular choice of utility functions the region of the parameter

values where low-risk agents are partially insured.

Example 1.  In order to get an idea of the range of parameter values that yields partial

insurance to the low-risk agents we calculated ( )H
S
L qe  for 9.0=He  and 1.0=Lq .

Figure 2 shows the functions ( )H
S
L qe  for two different utility functions:

( ) mmu ln1 =  and ( ) 12 −= mmu .  Below the curves, the expenditure of low-risk

agents is too low to give them any insurance in equilibrium. //

4. Conditional Dynamic Contracts

We next study the properties and existence conditions of competitive Nash equilibria in a

setting where insurance companies can offer conditional dynamic contracts.  As explained

in the Introduction, insurance conditions in this case may depend on the time period and on

the accidental history of insured agents, as is the case with car insurances.  Although

insurance companies are not allowed to transfer profits between different periods, they

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Figure 2.  Regions of parameter values where low-risk agents do and do not get
positive insurance.

Hq

Le

( ) muqe H
S
L ln, =

( ) 1, −= muqe H
S
L
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may "transfer profits" from one accidental history to another, i.e., competition between

insurance companies results in a zero-profit condition of the form

( ) ( )( ) 0Pr =−−∑
∈ tt

tt

Hh

h
tLL

h
tti DeqPh , Tt ,,1 �= .

This means that even though insurance companies know that only a certain type i of

agents may decide to take a certain insurance contract, they may nevertheless find it

optimal to distinguish between agents who (by pure chance) have a different accidental

history.  As we will see, they may do so in order to better screen high and low-risk agents.

The proposition below states the main result for conditional dynamic contracts.

Wherever competitive Nash equilibria in this setting exist, they yield a Pareto-

improvement over the static equilibrium contracts: high-risk agents also get full insurance

in every period independent of their accidental history and low-risk agents get (at most)

partial insurance in every period and the insurance premium they pay is lower, the better

their accidental history.  These equilibria exist wherever the fraction is small enough so

that no company wants to deviate by offering a pooling contract.  Finally, when the utility

level associated with very low income levels falls dramatically, formally when

( ) −∞=
→

��
P 0
��� , then when the time horizon is very large, it is possible to offer lower-risk

agents almost full insurance even if the fraction of low-risk agents is high.

Proposition 2.  For any T there exists an ( ) ( )1,0∈TD
Cα  such that

a) For all ( )D
Cαα ,0∈  there exist a separating competitive Nash equilibrium

{ }D
L

D
HT ΘΘ=Ψ , .  The contract D

HΘ  is unique and coincides with S
HΘ , D

LΘ  generally

need not to be unique but all multiple contracts D
LΘ  yield the same utility.

b) For all ( )1,D
Cαα ∈  a separating competitive Nash equilibrium TΨ  does not exist.

c) If { }D
C

S ααα ,min<  then ( ) ( )S
L

S
L

D
L

D
L UU Θ>Θ .

d) For any given time period t, if low-risk agents get positive insurance then the optimal

premium and deductible given a history of k accidents, k
tLP ,  and k

tLD , , satisfy the

following relation: 1
,

1
,,

−− += k
tL

k
tL

k
tL DPP .

e) If ( ) −∞=
→

��
P 0
���  then ( ) 1lim =

→∞
TD

C
T

α  and for any fixed ( )1,0∈α

( ) ( )equU L
D
L

D
L

T
−=Θ

∞→
1lim .
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The proof of Proposition 2 is in the appendix.  The result can be understood along the

following lines.  For any difference between 
/
�  and 

+
� , it is more likely that high-risk

agents get an accident than low-risk agents do.  Accordingly, the terms of the insurance

contract after a few accidents gets a relatively smaller weight in the overall evaluation of

the insurance contract by a low-risk agent than by a high-risk agent.  Hence, it is possible

to design a dynamic contract that low-risk agents prefer to the best static contract insurance

companies can offer, while high-risk agents still prefer the full insurance contract.  Those

contracts give worse insurance conditions to agents that (just by chance) have had many

accidents (see property (d)).  In expected terms, as the probability of an accident is

constant over time, insurance companies make losses over those agents with better

accidental histories, while they gain (in expected terms) on those agents with worse

histories.

Even though low-risk agents get a higher utility in the separating equilibrium under

conditional dynamic contracts than under static contracts, it is not guaranteed that this type

of equilibrium exists for a wider range of parameter values of α.  The reason is that low-

risk agents also get a higher utility under possible conditional dynamic pooling contracts

than under possible static pooling contracts.

Finally, the result that when the number of periods is large, low-risk agents can get a

conditional dynamic contract that gives them a utility level almost equal to the utility of

full insurance, is based on the following considerations.  For any 1>�  there exist a

contract D
LΘ̂  with full insurance at a premium 

//
��  in all periods 11 −= �� ��� , and full

insurance at a relatively high premium +P  if the history was one with only accidents and a

relatively lower premium −P  otherwise in the last period.  The premiums +P  and −P  at

time period T are constructed such that the zero-profit condition holds as well as the

incentive compatibility constraint, i.e., high-risk agents prefer to take the full insurance

contract at a premium HH eq  in all periods.  The proof shows that when T becomes large,

−P  approaches 
//
�� , while +P  approaches 1, the full income level, in such a way that,

because of the difference between 
/
�  and 

+
� , the expected utility of this event for the

low-risk agent approaches 0, while it remains sufficiently negative for high-risk agents.  As

contract D
LΘ̂  need not be the equilibrium contract, expected utility under the equilibrium

contract is even higher.  Note that the result does not depend on agents not discounting

future utility.
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It is important to understand the role of commitment on the part of the insurance

companies.  If they had not been committed to the contract, a company after one or more

periods could have offered better insurance conditions to those low-risk agents that had

been unlucky enough to get many accidents, e.g., they could have offered to start almost

the same contract from the beginning (as if there had been no bad accidental history) and

made a profit as high-risk agents had not been attracted at that moment.  However, if high-

risk agents anticipate this behavior on the part of the insurance companies, then they would

not opt for the full insurance contract designed for them.

In this model, we have implicitly assumed that insurance companies and agents are

committed to the contracts they have signed and that if an agent switches to another

insurance company she will not start the contract from the beginning.  In some markets,

like the one for car insurance, commitment on the part of insurance companies is achieved

as insurance companies share information about accidental history of their clients.  It is

more difficult, however, to ensure that agents are committed to the contract.

If this form of commitment is not achievable, additional constraints have to be

imposed, namely after every history contract terms should be such that it is not possible to

design a profitable contract that agents prefer to continuing the existing contract.

Moreover, after every history we have to ensure that agents would like to stay insured

instead of quitting the insurance market altogether.  In a T-period world, it is very difficult

to satisfy all those constraints.4  This is another reason why we consider unconditional

contracts in the next section.

Before we do so, we provide an estimate of the welfare improvements that are

possible for certain specific cases.

Example 1 continued.  To determine by how much welfare could be improved by

conditional dynamic insurance contracts, we normalize the total low-risk welfare

loss due to asymmetric information to be 100% so that the static contract S
LΘ  gets

a score of 0% and full insurance under the full information gets a score of 100%.

We then calculate the ratio 
( ) ( )

( ) ( )S
L

S
LLL

S
L

S
L

D
L

D
L

Uequ

UU

Θ−−
Θ−Θ

1

ˆ
 for fixed 9.0=He , 1.0=Lq  and

different values of ∈Hq [ 1,Lq ) and ∈Le [ He,0 ], where S
LΘ  is the static

                                                
4 See Cooper and Hayes (1987) for some of the relevant considerations when T = 2.



16

equilibrium contract and D
LΘ̂  is the contract mentioned above. The contract D

LΘ̂

is chosen, as is it difficult to calculate the equilibrium contract D
LΘ  itself.

Figure 3 and Figure 4 show parameter regions, which yield different levels

of the welfare gain for low-risk agents for ( ) mmu ln= , 9.0=δ  and 4=T  and

�

���

���

���

���

���

���

���

���

���

��� ��� ��� ��� ��� ��� ��� ��� ��� �

Figure 3. Welfare improvements under conditional contracts '

/

ˆ , eH=0.9, qL=0.1,
u(m)=ln m, T=4.

�

���

���

���

���

���

���

���

���

���

��� ��� ��� ��� ��� ��� ��� ��� ��� �

Figure 4. Welfare improvements under conditional contracts '

/

ˆ , eH=0.9, qL=0.1,
u(m)=ln m, T=5.
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5=T  correspondingly.  For larger values of T almost all parameter combinations

lead to almost 100% welfare improvement.

As the equilibrium conditional dynamic contract D
LΘ  gives an even higher

utility level for the low-risk type agents than D
LΘ̂ , the potential welfare

improvement and the region where it is possible is even larger than presented. //

5. Unconditional Dynamic Contracts

In the introduction we have explained that in certain markets, like health insurance

markets, conditional dynamic contracts may be considered unfair or politically not viable.

When, after a sequence of many accidents, car insurance becomes too expensive, a person

may always decide not to drive a car anymore.  This is not true for health insurance.  For

this reason we consider in this section whether unconditional dynamic contracts may

recoup part of the welfare loss due to adverse selection in the static equilibrium outcome.

Another advantage of unconditional contracts is that the commitment problem can be

easily avoided here.

It is clear from the outset that wherever they both exist, unconditional contracts yield

lower welfare than conditional contracts as the latter include the former.  What is not clear

from the outset, however, is whether the equilibrium existence conditions are stricter for

the case of unconditional contracts.  This is because the best unconditional pooling contract

for low-risk agents also yields lower utility than the best pooling contract in the ease of

conditional contracts.  We start the analysis by considering the Rothschild-Stiglitz case in

which 
+/
�� = .  In this case, we have a straightforward negative result, which is that the

best unconditional contract is the repeated static contract.  In other words, welfare gains are

not possible using unconditional dynamic contracts in such a world.

Proposition 3.  If ���
+/
==  then for all ( )Sαα ,0∈  there exists a unique separating

competitive Nash equilibrium that has the static insurance policies S
HΘ  and S

LΘ  in any time

period.  For all ( )1,Sαα ∈  a separating competitive Nash equilibrium does not exist.

Proof.  We first show that ( ) ( )6

+

6

++7+

'

+
����

��

�� =≡ 1 .  Maximizing

( ) ( )∑ =
−

−
−= 7

W +W

6

+

W'

+

'

+
��

7 1

1

1
1

�

 with respect to all ∈
+W

�
�

[0,e] and subject to zero profit

condition ( )HtHHt DeqP ,, −=  yields 0, =HtD  and eqP HHt =,  for all Tt ,,1�= , hence,
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S
HHt Θ=Θ ,  and ( ) ( )6

+

6

+

'

+

'

+
�� = .  On the other hand, maximizing

( ) ( )∑ =
−

−
− Θ=Θ T

t Lt
S
L

tD
L

D
L UU T 1 ,

1

1
1 δ
δ
δ  with respect to all ∈

+/
�

�

[0,e] and subject to

( )LtLLt DeqP ,, −=  and the incentive compatibility constraint ( ) ( )6

+

6

+

'

/

'

+
�� ≤  yields the

following Lagrangian:

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( ),111

111

1 ,,,
1

1
1

1 ,,,
1

1
1

∑
∑

=
−

−
−

=
−

−
−

−−+−−−Θ+

+−−+−−=
T

t LtHLtLtH
tS

H
S
H

T

t LtLLtLtL
t

PuqDPuqU

PuqDPuqL

T

T

δλ

δ

δ
δ

δ
δ

,

and the first order conditions for Tt ,,1�=  are:

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )LtLHLtLtLHLtLtLtLL PuqqDPuqqPuDPuqq ,,,,,, 1111111 −′−−−−′−=−′−−−′− λ .

It immediately follows that the constraint is binding and the first order conditions become:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )Lt

LtHLLtLtLH

LtLLLtLtLL D
PuqqDPuqq

PuqqDPuqq
,

,,,

,,,

1111

1111
ϕλ ≡

−′−−−−′−
−′−−−−′−

= , Tt ,,1�= .

As ( ) 0, >′ LtDϕ  for all 0, ≥LtD , all LtD ,  have to be equal to each other, i.e., LLt DD ,1, =  for

all t and, therefore, D
LΘ  is just a repetition of a static contract.  But we know that the best

contract for the low-risk type is S
LΘ .  Finally, S

LΘ  exists if and only if ( )Sαα ,0∈ .

It is interesting to better understand the reason for this result.  A first reason is that we

require the zero-profit condition to hold in every period.  This together with the fact that

the utility function is time-separable yields a set of first-order conditions, which are the

same for every period.  The second reason is the concavity of the utility function, which

makes sure that less-risky outcomes with the same expected expenditures are preferred to

more risky outcomes.

This result also sheds another light on the positive result obtained for conditional

dynamic contracts.  There are two important differences between the two settings when

+/
�� = .  First, with conditional contracts insurance companies are able to shift profits

between different accidental histories for every given time period.  Second, even if

expected profits are zero after every history, insurance companies may give agents with

better histories contracts with more insurance (lower deductible and higher premium).  In

these two ways insurance companies are able to relax the static incentives compatibility

constraint from the perspective of the low-risk agents.  As the insurance company is risk-

neutral, it is indifferent between (i) a contract giving constant insurance conditions with

zero expected profit in each state, (ii) a contract making zero expected profits in each state
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(at different terms) or (iii) a contract making zero expected profits in every period (but not

in every state).  To the contrary, the low-risk agents make a distinction between these

cases.

Another point in the above intuitive explanation of Proposition 3 is that we have not

considered corner solutions of type ��
/W
=

�

 where no insurance is offered in certain

periods.  In the case where HL ee =  this is also not really necessary as both types of agents

have the same evaluation (utility) of no insurance: )1()1( LH eueu −=− .  When HL ee < ,

this is no longer the case and we may use "no insurance in certain periods" (a probationary

period) as a way to screen agents in order to reach welfare improvements.  The next

proposition summarizes our results for this case.

Proposition 4.  There exists an ∈Dα [ 1,Sα ) and ( )H
D
L ee ,0∈  such that:

a) For all ( )Dαα ,0∈  there exists a *T  such that for all *TT >  there exists a separating

competitive Nash equilibrium { }D
L

D
HT ΘΘ=Ψ , .  High-risk agents get full insurance,

i.e., ( )S
H

S
H

D
H ΘΘ=Θ ,,� .  The low-risk agents get a contract D

LΘ  such that

( )



∈=Θ=Θ
∈Θ=Θ

=Θ
sepTLLL

D
tL

sep
SD

tLD
tL NNtDP

Nt

\for  ,,

for  ,

,

0,
, ,

where sepN  is the separation phase of the contract.  If ∈D
Le [ H

D
L ee , ] then ∅=sepN ,

S
LL DD =  and S

LL PP = , i.e., low-risk agents get static insurance ( )S
L

S
L

D
L ΘΘ=Θ ,,� .  If,

on the other hand, ( )D
L

D
L ee ,0∈  then ∅≠sepN , S

LL DD <≤0  and S
LL PP > .  In this case

( ) ( )S
L

D
L

D
L

D
L UU Θ>Θ .

b) For any ( )1,Dαα ∈  a separating competitive Nash equilibrium does not exist.

c) For all ( )1,LH qq ∈  ( ) ( )( )HH
S
LH

D
L eqeqe ,∈  and ( ) ( ) HH

D
L

q
L

D
L eqeqe

H

==
→1

lim .

The proof of Proposition 4 is in the appendix.  Proposition 4 tells us that the results of

Proposition 3 are robust only in a (possibly small) neighborhood of ,HL ee =  i.e., when Le

is close enough to He .  When Le  falls outside this neighborhood, i.e., when D
LL ee < , then

a Pareto-improvement is possible vis-à-vis the static outcome.  The best screening contract

for low-risk agents involves a "separation phase" with no insurance and an "insurance
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phase" with better (and constant) insurance conditions than in the static contract.5  The

range of fractions of low-risk agents in the population for which such a separating

equilibrium exists is also larger than in the case of a static separating equilibrium.  Finally,

we are able to show that the neighborhood around He  for which no welfare improvements

vis-à-vis the static equilibrium are possible becomes very small when Hq  is close to Lq  or

close to 1 (part (c) of Proposition 4).

In order to better understand the reason for the "large T assumption", we have to

explain a part of the more formal proof given in the Appendix.  In the proof we write the

overall utility level low-risk agents get as a convex combination of the utility in the

separation and the insurance phase.  The weights are expressed in terms of the discount

factor , the number of insurance periods T and the set of time periods in the separation

phase 
VHS

	 .  We show that in order to have a welfare improving contracts that satisfies the

incentive compatibility constraint this weight has to be in a certain interval.  As T is a finite

number, the weights can only take on a finite number of values.  For any relatively small

value of T, it may happen that by none of the possible choices for the length of the

separation phase the weight of utility function falls in the required interval.  When T is

large enough but still finite, this is no longer the case.  In summary, the requirement that T

be large enough has to do with the assumption that time is measured discretely, rather than

that we need the contract to last for a very long period of time.

We next show by means of an example for which region of parameter values welfare

can be improved and by how much it can be improved.

Example 1 continued.  Example 1 showed parameter regions where low-risk agents

will (not) have some insurance contract under the static equilibrium.  Figure 5

shows the functions ( )H
D
L qe  for the same two utility functions as studied in

Example 1 for the limit case when ∞→T  and 2
1≥δ .  For all the parameter

values below the graph dynamic contracts allow for welfare improvements.

Parameter values above the graph are such that the dynamic and static

equilibrium contracts coincide, hence welfare improvement is not possible.  One

                                                
5  We implicitly assume that low-risk agents have to register with an insurance company even though they
don’t get any insurance in the initial separation phase, i.e., before they are able to get to the good insurance
phase they already have to be known to the insurance company.  At the same time, they can not buy an
insurance from another company.  This is possible when insurance companies share information, a practice
that is common, for example, in the car insurance market.



21

can see that for the given utility functions the regions where welfare

improvements are possible are quite large.  In particular, D
Le  is quite close to He .

To determine by how much welfare could be improved by dynamic

insurance contracts, we follow the same procedure as in the example of Section 4.

Figure 6 and Figure 7 show parameter regions, which yield different levels of the

welfare gain for low-risk agents, for ( ) mmu ln=  and ( ) 1−= mmu ,

respectively.
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Figure 5. Region of parameter values where welfare can be improved using
unconditional dynamic contracts.
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Figure 6.  Welfare improvements under unconditional contract '
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One can see that if S
LL ee <  and low-risk type gets no insurance in a static

equilibrium, then the welfare improvement dynamic insurance yields is very

sensitive to Hq  while if S
LL ee >  then the difference LH ee −  plays a crucial role. //

6. Discussion and Conclusion

In this paper we studied a generalization of the Rothschild and Stiglitz model of a

competitive insurance market affected by adverse selection.  We allowed agents to have

different expenditures and investigated the nature of dynamic contracts.  We showed that

in the multi-period dynamic model a competitive Nash equilibrium exists as long as the

share of low-risk agents is sufficiently small.  If such an equilibrium exists, it is Pareto-

superior to the static equilibrium if conditional contracts are allowed.

When contracts are unconditional, welfare improvements are only possible if

expenditures of the two groups are different.  If this is so, these equilibria exist for a larger

fraction of low-risk agents than static equilibria.  The optimal contract has a separation

phase offering no insurance and insurance phase offering much better insurance conditions.

Both conditional and unconditional dynamic contracts have been derived under the

assumption that they yield zero profit in every period and that agents are not allowed to

shift wealth between periods.  Here we discuss at a more informal level how these

assumptions can be relaxed.
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Figure 7. Welfare improvements under unconditional contract '
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We begin with the discussion of unconditional contracts.  It is not difficult to see that

as before high-risk agents will get a purely static full insurance contract in equilibrium.

The equilibrium low-risk contract cannot be obtained explicitly, however.  What can easily

be shown is that an optimal contract that is Pareto-superior to the static equilibrium

contract exists.  When the static equilibrium contract gives no insurance to low-risk agents,

i.e., ( )H
S
LL qee ≤ , then, like in the basic model, an insurer is able to separate the types by

offering a dynamic contract with a sufficiently long separation phase.  Indeed, when the

length of the separating phase increases the incentive compatibility constraint can be easily

satisfied.  On the other hand, as the dynamic contract is not worse than the static contract

S
LΘ  during the whole term and is strictly better in the insurance phase, the contract is

Pareto-superior as well.

Hence, the set of Pareto-superior separating contracts is not empty and the equilibrium

dynamic contract is the one that maximizes the utility of low-risk agents.  The existence of

such a contract is guaranteed by the continuity of both the objective function and the

incentive compatibility constraint and by the compactness of the feasible parameter set.

Therefore, for all parameter combinations, which lie below the curve ( )H
S
LL qee =  in

Figure 2, Pareto improvement by means of dynamic insurance is always possible.  In the

example below we calculate the highest low-risk expenditure D
Lê  such that the welfare

improvement is possible in the whole interval ( )S
Lê,0 .  Thus, the difference between D

Lê

and D
Le  reflects the sensitivity of the model with respect to savings.

Example 1 continued.  Apart from the functions ( )H
D
L qe  that were already presented

in Figure 2 for two specific utility functions, Figure 8 presents functions ( )H
D
L qê

for the same example.  For all the model’s parameters below the graphs ( )H
D
L qê

dynamic contracts allow welfare improvements to be made.

The figure shows that savings do not change the outcome significantly and

just change the set of parameters allowing for welfare improvement a little bit. //

Given this result for unconditional contracts, we will be brief about conditional

contracts.  As dynamic conditional contracts yield weakly higher utility for the low-risk

agents the region of possible welfare improvement is even wider.  But, again, the pooling

low-risk utility maximizing conditional dynamic contract provides higher utility than the
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static pooling contracts.  Hence, it is not guaranteed that this type of equilibrium exists for

a wider range of parameter values of α.
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Appendix

Proof of Proposition 2.  We begin by deriving a set of competitive contracts { }D
L

D
H ΘΘ ,

satisfying the incentives compatibility constraints and maximizing ( )D
L

D
LU Θ .  Then we

derive a competitive pooling contract tP,Θ̂  maximizing the low-risk utility.  Finally, we

show that there exist an ( )1,0∈D
Cα  such that for all D

Cαα <  ( D
Cαα > ) tP,Θ̂  gives a lower

(higher) utility for the low-risk type than D
LΘ .
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D
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The Lagrange function and the first order conditions for the interior solution are:
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Solving them together with zero profit conditions yields 0, =th
tHD  and HH

h
tH eqP t =,  for all t

and th , in other words, high-risk agents always get full insurance in a separating

equilibrium, ( )S
H

S
H

D
H ΘΘ=Θ ,,� .  This solution is unique due to the global concavity of the

objective function and we do not need to look at corner solutions with some Sh
t

t
0Θ=Θ .
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D
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LU Θ , which is
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The first order conditions for an interior solution are:
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which can be rewritten as follows
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Then, it follows that the incentive compatibility constraint is binding, otherwise it would

have been 0=µ , 0, =th
tLD  for all t and th , and finally, LL

h
tL eqP t =,  that yields

( ) ( )D
H

D
H

D
L

D
H UU Θ>Θ , a contradiction.  Hence, 0, >th

tLD  for all t and th .

One may note here that all th
tLP ,  and th

tLD ,  depend only on ( )ti hPr  but not on th  itself.

Hence, if, for instance, 4=t  then ( )1,0,04 =′h  and ( )0,1,04 =′′h  correspond to different states

of the world but ( ) ( ) ( )4
2

4 Pr1Pr hqqh iiii ′′=−=′  and, therefore, 44
4,4,

h
L

h
L PP ′′′ =  and 44

4,4,
h
L

h
L DD ′′′ = ,

that allows us to change notations: by kht =ˆ  we will denote all states of the world where
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there were exactly k accidents in time periods from 1 up to 1−t .  Then it follows that
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Both equations can be written as
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tLP ,  (hence, th
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tLD , .  The profit an insurer gets at time t from a
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hence, 0
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, <tLπ , in other words, an insurer makes

losses over those agents with better accidental histories, while they gain (in expected

terms) on those agents with worse histories.

It might happen that the solution ( )TLL
D
L ,1, ,, ΘΘ=Θ �  is just a local but not global

maximum.  Hence, we may have to find all corner solutions imposing Sh
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set of states of the world tt HH ⊂0 .  The Lagrange function in this case becomes
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Consequently, the only difference from the previous analysis here is that the first order

conditions will involve the summation over the subset 0\ ttt HHh ∈  instead of the whole set

tt Hh ∈ .  Having been calculated for all tt HH ⊂0  a contract D
LΘ  is chosen in such a way

that, first, it satisfies L
h

tL eD t <,  for all 0\ ttt HHh ∈ , and, second, it maximizes ( )D
L

D
LU Θ .

Thus, we have described a set of competitive contracts { }D
L

D
H ΘΘ ,  satisfying the

incentive compatibility constraint and maximizing ( )D
L

D
LU Θ .  This set becomes a

competitive Nash equilibrium if no competitive pooling contract gives a higher utility level

for the low-risk agents.  We will prove that for small enough values of  this is the case.
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is time-separable as well as the zero profit conditions, which are



30

( ) ( )( ) ( ) ( ) ( )( )( )∑
∈

=−−−+−−
tt

tttt

Hh

h
tPHH

h
tPtH

h
tPLL

h
tPtL DeqPhDeqPh 0Pr1Pr ,,,, αα , Tt ,,1 �= ,

maximization of ( )D
P

D
LU Θ  over [ ]L

h
tP eD t ,0, ∈  splits into T parts:

( ) ( )∑ ∈
Θ

tt

t

Hh

h
tP

S
LtL Uh ,Prmax ,

s.t. ( ) ( )( ) ( ) ( ) ( )( )( ) 0Pr1Pr ,,,, =−−−+−−∑
∈ tt

tttt

Hh

h
tPHH

h
tPtH

h
tPLL

h
tPtL DeqPhDeqPh αα

and it has a unique solution due to the global concavity of the objective function and linear

constraints.  The Lagrange function and the first order conditions are:

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )( ),Pr1Pr

111Pr

,,,,

,,,

∑
∑

∈

∈

−−−+−−+

+−−+−−=

tt

tttt

tt

ttt

Hh

h
tPHH

h
tPtH

h
tPLL

h
tPtLt

Hh

h
tPL

h
tP

h
tPLtLt

DeqPhDeqPh

PuqDPuqhL

ααλ

and

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )





−+=−−′

−+=−′−+−−′

HtHLtLt
h

tP
h

tPLtL

tHtLt
h

tPL
h

tP
h

tPLtL

qhqhDPuqh

hhPuqDPuqh

tt

ttt

Pr1Prˆˆ1Pr

Pr1Prˆ11ˆˆ1Pr

,,

,,,

ααλ

ααλ
.

Solving them yields

( ) ( ) ( )( )
( )( )( )

( ) ( ) ( )
( )( )





−+=−−′

−+=−′ −
−

LtL

HtHtt

LtL

HtHt

qh

qh
t

h
tP

h
tP

qh

qh
t

h
tP

DPu

Pu

Pr

Pr
,,

1Pr

1Pr
,

1ˆˆ1

1ˆ1

ααλ

ααλ
.

One may see that

( )
( )

( ) ( )( )
( )( )

( ) ( )
( )

1
1

1
ˆˆ1

ˆ1

Pr
Pr

1Pr
1Pr

,,

, <
−+
−+

=
−−′

−′ −
−

LtL

HtH

LtL

HtH

tt

t

qh
qh

qh
qh

h
tP

h
tP

h
tP

DPu

Pu

αα
αα

,

hence ( ) ( )ttt h
tP

h
tP

h
tP PuDPu ,,,

ˆ1ˆˆ1 −′>−−′  and, therefore, 0ˆ
, >th
tPD .

If such an interior solution has L
h

tP eD t >,  then we have to look at the corner solutions,

where Sh
tP

t
0,

ˆ Θ=Θ  for some set of states of the world tt HH ⊂0 .  In this case the Lagrange

function becomes:

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( )( ),Pr1Pr

1Pr111Pr
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,,,,
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,,,
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∑∑
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h
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h
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h
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DeqPhDeqPh

euqhPuqDPuqhL

ααλ

hence, the first order conditions remain the same but now only for 0\ ttt HHh ∈ .  Solving

them for tP,Θ̂  for all tt HH ⊂0  and taking one that maximizes ( )D
P

D
LU Θ  gives us needed

contract.
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The contract conditions, hence, ( )D
P

D
LU Θ̂ , now become functions of .  Taking the first

order derivative and using the envelope theorem and zero profit conditions in a form

( ) ( )( ) ( ) ( ) ( )( )∑∑
∈∈

−−−−=−−
00 \

,,
\

,, Pr1Pr
ttt

tt

ttt

tt

HHh

h
tPHH

h
tPtH

HHh

h
tPLL

h
tPtL DeqPhDeqPh αα  yields:
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and, finally,
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It is easily seen that ( ) ( )( ) ( ) ( )( )∑∑
∈∈

−−<<−−
00 \

,,
\
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ˆˆPr0ˆˆPr

ttt

tt

ttt

tt

HHh

h
tPLL

h
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HHh

h
tPHH

h
tPtH DeqPhDeqPh .

In other words, an insurer gets a positive profit from the low-risk type and a negative profit

from the high-risk type.  Therefore, ( ) 0ˆ >ΘD
P

D
Ld

d Uα  as 0>tλ .

Now, we will show that ( ) ( ) ( ) 10
ˆˆ

== Θ<Θ<Θ αα
D
P

D
L

D
L

D
L

D
P

D
L UUU  and, therefore, there

exists an ( )1,0∈D
Cα  such that ( ) ( )D

L
D
L

D
P

D
L UU D

C
Θ=Θ =αα

ˆ  and the results (a) and (b) of the

proposition follow.

If 1=α  then D
PΘ̂  gives always the full insurance that leads to the first best outcome

( ) ( )LL
D
P

D
L equU −=Θ = 1ˆ

1α , hence, ( ) ( )D
L

D
L

D
P

D
L UU Θ>Θ =1

ˆ
α .  What we will show is that

( ) ( )'
/

'

/

'

3

'

/
�� ˆ >=0 .  To this end we construct a competitive contract D

LΘ~  such that

( ) ( ) ( ) 0
ˆ~

=Θ>Θ≥Θ α
D
P

D
L

D
L

D
L

D
L

D
L UUU .  Obviously, ( ) ( )''

/

'

/

'

/
�� ≥  for any competitive

contract '  by the construction of '

/
.

As an example of such a contract D
LΘ~  we take a contract that coincides with D

PΘ̂  for

all t and th  except one, i.e., we put tt h
tP

h
tL ,,

ˆ~ Θ=Θ  for all t and *hht ≠ , and 




��

ˆ� K

W3

K

W/
≠ .  In this
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state of the world *h  a policy 
*

,

~ h
tLΘ  can offer a much better insurance for the low-risk type

than 
*

,
ˆ h

tPΘ  which is calculated for the whole population that consists of high-risk agents

only.  The following Figure A.1 represents the arguments.  The downward-sloping line is a

set of policies in the state *h  making the whole contract '

3

ˆ  competitive.  One point on the

line is the contract 
*

,
ˆ h

tPΘ  that maximizes ( )'
3

'

/
�  and, therefore, ( )*h

t
S
LU Θ .  Two curves

represent high- and low-type indifference curves where the latter is tangent to the set { }*

,
h

tPΘ

at 
*

,
ˆ h

tPΘ .  The set of contracts { }*h
tΘ  satisfying zero profit condition for the low-risk type is

denoted by the dotted line.  This set lies below the former set as all the profit obtained in

all the other time periods and states is transferred here.

One may easily verify that the contract D
LΘ~  can be chosen as any point from the set

{ }*

,
h

tLΘ  that lies between the low- and high-risk indifference curve.  Hence,

( ) ( ) 0
ˆ

=Θ>Θ α
D
P

D
L

D
L

D
L UU .

Part (c) of the proposition is trivial as the contract ( )S
L

S
L

D ΘΘ=Θ �,  was available

during the optimization procedure of searching D
LΘ , hence, ( ) ( )6

/

6

/

'

/

'

/
�� ≥ , and the

contract ( )S
L

S
L

D ΘΘ=Θ �,  does not satisfies the first order conditions for D
LΘ , those are

1
,

1
,,

−− += k
tL

k
tL

k
tL DPP , therefore, ( ) ( )S

L
S
L

D
L

D
L UU Θ>Θ  unless those first order conditions

degenerate in a global corner solution ( )SSD
L 00 , ΘΘ=Θ � .

 

Figure A.1.
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Finally, in order to prove that ( ) 1lim =
→∞

TD
C

T
α  we will show that for any T there exists a

contract D
LΘ̂  satisfying both zero profit and the incentive compatibility constraints an such

that ( ) ( )LL
D
L

D
L

T
equU −=Θ

∞→
1ˆlim .  As ( ) ( )D

L
D
L

D
L

D
L UU Θ≥Θ ˆ , ( ) ( )LL

D
L

D
L

T
equU −=Θ

→∞
1lim  holds as

well.  Then, as ( ) ( )LL
D
P

D
L equU −<Θ 1ˆ  for any 1< , this implies that ( ) 1lim =

→∞
TD

C
T

α .

Let us consider a contract ( )
7//

'

/ ��

ˆ��ˆˆ �1= , where ( )0�ˆ
� //

N

W/
��=  for all

11 −= �� ��� , ( ) ( )0�ˆ�ˆˆ
�

−=≡ ��� N

7

N

7

N

7/
 for 20 −= �� ���  and ( )01 �ˆ

�

+− = �7

7/
 for some

values of −�  and +� .  The zero profit condition for the time period T requires that

( )( ) 0
1

0 1 =−∑ −

= −
7

N //

N

7/
���� ˆ�� , that makes −�  dependent on +� :

( ) 1

1

1 −

+−
+−

−
−=
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/
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///

�
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�� (A.1)

hence LLeqP <−  for all LLeqP >+ .  On the other hand, the incentives compatibility

constraint requires that ( ) ( )'
/

'

+

'

+
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+
�� ˆ= , therefore,
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Together with (A.1) this equation defines unique values of LLeqP <−  and LLeqP >+ .  To

see this we plug the (A.1) into the last equation:

( )( )( ) ( ) ( ) ( ) ( )( ) ( )
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The left hand side, being a function of +P  has the following properties:

a) ( )( ) ( ) ( ) RHSequequqqequLHS LLLL
T

H
T

HLLeqP LL
>−=−+−−= −−
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1111 11 .
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Hence, +P  and −�  are uniquely defined.  Now we take limits
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that ends the proof.

Proof of Proposition 4.  As we have already established in Proposition 3, the dynamic

contract maximizing the low-risk type utility and providing strictly positive insurance for

every period coincides with the static equilibrium contract S
LΘ .

Now we will search for the best dynamic contract, which gives no insurance in a

separation phase Tsep NN ⊆ , which is a subset of all time periods { } T
jT jN 1== , and strictly

positive insurance in an insurance phase sepT NN \ .  The same arguments as in the proof of

Proposition 3 leads to the insurance conditions in the insurance phase are constant, i.e.,

( )DPD
t ,=Θ=Θ  for sepT NNt \∈ .  Hence,

( ) ( ) ( )? 6

/

1W

W

11W

W

66

/

1W

W

1W

W

''

/
���

7

VHS7

7

VHS

∑
∑

∑
∑

∈

−
∈

−

∈

−
∈

−

+= 1

1

01

1

,

which can be rewritten as
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( ) ( ) ( ) ( ),1 0 Θ+Θ−=Θ S
L

SS
L

DD
L wUUwU

where 

1

1

\

1

−

∈

−

∈

−






≡ ∑∑

TsepT Nt

t

NNt

tw δδ  denotes the relative weight of the insurance phase of the

whole dynamic contract.  In this notations a dynamic contract DΘ  is defined by LP , LD

and Dw .

Obviously, D
LΘ  must have such LP , LD  and Dw  that maximize ( )DD

LU Θ  subject to

zero profit condition ( )DeqP LL −=  and the incentives compatibility constraint

( ) ( )S
H

S
H

DD
H UU Θ≤Θ .  We will look for such contracts that are also Pareto-superior to S

LΘ ,

i.e., ( ) ( )S
L

S
L

DD
L UU Θ≥Θ .  Those two constraints can be rewritten as follows:

( ) ( )
( ) ( ) ( )Dw

UU

UU
w

SS
H

S
H

SS
H

S
H

S
H ≡

Θ−Θ
Θ−Θ≤

0

0 , and

( ) ( )
( ) ( ) ( )Dw

UU

UU
w

SS
L

S
L

SS
L

S
L

S
L ≡

Θ−Θ
Θ−Θ≥

0

0 .

Now we will consider the cases ( )H
S
LL qee ≤  and ( )H

S
LL qee >  separately.

d) If ( )H
S
LL qee ≤ , then ( ) ( )SS

L
S
L

S
L UU 0Θ=Θ  and, therefore, ( ) 0=Dw  while

( ) ( ) 00 >Θ−Θ SS
H

S
H

S
H UU  and, therefore, ( ) 0>Dw , for all ( )LeD ,0∈ .  Hence, any

dynamic contract with ( )( ) ( )1,0,0 ⊂∈ Dww  is strictly Pareto-superior to S
LΘ .

e) If ( )H
S
LL qee >  then there exists a static contract S

LΘ  with L
S
L eD <  and both ( )Dw  and

( )Dw  are strictly increasing functions as 
( )

0<Θ
dD

dU S
i , LHi ,=  for ∈D [ S

LD,0 ].  For

all ∈� [ 6

/
��0 ) they belong to the range ( )1,0  and ( ) ( ) 1== S

L
S
L DwDw .  Hence, if there

exists a ∈� [ 6

/
��0 ) such that ( ) ( )DwDw <  then any dynamic contract with

( )www ,∈  is strictly Pareto-superior to the static contract S
LΘ .

What we will show now is that the continuous function ( )DF  being defined as

( ) ( ) ( )DwDwDF −≡  is always negative over ∈D [ S
LD,0 ) if Le  exceeds a certain

threshold level D
Le , i.e., if D

LL ee ≥ , and is strictly positive in some left neighborhood

( ) ( )S
L

S
L DDDD ,0, ⊂∈  otherwise.  To this end, using the implicit definition of S

LD ,

which is
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( ) ( )( ) ( ) ( )( ) ( )S
H

S
H

S
L

S
LH

S
L

S
L

S
LH

S
L

S
H UDPuqDDPuqU Θ=−−+−−≡Θ 111 , (A.2)

we first rewrite ( )DF  as ( ) ( ) ( ) 21 FFDwDwDF ⋅=−= , where

( ) ( ) ( )( ) ( ) ( )( ) 0
1

00
1 >

−−
≡

66

/

'

/

6

/

66

+

'

/

6

+
����

�� , and

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( ).11

11 002
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S
H

S
H

D
L

S
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L
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D
L

S
H
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H

S
H

S
Hq

qq

eueuUUq

PuUUPuUUDF
H

LH

−−−Θ−Θ+

+−Θ−Θ−−Θ−Θ≡ −

As 01 >F  over ∈D [ S
LD,0 ], we have to show that the function ( )DF2  has the same

properties we require of the function ( )DF .

Firstly, as ( ) ( )S
H

S
H

S
L

S
H UU Θ=Θ , it follows that ( ) 02 =S

LDF .  Then, the first and

second order derivatives of ( )DF2  are

( ) ( ) ( )( ) ( )

( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( ),111111

111

1112

DPuqqPuqqeueuq

DPuPuqqq
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S
LLLH

H
S
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S
LLLH
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(A.3)

and
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As all the three terms in the above expression are negative, 02 <″F .

Summarizing, 2F  is strictly concave over ∈D [ S
LD,0 ] and ( ) 02 =S

LDF .  Then it

immediately follows that if ( ) 02 ≥′ S
LDF  then ( ) 02 <DF  for all S

LDD < , and ( ) 02 >DF

in some neighborhood ( ) ⊂∈ S
LDDD , [ S

LD,0 ] otherwise.  Therefore, we have to

investigate the sign of ( )S
LDF ′

2 , which now becomes a function of the model

parameters and, in particular, a function of Le , i.e., ( ) ( )S
LL DFeF ′≡ 23 .

Firstly, we note from (A.3) that ( ) 03 >HeF .  Indeed,

( ) ( ) ( ) ( )( ) ( )
( )( ) ( ) ( )( ) ( ).1111                           

1113

S
L

S
L

S
LLLH

S
LH

S
L

S
LLLHH

DPuPuuqqq

PueuDPuqqqeF

−−′−−−−−

−−′−−−−−=

Now, using the mean-value theorem we can write for some ( )S
L

S
L DPex −−−∈ 1,1  and

( )1,1 S
LPy −∈ :



37

( ) ( ) ( )
( ) ( )

( ) ( )
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S
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H
S
L

S
L

H
S
L

S
L

H
S
L

S
L
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euDPu
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euDPu
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−−−−=

−−−−
−−−−=′
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, and

( ) ( ) ( )
( )

( ) ( )
( ) L

S
LH

S
L

S
L

S
L

qDe

Puu

P

Puu
yu

−
−−=

−−
−−=′ 11

11
11

.

Plugging them into the last expression for ( )HeF3  we finally obtain

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) 01113 >−−′′−−′′−−−= S
L

S
L

S
L

S
LLLLHH DPuyuPuxuDeqqqqeF ,

as ( ) ( ) 01 >−−′>′ S
L

S
L DPuxu  and ( ) ( ) 01 >′>−′ yuPu S

L .

On the other hand, ( ) 03 <S
LeF .  Indeed, in this case ( ) S

L
S
L

S
L eeD = , ( ) 0=S

L
S

L eP  and

( ) ( ) ( ) ( )( ) ( ) ( )( ) 0111113 <−−−−′−′−= H
S
L

S
LLHL

S
L eueueuuqqqeF .

Hence, continuous function ( )HeF3  takes the opposite signed values at the ends of the

interval [ H
S
L ee , ].

Secondly, differentiating (A.2) w.r.t. Le  yields

( ) ( ) ( )
( ) ( ) ( ) ( ) 0

1111
111 <

−′−−−−′−
−′−+−−′

−= S
LLH

S
L

S
LLH

S
LH

S
L

S
LH

L
L

S
L

PuqqDPuqq

PuqDPuq
q

de

dD
,

and, consequently, as ( )S
LLL

S
L DeqP −= , ( ) ( ) 011 >−′′=−′

L

S
L

L
S

L
S

L
L de

dD
qPuPu

de

d
 and

( ) ( )( ) 0111 <−−−′′−=−−′
L

S
L

L
S
L

S
L

S
L

S
L

L de

dD
qDPuDPu

de

d
.  Using these expressions

allows us to write the derivative ′
3F  as follows:

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

( )( ) ( ) ( )
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ).11

11111

1111

111

1111

1113

S
L

S
L

S
LLHL

L
S

LHL
S
L

S
LLHL

S
L

S
Lde

d
LHHLL

S
L

S
Lde

dS
LLHL

S
Lde

d
HLLHL

S
Lde

d
L

S
L

S
LLHL

DPuPuqqq

euPuqqDPuqqq

DPueueuqqq

DPuPuqqq

Pueueuqqq

PueuDPuqqqF
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L

−−′−′−−

−−′−′−−−−′−+

+−−′−−−−+

+−−′−−−+

+−′−−−−+

+−′−−−−−=′

As the sum of the first four terms in the above expression is strictly positive we get:

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )
( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )
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11111
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>
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+−′−′−−−′−=
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S
L

S
L

S
LLLHL

L
S

L
S
L

S
LHL

S
L

S
L

S
LLHL

L
S

LHL
S
L

S
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DPuPueuqqq

euPuDPuqq

DPuPuqqq

euPuqqDPuqqqF
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Hence, the function ( )LeF3  has a unique null in the interval ( )H
S
L ee , , which we denote

as D
Le , i.e., ( ) 03 =D

LeF .  By construction of D
Le , for all ( )D

L
S
LL eee ,∈  there exists an

interval ( ) ( )S
L

S
L DDD ,0, ⊂  such that for all ( )S

LDDD ,∈  ( ) ( ) 10 <<< DwDw  and,

therefore, any dynamic contract with ( )www ,∈  is strictly Pareto-superior to S
LΘ .  If,

on the other hand, ( )H
D
LL eee ,∈  then ( ) ( )DwDw >  for all ( )S

LDD ,0∈  and there is no

dynamic contract which is Pareto-superior to S
LΘ , that ends the case.

Hence, if and only if D
LL ee <  then the set of D and w that generate Pareto-superior

contracts is not empty.  Obviously, an insurer is able to choose D arbitrarily.  As for w, it

may only take discrete values:

( )
��

7VHS
VHS7

11
11W

W

7
�

?

δδ
δ
δ =













−
−∈

⊂∈

−∑ 1

1
1

.

When ∞→T  this set gets an accumulation point 1=w , in other words, the number of

elements in any left neighborhood of 1=w  increases unboundedly when T becomes larger.

This property allows an insurer to choose D sufficiently close but still smaller than S
LD  and

find such a w that ( ) ( )( ) ( )� 
������ ��∈ .  Therefore, for all T sufficiently large the

set of strictly Pareto-superior contracts is not empty and its closure, the set of weakly

Pareto-superior contracts, contains a welfare-maximizing contract D
LΘ .

Now we will show that ( ) ( ) HH
D
L

q
L

D
L eqeqe

H

==
→1

lim .  As for any Hq

( ) ( )( )HL
S
LL

D
L eqeqe ,∈  and the function ( )L

S
L qe  is continuous and ( ) HH

S
L eqe = , it follows that

( ) HH
D
L

q
eqe

H

=
→1

lim .  If, on the other hand, LH qq =  then

( ) ( ) ( ) ( )( ) ( ) ( )( ) 0111112
2 <−−′−−′−−−−=′

==

S
L

S
L

S
LHL

qqq

S
L DPuPueueuqqDF

LH

for any Le , so ( ) HL
D
L eqe = .

Finally, we define Dα .  As D
LΘ  is the welfare maximizing dynamic contract, a

competitive separating Nash equilibrium exists as long as ( ) ( )αD
P

D
L

D
L UU ≥Θ , where ( )αD

PU

is the highest possible low-risk type utility under a pooling insurance contract.  Similar

argument to those in the beginning of the proof show that this pooling contract is purely

static, i.e., S
P

D
tP DD =,  and ( ) ( ) ( )S

PHH
S
PLL

S
P

D
tP DeqDeqPP −−+−== αα 1, .  Then, that highest
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utility level ( ) ( )D
P

D
L

D
P UU Θ≡α  either is smaller than ( )SS

LU 0Θ  and there exists no

competitive pooling contract that is better than S
0Θ  for the low-risk type, or it is an

increasing function of α .6  Together with ( ) ( )D
L

D
L

D
P UU Θ<0  and ( ) ( )D

L
D
L

D
P UU Θ>1  this

implies that there exists a unique Dα  such that ( ) ( )( )τα D
L

D
L

DD
P UU Θ> .  The fact that

SD αα >  follows from ( ) ( )S
L

S
L

D
L

D
L UU Θ>Θ .

                                                
6 See proof of Proposition 1.


