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Introduction
The most remarkable property of convex objects is that they can be viewed in two ways,

primal and dual. The transition between these viewpoints is given by so called duality operators.
The oldest example is the well-known duality between points and lines in the two-dimensional
plane. There are many other examples of duality operators such as the polar of a convex set
containing the origin, the dual norm, the Legendre-Young-Fenchel-transform of a convex
function and the conjugate of a convex cone. Moreover convex sets and sublinear functions are
dual objects; the correspondence is given in one direction by the support function and in the
other one by the subdifferential. The theory of each of these operators is of great interest, not
only because of its fundamental character and inherent beauty, but also because there are many
applications.(see  cite: M--T )

In this paper we offer a new unified approach to the theories of these duality operators. The
resulting theorems are sharper than those in the literature. All results in this paper hold for
arbitrary vector spaces, finite or infinite dimensional, which moreover do not have to be provided
with a topology. Furthermore the only assumption which has to be made is the existence of
relatively internal points for the convex objects involved.

We proceed as follows: we prove a generalized Hahn-Banach theorem for convex cones and
derive from this result generalized Fenchel-Moreau and Dubovitsky-Milyutin theorems. These
three results form the duality theory for convex cones. Then we derive the duality theory for
other types of convex objects in the following simple way. For each type we give a construction
to associate to an object of that type a convex cone, which still contains all the information of the
original object. For this convex cone the results of the duality theory for convex cones are
available. It is for each type straightforward to decode these results in terms of the original
convex objects. To be more specific, on inspection, the conjugate of the associated convex cone
turns out to be the convex cone associated to another type of convex object. Then the resulting
transition from one type of convex object to another turns out to be the classical duality operator
for that pair of types. Moreover, for the purpose of decoding, one has to translate the operations
’sum’ and ’intersection’ from the associated convex cones to operations on the underlying
convex objects.

Standard results and definitions
Let V be a vectorspace (we consider only real vectorspaces). For a linear subspace W of V the

quotientspace V/W can be characterized as follows: there is a pair �V/W,�� consisting of a
vectorspace V/W and a surjective linear mapping � from V to V/W with kernel W. The
codimension of W in V, denoted by  mbox 

V
�W�, is defined to be the dimension of the

quotientspace V/W.
The dual vectorspace Vv is the vectorspace consisting of all linear functionals on V. Taking

duals preserves exactness. Explicitly, for each linear subspace W of a vector space V one can
view �V/W�v as a linear subspace of Vv and the quotientspace is isomorphic to Wv; to be more
precise, the inflation map inf from �V/W�v to Vv is injective, the restriction map res from Vv to Wv

is surjective and the image of inf equals the kernel of res. Moreover the natural map i from V to
its bidual Vvv � �Vv�v given by i�v���� � ��v�:::�v � V
�� � Vv is injective.

Let V be a vectorspace and let S be an arbitrary subset of V. The linear span of S, denoted by
 mbox �S�, is the smallest linear subspace of V containing S. An element s of S is a relatively
internal point of S if

�d �  mbox �S� �� � 0 �� � �0,�� : s � �d � S.

The set of all relatively internal points of S is denoted by  mbox �S�. If S is moreover a convex



set, then an element s � S belongs to  mbox �S� if and only if
�d �  mbox �S�:�� � 0 : s � �d � S.

The – algebraic – closure S of S is defined to be the set consisting of all vectors v � V such
that

�s � S:�� � �0,1�:�v � �1 � ��s � S

The set S is called – algebraically – closed if S � S. We observe that S is closed for each set S.
Let V be a vectorspace. A nonempty subset C of V is called a convex cone in V if it is closed

under addition and under multiplication with nonnegative scalars. The convex cone C is called
pointed if it does not contain any line through 0. One calls C solid if  mbox �C� � V

Let V be a vectorspace and let C be a convex cone in V. The conjugate cone or dual cone
�C,V�v, corresponding to this cone C, is the convex cone in the dual vector space Vv which
consists of all functionals � : V � � satisfying ��c� � 0:�c � C.

The main point of the following lemma is that each convex cone is the sum of a pointed
convex cone and a linear subspace. Moreover it describes how this decomposition carries over to
the conjugate cone.

Lemma Let V be a vector space and C a convex cone in V. Then the following statements hold
true.

i There are linear subspaces W1, W2, W3 of V and there exists a pointed,solid convex cone D
in W2 such that V � W1 � W2 � W3 and C � W1 � D. Here the vectorspace W1 (resp.
W1 � W2) is uniquely determined as the maximal (resp. minimal) linear subspace of V
which is contained in C (resp. contains C).

ii �C,V�v equals �C,V�v.
iii Assume C � C and let W1, W2, W3 and D be as in (i). Then

Vv � W1
v � W2

v � W3
v and �C,V�v � W3

v � �D,W2�v ; moreover �D,W2�v is a pointed, convex
cone in W2

v .
This result suggests that for the analysis of the conjugate cone it is useful to view the set of

its nonzero elements �C,V�v � �0� as the union of two disjoint subsets: its singular part S�C,V�
defined by

S�C,V� :� �� � Vv � �0� � ��c� � 0:�c � C�

and its regular part R�C,V� defined by

R�C,V� :� �C,V�v � S�C,V� 	 �0�.

The connection between these definition and the lemma above is as follows: S�C,V� 	 �0� is the
maximal linear subspace of Vv which is contained in �C,V�v. Therefore it follows from the
lemma above that S�C,V� 	 �0� is isomorphic to the dual vector space �V/ mbox �C��v.

The conjugate cone and its regular and singular elements allow the following geometrical
interpretation. The set of rays of the conjugate cone �C,V�v corresponds bijectively to the set of
pairs consisting of a linear subspace in V of codimension 1 with C on one of its two sides
together with a choice of side which contains C: for each � � �C,V�v\�0� we associate to the ray
�+� the linear subspace �v � V|��v� � 0� together with its side �v � V|��v� � 0�. For each
� � �C,V�v\�0� one has � � S�C,V� precisely if C 
 ker�. If  mbox �C� � � one has
� � R�C,V� precisely if ker� 
  mbox �C� � �.

Now we are going to recall the well-known classification of closed convex cones in a
two-dimensional vectorspace. Moreover we recall the explicit description of their conjugates. It
is convenient to do this for the complex plane � viewed as a two-dimensional vector space. We
define for �1,�2 � � with 0 � �2 � �1 � � the convex cone Cd1,d2 in � by
Cd1,d2 � �reid|r � �+:&:�1 � � � �2�.



We identify the dual vector space ���v with � by letting T � ���v and w � � correspond if
and only if T�z� � Re�wz�:�w � W. Here ? denotes complex conjugate and Re denotes ’real
part’.
Lemma
i Each closed convex cone C in � with C �  mbox �C� is of the form Cd1,d2 for suitable

�1,�2 � � with 0 � �2 � �1 � �.
ii Let �1,�2 � � with 0 � �2 � �1 � �, then the conjugate cone �Cd1,d2 ,��

v equals
Cd2?

1
2
^,d1+

1
2
^

Furthermore we record the following easy fact.

Lemma Let V be a vector space and C a convex cone in V with  mbox �C� � �. Then
C �  mbox �C� 
 C.

Finally we introduce some more notation. For each function f : V � � � � 	 ��,��� let the
function f : V � � be defined by epi: f � epi:f. For each subset S of a vectorspace V its convex
hull coS is the smallest convex subset of V containing S.

Convex cones
We begin by stating and proving the central result of this paper.

Theorem (Generalized Theorem of Hahn-Banach) Let V be a vector space and let C be
a convex cone in V satisfying C � V, and  mbox �C� � �. Then the following statements hold.

i There exists at least one regular element, i.e. R�C,V� � �, if and only if  mbox �C� � C.

ii There exists at least one singular element, i.e. S�C,V� � �, if and only if  mbox �C� � V.

iii The dual cone �C,V�v has at least one nonzero element.
iv Let L be a linear subspace of V which contains at least one relatively internal point of C, i.e.

L 
  mbox �C� � �. Then L � C implies
�C 
 L,L�v � 0 and furthermore, each element of the dual cone
�C 
 L,L�v can be extended to an element of the dual cone �C,V�v.

Proof The heart of the proof is the verification of the following statement.

  10cm    3cm  

Choose a linear subspace W of V with H � W,  mbox 
W
�H� � 2 and

c0 � W 
  mbox �C�. Let j be the natural map from W to the quotient space W/H. We claim that
the convex cone j�C 
 W� is a strict subset of the space W/H. Indeed, from
C �  mbox �C� 
  mbox �C� and H 
  mbox �C� � � we conclude �c0 � C� 
 H � �. Hence, we
find j��c0� �� j�C 
 W�. Therefore, j�C 
 W� is a convex cone in the twodimensional
vectorspace j�W� with j�c0� �  mbox �j�C 
 W�� and �j�c0� � j�C 
 W�. Now we use some
standard facts from the previous section. In the first place it follows that there exists an element
� � �j�C 
 W�, j�W��v with ��j�c0�� � 0. As c0 �  mbox �C� it follows that
� � j�c� � 0:::�c �  mbox �C�. Therefore the choice K � ker� � j satisfies K 
  mbox �C� � �.
Moreover H 
 K as H � ker j and K � ker� � j. Furthermore  mbox 

W
�H� � 2 and

 mbox 
V
�H� � 1 and so  mbox 

K
�H� � 1. This finishes the verification of statement (  ref: * ).

In addition, we have to verify the following two statements.

C �  mbox �C� �  mbox �C� 
 ��C� � �   #   

and



L 
  mbox �C� � � � L 
  mbox �C� �  mbox �L 
 C�.   #   

To prove ( ref: ** ) it suffices to check that  mbox �C� 
 ��C� � � implies
C �  mbox �C�. The rest is obvious. Choose c0 �  mbox �C� 
 ��C�. As 0 � ��c0� � c0 it
follows that 0 � C �  mbox �C�. Therefore, using the inclusions C �  mbox �C� 
 C
– see section 2 – we can conclude that 0 �  mbox �C�. As C is a convex cone it follows that
C �  mbox �C�.

To prove ( ref: *** ) it suffices to check that L 
  mbox �C� � � implies the inclusion
L 
  mbox �C� 
  mbox �L 
 C�. The other inclusion is obvious. Choose c0 � L 
  mbox �C�.
Then for each v � L 
  mbox �C� there exists � � 0 with c0 � �v � L 
 C; therefore
v � 1

P ��c0 � �v� � c0� lies in  mbox �L 
 C�.

Now we are ready to prove all the statements of the theorem.

We start with the proof of i. Assume C �  mbox �C�. Then statement ( ref: ** ) implies
 mbox �C� 
 ��C� � �, so we can choose c0 �  mbox �C� with �c0 �� C. The collection of
linear subspaces of V which are disjoint from  mbox �C� can be ordered by inclusion. Zorn’s
lemma implies that this collection has a maximal element. By ( ref: * ), the codimension, with
respect to V, of each such maximal element is equal to 1. It follows, using the geometric
interpretation of the elements of R�C,V� given in section 2, that R�C,V� is nonempty. Now we
prove the converse implication R�C,V� � � � C �  mbox �C�. Assume R�C,V� � �.
Choose � � R�C,V� and c0 �  mbox �C�. Then ��c0� � 0 i.e. ���c0� � 0 and so �c0 � C,
using � � �C,V�v. Moreover �c0 �  mbox �C�. It follows that C �  mbox �C�.

In order to prove statement ii of the theorem, we assume  mbox �C� � V. Then
�V/ mbox �C�,V�v � �0�, that is, S�C,V� � �. The converse implication
S�C,V� � � �  mbox �C� � V is obvious.

In order to prove statement iii of the theorem, we argue by contradiction. Assume
�C,V�v � 0, then R�C,V� � � and S�C,V� � �. Therefore, by (i) and (ii), C �  mbox �C� and
 mbox �C� � V. Hence C � V.

Now, for the proof of statement iv of the theorem, let L be a linear subspace of V with
L 
  mbox �C� � �.

In order to prove the first part of statement iv, assume L � C. Then C 
 L is a convex
cone in L satisfying both C 
 L � L and  mbox �C 
 L� �  mbox �C� 
 L � �. Hence,
statement iii implies that �C 
 L,L�v � 0.

Next, choose � � �C 
 L,L�v\�0�. We want to prove the existence of an extension of �
to an element � � �C,V�v. Consider the following two cases.

Case 1: � � R�C 
 L,L�
The collection of linear subspaces of V which are disjoint from C and which contain ker� can
be ordered by inclusion. By Zorn’s lemma this collection has a maximal element. By � ref: * �
this maximal element has codimension 1 with respect to V. Therefore this maximal element
corresponds to a ray of R�C,V�, using the geometric interpretation of R�C,V� (see section 2). It
is readily seen that one of the elements of this ray is the required extension � � R�C,V� of the
given element � � R�C 
 L,L�.

Case 2: � � S�C 
 L,L�



Statement  ref: *** implies that the natural map from L/ mbox �C 
 L� to V/ mbox �C� is
injective. Therefore the induced restriction map from �V/ mbox �C��v to �L /  mbox �C 
 L��

v

is surjective. That is, the natural restriction map from S�C,V� to S�C 
 L,L� is surjective, hence
� � S�C 
 L,L� can be extended, as desired, to an element � � S�C,V�.

Now, we derive two results from this theorem.
For a a convex cone C in a vector space V, it is sometimes convenient to write Cv for �C,V�v

and Cvv for �Cv,Vv�v. We recall that i is the natural injective map from V to Vvv.

Theorem (Generalized Theorem of Fenchel-Moreau) Let V be a vector space and let
C � V be a convex cone which has a relatively internal point, i.e.  mbox �C� � �. Then

Cvv 
 i�V� � i�C�.

Proof Since i�C� 
 Cvv 
 i�V� is obvious, it suffices to prove that for each
v � V � C there exists � � �C,V�v with ��v� � 0. We only consider the case C �  mbox �C�,
since the other case is obvious. By statement � ref: ** � in the proof of theorem 3.1, we have
 mbox �C� 
 ��C� � �. Choose c0 �  mbox �C� � ��C� and consider the convex
cone C 
 ��v � �c0� in the vector space �v � �c0. Choose � � �C 
 ��v � �c0�,�v � �c0�v

with ��v� � 0 and ��c0� � 0. This can be extended to an element � of �C,V�v by the
Generalized Theorem of Hahn-Banach.

Remark Let C1,C2 be convex cones in a vectorspace V, then
�C1 � C2,V�v � �C1,V�v 
 �C2,V�v. This is immediate from the definitions.

For the dual cone �C1 
 C2,V�v one has the following result.

Theorem (Generalized Theorem of Dubovitsky-Milyutin) Let C1,C2 be convex cones in
a vector space V with  mbox �C1� 
  mbox �C2� � �. Then

�C1 
 C2,V�v � �C1,V�v � �C2,V�v.

Proof Let 	 be the diagonal subspace ��v,v� � v � V� in V � V. It suffices to prove that the
natural restriction map from �C1 � C2,V � V�v to ��C1 � C2� 
 	,	�v is surjective, as
��C1 � C2� 
 	,	�v is isomorphic to �C1 
 C2,V�v by the definitions and as this restriction map
factorizes by way of the inclusion map from �C1,V�v � �C2,V�v into �C1 
 C2,V�v. The desired
surjectivity follows from the Generalized Theorem of Hahn-Banach with V :� V � V,
C :� C1 � C2 and L :� 	: indeed, choose c �  mbox �C1� 
  mbox �C2� then
�c,c� �  mbox �C1 � C2� 
 	, so  mbox �C1 � C2� 
 	 � � and so the Generalized Theorem of
Hahn-Banach can be applied.

Linear subspaces
Let V be a vectorspace and let L be a linear subspace of this vectorspace. Let �L,V�Ø be the

linear subspace of Vv which consists of all linear functionals on V which are zero on L, that is, it
is the kernel of the restriction map from Vv to Lv. One calls �L,V�Ø the annihilator of L in V.

Theorem (Hahn-Banach for linear subspaces) Let L be a linear subspace of a
vectorspace V.

i �L,V�Ø � 0 if and only if L � V.
ii Let M be another linear subspace of V. Then M � L implies that

�L 
 M,M�Ø � 0. Moreover each element of �L 
 M,M�Ø can be extended to an element of
�L,V�Ø.

We write LØ for �L,V�Ø and LØØ for �LØ,Vv�Ø in a context where the ambient vectorspace
does not change. We recall that i denotes the natural injective map from V to Vvv.

Theorem (Fenchel-Moreau for linear subspaces) Let L be a linear subspace in a



vectorspace V. Then LØØ 
 i�V� � i�L�.

Theorem (Dubovitsky-Milyutin for linear subspaces) Let L1,L2 be linear subspaces in
a vectorspace V. Then �L1 
 L2�Ø � L1

Ø � L2
Ø.

Remark These results follow from the results on convex cones using that
�L,V�Ø � �L,V�v

Affine subspaces
For each affine subspace A � L � b of a vectorspace V – where L is a linear subspace and

b � V – we let �A,V�F be the affine subspace of Vv defined as follows

�A,V�F � LØ ifb � L

� �� � LØ � ��b� � �1� ifb � L

Theorem (Hahn-Banach for affine subspaces) Let A � L � b be an affine subspace in a
vectorspace V with L � V. Here L is a linear subspace of V and b � V. Then the following
statements hold.

	 �A,V�F � 0
	 Let M be a linear subspace of V with M 
 A � �. Then each element of �A 
 M,M�F can be

extended to an element of �A,V�F.
Now we write AF for �A,V�F and AFF for �AF,Vv�F.

Theorem (Fenchel-Moreau for affine subspaces) Let A be an affine subspace in a
vectorspace V. Then AFF 
 i�V� � i�A�

Theorem (Dubovitsky-Milyutin for affine subspaces) Let A1,A2 be affine subspaces in
a vectorspace V with A1 
 A2 � �. Then �A1 
 A2�F � �co�A1 	 A2��F.

Remark These results follow from the results on linear subspaces using that

�A,V�F � 1 � �span�A � 1�,V � ��Ø 
 �Vv � 1�

if A is not a linear subspace.

Norms
For each norm 	 
 	 on a vectorspace V, let V7 be the linear subspace of all � � Vv for which

supqvq=1 ��v� is finite and let 	 
 	7 be the norm on V7 defined by 	�	7 � supqvq=1 ��v� for all
� � V7.

Theorem (Hahn-Banach for norms) Let �V,	 
 	� be a normed vectorspace and W a
linear subspace of V Then each � � W7 can be extended to an element � � V7 with
	�	V

7 � 	�	W
7 .

Theorem (Fenchel-Moreau for norms) Let �V,	 
 	� be a normed vectorspace. Then the
natural map i : V � Vvv sends V to V77 and 	i�v�	77 � 	v	:�v � V.

Let A1,A2 be convex subsets of one vectorspace V and let f1 : A1 � � and
f2 : A2 � � be convex functions. Then we define functions f1 � f2 : A1 
 A2 � � and
conv�f1 � f2� : co�A1 	 A2� � � 	 ���� as follows:
�f1 � f2��x� � max�f1�x�, f2�x��:�x � A1 
 A2 and
conv�f1 � f2��x� � infÂJ,x1,x2Ã�f1�x1� � �1 � ��f2�x2�:::�x � co�A1 	 A2� where ��,x1,x2� runs
over all triplets in �0,1� � A1 � A2 with �x1 � �1 � ��x2 � x.

Theorem (Dubovitsky-Milyutin for norms) Let 	 
 	1 and 	 
 	2 be norms on one
vectorspace V, then �	 
 	1 � 	 
 	2�7 � conv�	 
 	1

7 � 	 
 	2
7�.



Remark These theorems follow from the results on convex cones, using the following
observations:

�epi	 
 	,V � ��v � epi	 
 	7, epi	 
 	 does not contain any lines, epi	 
 	 is
algebraically closed and epi	 
 	 has a relatively internal point.

Convex sets containing 0
For each convex subset A of a vectorspace V containing 0 the polar �A,V�E is defined to be

the following convex subset of Vv containing 0:

�A,V�E � �� � Vv|��a� � 1:�a � A�

Theorem (Hahn-Banach for convex sets containing 0) Let A be a convex subset of a
vectorspace V containing 0 and with  mbox �A� � � and let L be a linear subspace of V with
L 
  mbox �A� � �. Then each element of �A 
 L,L�E can be extended to an element of �A,V�E.

We write AE for �A,V�E and AEE for �AE,Vv�E.

Theorem (Fenchel-Moreau for convex sets containing 0) Let A be a convex set
containing 0 in a vectorspace V with  mbox �A� � �. Then AEE 
 i�V� � A.

Theorem (Dubovitsky-Milyutin for convex sets containing 0) Let A1,A2 be two
convex sets containing 0 in a vectorspace V with
 mbox �A1� 
  mbox �A2� � �. Then �A1 
 A2,V�E � co��A1,V�E 	 �A2,V�E�

Remark These theorems follow from the results on convex cones using
��+ 
 �A � 1��v � �

+ 
 ��AE � 1�

Convex sets and sublinear functions
For each nonempty convex subset A of a vectorspace V the support function s�A� is the

sublinear function on the convex cone D�A� � �� � Vv|supa5A��a� � �� in Vv defined by

s�A���� � supa5A��a�:�� � D�A�.

For each convex cone D in a vectorspace V and each sublinear function p : D � � the
subdifferential �p is the convex subset of Vv defined by

�p � �� � Vv|��v� � p�v�:�v � V�.

For each subset S of a vectorspace V we define its affine relatively internal set afrint�S� to be
�s � S|0 �  mbox �S � s��.

Theorem (Hahn-Banach for convex sets and sublinear functions) Let A be a convex
subset of a vectorspace V with afrint�A� � �. Let L be an affine subspace of V with
L 
 afrint�A� � �. Then s�A 
 L��x� � s�A��x�::�x � D�A 
 L�.

Let D be a convex cone in a vectorspace V with  mbox �D� � �, let
p : D � � be a sublinear function and let L be a linear subspace of V with L 
  mbox �D� � �.
Then each linear functional on L which is majorized by p can be extended to a linear function
on V which is majorized by p.

Theorem (Fenchel-Moreau for convex sets and sublinear functions) Let A be a
convex subset of a vectorspace V with afrint�A� � �. Then �s�A� 
 i�V� � i�A�.

Let D be a convex cone in a vectorspace V with  mbox �D� � � and let



p : D � � be a sublinear function. Then s��p� � i � p.

Theorem (Dubovitsky-Milyutin for convex sets and sublinear functions) Let A1,A2

be convex subsets of a vectorspace V with afrint�A1� 
 afrint�A2� � �. Then
s�A1 
 A2� � s�A1� � s�A2�.

Let D1,D2 be convex cones in a vectorspace V and let p1 : D1 � � and
p2 : D2 � � be sublinear functions with  mbox �D1� 
  mbox �D2� � �. Then
��p1 	 p2� � co��p1 	 �p2�.

Remark These theorems follow from the results on convex cones, using
��+.�A � 1��v � epi�s�A� � 
� where 
��� � ��::�� and �epi:p�v � �

+���p � 1�.

Convex functions
For each convex set A in a vectorspace V and each convex function f : A � � we define the

convex set D�A� in Vv by

D�A� � �� � Vv|supa5A���a� � f�a�� � ��

and the convex function f7 : D�A� � � by f7��� � supa5A���a� � f�a��. The function f7 is
called the (Legendre-Young)-Fenchel transform of f.

Theorem (Hahn-Banach for convex functions) Let A be a convex subset of a
vectorspace V with afrint�A� � �, let f : A � � be a convex function and let L 
 V be an
affine subspace with L 
 afrint�A� � �. Then the function �f|L�7 � � is majorized by the function
f7 where � is the mapping Vv � Lv induced by the inclusion of L into V.

Theorem (Fenchel-Moreau for convex functions) Let A be a convex subset of a
vectorspace V with afrint�A� � � and let f : A � � be a convex function. Then f77 � i � f .

Theorem (Dubovitsky-Milyutin for convex functions) Let A1,A2 be convex subsets of a
vectorspace with afrint�A1� 
 afrint�A2� � � and let f1 : A1 � � and f2 : A2 � � be convex
functions. Then �f1 � f2�7 � conv � f1

7 � f2
7�.

Remark These theorems follow from the results for convex cones using

��+.�epif � 1��v � ���+.�epif7 � 1��

where ���,
,�� � ���,�,
�:���,
,��.
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