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1 Introduction

Estimating and forecasting the (conditional) covariance structure of financial asset

returns plays a crucial role in important areas of finance such as portfolio construc-

tion, asset pricing and risk management. It is therefore not surprising that modelling

the dynamics of conditional covariance matrices has received ample attention. This

research area was boosted by the introduction of the (Generalized) AutoRegres-

sive Conditional Heteroskedasticity ((G)ARCH) model by Engle (1982) and Boller-

slev (1986). Early-stage multivariate GARCH models, including the VEC-model of

Bollerslev, Engle and Wooldridge (1988) and the BEKK-model of Engle and Kroner

(1995), describe the dynamics of all elements of the covariance matrix in a flexible

way using many parameters. As such, they suffer from the “curse of dimensional-

ity”, meaning to say that the number of parameters to be estimated in these models

increases very rapidly as the number of included assets increases.1 This basically pre-

vented their successful application in empirically relevant settings, where portfolios

might consist of tens or even hundreds of assets. More parsimonious models, such as

the Constant Conditional Correlation (CCC) model of Bollerslev (1990), are applied

more frequently in practice. These models limit the possible dynamic patterns of

the covariance matrix in important ways, however. In the CCC model, for example,

the covariance between two assets changes over time only because of variation in

their conditional volatilities, as their correlation is assumed to be constant.

Recently, several extensions of the CCC model have been proposed that allow

for variation in the conditional correlations. On the one hand, Engle (2002) and

Tse and Tsui (2002) developed Dynamic Conditional Correlation (DCC) models,

where the conditional correlations evolve according to a GARCH-type structure.

The attractive feature of this approach is that the number of parameters in the

conditional correlation model can be limited by using the idea of “correlation tar-

geting”, which means that the unconditional correlations implied by the model are

restricted to be equal to the unconditional sample correlations. In that case, the basic

DCC-model of Engle (2002), for example, involves only two unknown parameters.

Cappiello, Engle and Sheppard (2003) and Hafner and Franses (2003) considered

1The number of parameters in an unrestricted VEC-model for N assets equals (N(N + 1)/2)×
(1 + 2N(N + 1)/2). The BEKK-model contains 2N 2 +N(N + 1)/2 parameters.
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generalizations to allow for richer correlation dynamics, while still keeping the num-

ber of parameters within reasonable bounds even for large numbers of assets.2 On

the other hand, Pelletier (2005) and Silvennoinen and Teräsvirta (2005) proposed

Regime-Switching Conditional Correlation models, where the correlations switch

back and forth between a limited number of different values, according to an unob-

served Markov-Switching process or according to the value of observed exogenous

variables, respectively. The main disadvantage of these models is that correlation

targeting can no longer be applied in a straightforward manner, such that the num-

ber of parameters to be estimated again grows rapidly (that is, quadratically) with

the number of assets.

In this paper we put forward a new semi-parametric model for the conditional

covariance matrix that is flexible yet easy to estimate even in high dimensions.

The model is semi-parametric in the sense that the conditional variances are de-

scribed parametrically, for example using standard univariate GARCH-type models,

while the conditional correlations are estimated using nonparametric techniques.

The conditional correlations are assumed to depend on an observable exogenous (or

pre-determined) variable. The appropriate choice of this conditioning variable de-

pends on the particular application. For example, in Section 4 below, we model

the correlations between the 30 individual stocks included in the Dow Jones Indus-

trial Average (DJIA) index, and allow these to depend on the market volatility and

market return. These variables are motivated by both theoretical and empirical con-

siderations. First, as shown by Andersen et al. (2001), in case asset returns exhibit

a factor structure, the correlations are affected by the conditional volatility of the

latent factor. In particular, under quite realistic assumptions concerning the factor

loadings high factor volatility induces high correlations between individual asset re-

turns. In the context of the DJIA stocks, a factor structure is a sensible possibility

and, furthermore, the market portfolio is a natural candidate to use as a proxy for

the latent common factor. Additional empirical evidence supporting the hypothesis

that correlations increase in high volatility states can be found in Longin and Sol-

nik (1995, 2001), and Ramchand and Susmel (1998), but see Loretan and English

(2000) and Forbes and Rigobon (2002) for critical discussion. Second, modelling the

2As discussed in Section 2 below, the number of parameters in these models grows linearly with
the number of assets.
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correlations as a function of the lagged index return is motivated by the literature

on “correlation breakdown”, which has documented that typically asset correlations

increase in bear markets, but are not affected (or to a much lesser extent) in bull

markets, see Longin and Solnik (2001), Ang and Chen (2002), Butler and Joaquin

(2002), and Campbell, Koedijk and Kofman (2002), among others.

The idea of allowing the conditional correlations to depend on exogenous fac-

tors resembles the regime-switching model of Silvennoinen and Teräsvirta (2005).

However, instead of a priori imposing a certain parametric specification for the

correlation functions, we suggest a nonparametric estimator. Basically, a Nadaraya-

Watson kernel regression is applied to each conditional correlation individually, using

the same bandwidth to guarantee that the resulting estimator of the correlation ma-

trix is positive definite. In order to obtain a genuine correlation matrix in finite

samples, we apply the same transformation as in the DCC model of Engle (2002).

Our nonparametric estimator only requires the assumption that correlations are

smooth functions of the conditioning variable, while the data completely determines

the appropriate shape of the functional relationship. An additional advantage of is

that the individual correlation functions are allowed to exhibit quite different shapes,

which is problematic in currently available parametric specifications as will become

clear below.

The paper proceeds as follows. In Section 2, we briefly review the various con-

ditional correlation models that have recently been proposed. We describe our new

semi-parametric model in Section 3, including a detailed discussion of the issues

involved in the nonparametric part of the estimation procedure. In Section 4, we

consider daily returns of the 30 stocks included in the Dow Jones Industrial Average

Index over the period 1989-2003, and apply several models to describe the dynamics

in the conditional covariance matrix of these stocks. We find that our new semi-

parametric model is competitive with rival specifications, in particular in terms of

tracking error minimization. We conclude in Section 5, also pointing out interesting

directions for future research. The Appendix contains a proof of the consistency and

asymptotic normality of the semi-parametric estimator developed in Section 3.
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2 Dynamic conditional correlation models

In this section we review existing models for describing the dynamics in condi-

tional correlations of asset returns. These models are a specific sub-group within

the general class of multivariate GARCH models. We refer to Bauwens, Laurent

and Rombouts (2005) for elaborate discussion of other models in this class.

Let rt denote an N -dimensional vector time series, such as daily returns on the

stocks in the Dow Jones index. Suppose for simplicity (but without loss of generality)

that the conditional mean of rt is constant and equal to zero, but that its conditional

covariance matrix is time-varying. That is, we have the generic model

E[rt|Ft−1] = 0, (1)

V(rt|Ft−1) = E[rtr
′
t|Ft−1] = Ht, (2)

where Ft is the information set that includes all information up to and including

time t. The conditional covariance matrix Ht can be decomposed as

Ht = Dt(θ)RtDt(θ), (3)

with Dt(θ) = diag(
√

h1t, . . . ,
√

hNt) a diagonal matrix with the square root of the

conditional variances hit, parameterized by the vector θ, on the diagonal. For ex-

ample, hit can be described by the univariate GARCH-model of Bollerslev (1986) or

nonlinear extensions such as the GJR-GARCH model of Glosten, Jagannathan and

Runkle (1993). The matrix Rt, with the (i, j)-th element denoted as ρijt, is the pos-

sibly time-varying conditional correlation matrix. As noted by Engle (2002), Rt also

is the conditional covariance matrix of the standardized disturbances εt = D−1
t (θ)rt,

that is

E[εtε
′
t|Ft−1] = Rt. (4)

Different specifications of Rt give rise to different models. First, the constant

conditional correlation (CCC) model of Bollerslev (1990) assumes that Rt = R is

constant. In that case, estimation is straightforward and can be performed in two

steps. First, one estimates univariate GARCH models for the individual series rit, i =

1, . . . , N , using (quasi) maximum likelihood to obtain estimates of the conditional

variances hit. Second, R can be consistently estimated by the sample covariance
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matrix of the standardized residuals ε̂t = D̂−1
t rt, that is R̂ = T−1

∑T
t=1 ε̂tε̂

′
t with T

denoting the sample size.

Second, Engle (2002) and Tse and Tsui (2002) introduced the class of dynamic

conditional correlation (DCC) models, where Rt is allowed to vary according to a

GARCH-type process, such as

Qt = (1 − α − β)Q̄ + αεt−1ε
′
t−1 + βQt−1, (5)

Rt = Q∗ −1
t QtQ

∗ −1
t , (6)

where Q̄ = E[εtε
′
t] is the unconditional covariance matrix of standardized returns,

Q∗
t is a diagonal matrix containing the square roots of the diagonal elements of Qt

and α and β are scalars. The attractive feature of the DCC model is not only that

two-step estimation is still feasible, but also that “correlation targeting” can be used

in the second step. That is, after estimating univariate GARCH models for the con-

ditional volatilities hit in the first step, Q̄ can be replaced by the sample covariance

matrix of the standardized residuals ε̂t. This imposes the restriction that the uncon-

ditional correlations as implied by the model are equal to the unconditional sample

correlations, and reduces the number of parameters to be estimated in the second

step to two, namely α and β. Engle and Sheppard (2001) prove consistency and

asymptotic normality of this two-step estimator. Note that correlation targeting is

the multivariate analogue of variance targeting in the univariate GARCH framework

as introduced by Engle and Mezrich (1996).

The DCC model in (5) has two particular features that may render it too re-

strictive in practice. First, the model imposes all correlations to have the same

dynamic pattern as governed by the parameters α and β. It is not difficult to come

up with examples of situations where this restriction may be violated. For example,

correlations between stocks from the same industry may behave rather differently

from correlations between stocks from different industries. Second, the model im-

plies symmetry, in the sense that a pair of positive standardized returns εit and εjt

has the same effect on the conditional correlation as a pair of negative returns of the

same magnitude. Recent empirical evidence in Ang and Chen (2002), among others,

indicates the presence of asymmetries in correlations, suggesting for example that

correlations increase for large downward stock price movements but not, or less, for

large upward movements.
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Several extensions of the basic model in (5) have been developed that alleviate

these shortcomings. Hafner and Franses (2003) suggested the semi-generalized DCC

(SGDCC) model that allows for asset-specific news impact parameters by replacing

(5) with

Qt = (1 − ᾱ2 − β)Q̄ + αα′ � εt−1ε
′
t−1 + βQt−1, (7)

where � denotes the Hadamard product and α now is an (N × 1) vector, α =

(α1, α2, . . . , αN )′, and ᾱ = N−1
∑N

i=1 αi is the average news impact parameter. The

memory parameter β can be made asset-specific in identical fashion. Note that

the number of parameters in (7) increases linearly with the number of assets N .

Cappiello et al. (2003) allowed for nonlinear impact of shocks on the conditional

correlations, in particular of simultaneous negative shocks in assets i and j, by

considering the asymmetric DCC (ADCC) model

Qt = (1 − α − β)Q̄ − γN̄ + αεt−1ε
′
t−1 + βQt−1 + γnt−1n

′
t−1, (8)

where nt = I[εt < 0] � εt, with I[A] being the indicator function for the event A,

and N̄ = E[ntn
′
t]. In estimation of the ADCC model, N̄ can be replaced by its

sample analogue T−1
∑T

t=1 n̂tn̂
′
t, such that the number of parameters is equal to

three independent of the number of assets included. Combining the ideas in (7) and

(8) is also possible, see Cappiello et al. (2003).

Third, Pelletier (2005) developed a Markov-Switching conditional correlation

model that allows the conditional correlations to switch between k distinct values,

by specifying the conditional correlation matrix in (3) as

Rt = Rst
, (9)

where st is an unobserved first-order Markov process with k states, with transition

probabilities P [st = j|st−1 = i] = pij, for i, j = 1, . . . , k. Note that in contrast to the

DCC-type models discussed above, this model does not necessarily imply any direct

dynamic dependence in the conditional correlation matrix, although there is indirect

dependence through the Markov-character of st. Estimation of the parameters in

this model can again be done using a two-step approach, where in the second step

the EM-algorithm can be employed, see Pelletier (2005) for details. Note however

that correlation targeting is not possible here. Hence, the elements in the Rst
, st =
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1, . . . , k matrices have to be treated as unknown parameters such that the number

of parameters to be estimated in the second step equals k(N(N − 1)/2 + (k − 1)).

Fourth, Silvennoinen and Teräsvirta (2005) consider a smooth transition con-

ditional correlation (STCC) model that allows the conditional correlations to vary

continuously between two extremes, according to the value of an observed variable

xt,

Rt = R1(1 − G(xt; γ, c)) + R2G(xt; γ, c), (10)

where the function G(xt; γ, c) is continuous and bounded between 0 and 1. For

example, G(xt; γ, c) can be the logistic function

G(xt; γ, c) =
1

1 + exp(−γ(xt − c))
, (11)

which tends to 0 (1) for very small (large) values of the transition variable xt, relative

to the threshold parameter c. The parameter γ determines the smoothness of the

change from 0 to 1 as xt increases. The transition variable xt should of course be

included in the information set Ft−1 to make the model operational and useful for

forecasting purposes. Although the parameters in this model can again be estimated

using a two-step approach, correlation targeting is not possible, such that the number

of parameters to be estimated in the second step equals 2N(N−1)/2+2. An interest-

ing special case of the STCC model (10) with (11) arises when the parameter γ → ∞,

such that the change of the correlation matrix from R1 and R2 occurs instantaneously

at xt = c. In that case, estimation of the parameters is simplified considerably, in the

sense that correlation targeting becomes possible again. Note that, if γ = ∞ such

that G(xt; γ, c) = I[xt ≥ c], R1 = E[n1tn
′
1t] with n1t = I[xt < c] � εt and R2 can be

similarly defined as R2 = E[n2tn
′
2t] with n2t = I[xt ≥ c]�εt. For a fixed value of c, R1

and R2 can then be replaced by their sample analogues (
∑T

t=1 I[xt < c])−1
∑T

t=1 n̂1tn̂
′
1t

and (
∑T

t=1 I[xt ≥ c])−1
∑T

t=1 n̂2tn̂
′
2t, respectively. This leaves only c to be estimated,

which can be achieved by means of grid search.

A crucial ingredient of the STCC model is of course the transition variable xt.

Berben and Jansen (2005) take xt = t in an application to industry stock returns,

effectively modelling a gradual structural change in correlations. Alternatively, xt

could be taken to be a lagged market return or volatility, motivated by the correlation

breakdown effect and by the presence of a factor structure, respectively, as discussed

in the Introduction. Silvennoinen and Teräsvirta (2005) develop an LM-type test
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for the constancy of the correlation matrix against the STCC-alternative, which also

can be used as a guiding tool in the choice of the appropriate transition variable xt.

3 A semi-parametric conditional correlation model

In this section we put forward our semi-parametric conditional correlation model.

The model can be considered a generalization of the STCC model of Silvennoinen

and Teräsvirta (2005) given in (10) and (11). We are sympathetic to the idea that

the conditional correlations depend on exogenous factors such as the market return

or volatility. However, the STCC model is restrictive, in the sense that it imposes

that all correlations depend on xt in the same way, as determined by the transition

function G(xt; γ, c). This assumption may be unrealistic in practice, as one can

easily imagine that different correlations respond differently to changes in xt; see the

factor model in Andersen et al. (2001) and the empirical application in Silvennoinen

and Teräsvirta (2005) for examples. It might be possible to generalize the STCC

model to allow for asset-specific smooth transition in correlations, similar to the

SGDCC model of Hafner and Franses (2003) in (7). In that case, however, it would

be difficult, if not impossible, to guarantee positive definiteness of the correlation

matrix for all values of xt. In addition, even if it is reasonable to assume that all

correlations have the same functional relationship to xt, the specific form of this

dependence, such as the logistic function in (11), is not likely to be known a priori.

Hence, we suggest to model the conditional correlation matrix in a nonparametric

way.

In sum, we propose the following semi-parametric model:

rt = Dt(θ)εt, (12)

with Dt(θ) as defined before, E[εt | Ft−1] = 0 and

E[εtε
′
t | Ft−1, xt = x] = R(x), (13)

where xt is an observed variable, for example, the market return or volatility at time

t − 1. Assuming that we have a
√

T -consistent estimator of θ, which we denote by

θ̂, the standardized residuals are then defined by ε̂t = Dt(θ̂)
−1rt. These are used in

the second stage to estimate R(x) nonparametrically, as

R̂(x) = Q̂∗(x)−1Q̂(x)Q̂∗(x)−1 (14)
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where

Q̂(x) =

∑T
t=1 ε̂tε̂

′
tKh(xt − x)

∑T
t=1 Kh(xt − x)

(15)

where Kh(·) = (1/h)K(·/h), K is a kernel function and h a bandwidth parameter.

As before, Q̂∗(x) is a diagonal matrix with the square roots of the diagonal elements

of Q̂(x) on its diagonal. Hence the (i, j)-th element of R̂(x) in (14) can be written

as

ρ̂ij(x) =
q̂ij(x)√

q̂ii(x)q̂jj(x)
.

The estimator R̂(x) in (14) is essentially a transformed Nadaraya-Watson esti-

mator applied to the elements of the matrix ε̂tε̂
′
t. Of course, other nonparametric

estimators such as local polynomials could be used as well, see e.g. Fan and Gi-

jbels (1996), Härdle, Lütkepohl and Chen (1997) and Pagan and Ullah (1999) for

reviews, and Fan and Yao (1998) and Ziegelmann (2002) for applications to volatility

modelling. Recall that the conditional covariance matrix of rt can be written as

Ht = V(rt | Ft−1, xt = x) = Dt(θ)R(x)Dt(θ),

where the semi-parametric character of the model for Ht now becomes obvious:

Dt(θ) is modelled parametrically using standard univariate GARCH-type models,

for example, while the correlation matrix R(x) is treated in a nonparametric fashion.

Note that (15) essentially boils down to univariate kernel regression. Hence,

unlike many of the early-stage multivariate GARCH models and unlike many es-

timation problems in nonparametric analysis, our semi-parametric model does not

suffer from the curse of dimensionality. It is straightforward to see that (14) gener-

alizes the STCC model in (10) as we do not impose that all correlations are related

in the same way to xt, nor do we assume any particular parametric form for this

dependence. Also recall that one is likely to encounter difficulties in estimation when

applying the STCC model to large systems given that correlation targeting is not

possible. Using the non-parametric estimator in (14) and (15) this problem obvi-

ously is avoided. Note that this also suggests that our semi-parametric model might

be used in exploratory data analysis to examine the shape of the dependence of ρijt

on xt.

Apart from the choice of xt, the crucial decision to be made when implementing

the non-parametric estimator of the conditional correlation concerns the bandwidth
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h. One option would be to use a constant bandwidth, which could be selected using

cross-validation or the plug-in method, see e.g. Pagan and Ullah (1999). This has

the drawback that the variance of R(x) becomes very large near the boundaries of the

support of xt or more generally in areas of the support of xt where the data is sparse.

To alleviate the problem of data sparsity we suggest to use local bandwidths. In

particular, we allow h to depend on the design density f(x) such that h(x) = bf(x)−a,

where b is a positive constant and 0 ≤ a ≤ 1. For positive values of a, this implies

that the bandwidth becomes larger when relatively few observations around the

point xt = x are available such that f(x) is small, while h(x) becomes smaller in

high density regions. For a = 0 one has the standard kernel smoother with constant

bandwidth h(x) = b. Jennen-Steinmetz and Gasser (1988) showed that a = 1/4

corresponds roughly to spline smoothing and a = 1 to generalized nearest-neighbor

smoothing. In the empirical application in the next section, we will illustrate the

sensitivity of the estimates of R(x) to different values of a.

In Theorem 1 below we state the asymptotic properties of the nonparametric

estimator of the conditional correlation matrix as given (14) and (15). Using the

notation ηt = vech(εtε
′
t) and r(x) = vech(R(x)), we have

r(x) = E[ηt | xt = x] (16)

V(ηt | xt = x) = E[(ηt − r(x))(ηt − r(x))′ | xt = x] (17)

Also, denote by f̂(x) an estimator of f(x), the density of xt. Under the assump-

tions stated in the appendix, the nonparametric estimator of R(x) is consistent and

asymptotically normal, as detailed in the following theorem.

Theorem 1 Under Assumptions (A1) to (A6), and b → 0 as T increases such that

Tb5 → 0, it holds that

1. The diagonal elements of the matrix Q̂ in (15) converge in probability to 1:

q̂ii(x)
p−→ 1, i = 1, . . . , N.

2. The estimator R̂(x) in (14) is consistent and asymptotically normal:

√
Tb(r̂(x) − r(x))

L−→ N(0, Σ(x))
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where

Σ(x) =

∫
K2(u)du

f(x)1−a
V(ηt | xt = x)

The proof of the theorem is given in the Appendix. Also, an explicit expression for

V(ηt | xt = x) is given there, which depends on R(x) and on the fourth moment

characteristics of the innovations εt. If these are assumed to be normally distributed,

then a consistent estimator of V(ηt | xt = x) is easily constructed by replacing R(x)

by R̂(x). If the distribution is unknown, then fourth moments of εt can be estimated

using corresponding moments of the standardized residuals ε̂t, but for consistency

we would need the assumption of finite eight moments.

4 Empirical application

In this section we explore the potential of our semi-parametric correlation model

to describe and forecast the conditional covariance matrix of asset returns. We are

mainly interested in empirically relevant situations where the number of assets N is

fairly large, in which it is difficult to apply early-stage multivariate GARCH models

and the regime-switching correlation models (9) and (10). We use daily returns

of the 30 stocks that constituted the Dow Jones Industrial Average (DJIA) index

between November 1999 and April 2004. Several conditional correlations models are

estimated for these stock returns. We evaluate and compare the models not only

by means of statistical criteria, but mainly by applying the models for constructing

minimum variance portfolios and minimum tracking error volatility portfolios.

4.1 Data

The sample period covers 15 years, running from January 1, 1989 until December

31, 2003. Days on which the stock exchange was closed were removed from the

sample, leaving a sample size of T = 3784 observations. We use the first decade

1989-1998 (2528 observations) for in-sample estimation and analysis of competing

models, and set aside the final five years 1999-2003 (1256 observations) for out-of-

sample forecasting.

Part of the challenge in this application stems from the fact that the general trend

in the stock market was quite different during the initial estimation period and the

forecasting period. The 1990’s were characterized by a prolonged bull market, which
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ended with the burst of the internet bubble and was followed by a bearish market

around the turn of the millennium. Tables 1 and 2 show annualized means and stan-

dard deviations of the daily stock returns, which obviously reflect the overall market

sentiment. All 30 stocks had large positive average returns during the first decade of

our sample period, while the average return turned negative for 18 stocks during the

final five years. Only the stocks of Alcoa Inc. (AA) and 3M Company (MMM) had

higher returns during the period 1999-2003 than during the preceding 10 years. It is

also seen that the volatility of stock returns was considerably higher during the last

five years of the sample period. For most stocks the standard deviation increased

by about 50%. Tables 1 and 2 also contain estimation results from the three-factor

regression model developed by Fama and French (1993, 1996), given by

rit − rf,t = α + βi,M(rM,t − rf,t) + βi,SMBrSMB,t + βi,HMLrHML,t + εt, (18)

where rit is the daily return for stock i, rf,t is the risk-free rate, rM,t is the market

portfolio return, rSMB,t (Small-Minus-Big) and rHML,t (High-Minus-Low) are size and

book-to-market factor portfolio returns. The size factor return rSMB,t is computed

as the difference between the returns on portfolios of stocks with small and large

market capitalization, while rHML,t is obtained similarly using portfolios of stocks

with high and low book-to-market values. We employ the daily market and factor

returns available on the website of Kenneth French.3 Most of the DJIA stocks move

one-to-one with the market, given that the estimates of βi,M are fairly close to 1.

Exceptions include Johnson and Johnson (JNJ) and JP Morgan (JPM), for which

we find very low and high market betas, respectively. In general, the difference in

βi,M during the two sub-periods is not very large. The negative estimates of βi,SMB

are not surprising of course, given the size of the DJIA stocks. For the majority

of stocks we find that βi,HML was substantially higher during the period 1999-2003

than during the years 1989-1998. We return to these estimates below.

– Tables 1 and 2 about here –

The increase in volatility mentioned above is also evident from Table 3, which

shows summary statistics of the distribution of daily stock return variances, covari-

ances and correlations. It is seen that the average daily stock return variance doubled

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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during the last five years of the sample period, from just over 3% to more than 6%.

The same holds for the average covariance between the 30 DJIA stocks, which in-

creased from 0.83 to 1.69. Interestingly, the standard deviation of the variances also

doubled, while the standard deviation of the covariances even tripled. This leads

to the conclusion that probably the average correlation did not change much, but

the spread in the correlations increased considerably. Indeed, as shown in the final

column of Table 3, the average correlation in both subperiods was equal to 0.28, but

the standard deviation of the correlations jumped from 0.066 to 0.12.

– Table 3 about here –

4.2 Models

For the implementation of all conditional correlation models considered (except Risk-

metrics as discussed below), we use the asymmetric GJR-GARCH model of Glosten

et al. (1993) to describe the conditional volatilities of the individual daily stock

returns. In this model, the conditional volatility of rit evolves according to

hit = ωi + αir
2
i,t−1 + γir

2
i,t−1I[ri,t−1 < 0] + βihi,t−1, (19)

allowing positive and negative lagged returns to have a different impact on cur-

rent volatility. Typically, γi > 0 for stock returns, such that negative returns have

a larger effect on volatility than positive returns of the same magnitude. Results

obtained with symmetric GARCH(1,1) and with asymmetric power GARCH (AP-

GARCH) volatility models are qualitatively similar to the ones reported below, and

are available upon request.

We examine two choices for the conditioning variable in the nonparametric corre-

lation estimator (15): the logarithm of the contemporaneous daily market volatility

and the one-day lagged weekly market return, denoted as log(hM,t) and rM,w,t−1,

respectively. As explained in the Introduction, these variables are motivated by the

empirical observations that correlations increase when market volatility is high and

when market returns are low. Market returns are measured by the returns on a

value-weighted portfolio of all NYSE, AMEX, and NASDAQ stocks, again taken

from Kenneth French’s website. We are able to employ the logged contemporane-

ous market volatility log(hM,t) as conditioning variable xt and still use the model
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for forecasting purposes by estimating a GJR-GARCH model (19) for daily market

returns and obtaining the fitted value ĥM,t. Note that this can be constructed using

only information dated t − 1 and earlier.

We estimate our semi-parametric correlation model for different choices of the

tuning parameter a, to examine the sensitivity of the correlation estimates with

respect to the use of local bandwidths, as discussed in Section 3. To make the

nonparametric estimates comparable for different values of a, we set the constant b

equal to 1.50 for a = 0, and determine the value of b for other values of a such that

the average bandwidth T−1
∑T

t=1 h(xt) is the same for all values of a. Throughout

we use the quartic kernel function K(u) = 15
16

(1 − u2)2I(|u| ≤ 1) and a standard

kernel density estimator with plug-in bandwidth for the density of xt.

For comparison, we also estimate the CCC model with Rt = R, the standard

DCC model (5) and (6), the asymmetric DCC model (8), and the STCC model (10)

also using the logged contemporaneous daily market volatility and one-day lagged

weekly market return as transition variable xt in the logistic function (11). We also

consider the RiskMetrics (RM) model which specifies the conditional covariance

matrix as

Ht = (1 − λ)rt−1r
′
t−1 + λHt−1,

with λ = 0.94. Finally, following Chan, Karceski and Lakonishok (1999) we imple-

ment single-factor (SF) and three-factor (TF) models. The three-factor model uses

the excess return on the value-weighted market portfolio and the size and book-to-

market factor returns, and effectively boils down to implementing (18) with the raw

stock return rit as the dependent variable. The conditional covariance matrix of the

stock returns is then given by

Ht = BΩtB
′ + St, (20)

where B is the matrix of factor loadings of the stocks, Ωt is the conditional covari-

ance matrix of the factors, and St is a diagonal matrix containing the idiosyncratic

conditional variances. For convenience, we assume that the factors are uncorrelated,

such that Ωt also is diagonal, and that the conditional variance of each factor can be

adequately described by means of a GJR-GARCH model (19). The same model is

also used for the idiosyncratic variances in St. The single-factor model only includes

the excess market return, that is βSMB and βHML in (18) are set equal to 0.

14



4.3 Estimation results

Figures 1 and 2 plot the average correlation between the DJIA stocks together with

the 10th and 90th percentiles obtained from the for the semi-parametric models with

the contemporaneous log-volatility log(hM,t) of the value-weighted market portfolio

and with the lagged weekly market return rM,w,t−1, respectively, estimated with daily

returns over the period 1989-1998. From Figure 1 it is seen that for all values of

a considered, the average correlation behaves similarly and increases with lagged

volatility from 0.25 to 0.50, consistent with a one-factor model as discussed before.

The increase in correlations for high volatility is more pronounced for small values of

a. Turning to Figure 2, we observe that the average correlation appears to increase

for negative lagged market returns, while it remains fairly constant for positive values

of rM,w,t−1, in particular for a ≤ 0.50. This corresponds quite well with the patterns

documented in Longin and Solnik (2001) and Ang and Chen (2002). For a = 0.75,

the correlations increase for large positive index returns as well, albeit the effect of

negative index returns is stronger.

– Figures 1 and 2 about here –

Panels (a) and (b) of Figure 3 display the average correlation and the 10th and

90th percentiles over time for the semi-parametric models with the two choices of xt

and a = 0.50 in both cases. It appears that using market volatility as conditioning

variable leads to more sizable changes in the conditional correlations than using the

market return. At the same time however, the average conditional correlation based

on the model with xt = log(hM,t) evolves more smoothly, with the average correlation

based on the model with xt = rM,w,t-1 showing more erratic short-run behavior.

– Figure 3 about here –

Panels (c) and (d) of Figure 3 show the average correlation and the 10th and 90th

percentiles based on the DCC model and the single-factor model, respectively. For

the DCC model, the average correlation varies very little over time. In contrast, the

conditional correlations implied by the SF model vary considerably. This is a direct

consequence of the single-factor structure together with the use of a GJR-GARCH

model for the conditional variance of the factor. In the SF model with the excess
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market return as the single factor, B in (20) reduces to a vector consisting of the

stocks’ betas βj,M, while Ωt = hM,t is a scalar. The conditional correlation between

stocks i and j then is equal to

ρijt =
βi,Mβj,MhM,t√

β2
i,MhM,t + s2

it

√
β2

j,MhM,t + s2
jt

,

where s2
it is the idiosyncratic conditional variance of stock i. As shown by Andersen

et al. (2001), it follows that ∂ρijt/∂hM,t > 0 if βi,M, βj,M, hM,t > 0. Hence, as long as

the market betas of two stocks are both positive, an increase in market volatility will

lead to an increase in their conditional correlation. Given that all betas for the DJIA

stocks are positive and not too different from each other, see Table 1, all pairwise

conditional correlations increase when hM,t becomes higher. Additionally, the GJR-

GARCH model for the market portfolio returns implies considerable variation in

hM,t, leading to the substantial changes in the conditional correlations as seen in

Figure 3.

Panel (b) of Figure 4 explicitly shows how the conditional correlations are related

to the (logged) market volatility. Note that the increase in the average correlation

is much more pronounced than in the corresponding semi-parametric model, com-

pare Figure 1. Panel (a) of Figure 4 shows that the average correlation from the

DCC model is not related to the market volatility at all. Similarly, in panel (c) of

this figure a rather weak quadratic relation between the average correlation from

the DCC model and the lagged weekly market return is visible, but much less pro-

nounced than in the semi-parametric model. For the single-factor model we do find

a strong relationship between the conditional correlations and the lagged weekly

market return, of the same form as found for the semi-parametric model in Figure

2 and supporting the ‘correlation breakdown’ effect with a much larger increase in

correlation for large negative market returns than for large positive ones. At first

sight this may seem surprising but in fact it is a direct consequence of the use of

a GJR-GARCH model for the market volatility. In that model, large past returns

lead to high current volatility, while the parameter estimates are such that negative

returns increase volatility more than positive returns of the same magnitude. The

higher volatility in turn increases the correlations between the stocks.

– Figure 4 about here –
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Finally, Figures 5 and 6 summarize the estimation results for the STCC model

with xt = log(hM,t) and rM,w,t−1, respectively. The STCC models also imply that

conditional correlations are higher in case of high market volatility and in case of

low market returns. However, note that by construction the model implies that

the conditional correlations only change monotonically from one level to another as

the logistic transition function (11) changes from 0 to 1. Panel (c) of these figures

plot the value of the transition functions, suggesting that the correlations spend

most of the time in the low-volatility and positive market return regimes, where the

conditional correlations are at their lower level.

– Figures 5 and 6 about here –

4.4 Minimizing portfolio variance using correlation forecasts

We follow the recommendation of Engle and Sheppard (2001) to judge the ade-

quacy of the dynamic correlation models by examining certain characteristics of

stock portfolios that are constructed based on covariance matrix forecasts from the

models. In particular, we consider the global minimum variance portfolio (MVP),

which is often used for judging the goodness of fit of multivariate volatility mod-

els, see e.g. Chan, Karceski and Lakonishok (1999). The MVP weights are given

by wt = Ĥ−1
t ι/(ι′Ĥ−1

t ι), where Ĥt is the one-step ahead forecast of the conditional

covariance matrix constructed at time t − 1, and ι is a (N × 1) vector of ones.

Note that the MVP weights only depend on forecasts of the conditional covariance,

such that forecasting expected returns, which is known to be notoriously difficult,

is avoided. For each MVP based on the different covariance models we consider

the average return, standard deviation, Sharpe ratio and tracking error relative to

the S&P 500 index. The latter is defined as the square root of the mean squared

difference between the portfolio’s return and the S&P 500 return. For comparison

purposes, we also construct equally-weighted and value-weighted portfolios and the

minimum variance portfolio. For the equally-weighted portfolio (EWP), the portfo-

lio weights are constant and equal to wt = N−1ι, where . The time-varying weights

for the value-weighted portfolio (VWP) are obtained as wt = wt−1(1+rt−1)
(1+rt)′ι

, starting

with an equally-weighted portfolio at t = 0, cf. Engle and Sheppard (2001).

The EWP and VWP provide reasonable benchmarks to assess the extent to
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which optimization actually helps in reducing portfolio variance. In addition, to-

gether with the MVP they can be used to further evaluate the covariance models by

considering additional portfolio characteristics. First, we compute the variance of

the standardized portfolio returns rp,t = w′
trt/

√
w′

tĤtwt. If the multivariate condi-

tional covariance model is correctly specified, the variance of rp,t should be equal to

1, for any choice of weights wt. Second, we compute one-day Value-at-Risk (VaR)

forecasts as σ̂pzq, where σ̂p is the one-step ahead forecast of the portfolio standard

deviation, σ̂p =

√
w′

tĤtwt. In contrast to Engle and Shephard (2001), for example,

we do not use the q-th quantile of the standard normal distribution for zq. Rather,

we employ the quantiles of the standardized in-sample portfolio returns obtained us-

ing the relevant weights wt. We consider one-day VaR forecasts at 100× q=1%, 5%

and 10%. The accuracy of the VaR forecasts is assessed by means of the Dynamic

Quantile test of Engle and Manganelli (2004). For that purpose, define the binary

variable HITt such that HITt = 1 if the portfolio return is below the VaR forecast

and 0 otherwise. Under the null hypothesis of a correctly specified model for the

conditional covariance matrix and hence for the VaR forecasts, the HITt variable

should have mean q and should be independent from all information available at

t − 1, including lagged HITt’s and the VaR forecast for time t. This can be tested

by constructing an F -statistic for the null hypothesis δ0 = . . . = δl+1 = 0 in the

auxiliary regression

HITt − q = δ0 + δ1HITt−1 + . . . + δlHITt−l + δl+1V aRt + et,

where we set l = 5.

Table 4 summarizes the in-sample MVP results over the period January 1, 1989-

December 31, 1998, which suggest several conclusions. First, compared to the EWP

and VWP, all models except Riskmetrics achieve in producing an MVP with lower

standard deviation, although the reduction in volatility is quite modest. The best

performing model is our semi-parametric model using the lagged weekly market

return as conditioning variable, with an annualized standard deviation of 12.54%

compared with 15.16% for the EWP. Second, minimizing portfolio variance comes

at the cost of a sharp reduction in the portfolio’s average return, such that the Sharpe

ratios of the MVP’s is considerably lower than the Sharpe ratios of the EWP and

VWP. Third, the conditional correlation models outperform the single- and three-
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factor models. Hence, it seems worthwhile to model the dynamics in the covariance

structure of the individual stocks explicitly, rather than indirectly by means of a

factor approach. Fourth, the performance of the different conditional correlations is

very similar, with the largest difference in standard deviation of the MVP returns

being less than 0.3%.

– Table 4 about here –

The conclusion that it is difficult to distinguish between the competing models

based on in-sample measures of fit also emerges from Table 5. The variance of the

standardized portfolio returns shows that actually all models perform quite badly

in terms of the volatility of the MVP returns, which is consistently underestimated.

In contrast, the variances of the standardized EWP and VWP returns are quite

close to the theoretical value of one for all models except perhaps RiskMetrics. In

terms of VaR forecasts, results also are similar across models (and by construction,

violation frequencies are identical for the EWP). The VaR(q) forecasts are violated

too frequently for the MVP for all three levels of q, which aligns with the underes-

timation of the MVP volatility. The VaR violation frequencies are approximately

correct for the EWP and VWP portfolios. The results of the Dynamic Quantile test

confirm these observations, except that the small p-values for the test applied to

the 10% VaR forecasts for the EWP are perhaps surprising, given that the violation

frequency is close to perfect.

– Table 5 about here –

Next, we examine the out-of-sample forecasting performance of the models over

the period January 1, 1999-December 31, 2003. For this purpose, we re-estimate all

models after every 20 observations using a ten-year moving window. We examine

the same portfolio characteristics as before, except that now we employ genuine

out-of-sample forecasts of the conditional covariance matrix.

The MVP results in Table 6 resemble the results in Table 4, in the sense that most

conclusions drawn for the in-sample MVP results continue to hold out-of-sample.

The only exception is that, in terms of the standard deviation of MVP returns the

DCC-type models now perform slightly better than the STCC and semi-parametric

models. In addition, we note that the variance of the MVP during the out-of-sample
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period is almost double the variance during the in-sample period. From Table 7 we

observe that all models continue to underestimate the MVP variance in the out-of-

sample period, while the corresponding Value-at-Risk forecasts are (thus) violated

much too frequently. The conditional correlation models perform much better for

the EWP and MVP, although the 5% and 10% VaR forecasts for these portfolios

are violated too frequently as well.

– Tables 6 and 7 about here –

The most conspicuous finding in the MVP analysis presented above is the sim-

ilarity in performance of all covariance models for the portfolio’s variance. The

characteristics of the different MVP’s are examined further by estimating the Fama-

French three-factor model as given in (18) using the portfolio’s excess return as

dependent variable. The resulting estimates, shown in Tables 4 and 6, confirm that

the portfolios are comparable in terms of sensitivities to the market return, size and

book-to-market factors. In addition, all MVP’s (except the ones based on the single-

factor and Riskmetrics models) must select stocks with low market betas, given that

their market betas are close 0.8 and 0.7 for the in-sample and out-of-sample peri-

ods, respectively, compared with market betas close to one for the EWP and VWP.

The emphasis on stocks with low market betas is also seen in Table 8, which shows

the mean and standard deviation of the weights in the MVP based on the semi-

parametric conditional correlation model with xt equal to the daily log-volatility for

the market return. During the in-sample period, the MVP is dominated by Exxon

Mobil (XOM) with a mean portfolio weight close to 20%. The estimates of βi,M in

Table 1 show that indeed this stock had the lowest market beta during this period.

Also note that the stocks of 3M (MMM) and SBC Communications (SBC) have

large mean portfolio weights during the in-sample period although their betas are

not particularly low compared to the other stocks. The opposite is observed for the

stock of Merck & Co (MRK), which has the second-lowest market beta but only an

average mean portfolio weight. This illustrates the fact that the portfolio variance

cannot only be reduced by putting much weight on low beta stocks, but also by tilt-

ing the portfolio towards stocks with low return volatilities. 3M and SBC are typical

examples of the latter. Finally, we remark that the regression results of the three-

factor model also shed light on the reason why the MVP variance is so much higher
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during the out-of-sample period compared to the in-sample period. This appears

largely due to the portfolio’s sensitivity to the HML factor, which is close to zero

during the 1989-1998 period but substantially different from zero during 1999-2003.

– Table 8 about here –

In the context of factor models, Chan et al. (1999) attribute the similarity in

performance of different covariance models in terms of MVP construction to the

presence of a dominant factor, the market, which is much more important than

the other influences on returns. Constructing the minimum variance portfolio then

effectively boils down to minimizing the portfolio’s sensitivity to the market. This is

achieved by tilting the portfolio toward stocks with low market betas and explains

why all covariance models yield such similar results. Chan et al. (1999) suggest that

any differences between the different covariance models may be brought to light more

clearly when the dominant factor is removed. This turns out to be equivalent to

tracking a benchmark portfolio that resembles the dominant factor, and the relevant

portfolio to consider becomes the portfolio that minimizes the tracking error.

4.5 Minimizing tracking error using correlation forecasts

As the benchmark portfolio for the tracking error optimization problem we choose

the S&P 500 index. The minimum tracking error portfolio (MTEP) is equivalent to

the minimum variance portfolio for the stock returns in excess of the return on the

benchmark portfolio. Hence we apply the various models to obtain forecasts of the

conditional covariance matrix of the excess DJIA stock returns relative to the S&P

500 return, denoted Ĥe
t , and compute the MTEP weights as wt = Ĥe −1

t ι/(ι′Ĥe −1
t ι).

In this case we also apply the STCC and semi-parametric models with conditioning

variable xt being the contemporaneous log-volatility of the size and book-to-market

factor returns. This is motivated by the fact that these factors might be of consider-

able importance for the covariance structure of the excess returns as the dominant

market factor is removed. Tables 9 and 10 display the characteristics of the resulting

portfolios for the in-sample period 1989-1998 and out-of-sample period 1999-2003,

respectively. We find that the semi-parametric model with xt = log(hHML,t renders

the smallest tracking error, both in-sample and out-of-sample, although the differ-

ences with other conditional correlation models are not large. Note that the single-
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and three-factor models perform quite disappointing for the out-of-sample period,

with tracking errors that are comparable to the tracking errors of the EWP and

VWP. Finally, we observe that the out-of-sample tracking error is twice as large as

the in-sample tracking error. This again is due to the increased sensitivity to the

book-to-market factor.

– Tables 9 and 10 about here –

5 Concluding remarks

We have developed a new semi-parametric model for conditional correlations, which

combines parametric univariate GARCH-type specifications for the individual con-

ditional volatilities with nonparametric kernel regression for the conditional correla-

tions. This approach not only avoids the proliferation of parameters as the number

of assets becomes large, which typically happens in conventional multivariate condi-

tional volatility models, but also the rigid structure imposed by more parsimonious

models, such as the DCC model. Hence, our model is applicable in empirically

relevant settings, where portfolios might consist of tens or even hundreds of assets.

The application to the DJIA stocks illustrates the potential of the semi-parametric

model. The estimation results suggest that correlation functions are asymmetric

when the conditioning variable is the lagged weekly market return. That is, correla-

tions increase stronger in bear markets than they do in bull markets, in agreement

with the ‘correlation breakdown’ effect. We also find support for the idea that corre-

lations increase with market volatility, as would be implied by a factor structure for

the stock returns. The semi-parametric model performs quite well when compared

with standard parametric DCC-type models in terms of constructing minimum vari-

ance portfolios and minimum tracking error portfolios.

A point to note, finally, is that the time required to estimate the semi-parametric

model turned out to be far below that of even the simple DCC models with two

parameters. The reason is that no ill-conditioned likelihood needs to be maximized,

but rather a simple data smoother is used. Future research should develop more

guidance with respect to bandwidth selection, and find ways to avoid the curse of

dimensionality when more than one conditioning variable is considered.

22



Acknowledgements

We thank participants of the 3rd Annual Advances in Econometrics Conference,

Baton Rouge (November 2004), and the 55th Session of the International Statistical

Institute (Sydney, April 2005), as well as an anonymous referee for useful comments

and suggestions. Any remaining errors are ours.

23



Appendix: Assumptions and proof of Theorem 1

We use the following notation. First and second derivatives of a function f : R → R are
denoted by f ′(·) and f ′′(·), respectively. Let x be an N -vector and X an N×N symmetric
matrix. The Euclidean norm of x is denoted as |x|. The operator diag builds a diagonal
matrix from a vector argument, i.e.,

diag(x) =




x1 0 · · · 0

0 x2
...

...
. . .

0 · · · xN




The operator dg stacks the diagonal of a matrix into a vector, i.e., dg(X) = (X11, X22, . . . , XNN )′.
The operator vec stacks the columns of a matrix into a column vector, and vech stacks
only the lower triangular part including the diagonal into a vector. Denote by DN

the N2 × (N(N + 1)/2 duplication matrix and by D+
N its generalized inverse, of size

(N(N + 1)/2 ×N 2, with the properties vech(X) = D+
Nvec(X) and vec(X) = DNvech(X).

Further, denote by LN the N ×N2 matrix with the property LNvec(X) = dg(X).
We work under the following assumptions:

Assumption 1

(A1) The true parameter vector θ0 governing the conditional variance matrix Dt exists
uniquely and lies in the interior of a compact set.

(A2) The first-stage estimator of θ is
√
T -consistent and asymptotically normal.

(A3) The process {rt} is strictly stationary.

(A4) The second-stage kernel function satisfies
∫
uK(u)du = 0,

∫
K2(u)du = ‖K‖2

2 < ∞,
µ2(K) =

∫
u2K(u)du < ∞,

∫
K(u)du = 1, sup |K(u)| = B < ∞, and |u||K(u)| → 0 as

|u| → ∞.

(A5) The off-diagonal elements of R(x) are strictly between -1 and 1, uniformly in x, and
are at least twice continuously differentiable on the support of xt.

(A6) The process ξt = R−1/2(xt)εt is i.i.d. The density p() of ξ1 exists and is positive on
any compact subset of R

N . Furthermore E[ξ1] = 0, E[ξ1ξ
′
1] = IN , and there exist constants

δ,B > 0 such that E[ξ4+δ
it ] ≤ B <∞, i = 1 . . . , N .

Note that (A6) implies that fourth moments of εt are finite, because R() is bounded.
For notational convenience, define ξ̃t = vec(ξtξ

′
t − IN ), which by (A6) is i.i.d. with mean

zero and E[ξ̃tξ̃
′
t] = M4, say.

In the proof of Theorem 1, we make use of the following lemmata.

Lemma 1 Let
R̃(x) = Q̃∗(x)−1Q̃(x)Q̃∗(x)−1

where

Q̃(x) =

∑T
t=1 ε̃tε̃

′
tKh(xt − x)

∑T
t=1Kh(xt − x)

,
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Q̃∗(x) is a diagonal matrix with the square roots of the diagonal elements of Q̃(x) on its
diagonal, and ε̃t = Dt(θ0)

−1rt. Then, under assumptions (A1) to (A6)

r̃(x) − r̂(x) = Op

(
1

Tb

)

uniformly in x, where r̃(x) = vech(R̃(x)).

Proof: Very similar to the proof of Lemma A.2 of Rodriguez-Poo and Linton (2001). 2

Lemma 2 Assume that the diagonal elements of D2
t are specified as

hit = ωi + αir
2
i,t−1 + βihi,t−1,

with αi + βi < 1, i = 1, . . . , N . Under Assumptions (A1) to (A6) and Rt = R(rt−1), the
process (rt)

∞
t=0 is geometrically ergodic. Furthermore, if r0 is drawn from the stationary

distribution, then (rt)
∞
t=0 is geometrically α-mixing.

Proof: Let ω = (ω1, . . . , ωN )′, α = (α1, . . . , αN )′, and β = (β1, . . . , βN )′. Define the
processes Vt = (V1t, . . . , VNt)

′ with Vit =
∑∞

j=0 β
j
i r

2
i,t−j , and the 2N -vector process Zt =

(r′t, V
′
t )′. By construction, Zt is a Markov process which can be represented as Zt =

m(Zt−1) + g(Zt−1)ζt with ζt = (ξ′t, ξ̃
′
tL

′
N )′ and where m : R

2N → R
2N and g : R

2N →
R

2N × R
2N , given by

m(Zt−1) =

(
0N×1

diag(β)Vt−1 + diag(Ṽt−1)Rt

)

and with Ṽt = (IN − diag(β))−1ω + diag(α)Vt,

g(Zt−1) =

(
diag(Ṽt−1)

1/2R
1/2
t 0N×N

0N×N diag(Ṽt−1)LN (R
1/2
t ⊗R

1/2
t )

)
.

Using assumption (A6), E[ζtζ
′
t] is finite and given by W , say. The condition of Doukhan

(1994),

lim sup
|z|→∞

|m(z)|2 + Tr(Wg′(z)g(z))

|z|2 < 1

is easily checked, as R(·) is bounded. By proposition 6 of Doukhan (1994, p. 107), geomet-
ric ergodicity of (Zt) follows. Finally, by Davydov (1973), a geometrically ergodic Markov
chain with initial value drawn from the stationary distribution is geometrically α-mixing.
This proves the lemma.2

Proof of Theorem 1:

Let us only consider the case of constant bandwidths, a = 0, so that h = b. The
proof for the general case a > 0 is analogous to Jennen-Steinmetz and Gasser (1988).
Also, we only sketch the proof for the factor xt = w′rt−1, where w is a fixed N -vector.
First, by definition ρii(x) = E[ε2it | xt−1 = x] = 1, i = 1, . . . , N . The geometric mixing
property of (xt)

∞
t=0 as implied by Lemma 2 ensures consistency and asymptotic normality

of the standard kernel smoother as shown by Robinson (1983) under weaker conditions.

Thus, Q̂(x) is a consistent estimator for R(x). Because Q̂∗(x)
p−→ IN and using Slutsky’s
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Theorem, R̂(x) is also a consistent estimator for R(x). (It has the additional advantage of
being a correlation matrix for finite samples.)

Turning to the asymptotic distribution, note that

√
Th(r̂(x) − r(x)) =

√
Th(r̂(x) − r̃(x)) +

√
Th(r̃(x) − r(x)) (A.1)

where the first term on the right hand side of (A.1) is Op((Th)
−1/2) using Lemma 1,

and therefore converges to zero in probability under the assumption Th → ∞. Thus, the
asymptotic distribution of the left hand side of (A.1) is the same as that of the second term
on the right hand side of (A.1). This term however has the same asymptotic distribution
as

√
Th(q̃(x) − r(x)), where q̃(x) = vech(Q̃(x)). We can write

√
Th(q̃(x) − r(x)) =

1

f̂(x)
(Th)−1/2

T∑

t=1

K(
xt − x

h
){ηt − r(x)} (A.2)

where f̂(x) = (Th)−1
∑T

t=1K(xt−x
h ) is the kernel estimator of f(x), the density of xt,

and ηt = vech(εtε
′
t). As f̂ converges to f in probability, the asymptotic distribution is

determined by that of (Th)−1/2
∑T

t=1K(xt−x
h ){ηt − r(x)}, which we can decompose as

(Th)−1/2
T∑

t=1

K(
xt − x

h
){ηt − r(x)} = I1 + I2,

where, denoting ut = ηt − r(xt),

I1 = (Th)−1/2
T∑

t=1

K(
xt − x

h
)ut

and

I2 = (Th)−1/2
T∑

t=1

K(
xt − x

h
){r(xt) − r(x)}.

Since r(xt) = E[ηt | xt], ut is a martingale difference sequence. By Lemma 2 it is a function
of geometrically α-mixing processes and thus itself geometrically α-mixing. Note that it

can be written as ut = D+
N (R

1/2
t ⊗R

1/2
t )ξ̃t with Rt = R(xt) and

V(ut|xt) = D+
N (R

1/2
t ⊗R

1/2
t )M4(R

1/2
t ⊗R

1/2
t )DN <∞

by (A6). Using the Cramér-Wold device, I1
L−→ N(0, f(x)2Σ(x)) ⇐⇒ c′I1

L−→ N(0, f(x)2c′Σ(x)c)
for any fixed vector c of length N(N + 1)/2. Thus, it suffices to show that a central
limit theorem holds for c′I1 with the required asymptotic variance. Using Lemma 5.2
of Härdle, Tsybakov and Yang (1998), one obtains V(c′I1) = f(x)2c′Σ(x)c + o(1) with
Σ(x) = ‖K‖2

2V(ut|xt = x)/f(x). This shows that the asymptotic variance of f̂(x)−1I1 is
given by Σ(x). To prove that the asymptotic distribution is normal, the conditions of the
central limit theorem for square integrable martingale differences of Liptser and Shirjaev
(1980, Corollary 6) can be shown to hold along the lines of Härdle, Tsybakov and Yang
(1998).
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For the second term, note first that

E[I2] = (Th)−1/2
T∑

t=1

E

[
K(

xt − x

h
){r(xt) − r(x)}

]

= (Th)1/2

∫
K(ψ){r(x+ hψ) − r(x)}f(x+ hψ)dψ

= (Th)1/2

{
h2µ2(K)

(
f(x)r′′(x)

2
+ f ′(x)r′(x)

)
+ o(h2)

}

= (Th)1/2
{
O(h2) + o(h2)

}
= O

{
(Th)1/2h2

}
,

which converges to zero under the assumption h = o(T−1/5). Now Yt = K(ψ){r(xt)−r(x)},
ψ = (xt − x)/h, is a mixing process as it is a measurable function of a mixing process.
Hence, by Theorem 6.3 of Pötscher and Prucha (1997) a weak law of large numbers holds for
Yt if supT T

−1
∑T

t E[|Yt|1+ε] <∞ for some ε > 0. Using (A5), |r(xt)− r(x)| ≤ 2|r(xt)| ≤ 2
a.s. Furthermore, K(·) is bounded by (A4). Thus, E[|Yt|1+ε] ≤ E[|K(ψ)|2(1+ε)]1/2E[|r(xt)−
r(x)|2(1+ε)]1/2 ≤ |2B|1+ε <∞. Thus, I2 = op(1), which completes the proof. 2
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(a) a = 0 (b) a = 0.25

(c) a = 0.50 (d) a = 0.75

Figure 1: Average correlation between Dow Jones stocks (solid line) and 10th and
90th percentiles (dashed lines) obtained from the nonparametric estimator (14) with
xt being the contemporaneous daily log-volatility on the value-weighted market port-
folio log(hM,t), and bandwidth h(x) = bf(x)−a, estimated using daily returns over
the period January 1, 1989-December 31, 1998, plotted as a function of log(hM,t).
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(a) a = 0 (b) a = 0.25

(c) a = 0.50 (d) a = 0.75

Figure 2: Average correlation between Dow Jones stocks (solid line) and 10th and
90th percentiles (dashed lines) obtained from the nonparametric estimator (14) with
xt being the one-day lagged weekly return on the value-weighted market portfolio
rM,w,t−1 and bandwidth h(x) = bf(x)−a, estimated using daily returns over the
period January 1, 1989-December 31, 1998, plotted as a function of rM,w,t−1.
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(a) SEMI - log(hM,t)

(b) SEMI - rM,w,t−1

(c) DCC

(d) SF

Figure 3: Average correlation between Dow Jones stocks (solid line) and 10th and
90th percentiles (dashed lines) obtained from the nonparametric estimator (14) with
xt being the contemporaneous daily log-volatility on the value-weighted market port-
folio log(hM,t) and the one-day lagged weekly return on the value-weighted market
portfolio rM,w,t−1, from the DCC model (5) (5), and from the SF model, estimated
using daily returns over the period January 1, 1989-December 31, 1998.
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(a) DCC - log(hM,t) (b) SF - log(hM,t)

(c) DCC - rM,w,t−1 (d) SF - rM,w,t−1

Figure 4: (Smoothed) Average correlation between Dow Jones stocks (solid line) and
10th and 90th percentiles (dashed lines) obtained from the DCC model (5) and the
SF model, estimated using daily returns over the period January 1, 1989-December
31, 1998, plotted as a function of the contemporaneous daily log-volatility on the
value-weighted market portfolio log(hM,t) and the one-day lagged weekly return on
the value-weighted market portfolio rM,w,t−1.
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(a) Transition function against xt (b) Correlation quantiles against xt

(c) Transition function over time

(d) Correlation quantiles over time

Figure 5: Logistic transition function G(xt; γ, c) as in (11), and average correlation
between Dow Jones stocks (solid line) and 10th and 90th percentiles (dashed lines)
obtained from the STCC model (10) with xt being the contemporaneous daily log-
volatility on the value-weighted market portfolio log(hM,t), estimated using daily
returns over the period January 1, 1989-December 31, 1998.
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(a) Transition function against xt (b) Correlation quantiles against xt

(c) Transition function over time

(d) Correlation quantiles over time

Figure 6: Logistic transition function G(xt; γ, c) as in (11), and average correlation
between Dow Jones stocks (solid line) and 10th and 90th percentiles (dashed lines)
obtained from the STCC model (10) with xt being the one-day lagged weekly return
on the value-weighted market portfolio rM,w,t−1, estimated using daily returns over
the period January 1, 1989-December 31, 1998.
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Table 1: Characteristics of daily returns on DJIA stocks - 1989–1998

Mean St.Dev βi,M βi,SMB βi,HML

AA 9.834 26.273 1.248(0.072) 0.157(0.082) 0.739(0.116)

AXP 14.803 31.448 1.566(0.070) −0.232(0.090) 0.419(0.111)

BA 9.023 28.416 1.191(0.077) 0.108(0.094) 0.022(0.119)

C 26.579 34.322 1.840(0.077) −0.168(0.112) 0.489(0.137)

CAT 10.611 28.838 1.292(0.068) 0.030(0.091) 0.597(0.122)

DD 13.064 25.196 1.115(0.065) −0.419(0.082) 0.425(0.097)

DIS 17.021 26.772 1.101(0.062) −0.067(0.080) −0.102(0.105)

EK 7.139 27.269 0.881(0.058) −0.065(0.086) 0.061(0.107)

GE 22.288 21.788 1.058(0.040) −0.593(0.060) −0.180(0.070)

GM 6.112 28.822 1.637(0.066) −0.116(0.083) 1.498(0.119)

HD 36.930 30.892 1.317(0.061) −0.095(0.085) −0.603(0.107)

HON 16.721 27.152 1.240(0.085) −0.060(0.109) 0.524(0.120)

HPQ 16.566 35.701 1.058(0.080) −0.293(0.112) −0.856(0.151)

IBM 11.084 27.831 0.826(0.057) −0.336(0.078) −0.592(0.111)

INTC 36.946 38.068 1.076(0.094) −0.343(0.106) −1.297(0.173)

IP 6.569 25.008 1.261(0.063) 0.042(0.074) 0.847(0.099)

JNJ 20.843 24.487 0.593(0.052) −0.840(0.073) −0.958(0.099)

JPM 15.317 33.808 1.999(0.094) 0.018(0.108) 1.383(0.137)

KO 25.139 24.056 0.763(0.056) −0.964(0.070) −0.619(0.086)

MCD 18.858 24.841 0.801(0.062) −0.436(0.079) −0.289(0.097)

MMM 8.797 20.664 0.799(0.047) −0.360(0.063) 0.139(0.080)

MO 18.525 27.321 0.719(0.065) −0.593(0.074) −0.545(0.107)

MRK 20.475 25.262 0.620(0.055) −0.790(0.065) −0.992(0.092)

MSFT 45.455 35.043 0.889(0.070) −0.430(0.087) −1.603(0.129)

PG 21.597 23.243 0.765(0.051) −0.723(0.069) −0.413(0.082)

SBC 16.977 23.078 0.840(0.049) −0.669(0.073) 0.410(0.098)

T 13.573 24.522 0.842(0.061) −0.466(0.079) −0.162(0.097)

UTX 16.922 23.731 1.190(0.054) 0.092(0.073) 0.447(0.095)

WMT 23.745 28.419 1.033(0.059) −0.686(0.082) −0.496(0.101)

XOM 12.199 19.795 0.589(0.054) −0.695(0.069) 0.132(0.081)

Note: The table reports the mean and standard deviation (in annualized percentage points)
of daily DJIA stock returns over the period January 1, 1989 – December 31, 1998, together
with coefficient estimates and heteroskedasticity-consistent standard errors from the three-factor
model given in (18).
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Table 2: Characteristics of daily returns on DJIA stocks - 1999–2003

Mean St.Dev βi,M βi,SMB βi,HML

AA 10.981 42.868 1.513(0.072) 0.073(0.113) 1.426(0.147)

AXP 6.821 41.112 1.424(0.072) −0.635(0.100) 0.343(0.123)

BA 3.245 38.566 1.183(0.110) 0.107(0.123) 0.967(0.176)

C 14.649 39.029 1.477(0.086) −0.571(0.100) 0.401(0.146)

CAT 9.088 37.245 1.169(0.068) −0.243(0.114) 0.870(0.130)

DD −6.524 34.531 1.112(0.070) −0.362(0.105) 1.036(0.116)

DIS −5.558 42.299 1.290(0.112) 0.158(0.122) 0.564(0.175)

EK −22.289 38.188 0.964(0.088) 0.078(0.145) 0.624(0.155)

GE −3.011 35.971 1.212(0.066) −0.556(0.078) 0.069(0.108)

GM −6.686 38.084 1.471(0.081) −0.041(0.097) 1.147(0.139)

HD −1.170 45.755 1.269(0.082) −0.425(0.125) 0.271(0.154)

HON −7.353 46.291 1.456(0.103) −0.232(0.123) 0.815(0.169)

HPQ −3.961 54.846 1.340(0.088) 0.362(0.130) −0.509(0.159)

IBM −0.465 40.505 0.896(0.062) −0.330(0.099) −0.496(0.112)

INTC 1.816 58.322 1.419(0.092) −0.240(0.137) −0.888(0.165)

IP −1.423 37.741 1.204(0.069) −0.167(0.107) 1.211(0.124)

JNJ 4.101 28.501 0.458(0.071) −0.629(0.088) 0.132(0.119)

JPM −6.019 44.804 1.678(0.102) −0.407(0.121) 0.550(0.180)

KO −7.716 30.837 0.404(0.062) −0.685(0.104) 0.244(0.107)

MCD −8.982 33.925 0.575(0.068) −0.404(0.099) 0.303(0.113)

MMM 15.600 29.008 0.854(0.058) −0.365(0.082) 0.620(0.115)

MO −2.553 39.104 0.512(0.089) −0.355(0.132) 0.603(0.166)

MRK −9.816 32.048 0.584(0.064) −0.722(0.095) 0.161(0.121)

MSFT −6.231 43.732 1.108(0.068) −0.067(0.136) −0.584(0.128)

PG 1.997 33.769 0.320(0.077) −0.647(0.100) 0.120(0.113)

SBC −16.382 39.224 0.935(0.085) −0.504(0.115) 0.487(0.139)

T −28.409 47.886 1.192(0.093) −0.189(0.142) 0.537(0.171)

UTX 9.378 38.708 1.389(0.174) −0.083(0.147) 1.087(0.258)

WMT 7.921 37.369 0.811(0.062) −0.813(0.111) −0.102(0.120)

XOM 0.154 27.661 0.776(0.059) −0.304(0.091) 0.757(0.108)

Note: The table reports the mean and standard deviation (in annualized percentage points) of daily
DJIA stock returns over the period January 1, 1999 – December 31, 2003, together with coefficient
estimates and heteroskedasticity-consistent standard errors from the three-factor model given in
(18).
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Table 3: Distributions of variances, covariances and corre-
lations of daily returns on DJIA stocks

Variances Covariances Correlations
Panel A: 1989–1998
Mean 3.045 0.834 0.282
St.Dev 1.041 0.279 0.066
Minimum 1.549 0.353 0.157
10th percentile 1.876 0.547 0.209
25th percentile 2.370 0.646 0.235
Median 2.833 0.806 0.271
75th percentile 3.287 0.959 0.316
90th percentile 4.656 1.145 0.369
Maximum 5.728 2.610 0.569

Panel B: 1999–2003
Mean 6.127 1.686 0.280
St.Dev 2.271 0.908 0.119
Minimum 2.947 0.230 0.032
10th percentile 3.247 0.729 0.139
25th percentile 4.591 0.971 0.191
Median 5.744 1.512 0.268
75th percentile 7.139 2.247 0.353
90th percentile 8.260 2.879 0.436
Maximum 13.111 6.228 0.751
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Table 4: In-sample performance and characteristics of minimum variance portfolios based
on forecasting models - 1989–1998

Standard Sharpe Tracking
Mean Deviation Ratio Error βM βSMB βHML

SF 9.24 13.42 0.306 10.89 0.675(0.037) −0.420(0.051) 0.287(0.057)

TF 8.51 13.80 0.245 11.20 0.806(0.041) −0.155(0.057) 0.374(0.059)

RM 13.81 17.82 0.487 15.53 0.806(0.044) −0.155(0.069) 0.256(0.077)

CCC 11.78 12.82 0.519 8.17 0.791(0.023) −0.308(0.028) 0.170(0.037)

DCC 11.57 12.73 0.506 8.18 0.786(0.023) −0.301(0.029) 0.172(0.037)

ADCC 11.19 12.72 0.476 8.25 0.785(0.023) −0.299(0.029) 0.176(0.037)

STCC(h) 11.40 12.71 0.492 8.42 0.780(0.024) −0.305(0.030) 0.195(0.039)

STCC(r) 10.19 12.69 0.398 8.39 0.775(0.023) −0.310(0.030) 0.187(0.039)

SEMI(h) 10.53 12.63 0.427 8.71 0.765(0.024) −0.300(0.030) 0.212(0.039)

SEMI(r) 10.11 12.54 0.397 8.57 0.761(0.025) −0.310(0.030) 0.206(0.038)

EWP 17.99 15.16 0.848 4.16 1.072(0.013) −0.333(0.017) −0.053(0.021)

VWP 21.52 17.95 0.913 6.83 1.114(0.017) −0.410(0.021) −0.458(0.027)

Note: The table reports in-sample (January 1, 1989 – December 31, 1998) summary statistics for the
minimum variance portfolios based on the single factor (SF) model, the three factor (TF) model, the
RiskMetrics (RM) model, the Constant Conditional Correlation (CCC) model, the Dynamic Conditional
Correlation (DCC) model, the Asymmetric DCC (ADCC) model, the Smooth Transition Conditional
Correlation (STCC) model with xt equal to the daily log-volatility for the market return (h) or the one-
day lagged weekly index return (r), and the semi-parametric conditional correlation (SEMI) model with
the same choices of xt. In addition, summary statistics are reported for the equally-weighted and value-
weighted portfolios (EWP and VWP). For each MVP, the table shows the mean and standard deviation
(in annualized percentage points) of the portfolio return, the annualized Sharpe ratio, the annualized
tracking error relative to the S&P 500 index, and coefficient estimates and standard errors from the
Fama-French three-factor model (18).
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Table 5: Correlation models for Dow Jones stocks: In-sample results
Semi-parametric model

STCC, xt = xt = log(hM,t) xt = rM,w,t−1

SF TF RM CCC DCC ADCC log(hM,t) rM,w,t−1 a = 0 0.25 0.50 0.75 0 0.25 0.50 0.75
Portfolio standard deviations
MVP 1.142 1.078 2.678 1.097 1.086 1.089 1.096 1.097 1.096 1.091 1.086 1.081 1.087 1.091 1.086 1.073
EWP 1.017 0.938 1.073 0.993 0.989 0.988 0.990 0.992 1.000 0.991 0.970 0.952 1.003 0.999 0.982 0.956
VWP 1.024 0.905 1.070 1.007 1.001 1.001 1.005 1.005 1.014 1.005 0.985 0.968 1.017 1.012 0.994 0.968

MVP - Value-at-Risk violations
1% 1.19 1.15 12.78 1.27 1.23 1.31 1.35 1.43 1.35 1.31 1.35 1.42 1.54 1.58 1.54 1.62
5% 5.22 5.26 22.71 5.86 5.82 5.94 6.02 5.82 5.94 5.86 6.13 6.02 5.78 5.86 6.21 6.41
10% 10.29 10.25 27.58 11.24 11.28 11.32 11.36 11.40 11.59 11.59 11.36 11.32 11.52 11.52 11.52 11.32

MVP: p-value of Dynamic Quantile statistic
1% 0.267 0.037 0.000 0.041 0.034 0.046 0.037 0.018 0.035 0.044 0.044 0.043 0.048 0.045 0.045 0.019
5% 0.759 0.410 0.000 0.038 0.054 0.061 0.059 0.137 0.084 0.089 0.050 0.047 0.056 0.065 0.041 0.037
10% 0.676 0.878 0.000 0.030 0.048 0.029 0.068 0.038 0.045 0.045 0.065 0.046 0.030 0.039 0.033 0.055

EWP - Value-at-Risk violations
1% 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
5% 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94
10% 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97

EWP: p-value of Dynamic Quantile statistic

1% 0.918 0.918 0.085 0.795 0.799 0.799 0.708 0.418 0.769 0.699 0.735 0.758 0.461 0.494 0.484 0.379
5% 0.585 0.585 0.153 0.073 0.072 0.076 0.309 0.098 0.291 0.735 0.601 0.640 0.096 0.131 0.186 0.148
10% 0.672 0.803 0.109 0.024 0.027 0.035 0.069 0.027 0.040 0.053 0.093 0.098 0.020 0.030 0.040 0.046

VWP - Value-at-Risk violations
1% 0.87 0.87 1.03 1.19 1.07 1.07 0.99 0.95 0.99 0.95 0.95 0.95 0.87 0.91 0.91 0.91
5% 4.59 4.67 5.14 5.03 5.03 4.99 4.95 5.03 4.91 4.79 4.87 4.83 5.07 5.07 5.10 5.07
10% 10.57 10.61 10.09 10.21 10.37 10.37 10.53 10.41 10.45 10.49 10.37 10.37 10.33 10.37 10.33 10.41

VWP: p-value of Dynamic Quantile statistic

1% 0.093 0.089 0.136 0.162 0.766 0.774 0.819 0.658 0.927 0.885 0.660 0.689 0.721 0.844 0.501 0.743
5% 0.528 0.715 0.319 0.241 0.122 0.171 0.500 0.177 0.368 0.459 0.516 0.570 0.176 0.137 0.149 0.123
10% 0.478 0.421 0.146 0.103 0.122 0.122 0.154 0.190 0.196 0.183 0.206 0.211 0.186 0.244 0.192 0.190

Note: The table reports in-sample results for dynamic conditional correlation models for Dow Jones stocks, estimated using daily
returns over the period January 1, 1989-December 31, 1998. Results are based on the single factor (SF) model, the three factor
(TF) model, the RiskMetrics (RM) model, the Constant Conditional Correlation (CCC) model, the Dynamic Conditional Correlation
(DCC) model, the Asymmetric DCC (ADCC) model, the Smooth Transition Conditional Correlation (STCC) model with xt equal
to the logged contemporaneous market volatility (log(hM,t)) or the one-day lagged weekly market portfolio return (rM,w,t−1), and the
semi-parametric conditional correlation (SEMI) model with the same choices of xt. MVP denotes minimum variance portfolio, EWP
and VWP indicate equally-weighted and value-weighted portfolios, respectively. Portfolio standard deviations refer to the in-sample
standard deviation of standardized portfolio returns. Value-at-Risk violation percentages and Dynamic Quantile statistics for the
corresponding HIT-sequences concern one-day ahead in-sample forecasts.
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Table 6: Out-of-sample performance and characteristics of minimum variance portfolios
based on forecasting models - 1999–2003

Standard Sharpe Tracking
Mean Deviation Ratio Error βM βSMB βHML

SF −8.78 19.46 −0.628 23.50 0.509(0.061) −0.329(0.074) 0.671(0.108)

TF −12.42 20.46 −0.775 21.75 0.632(0.081) −0.129(0.086) 0.572(0.137)

RM −16.39 22.52 −0.881 24.13 0.450(0.056) −0.243(0.067) 0.170(0.088)

CCC −7.48 17.51 −0.624 15.97 0.705(0.035) −0.269(0.048) 0.507(0.064)

DCC −8.66 17.20 −0.704 15.97 0.677(0.036) −0.261(0.047) 0.459(0.064)

ADCC −9.26 17.20 −0.739 16.05 0.674(0.037) −0.262(0.047) 0.459(0.064)

STCC(h) −8.29 17.69 −0.664 17.09 0.675(0.038) −0.260(0.049) 0.518(0.067)

STCC(r) −8.87 18.23 −0.712 17.43 0.676(0.037) −0.261(0.048) 0.487(0.066)

SEMI(h) −8.26 18.11 −0.646 17.38 0.678(0.040) −0.260(0.051) 0.511(0.070)

SEMI(r) −8.63 18.54 −0.671 16.97 0.677(0.036) −0.260(0.050) 0.506(0.069)

EWP −1.98 21.82 −0.249 7.98 1.066(0.024) −0.307(0.034) 0.425(0.039)

VWP −4.42 19.67 −0.400 7.53 0.938(0.023) −0.298(0.029) 0.313(0.037)

Note: The table reports out-of-sample (January 1, 1999 – December 31, 2003) summary statistics for the
minimum variance portfolios based on various forecasting models. See Table 4 for models definitions and
description of the summary statistics shown.
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Table 7: Correlation models for Dow Jones stocks: Out-of-sample results
Semi-parametric model

STCC, xt = xt = log(hM,t) xt = rM,w,t−1

SF TF RM CCC DCC ADCC log(hM,t) rM,w,t−1 a = 0 0.25 0.50 0.75 0 0.25 0.50 0.75
Portfolio standard deviations
MVP 1.381 1.195 2.645 1.240 1.208 1.208 1.238 1.554 1.254 1.252 1.252 1.253 1.323 1.308 1.266 1.248
EWP 1.054 0.944 1.034 1.124 1.097 1.095 1.065 1.092 1.060 1.052 1.043 1.037 1.132 1.123 1.107 1.101
VWP 1.054 0.932 1.038 1.135 1.106 1.103 1.072 1.097 1.067 1.059 1.050 1.043 1.107 1.101 1.088 1.081

MVP - Value-at-Risk violations
1% 1.32 0.74 14.32 2.06 2.14 2.06 2.22 2.47 2.39 2.47 2.39 2.39 2.63 2.47 2.31 2.55
5% 6.42 6.58 25.27 9.55 9.63 9.71 9.79 9.79 10.29 10.45 10.45 10.70 9.49 9.79 9.79 10.19
10% 12.10 13.74 30.95 16.71 17.28 17.37 16.95 17.28 17.28 17.04 17.20 17.45 17.28 17.27 17.04 17.68

MVP: p-value of Dynamic Quantile statistic

1% 0.517 0.151 0.001 0.015 0.009 0.007 0.018 0.047 0.028 0.049 0.046 0.046 0.014 0.022 0.055 0.067
5% 0.111 0.071 0.000 0.005 0.002 0.002 0.004 0.014 0.004 0.003 0.002 0.002 0.020 0.012 0.013 0.008
10% 0.061 0.053 0.000 0.006 0.004 0.004 0.005 0.009 0.005 0.006 0.006 0.005 0.006 0.005 0.005 0.004

EWP - Value-at-Risk violations
1% 0.82 0.82 0.74 1.15 0.99 0.99 0.99 1.19 0.91 0.91 0.91 0.91 1.04 1.04 1.11 1.11
5% 4.61 4.61 5.60 7.57 7.49 7.49 7.16 5.81 7.08 6.91 6.75 6.83 5.89 5.97 5.81 5.57
10% 12.35 12.35 11.36 14.98 14.73 14.81 13.91 12.26 14.07 13.99 13.91 14.07 12.58 12.58 12.58 12.42

EWP: p-value of Dynamic Quantile statistic

1% 0.560 0.546 0.398 0.272 0.498 0.497 0.568 0.565 0.390 0.398 0.408 0.407 0.546 0.573 0.584 0.488
5% 0.375 0.466 0.109 0.111 0.135 0.135 0.193 0.785 0.320 0.332 0.334 0.337 0.518 0.518 0.582 0.676
10% 0.173 0.122 0.107 0.021 0.033 0.026 0.051 0.319 0.039 0.045 0.047 0.041 0.164 0.190 0.208 0.281

VWP - Value-at-Risk violations
1% 0.91 0.82 0.58 1.32 1.15 0.99 0.99 1.19 0.99 0.99 0.99 0.99 1.11 1.11 1.11 1.19
5% 5.10 4.86 5.76 7.90 7.41 7.49 7.49 6.05 7.16 7.00 6.83 7.00 6.37 6.29 6.13 5.97
10% 12.51 11.93 11.60 15.47 14.90 14.98 14.07 12.66 14.07 13.99 14.16 14.16 12.66 12.74 12.81 12.50

VWP: p-value of Dynamic Quantile statistic

1% 0.809 0.657 0.258 0.316 0.173 0.145 0.540 0.772 0.568 0.567 0.563 0.561 0.703 0.713 0.741 0.810
5% 0.266 0.167 0.046 0.051 0.184 0.183 0.132 0.807 0.232 0.249 0.307 0.212 0.559 0.461 0.585 0.680
10% 0.075 0.073 0.087 0.014 0.026 0.028 0.031 0.123 0.043 0.044 0.036 0.036 0.081 0.110 0.116 0.162

Note: The table reports out-of-sample results for dynamic correlation models for Dow Jones stocks over the period January 1,
1999-December 31, 2003. Results are based on the single factor (SF) model, the three factor (TF) model, the RiskMetrics (RM)
model, the Constant Conditional Correlation (CCC) model, the Dynamic Conditional Correlation (DCC) model, the Asymmetric
DCC (ADCC) model, the Smooth Transition Conditional Correlation (STCC) model with xt equal to the logged contemporaneous
market volatility (log(hM,t)) or the one-day lagged weekly market portfolio return (rM,w,t−1), and the semi-parametric conditional
correlation (SEMI) model with the same choices of xt. All models are re-estimated every 20 observations using a ten-year moving
window of daily return observations. MVP denotes minimum variance portfolio, EWP and VWP indicate equally-weighted and value-
weighted portfolios, respectively. Portfolio standard deviations are the standard deviation of standardized portfolio return forecasts.
Value-at-Risk violation percentages and Dynamic Quantile statistics for the corresponding HIT-sequences concern one-day ahead
out-of-sample forecasts.
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Table 8: Summary statistics for portfolio weights

Minimum variance Minimum tracking error
1989-1998 1999-2003 1989-1998 1999-2003

AA 4.28(3.57) 0.34(3.67) 2.43(0.79) 1.31(0.74)

AXP −0.98(3.17) −1.74(3.83) 1.84(0.69) 2.64(1.20)

BA 3.95(4.43) 3.91(3.94) 2.31(0.63) 1.92(0.70)

CAT 2.94(3.40) 0.51(2.69) 1.96(0.62) 0.86(0.87)

C −5.15(1.71) −1.04(4.45) 2.26(0.46) 4.55(1.43)

DD −0.59(3.82) −1.12(3.38) 3.01(0.79) 0.93(1.32)

DIS 3.08(3.23) 0.55(3.04) 2.23(0.58) 1.91(0.76)
EK 6.06(3.72) 11.88(8.38) 2.30(0.49) 2.37(1.54)

GE 0.42(8.34) −6.03(6.29) 6.08(1.61) 5.81(1.74)

GM 1.38(3.05) 4.62(4.64) 2.90(0.77) 3.34(1.44)

HD −0.03(3.38) −0.31(4.75) 2.72(0.71) 2.12(1.50)

HON 3.88(4.29) 1.18(5.52) 2.39(0.84) 3.08(2.02)

HPQ −0.42(1.89) 0.35(2.32) 1.68(0.33) 2.69(0.94)

IBM 7.26(5.77) 6.22(5.24) 4.15(1.56) 4.92(1.41)

INTC −1.56(1.67) −2.26(2.06) 2.15(0.37) 4.57(1.38)

IP 4.33(4.26) 4.36(4.97) 2.35(0.66) 2.49(1.39)

JNJ 1.95(4.96) 11.84(8.41) 3.22(1.03) 5.00(1.87)

JPM 2.03(3.93) −0.28(3.21) 3.91(1.35) 4.57(1.28)

KO −1.60(4.34) 4.52(6.77) 3.46(1.19) 1.83(1.54)

MCD 5.67(4.37) 5.83(5.04) 2.33(0.82) 1.85(0.96)

MMM 12.46(7.59) 6.30(4.76) 3.94(1.16) 2.65(1.46)

MO 3.12(3.51) 3.97(4.52) 2.94(1.13) 1.69(0.71)

MRK 3.73(4.17) 1.31(5.11) 4.75(1.14) 4.03(1.49)

MSFT 0.09(2.49) 3.31(4.20) 1.88(0.58) 5.36(1.96)

PG 4.19(5.00) 12.45(10.56) 4.07(0.94) 3.68(1.93)

SBC 8.38(6.77) 3.58(5.38) 5.91(1.34) 4.42(1.29)

T 6.41(5.42) 1.85(3.08) 4.58(1.22) 3.46(0.88)

UTX 6.69(4.80) 4.85(7.47) 3.51(0.97) 2.59(1.92)

WMT −1.48(3.17) 2.11(5.83) 2.80(0.82) 4.90(1.60)

XOM 19.50(6.93) 16.97(7.96) 9.95(1.81) 8.46(2.44)

Note: The table contains means and standard deviations of in-sample (1989–1998)
and out-of-sample (1999–2003) portfolio weights in the minimum variance portfolio
and minimum tracking error portfolio based on the semi-parametric conditional
correlation model with xt equal to the daily log-volatility for the market return.
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Table 9: In-sample performance and characteristics of minimum tracking error portfolios
based on forecasting models - 1989–1998

Standard Sharpe Tracking
Mean Deviation Ratio Error βM βSMB βHML

SF 17.39 14.36 0.853 3.64 0.998(0.012) −0.387(0.015) −0.030(0.017)

TF 16.82 14.39 0.812 3.75 1.020(0.012) −0.346(0.015) −0.010(0.018)

RM 17.52 14.86 0.832 4.61 1.010(0.015) −0.397(0.018) −0.064(0.023)

CCC 17.57 14.40 0.864 3.37 0.997(0.011) −0.403(0.014) −0.045(0.016)

DCC 17.53 14.40 0.861 3.35 1.000(0.011) −0.402(0.014) −0.047(0.016)

ADCC 17.49 14.37 0.862 3.32 1.007(0.011) −0.401(0.014) −0.046(0.016)

STCC(hM) 17.55 14.39 0.863 3.34 1.000(0.011) −0.398(0.014) −0.042(0.016)

STCC(hSMB) 17.48 14.39 0.857 3.35 0.996(0.011) −0.403(0.014) −0.049(0.016)

STCC(hHML) 17.58 14.39 0.865 3.32 0.998(0.010) −0.402(0.014) −0.046(0.016)

SEMI(hM) 17.34 14.37 0.849 3.28 1.004(0.010) −0.390(0.013) −0.035(0.015)

SEMI(hSMB) 17.37 14.44 0.848 3.28 1.006(0.010) −0.395(0.014) −0.044(0.016)

SEMI(hHML) 17.65 14.36 0.871 3.26 0.998(0.010) −0.398(0.014) −0.044(0.015)

EWP 17.99 15.16 0.848 4.16 1.072(0.013) −0.333(0.017) −0.053(0.021)

VWP 21.52 17.95 0.913 6.83 1.114(0.017) −0.410(0.021) −0.458(0.027)

Note: The table reports in-sample (January 1, 1989 – December 31, 1998) summary statistics for the minimum
tracking error portfolios based on various forecasting models. hM, hSMB and hHML indicate that the variable
xt in the STCC and semi-parametric models is taken to be the (contemporaneous) daily log-volatility for
the market, SMB and HML factor returns, respectively. See Table 4 for definitions of the other models and
description of the summary statistics shown.
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Table 10: In-sample performance and characteristics of minimum tracking error portfolios
based on forecasting models - 1999–2003

Standard Sharpe Tracking
Mean Deviation Ratio Error βM βSMB βHML

SF −3.16 21.96 −0.301 7.91 1.062(0.025) −0.330(0.034) 0.406(0.040)

TF −4.80 22.42 −0.368 7.70 1.070(0.030) −0.293(0.036) 0.344(0.047)

RM −5.25 23.25 −0.374 7.88 1.019(0.018) −0.296(0.028) 0.098(0.035)

CCC −3.14 21.61 −0.305 6.91 1.032(0.020) −0.346(0.030) 0.332(0.034)

DCC −3.69 21.70 −0.329 6.52 1.025(0.020) −0.342(0.029) 0.284(0.033)

ADCC −3.87 21.76 −0.339 6.78 1.029(0.020) −0.344(0.030) 0.315(0.034)

STCC(hM) −3.18 22.03 −0.301 6.60 1.036(0.020) −0.343(0.029) 0.275(0.035)

STCC(hSMB) −3.23 22.16 −0.316 6.56 1.041(0.020) −0.314(0.026) 0.285(0.032)

STCC(hHML) −3.31 21.90 −0.321 6.61 1.037(0.020) −0.341(0.030) 0.223(0.031)

SEMI(hM) −2.40 22.31 −0.262 6.65 1.045(0.020) −0.343(0.030) 0.265(0.034)

SEMI(hSMB) −3.30 22.06 −0.306 6.50 1.051(0.019) −0.304(0.026) 0.288(0.032)

SEMI(hHML) −3.47 22.30 −0.310 6.36 1.032(0.019) −0.347(0.30) 0.219(0.033)

EWP −1.98 21.82 −0.249 7.98 1.066(0.024) −0.307(0.034) 0.425(0.039)

VWP −4.42 19.67 −0.400 7.53 0.938(0.023) −0.298(0.029) 0.313(0.037)

Note: The table reports out-of-sample (January 1, 1999 – December 31, 2003) summary statistics for the
minimum tracking error portfolios based on various forecasting models. See Table 9 for models definitions
and description of the summary statistics shown.
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