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Abstract

Several proteins are known to bind to a fibrin network and to change clot properties or function. In this study we aimed to
get an overview of fibrin clot-bound plasma proteins. A plasma clot was formed by adding thrombin, CaCl2 and aprotinin to
citrated platelet-poor plasma and unbound proteins were washed away with Tris-buffered saline. Non-covalently bound
proteins were extracted, separated with 2D gel electrophoresis and visualized with Sypro Ruby. Excised protein spots were
analyzed with mass spectrometry. The identity of the proteins was verified by checking the mass of the protein, and, if
necessary, by Western blot analysis. Next to established fibrin-binding proteins we identified several novel fibrin clot-bound
plasma proteins, including a2-macroglobulin, carboxypeptidase N, a1-antitrypsin, haptoglobin, serum amyloid P, and the
apolipoproteins A-I, E, J, and A-IV. The latter six proteins are associated with high-density lipoprotein particles. In addition
we showed that high-density lipoprotein associated proteins were also present in fibrinogen preparations purified from
plasma. Most plasma proteins in a fibrin clot can be classified into three groups according to either blood coagulation,
protease inhibition or high-density lipoprotein metabolism. The presence of high-density lipoprotein in clots might point to
a role in hemostasis.
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Introduction

Arterial and venous thrombosis are major causes of morbidity

and mortality in the Western world. These thrombotic disorders

are considered as separate diseases, with different pathology,

pathophysiology, epidemiology and treatments. However, there is

evidence that suggests that there is an association between venous

and arterial thrombosis [1]. Multiple genetic and acquired risk

factors contribute to the development of thrombosis. Some risk

factors for arterial thrombosis may also play a role in venous

thrombosis and the other way around [2,3]. Although there are

several risk factors known, there are still a number of patients

without a known thrombotic risk factor [4,5]. Moreover, the site

specificity of thrombosis is poorly understood [6]. Identification of

novel players in hemostasis can help in determining new risk

factors and additionally in understanding the pathogenesis of

thrombotic disorders.

Elevated fibrinogen is a risk factor for both arterial and venous

thrombosis [4,7]. Several proteins are known to bind to fibrin and

to change clot properties or clot function via effects on fibrin

formation and degradation [8]. For example, the main enzyme in

fibrinolysis, plasmin, is formed by activation of the zymogen

plasminogen by tissue plasminogen activator (t-PA). The interac-

tions of t-PA and plasminogen with fibrin accelerate plasminogen

activation [9]. Lipoprotein(a) (Lp(a)) has structural similarities to

plasminogen. Lp(a) can compete with plasminogen for fibrin

binding and in so doing inhibit plasmin formation and eventually

fibrinolysis [10]. Binding of proteins to fibrin can have an effect on

the structure of fibrin fibers. Binding of fibronectin to fibrin causes

the fibrin network to have thicker fibers and larger pores [11].

Clots with thicker fibers and larger pores are broken down more

rapidly than clots with thinner fibers and smaller pores [12]. The

binding of thrombin to fibrin results in a smaller quantity of active

thrombin in the circulation. Reduced binding of thrombin to

fibrin, which is seen in patients with fibrinogen Naples I, is

associated with thrombosis [13]. There are several other proteins

that are known to bind to fibrin including a2-antiplasmin,

plasminogen activator inhibitor-2 (PAI-2), hepatocyte-derived

fibrinogen-related protein-1 (HFREP-1), albumin, fibroblast

growth factor-2, vascular endothelial growth factor, interleukin-

1b, activated factor X, tissue factor pathway inhibitor, thrombin-

activatable fibrinolysis inhibitor (TAFI), von Willebrand factor,

thrombospondin, actin, factor V and factor XIII (FXIII) [14–21].

Some of these proteins are cross-linked to fibrin by FXIIIa, e.g. a2-
antiplasmin, fibronectin, PAI-2, TAFI, von Willebrand factor,

thrombospondin, actin and factor V.

In this study we aim to establish the protein composition of

fibrin clots made from plasma. Changes in the protein composition

can influence clot formation and breakdown and may therefore

play a role in arterial and venous thrombosis. We identified 18

fibrin clot-bound plasma proteins by 2D gel electrophoresis

followed by mass spectrometry. Nine of them were novel plasma

clot components of which six proteins are associated with high-

density lipoprotein (HDL).

Materials and Methods

Materials
Urea, thiourea, CHAPS, dithiothreitol (DTT) and iodoaceta-

mide were obtained from Fluka (St. Louis, MO, USA). Aprotinin

(Trasylol) was obtained from Bayer (Leverkusen, Germany). Tris
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(PlusOne), DeStreak, IPG buffer pH 3–10, immobiline strips,

Ettan Spot Picker, IPGphore and Typhoon Trio apparatus were

obtained from GE Healthcare (Uppsala, Sweden). The anchorchip

plate, a-cyano-4-hydroxycinnamic acid matrix and the Ultraflex-II

apparatus were from Bruker Daltonics (Bremen, Germany).

Human thrombin and apolipoprotein A-I purified from plasma

were obtained from Sigma-Aldrich (St. Louis, MO, USA). Trypsin

Gold was obtained from Promega Corporation (Madison, WI,

USA). Bis-Tris (12%) Criterion XT precast gels, XT MOPS and

XT MES buffer were from Bio-Rad (Hercules, CA, USA). Sypro

Ruby was obtained from Invitrogen (Paisley, UK) and 0.45 mm
nitrocellulose transfer membrane from Whatman (Dassel, Ger-

many). The goat polyclonal IgG to human a2-macroglobulin, the

goat polyclonal IgG to human apolipoprotein A-II and the goat

polyclonal IgG to human apolipoprotein B were from Abcam

(Cambridge, UK). The rabbit polyclonal IgG to human apolipo-

protein A-I was from Calbiochem (Darmstadt, Germany) and the

goat polyclonal IgG to human apolipoprotein J was from Abgent

(San Diego, CA, USA). The Odyssey apparatus and IRDyeH
800 CW secondary donkey-anti-goat and goat-anti-rabbit anti-

bodies were obtained from Li-Cor Bioscience (Lincoln, NE, USA).

Human fibrinogen (plasminogen, von Willebrand factor and

fibronectin depleted) was obtained from Enzyme Research

Laboratories (South Bend, IN, USA).

Plasma Clot Preparation
In vitro clots of 500 ml citrated platelet-poor plasma (pool from

10 healthy volunteers, Sanquin, location Leiden, the Netherlands)

were prepared by adding calcium chloride (20 mM), thrombin

(1 NIH U/ml) and aprotinin (100 KIU/ml) [15]. After 2 hours of

incubation at room temperature, the clots were extensively washed

by perfusing them with 10 ml Tris-buffered saline (50 mM Tris-

HCl, 100 mM NaCl, pH 7.4) containing aprotinin (100 KIU/ml)

at 4uC. Where indicated, the NaCl concentration was increased to

0.5 M. The clots were compacted by centrifugation, washed with

deionized water and non-covalently clot-bound proteins were

extracted with 150 ml rehydration buffer (7 M urea, 2 M thiourea,

4% (w/v) CHAPS, 0.5% (v/v) IPG 3–10 buffer) for 1 hour at

room temperature. For optimal 2D gel electrophoresis 1% (v/v)

DeStreak was added to the extract.

2D Gel Electrophoresis
Plasma clot extract was separated with 2D gel electrophoresis.

The proteins in the 150 ml extract were separated in the first

dimension with a 11 cm immobiline drystrip with a 3–10 NL pH

range by isoelectric focusing on the IPGphor with the following

running protocol: 30 V for 12 hours (rehydration), 1000 V for 4

hours (gradient), 8000 V for 5 hours (step-n-hold), with a 50 mA
limit per gel. After isoelectric focusing the gel strip was equilibrated

in buffer (6 M urea, 50 mM Tris-HCl pH 8.8, 20% (v/v) glycerol,

2% (w/v) SDS) with 1% (w/v) DTT for 15 minutes followed by

a second equilibration step with equilibration buffer with 1% (w/v)

iodoacetamide for 15 minutes. For the second dimension the gel

strip was laid on a 12% Bis-Tris gel and run for 1 h at 200 V

constant, using the XT MOPS buffer as running buffer. The

proteins in the gel were visualized by Sypro Ruby staining

according to manufacturer’s instructions and scanned on a Ty-

phoon Trio at an excitation wavelength of 532 nm and an

emission wavelength of 610 nm.

Mass Spectrometry Analysis
The highly abundant proteins were analyzed with Matrix

Assisted Laser Desorption/Ionization – Time of Flight (MALDI-

ToF). Therefore proteins spots were excised with Spot Picker

using a 2 mm picker head and destained in 30% (v/v)

acetonitrile (ACN)/50 mM NH4HCO3. Destained gel pieces

were vacuum-dried and rehydrated in 4 ml trypsin digest

solution (75 mg/ml Trypsin Gold in 20 mM NH4HCO3,

pH 8.0) for digestion overnight at room temperature. Peptide

extraction was performed with 5 ml of 50% ACN/0.1%

trifluoroacetic acid. The extracted sample was spotted on an

anchorchip plate with saturated a-cyano-4-hydroxycinnamic

acid matrix solution in 100% ACN (1:1). Digested peptide

fragments were analyzed in a MALDI-ToF mass spectrometer

using an Ultraflex-II apparatus. Flexanalysis 2.4 and BioTools

3.1 software were used for data processing. The mass spectra

obtained were analyzed using peptide mass fingerprint spectra

with the online Matrix Science Database with MASCOT

software (www.matrixscience.com). The NCBInr database

20100624 (11299630 sequences; 3855426203 residues) was

searched with the Mascot parameters set as follows: Taxonomy,

homo sapiens; mass tolerance, 100 ppm; maximally one missed

cleavage per peptide; fixed modification of carboxymethylation

of cysteine residues; variable modification of partial oxidation of

methionine residues. Mowse scores above NCBInr database

threshold of 66 were considered significant (p,0.05).

For the less abundant proteins mass spectrometry analysis was

done with nanoflow LC-MS/MS. Picked gel spots were subjected

to in-gel reduction with DTT, alkylation with iodoacetamide and

digestion with Trypsin Gold, essentially as described by Wilm et al.

[22]. Nanoflow LC-MS/MS was performed on an 1100 series

capillary LC system (Agilent Technologies, Santa Clara, CA,

USA) coupled to an LTQ linear ion trap mass spectrometer

(Thermo Fisher Scientific, Waltham, MA, USA) operating in

positive mode and equipped with a nanospray source. Peptide

mixtures were trapped on a ReproSil C18 reversed phase column

(Dr Maisch GmbH, Ammerbuch-Entringen, Germany; column

dimensions 1.5 cm6100 mm, packed in-house) at a flow rate of

8 ml/min. Peptide separation was performed on ReproSil C18

reversed phase column (Dr Maisch GmbH, Ammerbuch-Entrin-

gen, Germany; column dimensions 15 cm650 mm, packed in-

house) using a linear gradient from 0 to 80% B (A=0.1% formic

acid; B= 80% (v/v) acetonitrile, 0.1% formic acid) in 70 min and

at a constant flow rate of 200 nl/min using a splitter. The column

eluent was directly sprayed into the ESI source of the mass

spectrometer. Mass spectra were acquired in continuum mode;

fragmentation of the peptides was performed in data-dependent

mode. Peak lists were automatically created from raw data files

using the Mascot Distiller software (version 2.1; MatrixScience).

The Mascot search algorithm (version 2.2, MatrixScience) was

used for searching against the NCBInr database (release

NCBInr_20090808.fasta; taxonomy: Homo sapiens). The peptide

tolerance was typically set to 2 Da and the fragment ion tolerance

was set to 0.8 Da. A maximum number of 2 missed cleavages by

trypsin were allowed and carbamidomethylated cysteine and

oxidized methionine were set as fixed and variable modifications,

respectively. The Mowse score cut-off value for a positive protein

hit was set to 60. For identification as fibrin clot-binding protein

the cut-off value for the emPAI score [23] was set at 0.15.

Individual peptide MS/MS spectra with Mascot scores below 40

were checked manually and either interpreted as valid identifica-

tions or discarded.

Fibrinogen Purification from Plasma
Fibrinogen was purified from barium-adsorbed citrated plasma

with immunoaffinity chromatography according to Takebe et al.

[24] with some changes. In short, IF-1 antibody was conjugated to

CNBr-activated Sepharose 4B according to manufacturer’s
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manual. Barium-adsorbed citrated plasma was dialyzed against

Tris-buffered saline (50 mM Tris-HCl, 100 mM NaCl, pH 7.4)

and applied on the IF-1-conjugated Sepharose 4B column with

1 mM CaCl2. The column was washed with 50 mM Tris-HCl,

pH 7.4, containing 0.3 M NaCl and 1 mM CaCl2 and eluted

with 50 mM Tris-HCl, pH 7.4, containing 0.3 M NaCl and

5 mM EDTA. The optical densities at 280 nm of the fractions

were measured.

Western Blot Analysis
To detect a2-macroglobulin, a clot extract was made and

separated by 2D gel electrophoresis as described above. The

proteins were transferred from the 12% Bis-Tris precast gel to

a nitrocellulose membrane by semi-dry blotting at 0.33 mA

constant for 1 hour. The membrane was incubated with block

buffer (PBS, 1% BSA, pH 7.4). After the blocking step the

membrane was first incubated with the a2-macroglobulin antibody

(20 mg/ml) diluted in block buffer containing 0.1% Tween 20 and

then with the secondary antibody IRDyeH 800 CW donkey-anti-

goat diluted 10.000 times in 5% milk and 0.1% Tween 20 in PBS,

pH 7.4. All incubation steps were performed for 1 hour at room

temperature. To visualize the protein, the membrane was scanned

on an Odyssey scanner.

To detect fibrinogen-bound proteins, fibrinogen in the fractions

of the IF-1 column experiment described above and fibrinogen

from Enzyme Research Laboratories were analyzed with SDS-

PAGE. Reduced samples of 30 mg fibrinogen were run on a 12%

Bis-Tris precast gel with XT MES buffer for 1 h at 200 V constant

and analyzed with Western blotting as described above. The

different apolipoproteins were detected by using the specific

apolipoprotein A-I antibody (1000 times diluted), apolipoprotein J

antibody (0.5 mg/ml) and apolipoprotein A-II antibody (1 mg/ml).

The amounts of apolipoprotein A-I and apolipoprotein B

present in plasma clot extracts were estimated using Western blot

analysis. For quantification of apolipoprotein A-I a clot extract and

different concentrations of purified apolipoprotein A-I were run on

a Tris-HCl gel (15%) and for apolipoprotein B quantification a clot

extract and different concentrations of purified low-density

lipoprotein (LDL) were run on a Tris-HCl gel (5%). LDL was

purified according to Redgrave et al. [25]. Calibration curves were

made of the different concentrations of apolipoprotein A-I and

apolipoprotein B which were used to estimate the amount of

apolipoprotein in the plasma clot extract. Western blot analysis

was done as described above using a specific apolipoprotein A-I

antibody (1000 times diluted) and a specific apolipoprotein B

antibody (1 mg/ml).

Results

To investigate the protein composition of a fibrin clot, in vitro

plasma clots were made by adding CaCl2, thrombin and aprotinin

to platelet-poor citrated plasma. Unbound proteins were washed

away and non-covalently bound proteins were extracted, separat-

ed with 2D gel electrophoresis and visualized with Sypro Ruby

(Figure 1A). Spots that were identified using mass spectrometry

were reproducibly detected in at least 7 out of 10 2D gels. The

high-abundant protein spots (spots 7, 8 and 15) were analyzed with

MALDI-ToF mass spectrometry and the other protein spots were

analyzed with nanoflow LC-MS/MS. This resulted in the

identification of 18 different proteins that were present in a plasma

clot. Detailed information fromMascot analysis is shown in table 1.

Several of the proteins identified were not previously described as

plasma clot components including a2-macroglobulin, carboxypep-

tidase N (CPN), a1-antitrypsin, haptoglobin, serum amyloid P and

the apolipoproteins A-I, A-IV, E and J. The latter six proteins are

associated with the HDL particle. In addition we identified

proteins that have previously been described as fibrin clot-bound

proteins, including fibronectin, plasminogen, factor XIII, HFREP-

1, actin and thrombin.

The majority of the identified spots belong to a train of spots,

as is seen for example for protein spot 4 in figure 1A. These

trains most likely represent different isoforms of the same

protein. On the basis of multiple mass spectrometry analyses of

different spots from different gels we identified several trains of

spots (figure 1B). To visualize low-abundant fibrin clot-bound

proteins on the 2D gel, the laser intensity in figure 1A was set

high. The disadvantage of the resulting high fluorescent signal

was that the high-abundant proteins displayed a saturated

signal. Therefore we show in figure 1C a zoomed image of the

high-abundant proteins with a lower fluorescent signal. Al-

though a1-antitrypsin (spot A in figure 1C) mainly varied in its

isoelectric point, several minor species with higher and lower

molecular mass were also detected.

The identification by mass spectrometry was verified by

comparing the theoretical molecular mass of the proteins, obtained

from the NCBInr database, with the apparent mass on the 2D gel.

For most protein spots the theoretical molecular mass was similar

to the mass estimated from the gel pattern. However, of three

protein spots (2, 3 and 9 in figure 1A) identified as a2-
macroglobulin only one spot (spot 2) corresponded with the

theoretical mass of the protein of 167 kDa. With Western blot

analysis, using a2-macroglobulin specific antibodies, the identity of

the three protein spots and their isoforms in the same trains were

confirmed to be a2-macroglobulin (figure 2).

It was a remarkable observation that two-thirds of the novel

plasma clot components appeared to be HDL-associated

proteins. Next to the presence of these proteins in a fibrin clot

we detected the presence of HDL-apolipoproteins in fibrinogen

that we purified from plasma (figure 3) and in commercially

available fibrinogen purified form plasma (data not shown). This

suggests that HDL was bound specifically to fibrinogen and

thereby to the plasma clot, which was also supported by the

finding that HDL-apolipoproteins present in a plasma clot could

not be washed out by increasing the NaCl in the washing buffer

from 0.1 M to 0.5 M (data not shown). The amount of

apolipoprotein A-I present in a washed plasma clot, estimated

from Western blot analysis of clot extracts was about 3 mg/ml.

This corresponded to approximately 8 mg HDL per ml plasma.

The amount of apolipoprotein A-I was much higher than

apolipoprotein B (about 0.05 mg/ml), which corresponded to

approximately 0.3 mg LDL per ml plasma clot.

Figure 1. An overview of non-covalently fibrin clot-bound plasma proteins. Plasma clots were made by adding CaCl2, thrombin and
aprotinin to platelet-poor citrated normal plasma, unbound proteins were washed away and bound proteins were extracted. These proteins were
separated with 2D gel electrophoresis and visualized by Sypro Ruby. A) The numbers and arrows indicate the protein spots that were excised from
gel and analyzed with mass spectrometry. B) The trains of spots that resemble the same protein are indicated by white ellipses. They include:
fibronectin (I), a2-macroglobulin (II, III and VIII), plasminogen (IV), FXIII A chain (V), albumin (VI), a1-antitrypsin (VII), apolipoprotein J (IX),
apolipoprotein E, HFREP-1 (X) and apolipoprotein A-I (XI). C) A zoomed image of the 2D gel with a lower fluorescent signal. The isoforms of a1-
antitrypsin (A), apolipoprotein J (B) and apolipoprotein A-I (C) are indicated by white ellipses.
doi:10.1371/journal.pone.0041966.g001
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Table 1. Mascot analysis of fibrin clot-bound proteins.

Spot Accession # Description Mowse score Seq. cov. (%) Mw Tot. pept. Uniq. pept. pI

1 gi|16933542 Fibronectin 2025 20 262656 33 30 5.49

2 gi|46812315 a2-macroglobulin 2206 29 167505 43 33 6.06

3 gi|46812315 a2-macroglobulin 1996 24 167505 46 29 6.06

4 gi|190026 Plasminogen 2240 49 93233 39 34 7.04

5 gi|51173528 carboxypeptidase N, polypeptide 2 864 29 61433 30 13 5.72

6 gi|119395709 coagulation factor XIII, A1 polypeptide 864 21 83267 39 15 5.75

gi|33451 immunoglobulin heavy constant mu 555 21 51506 27 9 5.92

7 gi|4502027 albumin (*) 280 54 71317 28 25 5.92

8 gi|15080499 a1-antitrypsin (*) 162 45 46864 15 13 5.36

9 gi|46812315 a2-macroglobulin 621 7 167505 10 8 6.06

gi|113584 immunoglobulin heavy constant alpha 1 282 13 38486 5 4 6.08

10 gi|4503011 carboxypeptidase N, polypeptide 1 210 7 52538 4 3 6.86

11 gi|4501887 actin, gamma 1 693 33 42108 20 10 5.31

gi|178759 apolipoprotein A-IV 424 14 45307 6 6 5.23

gi|306882 haptoglobin 209 8 45860 3 3 6.24

12 gi|177827 a1-antitrypsin 373 12 46787 7 7 5.42

gi|338305 apolipoprotein J 344 16 36997 7 5 5.74

13 gi|178849 apolipoprotein E 1124 53 36302 32 17 5.65

gi|22023090 HFREP-1 448 26 36640 8 7 5.58

14 gi|38018090 thrombin 599 23 34072 11 8 8.52

15 gi|4557321 apolipoprotein A-I (*) 153 49 30759 18 15 5.56

16 gi|178775 apolipoprotein A-I 723 44 28944 15 11 5.45

gi|149673887 immunoglobulin light chain 442 40 23665 7 5 6.97

gi|337758 serum amyloid P 306 18 25495 4 4 6.10

Protein spots shown in Fig. 1A were analyzed by mass spectrometry. Proteins with an asterisk were analyzed with MALDI-ToF and the other protein spots were analyzed
with nanoflow LC-MS/MS. Accession number of the NCBInr database, protein description, Mowse score, sequence coverage (%), calculated molecular weight (Mw), total
identified peptides, unique identified peptides and the calculated pI are given.
HFREP-1; hepatocyte-derived fibrinogen related protein-1.
doi:10.1371/journal.pone.0041966.t001

Figure 2. Western blot analysis with specific a2-macroglobulin antibodies. Fibrin clot-bound plasma proteins were separated with 2D gel
electrophoresis and analyzed with Western blot analysis using specific a2-macroglobulin antibodies. The arrows indicate the three different a2-
macroglobulin trains that were also identified as a2-macroglobulin with mass spectrometry (protein spots 2, 3 and 9 in figure 1A and table 1). The
molecular mass of the protein marker is indicated in kDa.
doi:10.1371/journal.pone.0041966.g002
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Discussion

In this study, using 2D gel electrophoresis and mass spectrom-

etry, we identified 18 different fibrin clot-bound proteins, which

are not cross-linked to fibrin by FXIIIa. Several of these protein

have not been described before as plasma clot components.

Eleven out of the 18 fibrin clot-bound proteins can be classified

into three groups related to their function: blood coagulation,

protease inhibition and HDL metabolism. Plasminogen, factor

XIII and thrombin are involved in blood coagulation while a2-
macroglobulin and a1-antitrypsin are protease inhibitors [26,27].

Plasma proteins that are associated with HDL and play a role in its

metabolism are haptoglobin, serum amyloid P and the apolipo-

proteins A-I, A-IV, J and E [28–31]. The presence of actin as

a plasma clot component could be due to small amounts of

platelets present in the platelet-poor plasma. However, actin can

also be released into the bloodstream by dying cells or tissue

damage [32].

The intensity of the stained spots suggests that the 18 identified

plasma proteins represent nearly the entire protein material non-

covalently bound to a fibrin clot. However with this approach we

do not visualize the very low-abundant proteins. For example t-

PA, a known fibrin-binding protein, was not observed. A second

limitation of 2D gel electrophoresis is that high molecular weight

proteins are underrepresented [33]. However, we did observe the

high molecular weight proteins fibronectin and a2-macroglobulin

with 2D gel electrophoresis. In addition, with 1D gel electropho-

resis (SDS-PAGE) and protein staining we did not observe any

additional high molecular weight protein in a plasma clot extract

(data not shown).

To verify the identification of the protein spots by mass

spectrometry the theoretical molecular mass of the identified

protein was compared with the apparent molecular mass on the

2D gel. For most proteins the theoretical molecular mass was

comparable with the observed molecular mass, given that the

theoretical mass does not take into account several post-trans-

lational modifications like glycosylation. Three different protein

spots on the 2D gel of figure 1A were identified as a2-
macroglobulin and the molecular mass of only one protein spot

was comparable with the theoretical mass of the protein. However,

all protein spots identified as a2-macroglobulin were confirmed

with Western blot analysis. It has been shown that when a2-
macroglobulin is heated at high temperatures or at lower

temperatures under denaturing conditions, two polypeptide chains

of 125 kDa and 62 kDa can be produced [34]. Although we did

not heat the clot extract in the preparation for 2D gel

electrophoresis, the molecular weights of the two a2-macroglob-

ulin fragments we observed match the molecular weights of the

fragments produced upon heating.

Very recently, after we finished the research described here,

a paper was published that described complement C3 as a novel

plasma clot component [35]. Most proteins identified were related

to coagulation and inflammation, while we identified mainly

proteins that were related to coagulation, protease inhibition and

HDL metabolism. There are some clear differences between the

two proteomic approaches. The most important difference is that

Howes et al. [35] described the total protein composition of the

whole clot, thereby also identifying proteins that are crosslinked

via FXIIIa, while we focused on non-covalently plasma clot-bound

proteins. Identifying proteins by examining the whole clot is

technically more challenging because of the high abundance of

fibrin compared to the other plasma clot components.

Two-thirds of the newly identified fibrin clot-bound proteins are

associated with HDL suggesting that HDL particles have affinity

for fibrin, which is specific for HDL and not for LDL because only

low amounts of apolipoprotein B were present in a fibrin clot. In

addition, this apolipoprotein B most likely comes from bound

lipoprotein(a), which can bind with its apolipoprotein(a) to fibrin

[10]. The presence of HDL-proteins in purified fibrinogen

suggested affinity of HDL to fibrinogen as well. These findings

are in line with the detection of fibrinogen in purified HDL

preparations [29,36,37]. What the role is of the binding of HDL to

a fibrin clot is not known. However, recent studies have shown

that HDL levels are negatively associated with both arterial and

venous thrombosis [38–40], for which the exact mechanism is not

known. HDL is a reverse cholesterol transporter, which is

considered to be the most important property of HDL in

preventing atherosclerosis. Several other properties can contribute

to the atheroprotective effect of HDL including antioxidant, anti-

inflammatory, antiproliferative, antithrombotic and vasodilatory

properties [41]. HDL consists of a heterogeneous population of

particles containing different types and amounts of (apolipo)pro-

teins and lipids. The existence of different subpopulations in HDL

is consistent with the fact that HDL has multiple biological

activities [42]. It is possible that the HDL particle present on

a fibrin clot as identified in this study represents a distinct

subfraction of HDL.

A direct role of HDL in coagulation or fibrinolysis is not yet

clear. It was suggested that HDL enhances the activated protein C

pathway [43], but this may be due to the contamination of

negatively charged phospholipid membranes [44]. Another

possible mechanism that can play a role in the anticoagulant

effect of HDL is that anionic phospholipids lose their procoagulant

properties when incorporated into HDL [45].

In conclusion, we have identified several novel plasma clot

components of which two-thirds was associated with HDL

particles. This suggests that the presence of HDL on a fibrin clot

may be of importance in clot formation or fibrinolysis and may

play a role in the hemostasis and thrombosis.
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Figure 3. Western blot analysis for apolipoproteins in purified
fibrinogen. Fibrinogen was isolated from plasma with immunoaffinity
chromatography and run on SDS-PAGE. Different apolipoproteins were
detected with Western blot analysis using specific antibodies. Lane 1:
protein marker, lane 2: apolipoprotein A-I (Mw=28,900), lane 3:
apolipoprotein J (Mw = 37,000), lane 4: apolipoprotein A-II
(Mw=8,700). Only the relevant section of the gel is shown.
doi:10.1371/journal.pone.0041966.g003
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