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Introduction

The most remarkabl e property of convex objectsis that they can be viewed in two ways,
primal and dual. The transition between these viewpointsis given by so called duality operators.
The oldest example is the well-known duality between points and lines in the two-dimensional
plane. There are many other examples of duality operators such as the polar of a convex set
containing the origin, the dual norm, the Legendre-Y oung-Fenchel-transform of a convex
function and the conjugate of a convex cone. Moreover convex sets and sublinear functions are
dual objects; the correspondence is given in one direction by the support function and in the
other one by the subdifferential. The theory of each of these operatorsis of great interest, not
only because of its fundamental character and inherent beauty, but also because there are many
applications.(see cite: M--T)

In this paper we offer a new unified approach to the theories of these duality operators. The
resulting theorems are sharper than those in the literature. All resultsin this paper hold for
arbitrary vector spaces, finite or infinite dimensional, which moreover do not have to be provided
with atopology. Furthermore the only assumption which has to be made is the existence of
relatively internal points for the convex objects involved.

We proceed as follows: we prove a generalized Hahn-Banach theorem for convex cones and
derive from this result generalized Fenchel-Moreau and Dubovitsky-Milyutin theorems. These
three results form the duality theory for convex cones. Then we derive the duality theory for
other types of convex objectsin the following simple way. For each type we give a construction
to associate to an object of that type a convex cone, which still contains al the information of the
original object. For this convex cone the results of the duality theory for convex cones are
available. It isfor each type straightforward to decode these results in terms of the original
convex objects. To be more specific, on inspection, the conjugate of the associated convex cone
turns out to be the convex cone associated to another type of convex object. Then the resulting
transition from one type of convex object to another turns out to be the classical duality operator
for that pair of types. Moreover, for the purpose of decoding, one has to translate the operations
"sum’ and ’intersection’ from the associated convex cones to operations on the underlying
convex objects.

Standard results and definitions

Let V be a vectorspace (we consider only real vectorspaces). For alinear subspace W of V the
guotientspace V/W can be characterized as follows: thereisapair (V/W, ) consisting of a
vectorspace V/W and a surjective linear mapping = from V to V/W with kernel W. The
codimension of Win 'V, denoted by mbox | (W), is defined to be the dimension of the
guotientspace V/W.

The dual vectorspace V' is the vectorspace consisting of all linear functionals on V. Taking
duals preserves exactness. Explicitly, for each linear subspace W of a vector space V one can
view (V/W)' as alinear subspace of V' and the quotientspace isisomorphic to W'; to be more
precise, the inflation map inf from (V/W)' to V' isinjective, the restriction map resfrom V' to W
is surjective and the image of inf equals the kernel of res. Moreover the natural map i fromV to
its bidual V' = (V) given by i(V)(p) = p(V)::VVv e V
Vo € V' isinjective.

Let V be a vectorspace and let Sbe an arbitrary subset of V. The linear span of S, denoted by

mbox (S), isthe smallest linear subspace of V containing S. An element s of Sisarelatively
internal point of Sif

vd e mbox (S) 3¢ > 0 Vr € (0,¢] : s+7d € S

The set of al relatively internal points of Sis denoted by mbox (S). If Sismoreover a convex



set, then an element s € Shelongsto mbox (S) if and only if

Vd e mbox (S):3e >0:s+ede S
The — algebraic — closure Sof Sis defined to be the set consisting of all vectorsv € V such
that

dse SVa € (0,1):av+(l—a)se S

The set Sis called — agebraically —closed if S= S We observe that Sis closed for each set S.

Let V be a vectorspace. A nonempty subset C of V iscalled aconvex conein Vif it isclosed
under addition and under multiplication with nonnegative scalars. The convex cone C iscalled
pointed if it does not contain any line through 0. One calls C solid if mbox (C) = V

Let V be a vectorspace and let C be a convex cone in V. The conjugate cone or dual cone
(C,V)', corresponding to this cone C, isthe convex cone in the dua vector space V' which
consists of all functionals¢ : V - R satisfying ¢(c) > 0:vVc € C.

The main point of the following lemma s that each convex cone is the sum of a pointed
convex cone and alinear subspace. Moreover it describes how this decomposition carries over to
the conjugate cone.

Lemma Let V bea vector space and C a convex cone in V. Then the following statements hold
true.

i Therearelinear subspaces Wi, W», W5 of V and there exists a pointed,solid convex cone D
in W, such that V = W; & W, & W3 and C = W; + D. Here the vectorspace W, (resp.

Wi @ W>) is uniquely determined as the maximal (resp. minimal) linear subspace of V
which is contained in C (resp. contains C).

i (C,V) equals(C,V)'.

ii Asume C=C and let W;,W,,W3 and D be as in (i). Then
V=W, &W, ®W;and (C,V)' = W5 + (D,W-)" ; moreover (D,W,)' isa pointed, convex
conein W,.

This result suggests that for the analysis of the conjugate cone it is useful to view the set of

its nonzero elements (C, V)’ \ {0} asthe union of two digoint subsets: its singular part S(C,V)

defined by

S(C,V) ={p € V'\ {0} | ¢(c) = 0:Vc e C}
and itsregular part R(C, V) defined by
R(C,V) = (C,V)'\ S(C,V) U {0}.

The connection between these definition and the lemma above is asfollows: S(C,V) U {0} isthe
maximal linear subspace of V' which is contained in (C,V)'. Therefore it follows from the
lemma above that S(C, V) U {0} isisomorphic to the dual vector space (V/ mbox (C))'.

The conjugate cone and its regular and singular elements allow the following geometrical
interpretation. The set of rays of the conjugate cone (C,V)' corresponds bijectively to the set of
pairs consisting of alinear subspace in V of codimension 1 with C on one of itstwo sides
together with a choice of side which contains C: for each ¢ € (C,V)'\{0} we associate to the ray
R*¢ the linear subspace {v € V|p(v) = 0} together withitsside {v € Vl|p(v) > 0}. For each
¢ € (C,V)'\{0} onehas ¢ € SC,V) precisely if C < kerg. If mbox (C) # @ one has
¢ € R(C,V) precisaly if kero N mbox (C) = 0.

Now we are going to recall the well-known classification of closed convex conesin a
two-dimensional vectorspace. Moreover we recall the explicit description of their conjugates. It
is convenient to do this for the complex plane C viewed as atwo-dimensional vector space. We
definefor ¢1,¢> € Rwith0 < ¢> — ¢1 < 7 the convex cone Cy, 4, in C by
C¢1,¢2 = {re‘¢|r € R*:&:p1 < ¢ < ¢2}.



We identify the dual vector space (C)’ with C by letting T € (C)" andw € C correspond if
and only if T(z2) = Re(wz):vYw € W. Here ~ denotes complex conjugate and Re denotes’real
part’.

Lemma
i Each closed convex cone C in Cwith C = mbox (C) isof theform C,, 4, for suitable
¢1,¢2 e Rwith0 < ¢2—¢1 <.
i Let¢i,¢2 € Rwith0 < ¢, — 1 < &, then the conjugate cone (Cy, 4,, C)' equals
C¢2—A7T pr+in
27 2
Furthermore we record the following easy fact.
Lemma Let V be avector space and C a convex conein V with mbox (C) + @. Then
C+ mbox (C) < C.
Finally we introduce some more notation. For each functionf : V - R = R U [0, —0] let the

function f : V — R be defined by epi:f = epi:f. For each subset Sof avectorspace V its convex
hull coSisthe smallest convex subset of V containing S

Convex cones
We begin by stating and proving the central result of this paper.

Theorem (Generalized Theorem of Hahn-Banach) LetV be a vector space and let C be
a convex conein V satisfying C # V, and mbox (C) # 0. Then the following statements hold.

i Thereexistsat least oneregular element, i.e. R(C,V) = @, if and only if mbox (C) # C.
il Thereexistsat least one singular element, i.e. S(C,V) = @, if and only if mbox (C) = V.
iii Thedual cone (C,V)' has at least one nonzero element.

iv LetL bealinear subspace of V which contains at least one relatively internal point of C, i.e.
L N mbox (C) = 0. Then L&C implies
(CNnLL)+0 and furthermore, each element of the dual cone
(CNL,L) can be extended to an element of the dual cone (C,V)'.

Proof The heart of the proof is the verification of the following statement.
10cm 3cm

Choose a linear subspace W of V with Hc W, mbox, (H)=2 and
Co € WN mbox (C). Let j be the natural map from W to the quotient space W/H. We claim that
the convex cone j(C N W) isa strict subset of the space W/H. Indeed, from
C+ mbox (C) € mbox (C) and HN mbox (C) = @ we conclude (co + C) N H = @. Hence, we
find j(—Co) ¢ J(CN W). Therefore, j(C N W) isa convex cone in the twodimensional
vectorspace j(W) with j(co) € mbox (j(C N W)) and —j(co) ¢ j(C N W). Now we use some
standard facts from the previous section. In thefirst place it follows that there exists an element
¢ € (J(CNW),j(W)) with ¢(j(co)) > 0.Asco € mbox (C) it follows that
@oj(c) > 0::vc € mbox (C). Therefore the choice K = ker ¢ o j satisfiesK N mbox (C) = 0.
Moreover H € KasH = kerjand K = ker ¢ o j. Furthermore mbox  (H) = 2and
mbox , (H) = 1and so mbox , (H) = 1. Thisfinishesthe verification of statement ( ref: *).

In addition, we have to verify the following two statements.
C+ mhox(C) < mbox (C)N (-C) = 0@ #
and



LN mbox(C) 0 = LN mbox(C) = mbox(LNC). #

To prove (ref: ** ) it sufficesto check that mbox (C) N (-C) + @ implies
C = mbox (C). Therest isobvious. Choosecp € mbox (C) N (—C). AsO = (—Cp) + Co it
follows that 0 € C+ mbox (C). Therefore, using the inclusions C+ mbox (C) < C
— see section 2 — we can conclude that 0 € mbox (C). As C isa convex cone it follows that
C = mbox (C).

To prove (ref: *** ) it sufficesto check that L N mbox (C) # @ impliesthe inclusion
L N mbox (C) <€ mbox (L N C). The other inclusion is obvious. Choose co € L N mbox (C).
Then for eachv € LN mbox (C) thereexistse > Owith co + ev € L N C; therefore
V= L((co+&v) — o) liesin mbox (L N C).

Now we are ready to prove all the statements of the theorem.

We start with the proof of i. Assume C + mbox (C). Then statement ( ref: ** ) implies
mbox (C) N (—C) = @, so we can choose co € mbox (C) with —co ¢ C. The collection of
linear subspaces of V which are digoint from mbox (C) can be ordered by inclusion. Zorn's
lemma implies that this collection has a maximal element. By ( ref: * ), the codimension, with
respect to V, of each such maximal element is equal to 1. It follows, using the geometric
interpretation of the elements of R(C, V) given in section 2, that R(C, V) is honempty. Now we
prove the converseimplication R(C,V) # @ = C = mbox (C). Assume R(C,V) = 0.
Choose ¢ € R(C,V) andcy € mbox (C). Then ¢(co) > 0i.e. p(—Cp) < 0Oand so —¢o ¢ C,
using ¢ € (C,V)'. Moreover —co € mbox (C). It followsthat C = mbox (C).

In order to prove statement ii of the theorem, we assume mbox (C) # V. Then
(VI mbox (C),V)" # {0}, thatis, S(C,V) = @. The converse implication
SCV)+0 = mbox(C) + Visobvious.

In order to prove statement iii of the theorem, we argue by contradiction. Assume
(C,V)' = 0,then R(C,V) = # and S(C,V) = 0. Therefore, by (i) and (ii), C = mbox (C) and
mbox (C) = V. HenceC = V.

Now, for the proof of statement iv of the theorem, let L be a linear subspace of V with
L N mbox (C) = 0.

In order to prove thefirst part of statement iv, assumeL & C. Then C N L isa convex
conein L satisfyingbothCN L + L and mbox (CNL) = mbox (C) N L + @. Hence,
statement iii impliesthat (CN L,L)" = 0.

Next, choosey € (C N L,L)"\{0}. We want to prove the existence of an extension of y
to an element ¢ € (C,V)'. Consider the following two cases.

Casel: we R(CNL,L)
The collection of linear subspaces of V which are digjoint from C and which contain ker y can
be ordered by inclusion. By Zorn's lemma this collection has a maximal element. By ( ref: * )
this maximal element has codimension 1 with respect to V. Therefore this maximal element
correspondsto aray of R(C, V), using the geometric interpretation of R(C, V) (see section 2). It
isreadily seen that one of the elements of thisray isthe required extension ¢ € R(C,V) of the
given element v € R(CNL,L).

Case2: ye S(CNL,L)



Satement ref: *** impliesthat the natural map from L/ mbox (CN L) to V/ mbox (C) is
injective. Therefore the induced restriction map from (V/ mbox (C))’ to (L / mbox (C N L))/
issurjective. That is, the natural restriction map from SC,V) to (C N L,L) issurjective, hence
v € S(CNL,L) can be extended, asdesired, to an element ¢ € SC,V).
Now, we derive two results from this theorem.
For aaconvex cone C in avector space V, it is sometimes convenient to write C' for (C,V)'
and C" for (C',V")'. Werecall that i isthe natural injective map from Vto V".
Theorem (Generalized Theorem of Fenchel-Moreau) LetV be a vector space and et
C < V be a convex cone which has a relatively internal point, i.e. mbox (C) + @. Then

c'ni(v) = ().

Proof Snce i(C) < C"Nni(V) is obvious, it suffices to prove that for each
v e V\ Cthereexists ¢ € (C,V)' with ¢(v) > 0. We only consider the case C # mbox (C),
since the other case is obvious. By statement ( ref: ** ) in the proof of theorem 3.1, we have

mbox (C) N (—C) = @. Choose cp € mbox (C) \ (—C) and consider the convex
cone C N (Rv + Rco) in the vector space Rv + Rco. Choosey € (CN (RV + Rco), Rv + Rco)'

with w(v) < 0and y(co) > 0. This can be extended to an element ¢ of (C,V)' by the
Generalized Theorem of Hahn-Banach.

Remark Let C;,C; be convex conesin a vectorspace V, then
(C1+C2V) = (C,V)' N (Cz, V). Thisisimmediate from the definitions.

For the dual cone (C1 N C2,V)' one hasthe following resullt.

Theorem (Generalized Theorem of Dubovitsky-Milyutin) Let C4,C, be convex conesin
a vector space V with mbox (C1) N mbox (C2) + 0. Then

(C1NCyV) = (Ci,V)' +(CoV).

Proof Let A bethediagonal subspace {(v,v) | v € V}inV x V. It sufficesto prove that the
natural restriction map from (Cy x C,,V x V)" to ((C1 x C2) N A,A)’ issurjective, as

((C1 x C2) N A,A) isisomorphicto (C; N Cp,V)' by the definitions and as this restriction map
factorizes by way of the inclusion map from (Cy,V)' + (C»,V)' into (C; N C2,V)'. The desired
surjectivity follows from the Generalized Theorem of Hahn-Banach withV := V x V,
C:=Ci1xCrandL := A:indeed, choose c € mbox (C1) N mbox (C,) then

(c,c) € mbox (C1x C2) N A, so mbox (Cy x C2) N A # @ and so the Generalized Theorem of
Hahn-Banach can be applied.

Linear subspaces

Let V be avectorspace and let L be alinear subspace of this vectorspace. Let (L,V)* be the
linear subspace of V' which consists of all linear functionals on VV which are zero on L, that is, it
isthe kernel of the restriction map from V' to L'. One calls (L, V)" the annihilator of L in V.

Theorem (Hahn-Banach for linear subspaces) Let L bealinear subspace of a

vectorspace V.

i (LV)* #0ifandonlyifL + V.

ii Lete M be another linear subspace of V. Then M &L implies that
(LN M,M)+ + 0. Moreover each element of (L N M, M)+ can be extended to an element of
(L,V)*.

We write L* for (L,V)* and L** for (L*,V")* in a context where the ambient vectorspace
does not change. We recall that i denotes the natural injective map from Vto V".

Theorem (Fenchel-Moreau for linear subspaces) Let L bealinear subspacein a



vectorspace V. Then L Ni(V) = i(L).

Theorem (Dubovitsky-Milyutin for linear subspaces) LetL1,L, belinear subspacesin
avectorspaceV. Then (Ly N L2)* = L + L3.

Remark These results follow from the results on convex cones using that
(L) =LV

Affine subspaces

For each affine subspace A = L + b of avectorspace V —where L isalinear subspace and
b e V—welet (A V)* be the affine subspace of V' defined as follows

(A V)" = Ltifbe L
—{pel' | pb)=-Lifb el

Theorem (Hahn-Banach for affine subspaces) Let A = L + b be an affine subspacein a
vectorspace Vwith L + V. Here L isalinear subspace of V and b € V. Then the following
statements hold.

® AV) =0

@® Let M bealinear subspace of VwithM N A + 0. Then each element of (AN M, M)* can be
extended to an element of (A,V)".
Now we write A* for (A,V)* and A* for (A*,V')".

Theorem (Fenchel-Moreau for affine subspaces) Let A be an affine subspacein a
vectorspace V. Then A~ Ni(V) = i(A)

Theorem (Dubovitsky-Milyutin for affine subspaces) Let A;, A, be affine subspacesin
a vectorspace V with A1 N Az # 0. Then (A1 N A2)* = [co(A1 U A2)]".

Remark These results follow from the results on linear subspaces using that
(AV)' x1=(span(Ax1),Vx RNV x1)

if Aisnot alinear subspace.

Norms

For each norm || « || on avectorspace V, let V* be the linear subspace of all ¢ € V' for which
supyvi-1 (V) isfiniteand let || « | * be the norm on V* defined by || ¢||* = supjvj-1 ¢ (V) for all
@ e V™.
Theorem (Hahn-Banach for norms) Let (V,| « ||) be a normed vectorspace and W a
linear subspace of V Then each y € W* can be extended to an element ¢ € V* with
ol = Nl

Theorem (Fenchel-Moreau for norms) Let (V,| « ||) be a normed vectorspace. Then the
natural mapi : V - V" sends VtoV** and [li(v)||** = ||v|:VV e V.

Let A;,A> be convex subsets of one vectorspace V and let f; : A1 - R and
f2 : A2 - R be convex functions. Then we define functionsf; v f, : A1 N A2, > Rand
conv(fy A f2) : co(A1 U Az) - RU {—o} asfollows:
(f1 vV f2)(X) = max(f1(x),f2(x)):Vx € A1 N Az and
conv(fy A f2)(X) = infgx, x)af1(X1) + (1 — a)f2(x2):::Vx € co(Ar U Az) where (a,X1,X2) runs
over all tripletsin [0, 1] x A1 x Az with ax; + (1 — a)X2 = X.

Theorem (Dubovitsky-Milyutin for norms) Let | « |1 and || « || 2 be normson one
vectorspace V, then (|| « |1V || » [|2)* = conv([[ « I3 A [ < [I3).



Remark These theorems follow from the results on convex cones, using the following
observations:

(epi » I, Vx R) = epi|  ||*, epi] « || doesnot contain any lines, epi| » || is
algebraically closed and epi|| « || hasa relatively internal point.

Convex sets containing 0

For each convex subset A of a vectorspace V containing O the polar (A, V)° is defined to be
the following convex subset of V' containing O:

(AV) ={p € Vp(a) < 1.:Va € A}

Theorem (Hahn-Banach for convex sets containing 0) Let A be a convex subset of a
vectorspace V containing 0 and with mbox (A) + ¢ and let L be a linear subspace of V with
L N mbox (A) + 0. Then each element of (AN L,L)° can be extended to an element of (A, V).

We write A° for (A, V)° and A~ for (A°,V')".

Theorem (Fenchel-Moreau for convex sets containing 0) Let A be a convex set

containing O in a vectorspace V with mbox (A) + . Then A~ Ni(V) = A.

Theorem (Dubovitsky-Milyutin for convex sets containing 0) Let A;, A, betwo
convex sets containing 0 in a vector space Vv with
mbox (A1) N mbox (Az) + @. Then (A1 N Az2,V)° = co((A1,V)° U (A2,V)°)

Remark These theorems follow from the results on convex cones using
(Rt (Ax1) =R e (-A°x1)

Convex sets and sublinear functions

For each nonempty convex subset A of a vectorspace V the support function s(A) isthe
sublinear function on the convex cone D(A) = {¢ € V'|supaca@(@) < o} in V' defined by

S(A)(p) = Supaca@(@):Ve € D(A).

For each convex cone D in avectorspace V and each sublinear functionp : D - R the
subdifferential op is the convex subset of V' defined by

op = {p € Vp(v) < p(v):vv € V}.
For each subset Sof avectorspace V we define its affine relatively internal set afrint(S) to be
{se 90 € mbox (S-79)}.

Theorem (Hahn-Banach for convex sets and sublinear functions) Let A be a convex
subset of a vectorspace V with afrint(A) + 0. Let L be an affine subspace of V with
L nafrint(A) = @. Thens(AN L)(X) < s(A)(X)::¥x € D(ANL).

Let D be a convex cone in a vectorspace V with mbox (D) +# 0, let

p : D - Rbeasublinear function and let L be a linear subspace of V withL N mbox (D) + 0.
Then each linear functional on L which ismajorized by p can be extended to a linear function
on V which ismajorized by p.

Theorem (Fenchel-Moreau for convex sets and sublinear functions) Let Abea
convex subset of a vectorspace V with afrint(A) # @. Then 0s(A) Ni(V) = i(A).

Let D be a convex cone in a vectorspace V with mbox (D) + @ and let



p : D - Rbeasublinear function. Then s(op) o i = P.

Theorem (Dubovitsky-Milyutin for convex sets and sublinear functions) Let A1, A
be convex subsets of a vectorspace V with afrint(A;) N afrint(Az) = @. Then
(A1 N A2) = s(A1) V S(A2).

Let D1,D, be convex conesin a vectorspaceVand let p; : D1 - Rand
pz2 : D2 - Rbe sublinear functionswith mbox (D1) N mbox (D2) # @. Then
o(p1 U p2) = co(op1 U 0p2).

Remark These theorems follow from the results on convex cones, using
(R".(Ax 1)) = epi(s(A) o o) whereo(p) = —p::Vp and (epi:p)’ = R'(-op x 1).

Convex functions

For each convex set A in avectorspace V and each convex functionf : A - R we define the
convex set D(A) in V' by

D(A) = {¢ € V'[supaca(p(a) —f(a)) < o}

and the convex function f* : D(A) - R by f*(¢) = supaca(@(a) —f(a)). The function f* is
called the (Legendre-Young)-Fenchel transform of f.

Theorem (Hahn-Banach for convex functions) Let A be a convex subset of a
vectorspace V with afrint(A) = @, letf : A - Rbea convex functionand let L < V bean
affine subspace with L N afrint(A) = 0. Then the function (f|L)* o x is majorized by the function
f~ where x isthe mapping V' —» L’ induced by theinclusion of L into V.

Theorem (Fenchel-Moreau for convex functions) Let Abea convexsubsetofa
vectorspace V with afrint(A) = dand letf : A - R bea convex function. Thenf** o i = f.

Theorem (Dubovitsky-Milyutin for convex functions) Let A;, Az be convex subsets of a
vectorspace with afrint(A;) N afrint(A) = #andletf; : Ay > Randf, : A, > R be convex
functions. Then (f1 v f2)* = conv (7 A f5).

Remark These theorems follow from the results for convex cones using
(R".(epif x 1)) = B(R".(epif* x 1))

Whefeﬁ((p,ﬂ,V) = (_(P’V’,U):V((Pa.usv)-
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