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Abstract 

 

In this paper we give an overview of recent developments in the field of modeling 

single-level dynamic lot sizing problems. The focus of this paper is on the modeling 

various industrial extensions and not on the solution approaches. The timeliness of 

such a review stems from the growing industry need to solve more realistic and 

comprehensive production planning problems. First, several different basic lot sizing 

problems are defined. Many extensions of these problems have been proposed and the 

research basically expands in two opposite directions. The first line of research 

focuses on modeling the operational aspects in more detail. The discussion is 

organized around five aspects: the set ups, the characteristics of the production 

process, the inventory, demand side and rolling horizon. The second direction is 

towards more tactical and strategic models in which the lot sizing problem is a core 

substructure, such as integrated production-distribution planning or supplier selection. 

Recent advances in both directions are discussed. Finally, we give some concluding 

remarks and point out interesting areas for future research. 
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1. Introduction 

 

In this review, we will discuss models that have been developed for optimizing 

production planning and inventory management. Lot sizing models determine the 

optimal timing and level of production. They can be classified according to their time 

scale, the demand distribution and the time horizon. The famous Economic Order 

Quantity model (EOQ) assumes a continuous time scale, constant demand rate and 

infinite time horizon. The extension to multiple items and constant production rates is 

known as the Economic Lot Scheduling Problem (ELSP) (Elmaghraby 1978, Zipkin 

1991). The subject of this review is the dynamic lot sizing problem with a discrete 

time scale, dynamic demand and finite time horizon. We will see that lot sizing 

models will incorporate more and more scheduling aspects. These scheduling models 

essentially determine the start and finish times of jobs (scheduling), the order in which 

jobs are processed (sequencing) and the assignment of jobs to machines (loading). 

Lawler et al. (1993) give an extensive overview of models and algorithms for these 

problems.  

 

A general overview of many different aspects of production planning and inventory 

management can be found in Graves et al. (1993) and in standard textbooks such as 

Silver et al. (1998), Hopp and Spearman (2000) or Vollmann et al. (1997). Several 

studies focus specifically on the dynamic lot sizing problem (De Bodt et al. 1984, 

Bahl et al. 1987, Kuik et al. 1994, Wolsey 1995, Drexl and Kimms 1997, Belvaux and 

Wolsey 2001, Karimi et al. 2003, Jans and Degraeve 2006). 

 

This review has a threefold contribution. Since the excellent reviews of Kuik et al. 

(1994) and Drexl and Kimms (1997) the research on dynamic lot sizing has further 

grown substantially. First of all, this paper fills a gap by providing a comprehensive 

overview of the latest literature in this field. Second, this paper aims to provide a 

general review and an extensive list of references for researchers in the field. 

Although this literature review is very extensive, we realize that it is impossible to be 

exhaustive. We realize that a model and its solution approach are inherently linked: 

more complex models demand also more complex solution approaches to solve them. 

However, in this paper we focus on the modeling aspect as much as possible in order 

to create some structure in the ever growing literature. This focus also distinguishes 
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this paper from other lot sizing reviews. A recent review of solution approaches can 

be found in Jans and Degraeve (2006). We show that the lot sizing problem is a core 

substructure in many applications by reviewing both more operational and tactical or 

strategic problems. Third, a comprehensive review further allows us to indicate new 

areas for further research. The power of production planning theory comes from the 

ability to solve more and more complex industrial problems. Whereas the early 

models where usually more compact, capturing the main trade-off, the extensions 

focus more and more on incorporating relevant industrial concerns. Therefore, this 

review is also very timely. 

 

 

2. Lot Sizing Models 

 

2.1. The single item uncapacitated lot sizing problem 

 

The simplest form of the dynamic lot sizing problem is the single item uncapacitated 

problem: 

 ( )∑
=

++
m

t
tttttt shcyscxvcMin

1
  (1)

s.t. tttt sdxs +=+−1  Tt∈∀  (2)

 ttmt ysdx ≤  Tt∈∀  (3)

 { }1,0;0, ∈≥ ttt ysx  Tt∈∀  (4)

We have three key variables in each period t: the production level (xt), the set up 

decision (yt) and the inventory variable (st). With each of these key variables is a cost 

associated: vct, sct and hct are respectively the variable production cost, set up cost 

and holding cost in period t. T is the set of all periods in the planning horizon and m is 

the last period. Demand for each period, dt, is known and sdtk is the cumulative 

demand for period t until k. The objective is to minimize the total cost of production, 

set up and inventory (1). We find here the same basic trade-off between set ups and 

inventory which is also present in the EOQ formula. Demand can be met from 

production in the current period or inventory left over from the previous period (2). 

Any excess is carried over as inventory to the next period. In each period we need a 

set up if we want to produce anything (3). As no ending inventory is allowed, 
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production is limited by the remaining cumulative demand. Finally, the production 

and inventory variables must be positive and the set up variables are binary (4). This 

problem was first discussed in the seminal paper by Wagner and Whitin (1958). 

Zangwill (1969) showed that this problem is actually a fixed charge network problem. 

For a 5 period problem, the network can be depicted as shown in Figure 1. The arcs (0, 

t) correspond to the production variables xt and have an associated unit flow cost of 

vct. If the production is strictly positive, i.e. xt > 0, then there is also a fixed cost of sct 

on the arc. The arcs (t, t+1) correspond to the inventory variables st and have a unit 

flow cost of hct. In network terms we say that node 0 is the supply or source node, 

nodes 1 to 5 are the demand nodes and the demand balance equations (2) correspond 

to the conservation of flow constraints.  

 

Fig. 1.   Network for the single item uncapacitated lot sizing problem 

 

2.2. Capacitated Multi-Item Lot Sizing Problem (CLSP) 

Of course, companies do not have an unlimited capacity and usually they make more 

than one product. Any realistic model has to take this into account. How these two 

elements are modeled, depends on the mode of production and the choice of the time 

period. In the large bucket model, several items can be produced on the same machine 

in the same time period. In the small bucket model, a machine can only produce one 

type of product in one period.   

 

The capacitated multi-item lot sizing problem (CLSP) is the typical example of a 

large bucket model. There are n different items that can be produced and P is the set 
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of all these items. In each period, only a limited production capacity capt is available. 

Producing one unit of product i consumes vti units of capacity. The formulation is as 

follows: 

 Min   ( )∑∑
∈ ∈

++
Pi Tt

itititititit shcxvcysc   (5)

s.t. itititti sdxs +=+−1,  ∀ i ∈ P, ∀ t ∈ T (6)

 itit Myx ≤  ∀ i ∈ P, ∀ t ∈ T (7)

 t
Pi

iti capxvt ≤∑
∈

 ∀ t ∈ T (8)

 { }1,0;0, ∈≥ ititit ysx  ∀ i ∈ P, ∀ t ∈ T (9)

 

We observe that in this formulation, product specific variables and parameters now 

have an extra index i to identify the item. For each item we have the demand balance 

equations (6) and set up constraints (7). The main difference with the uncapacitated 

model is the addition of the capacity constraint (8). In the set up constraint (7), the 

‘big M’ is usually set equal to { }itmit sdvtcap ,/min , as such the production is now 

limited by both the capacity and remaining demand (8).  

 

The Continuous Set Up Lot Sizing Problem (CSLP) is a small bucket model: 

 Min   ( )∑∑
∈ ∈

+++
Pi Tt

itiitiitiitit shcxvcysczg   (10)

s.t. itititti sdxs +=+−1,  ∀ i ∈ P, ∀ t ∈ T (11)

 ∑
=

≤
n

i
ity

1

1 ∀ t ∈ T (12)

 ittiti ycapxvt ≤  ∀ i ∈ P, ∀ t ∈ T (13)

 1, −−≥ tiitit yyz  ∀ i ∈ P, ∀ t ∈ T (14)

 { }1,0,;0, ∈≥ itititit zysx  ∀ i ∈ P, ∀ t ∈ T (15)

The new variable zit is the start up variable and there is an associated start up cost of 

git. A start up occurs when the machine is set up for an item for which it was not set 

up in the previous period. The objective function (10) minimizes the total cost of start 

ups, set ups, variable production and inventory. We still have the regular demand 

constraints (11). Further, we have the single mode constraint (12), imposing that at 

most one type of product can be made in each time period. For each item, production 
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can be up to capacity if there is a set up (13). The start up variables are modeled in 

constraint (14). There will only be a start up if the machine is set up for an item for 

which it was not set up in the previous period. A set up can be carried over to the next 

period if production of the same product is continued. Finally, the set up and start up 

variables are binary (15). Karmarkar and Schrage (1985) consider this problem 

without set up costs and called it the product cycling problem. Karmarkar et al. (1987) 

study the single item version of the CSLP, both for the uncapacitated and capacitated 

case. This problem is also referred to as lot sizing with start up costs (Wolsey 1989, 

Sandbothe 1991).  

 

The Discrete Lot Sizing and Scheduling Problem (DLSP) is a small bucket lot sizing 

model with a discrete production policy: if there is any production in a period, it must 

be at full capacity. The generic model (Fleischmann 1990) has a similar structure as 

the CSLP (10)-(15), except that the capacity and set up constraint (13) becomes an 

equality: 

 ittiti ycapxvt =  ∀ i ∈ P, ∀ t ∈ T (14)

Note that the production variable can be substituted out through this constraint. Jordan 

and Drexl (1998) showed the equivalence between DLSP for a single machine and the 

batch sequencing problem. 

 

 

3.  Further Extensions of Lot Sizing Models 

 

Production planning problems are often classified according to the hierarchical 

framework of strategic, tactical and operational decision making (e.g. Bitran and 

Tirupati 1993). Depending on the decision horizon and level of aggregation, lot sizing 

models are usually classified as either tactical or operational models. A yearly master 

production schedule at the plant level is used for tactical planning. Production 

sequencing and loading are operational decisions and determining the lot sizes for 

products in the next month falls somewhere in between. We observe that the basic lot 

sizing models from the previous section are extended in two different directions. On 

one hand, lot sizing formulations include more operational and scheduling issues in 

order to model more accurately the production process, costs and demand side. We 
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organize these extensions around four topics: set ups, production, inventory and 

demand, but clearly some extensions relate to more than one of them. Here we also 

discuss the use of these models in a rolling horizon way. On the other hand, these 

models are incorporated into more tactical and strategic problems for which the 

operational lot sizing decisions are a core substructure.  

 

3.1 Operational models 

 

3.1.1. Set ups 

 

Sometimes, there are not only set ups for individual items, called minor set ups, but 

there is a joint or major set up as well, which is incurred when at least one product is 

produced. These joint costs are used to model general economies of scale in 

manufacturing or procurement. This problem is extensively studied (Veinott 1969, 

Atkins and Iyogun 1988) and is sometimes referred to as the coordinated 

replenishment problem (Kao 1979, Chung et al. 1996, 2000, Robinson and Gao 1996, 

Robinson and Lawrence 2004) or the joint replenishment problem (Joneja 1990, 

Federgruen and Tzur 1994). In the case where the orders can be shipped via multiple 

modes, there is a different set up structure associated with each mode (Jaruphongsa et 

al. 2005). Production planning models without set ups have also been considered. 

Bowman (1956) shows that for the problem with convex cost functions, this problem 

can be solved as a transportation problem. Lotfi and Chen (1991) and Hindi (1995) 

discuss the capacitated case. On the other hand, sometimes the only objective is to 

minimize the costs of set ups or start ups. This is the case for the Changeover 

Scheduling Problem (CSP) (Glassey 1968, Hu et al. 1987, Blocher and Chand 1996a,b, 

Blocher et al. 1999). The problem assumes a discrete production policy and is as such 

related to the DLSP. A changeover is performed when production is switched to 

another product. In the DLSP terminology, this was called a start up. No inventory 

holding, production or set up costs are considered. Miller and Wolsey (2003) consider 

the discrete lot sizing problem with set ups but without start ups. Note that there is 

sometimes confusion in the literature between the terms set up and start up and we use 

the definition according to Vanderbeck (1998). In the production smoothing problem 

(Zangwill 1966b, Korgaonker 1977), a penalty proportional to the changes in 

production level is charged instead of a set up cost. 
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Several authors (e.g. Manne 1958, Kleindorfer and Newson 1975, Newson 1975, 

Trigeiro et al. 1989, Diaby et al. 1992, Du Merle et al. 1997, Armantano et al. 1999, 

Gopalakrishnan et al. 2001, Degraeve and Jans 2003, Hindi et al. 2003, Jans and 

Degraeve 2004b) consider set up times for the CLSP. The set up times represent the 

capacity lost due to cleaning, preheating, machine adjustments, calibration, inspection, 

test runs, change in tooling, etc., when the production for a new item starts. The set up 

time must be accounted for in the capacity constraint. Salomon et al. (1991) and 

Cattrysse et al. (1993) consider start up times for the DLSP. They assume that start up 

times must equal an integral multiple of the time bucket, but it is also possible to 

model start up times which are a fraction of the time bucket (De Matta and Guignard 

1994b, Jans and Degraeve 2004a). Vanderbeck (1998) formulates a CSLP with 

fractional start up times.  

 

An often considered critique on the CLSP states that this model does not allow a set 

up to be carried over from one period to the next, even if the last product in one 

period and the first product in the next are the same. This has led to new models 

which allow for such a set up carry over, at the expense of introducing additional 

binary variables (Gopalakrishnan et al. 1995, Sox and Goa 1999, Gopalakrishnan 

2000, Porkka et al. 2003, Gupta and Magnusson 2005). This problem is also referred 

to as the capacitated lot sizing problem with linked lot sizes (Suerie and Stadtler 2003). 

Computational results show that this model leads to considerable cost savings through 

the set up carry over (Gopalokrishnan et al. 2001). The Proportional Lot Sizing and 

Scheduling Problem (PLSP) relaxes the restriction of allowing production for only 

one product in each time period as imposed by the DLSP and CSLP. In the PLSP at 

most two different items can be produced in each time period. There is still at most 

one set up in each period, but the set up from the previous period can be carried over 

to the next period. Hence, if two items are produced in period t, then the first item 

must be the same as the last item in the previous period. Drexl and Haase (1995, 

1996) discuss this model and extensions such as set up times and multiple machines. 

A further refinement allows the set up times to be split between two periods (Suerie 

2006). Kimms (1996a,b, 1999) presents the multi-level version of the PLSP.  
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The PLSP and the model with set up carry over are examples of lot sizing problems 

that incorporate more and more sequencing aspects. A further step for the CLSP is to 

determine a sequence for all the products within a time period, and not just for the 

first and last one. This is necessary if set up costs or times are sequence dependent 

(Dilts and Ramsing 1989, Haase 1996, Fleischmann and Meyr 1997, Kang et al. 1999, 

Laguna 1999, Clark and Clark 2000, Haase and Kimms 2000, Meyr 2000, Gupta and 

Magnusson 2005). These models are very difficult as they require the introduction of 

many more binary variables. In the General Lot Sizing and Scheduling Problem 

(Fleischmann and Meyr 1997), the macro-periods are divided into a fixed number of 

micro-periods with variable length, which allows the sequencing of products. 

Fleischmann (1994) considers the DLSP with sequence dependent start up costs. His 

heuristic procedure is based on the transformation of the problem into a Traveling 

Salesman Problem with Time Windows. Salomon et al. (1997) describe an algorithm 

for the DLSP with both sequence dependent start up costs and start up times. De 

Matta and Guignard (1994b) also model sequence dependent cost and set up times in a 

DLSP in the process industry.  In his review on change-over modeling Wolsey (1997) 

studies sequence dependent start ups for the CSLP. Belvaux and Wolsy (2000, 2001) 

present a comprehensive lot sizing model, including sequence dependent costs or 

times and switch off variables. Potts and Van Wassenhove (1992) discuss the 

integration of scheduling and lot sizing from a scheduling perspective.  

 

Small set up costs and times are essential for implementing a successful Just-In-Time 

approach. Set up cost and time reduction programmes require an initial capital 

investment and result in a more flexible production. Zangwill (1987) points out that 

some intuitive implications of a set up reduction in an EOQ environment do not 

necessarily hold in the context of dynamic lot sizing. Mekler (1993), Diaby (1995) 

and Denizel et al. (1997) offer models to evaluate the tradeoff between the cost and 

benefits of a set up time reduction within a dynamic lot sizing framework. The set up 

times and costs are variables and depend on previous investment decisions. Another 

way to achieve lower set up costs is through learning. According to the theory of the 

learning curve, production costs decrease as cumulative output increases over time. 

Chand and Sethi (1990) present a lot sizing model with learning in set ups. Set up 

costs depend on the total number of set ups up to now and there is a declining set up 

cost for successive set ups. Benefits from smaller lot sizes are captured in terms of 
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reduced set up costs. Tzur (1996) provide a more general model where the costs of a 

set up still depend on the number of previous set ups, but can both decrease or 

increase, as long as the total set up costs are nondecreasing. Examples of increasing 

set up costs are the cases where the set up cost increases with the usage of the 

machine or when some maintenance is necessary after a specific number of set ups. 

Learning can also decrease the set up time (Pratsini 2000).  

 

Almost all of the dynamic lot sizing models assume that production is done on 

reliable machines. Kuhn (1997) analyses the effects of set up recovery with machine 

breakdowns and corrective maintenance for the single item uncapacitated lot sizing 

problem. In a first case, the assumption is made that the set up is totally lost after a 

breakdown. In a second case, the costs of resuming production of the same item after 

a breakdown is lower compared to the original set up cost.  

 

3.1.2. Production 

 

In some manufacturing environments, production is done in batches (Lipmann 1969, 

Lee 1989, Pochet and Wolsey 1993, Constantino 1998, Van Vyve 2003). In the 

mathematical formulation, the set up variable yit becomes general integer instead of 

binary and indicates the number of batches produced. Every time production exceeds 

a multiple of the batch size, a new set up cost is incurred. This is for example the case 

in an environment where production is limited by a tank size. Each time one has to fill 

the tank again a set up cost is incurred, even if the same item is produced. This can 

also be interpreted as a stepwise cargo cost function (Lee 2004) where the capacity of 

each cargo is limited. Ben-Khedher and Yano (1994) assume that containers, which 

may be only partially filled, are assigned to trucks and there is a fixed charge for each 

truck used. Elmaghraby and Bawle (1972), Dorsey et al. (1974), Van Vyve (2003) 

and Li et al. (2004) impose that production is done in exact multiples of the batch size. 

Hence these models assume a discrete production policy but do not consider start up 

interactions over time. Manufactured units may not be available instantaneously, but 

arrive only in inventory after the whole batch has been completed (Brüggemann and 

Jahnke 1994, 2000). Stowers and Palekar (1997) and Bhatia and Palekar (2001) 

consider a variant of the joint replenishment lot sizing problem where products 

belonging to the same family can only be made in a fixed proportion to each other. A 
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product can be part of several different families. This type of production occurs in the 

manufacturing of metal or plastic plates and die-cast parts and in some chemical 

production problems. It is referred to as lot sizing with strong set up interaction. In an 

oil refinery, sets of products are produced simultaneously in same process, but the rate 

depends on the mode of operation (Persson et al. 2004). Love (1973) extends the lot 

sizing problem by introducing lower and upper bounds on the production. Production 

below some level is not allowed because of technical constraints or in order to make 

full use of the resource (Anderson and Cheah 1993, Constantino 1998, Mercé and 

Fontan 2003, Lee 2004). 

 

In many production processes, tools such as dies or molds are required and they are 

often shared among several products. Tools, machines and products are interrelated as 

there are compatibility requirements between them (Brown et al. 1981). The problem 

is further complicated as there is only a limited availability of both the machines and 

tools. Jans and Degraeve (2004a) model such a production planning problem for a tire 

manufacturer where the number of molds is a limiting factor. Akturk and Onen (2002) 

also integrate a lot sizing and tool management problem.  

 

We observed that the boundaries between lot sizing and scheduling are fading with 

the introduction of sequence dependent set up costs and times. Lasserre (1992) and 

Dauzère-Péres and Lasserre (1994) provide a further example of this by integrating a 

classical multi-period lot sizing problem with a job shop scheduling problem. The lot 

sizing decision determines the due dates and processing times of the jobs. The 

capacity constraints are modelled at machine level by the regular job-shop precedence 

relations and disjunctive constraints. It is also an integration of discrete and 

continuous time planning models.   

 

When multiple parallel machines are available, the lot sizing problem does not only 

includes the timing and level of production, but also the allocation of production to 

machines. As such the loading decision has to be considered as well. Özdamar and 

Birbil (1998), Özdamar and Barbarosoğlu (1999), Kang et al. (1999), Clark and Clark 

(2000) and Belvaux and Wolsey (2000) extend the Capacitated Lot Sizing Problem 

with multiple machines with different production efficiencies. The DLSP and CSLP 

have also been extended with multiple identical machines (Lasdon and Terjung 1971) 
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and multiple machines with different efficiencies (Salomon et al. 1991, De Matta and 

Guignard 1994a,b, 1995, Jans and Degraeve 2004a). 

 

Production costs can also change. Quantity discounts are sometimes considered in a 

lot sizing model, mostly in the case of purchasing decisions. Many quantity discount 

schemes result in a piecewise linear cost function (Shaw and Wagelmans 1998). 

Usually three types of quantity discounts are considered. The all-units discount 

(Prentis and Khumawala 1989, Chung et al. 1996) gives a reduction in the purchase 

price on all the units of a product if you buy more than a specific amount. Degraeve 

and Roodhooft (2000) model a multi-item purchasing environment where the discount 

is given on the total amount bought. Chan et al. (2002) propose a modified all-unit 

discount structure: if the total cost is higher than the total cost at the start of the next 

quantity interval, you only pay the lower cost. In the case of the incremental quantity 

discount (Diaby and Martel 1993, Chung et al. 1996, 2000), the reduction is only 

valid for the amounts in a specific interval. A third alternative is the truckload 

discount scheme (Li et al. 2004), where a less-than-truckload rate is charged until the 

total cost equal the truckload rate. If the total quantity is more than a truckload, this 

same scheme is applied for the excess quantity. When the production costs are 

actually distribution costs, van Norden and van de Velde (2005) argue that there is a 

dual cost structure. Any amount up to a reserved capacity is charged at a specific cost, 

and any amount above is charged at a higher cost.  

 

Cyclical schedules, where the time between subsequent set ups is constant, are often 

used in practice. Bahl and Ritzman (1984) use cyclical schedules in a lower bounding 

heuristic. Campbell and Mabert (1991) impose such cyclical schedules for the CLSP 

with set up times. In their study, costs increases only by 5% on average compared to 

the best non-cyclical schedules.  

 

In the distribution, inventory control and production planning literature, there is a 

growing interest in reverse logistics (Fleischmann et al. 1997). Items return from the 

customers to the manufacturer and can be reused, either directly or after 

remanufacturing. Remanufacturing includes testing, repair, disassembly and 

reassembly operations. Another option is to recycle the scrap material or reuse some 

parts as components. Taking these aspects into consideration requires an adaptation in 
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the production planning models (Fleischmann et al. 1997, Guide 2000). Few dynamic 

lot sizing models have been proposed to accommodate such changes. Richter and 

Sombrutzki (2000) extend the ULS with remanufacturing. Demand can be met either 

from newly manufactured products or from return products which have been 

remanufactured. These two product categories have different set up costs (van den 

Heuvel 2004) or a joint set up cost (Teunter et al. 2005). In practice, the two 

categories also have different unit (re)manufacturing costs and there is the possibility 

of disposal of some of the returned products (Richter and Weber 2001). Beltrán and 

Krass (2002) consider the case where the returned goods are in good enough 

condition to be resold immediately without remanufacturing. In their model, demand 

can be negative due to the returns and they allow for the disposal of excess inventory. 

Kelle and Silver (1989) model a similar problem, but take into account the uncertainty 

in the arrival of the returned goods. They impose a service level constraint and next 

transform the problem into an ULS with negative demands. In a mathematical 

programming model for order quantity determination in a purchasing context, 

Degraeve and Roodhooft (1999) incorporate additional revenues due to repurchases of 

old products by the supplier.  

 

 

3.1.3. Inventory 

 

The inventory can also be bounded by upper and lower limits (Love 1973, Swoveland 

1975, Erenguc and Aksoy 1990, Sandbothe and Thompson 1993, Gutiérrez et al. 2002, 

Jaruphongsa et al. 2004). Loparic, Pochet and Wolsey (2001) consider safety stocks 

by imposing a lower bound on the inventory in each period. Fixed charges on the 

stocks (Van Vyve and Ortega 2004) are useful for an environment with complex 

stocking operations or for situations where there are combinatorial constraints on 

stocks, such as in the chemical industry where only one type of product can be stored 

in a tank. 

 

Martel and Gascon (1998) make a subtle change to the classical uncapacitated lot 

sizing problem in a purchase context. The unit purchase cost can vary over time and 

the holding cost is price-dependent, whereas in the standard model, the unit inventory 

holding cost can vary, but is known in advance and does not depend on the purchase 
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price. The inventory cost is calculated as the purchase price multiplied by a constant 

inventory holding charge.  

 

Lot sizing problems have also been extended with the issue of perishable inventory. 

Veinott (1969) permits the proportional growth or deterioration of inventory. Hsu 

(2000) considers the uncapacitated single item lot sizing problem with an age 

dependent inventory cost as well as an age dependent deterioration rate where a part 

of the inventory is lost by carrying it to the next period. Jain and Silver (1994) look at 

the problem with random life time perishability. According to some stochastic process, 

the total inventory becomes either worthless or remains usable for at least the next 

period.  

 

 

3.1.4. Demand 

 

By allowing backlogging (e.g. Zangwill 1966a, Pochet and Wolsey 1988, Federgruen 

and Tzur 1993) demand can be met by production in a later period at a specific cost. 

Backlogging corresponds in fact to a negative inventory level. The objective function 

includes the backlog cost. We can use inventory from the previous period, allow 

backlog or produce now to satisfy demand, build up inventory or satisfy backlog from 

a previous period. The case with backlogging is also a single source fixed charge 

network problem (Zangwill 1969). Backlogging results in a flow from demand point t 

to t-1, in the opposite direction of the inventory flow. Swoveland (1975) imposes that 

orders are not backlogged for more than a prescribed number of periods. The 

extension with backlogging is also considered for the DLSP (Jans and Degraeve 

2004a) and for the coordinated replenishment problem (Robinson and Gao 1996). Hsu 

and Lowe (2001) study the problem with age dependent backlog costs. Another way 

of satisfying demand if not enough products are available in time is product 

substitution (Hsu et al. 2005). Demand for e.g. a low quality product can also be met 

by offering the high quality product at the price of the low quality product. It is also 

possible that a product first need to be transformed, which leads to an extra 

conversion cost.  
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Lot sizing models with stockouts (Sandbothe and Thompson 1990, 1993, Aksen et al. 

2003) have been proposed as an alternative to situations where backlogging is allowed. 

When demand cannot be met in time, lost sales are incurred instead of backlogging. A 

variable lt representing the lost sales is added into the demand equation and the cost of 

a stockout is properly accounted for in the objective function. 

 

Considering sales (Brown et al. 1981, Kang et al. 1999, Loparic, Pochet and Wolsey 

2001) instead of fixed demands leads to a profit maximization approach instead of the 

traditional cost minimization. The demand equation is extended with a variable vt for 

the sales and an upper bound of dt is imposed on these potential sales. The unit selling 

price is given. Hung and Chien (2000) model a profit maximization approach with 

different demand classes that have different profitibilities. The two models of 

maximizing sales and minimizing costs with lost sales are equivalent as demand can 

be rewritten as the sum of the sales and lost sales. 

 

Lee et al. (2001) discuss the single item uncapacitated dynamic lot sizing problem 

with a demand time window. For each demand an earliest and latest delivery date is 

specified and demand can be satisfied in this period without penalty. They prove that 

there exists an optimal solution in which demand is not split: the complete demand for 

a specific order is covered by production from the same period. An extension to a 

two-echelon supply chain is provided in Jaruphongsa et al. (2004).  

 

 

3.1.5. Time Horizon 

 
Schedules are usually implemented in a rolling horizon fashion. Only the first period 

of a plan is implemented and the demand forecast is updated by looking one period 

further. A new plan is calculated using this updated input. Experiments (Baker 1977, 

Blackburn and Millen 1980) have indicated that the Wagner-Whitin algorithm is no 

longer optimal in a rolling horizon framework and simple lot sizing heuristics may 

outperform optimal algorithms for small planning horizons. New research (Simpson 

2001), however, indicates that the Wagner-Whitin rule still outperforms all the other 

heuristics in a wide variety of cases. For an extensive review on rolling horizons and 

related literature we refer the reader to Chand et al. (2002). Recently, two methods 
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have been proposed to mitigate the end-of-horizon effect basically by looking beyond 

the current planning horizon. Stadtler (2000) takes only a fraction of the costs for the 

last set up period into account. The last set up may be advantageous beyond the 

planning horizon, so only a proportion of the set up cost has to be borne within the 

planning horizon. Fisher et al. (2001) impose an appropriate level of ending inventory 

by assigning a positive value to this ending inventory in the objective function. This 

positive value is calculated by estimating the future set up costs that are avoided as a 

result of the ending inventory. Experiments in both papers indicate that these 

adaptations are quite effective in general and they usually outperform simple 

heuristics or the unadapted WW algorithm. Van den Heuvel and Wagelmans (2005) 

point out that the superior performance of Fisher et al. (2001) is mainly due to the 

availability of accurate information about future demand. 

 
 
3.2.  Tactical and strategic models 

 

Hierarchical production planning (Hax and Meal 1975, Bitran, Haas and Hax 1981, 

Graves 1982, Bitran and Tirupati 1993) is a sequential procedure for solving 

production planning at different levels of aggregation. First, decisions are taken at the 

highest level and they set the limitations for the decisions at a lower level. Items are 

aggregated into families and families into types. A type is a set of items that have a 

similar demand pattern and have one aggregate production rate. Within a family, 

items share the same set up. In the aggregate model, at the type level, the main 

decision is the determination of the level for regular and overtime capacity and the 

total production for a type. This decision sets bounds on the model for the family 

production planning. Here the objective is to minimize the total set up cost for all 

families within a type. Within the limits of the family batch sizes, production 

quantities are determined for each item. An application of this type of planning is 

described in Liberatore and Miller (1985) and Oliff and Burch (1985). There is a lot 

of interaction between the different levels and the sequential optimization does 

usually not result in a global optimum. The reason that detailed integrated models are 

yet scarce is of course their complexity, which make them difficult to solve. Yet there 

exist some models which integrate lot sizing and decisions at higher hierarchical 

levels. 
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Aggregate planning extends the lot sizing models further at a more tactical level by 

including labor resource decisions such as hiring and firing (e.g. Dzielinski, Baker 

and Manne 1963, Thomas and McClain 1993, Nam and Logendran 1992, Aghezzaf 

2000). The decision on set up cost and time reduction, as discussed in the previous 

section, can also be viewed as the integration of lot sizing in a more tactical decision. 

Another example is the integration of lot sizing and capacity expansion decisions. 

Rao (1976) considers a lot sizing model where additional capacity can be bought in 

each period. The extra capacity is also available in all the subsequent periods, in 

contrast with temporary capacity expansion from overtime. Rajagopalan and 

Swaminathan (2001) optimize the capacity acquisition, production and inventory 

decisions over time in an environment with increasing demand. There is the following 

trade-off: Capacity investments can be postponed by building up inventory earlier. On 

the other hand, buying additional capacity can lead to smaller inventories by reducing 

lot sizes. Bradley and Arntzen (1999) discuss a case study where simultaneously 

considering capacity and inventory decisions leads to superior financial results. In the 

model of Atamturk and Hochbaum (2001) variable demand can be met by production, 

inventory, subcontracting or capacity acquisition. A second way of modeling capacity 

expansion problems is to define the demand as the demand for the incremental 

capacity (Luss 1982, Chand et al. 2000, Hsu 2002) and there is no modeling of the 

underlying production lot sizing anymore. 

 

Interest in modeling the interaction between the production stage and upstream 

(suppliers) and downstream (distribution) activities is growing. Whereas previously 

these relationships were considered at an aggregate level, it is useful to consider 

inbound logistics, production and distribution simultaneously at an operational level. 

The general message of these models is that strategic or tactical decisions, such as 

investment decisions or supplier selection, should take operational concerns, in this 

case lot sizing, into account.  

The lot sizing structure shows up as a subproblem in the supplier selection problem 

considered by Degraeve and Roodhooft (1999, 2000) and Degraeve, Labro and 

Roodhooft (2000). They model the total cost of ownership at four different levels, i.e. 

supplier, order, batch and unit level. These costs include the regular order cost, 

purchase price and inventory holding cost, but can also take into account quality 
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differences, discounts, reception costs for batches and the cost for managing the 

relationship with the supplier. Basnet and Leung (2005) study a special case with a 

supplier-dependent order cost.  

Global models for supply chain optimization simultaneously consider production, 

transportation and demand planning. The coordination of production and distribution 

planning results in cost savings compared to separate optimization of these activities 

(Chandra and Fisher 1994). A case study in the fertilizer industry (Haq et al. 1991) 

describes a multi-level structure with plants, warehouses and retailers and 

incorporates set up costs and times, production and distribution lead times and the 

costs for production, set up, inventory and transportation. Martin et al. (1993), Diaby 

and Martel (1993), Kaminksy and Simchi-Levi (2003), Lee et al. (2003), Jolayemi 

and Olorunniwo (2004) and Sambasivan and Yahya (2005) discuss models for 

integrated production, distribution and inventory planning. Bhutta et al. (2003) also 

take capacity investment decision into account, next to the production and distribution 

problems. Federgruen and Tzur (1999) study a two-echelon distribution network with 

one warehouse and many retailers and model it as a dynamic lot sizing problem. 

Timpe and Kallrath (2000) describe an actual application in the chemical process 

industry combining batch and campaign production with change-overs in a multi-site 

setting, raw materials inventory management, transportation between production sites 

and sales point, inventories at the sales points, different prices for different customers 

and external purchase possibilities. Their objective function is maximizing the total 

contribution. Van Hoesel et al. (2002) consider a serial supply chain with one 

manufacturer and multiple warehouses and they globally optimize the production, 

inventory and transportation decisions. A general overview of interesting issues for 

global supply chain optimization at the supplier, plant and distribution stage is given 

in Erengüç et al. (1999). 
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4.  Conclusions and New Research Directions 

 

The numerous extensions of the basic lot sizing problem show that it can be used to 

model a variety of industrial problems. Boundaries between lot sizing and scheduling 

are fading and further integration of lot sizing, sequencing and loading constitute a 

challenging research track. Lot sizing on parallel machines is just one example for 

new research opportunities. Also the increased attention to model specific 

characteristics of the production process and to accurately represent costs will be 

valuable in solving real life planning problems. Further, the integration of lot sizing 

into more global models opens a interesting area for further research. In the case 

where products have to be manufactured and shipped to different distribution centers, 

retailers or end customers, it makes sense to consider production and distribution 

simultaneously at an operational level. In such a situation we should consider fixed 

and variable costs for both production and transportation and coordinate lot sizing, 

vehicle loading and routing decisions. New models could also take into account the 

coordination between multiple plants or further downstream activities such as packing. 

Another research direction is coordination of lot sizing with decisions from other 

functional areas such as demand planning and pricing decisions (van den Heuvel and 

Wagelmans 2006) in marketing, as is done for other lot sizing models (Goyal and 

Gunasekaran 1995, Kim and Lee 1998, Abad 1996, 2003).  

 

Pochet (2001) indicates that modeling production planning problems in the process 

industry constitute a promising area for new research, whereas most of the lot sizing 

literature is focused on discrete manufacturing. Some distinguishing characteristics, 

such as the use of flexible recipes, the existence of by-products, the integration of lot 

sizing and scheduling, storage constraints and a focus on profit maximization, affect 

the planning and scheduling. A further general discussion can be found in Crama et al. 

(2001) and Kallrath (2002), whereas some specific problems are presented in Smith-

Daniels and Ritzman (1988), Selen and Heuts (1990), Heuts et al. (1992), Grunow et 

al. (2002, 2003), Rajaram and Karmarkar (2004). 

 

One of the major limitations of the lot sizing models that we discuss in this review is 

the assumption of deterministic demand and processing times. In many manufacturing 

environments, there is some degree of uncertainty. Stochastic inventory models (e.g. 

 19



Eppen and Martin 1988) and lot sizing models based on queueing theory (e.g. 

Karmarkar 1987, Lambrecht et al. 1998), are usually more appropriate to capture the 

complexity of a stochastic environment. Hence, one should be careful in the choice of 

model and verify that the underlying assumptions are a good approximation of the 

reality. However, some research has been done to incorporate uncertainty into the 

dynamic lot sizing problem such as stochastic demand (Bookbinder and Tan 1988, 

Sox and Muckstadt 1996, 1997, Tarim and Kingsman 2004), stochastic lead times 

(Nevison and Burstein 1984), uncertainty in demand timing (Burstein et al. 1984, 

Gutiérrez et al. 2004), or a combination of demand and supply uncertainty (Anderson 

1989). 

 

Finally, the interaction between modeling and algorithms will play an important role 

in future research. The inclusion of industrial concerns lead to larger and more 

complex models and consequently more complex algorithms are needed to solve them. 

Solution approaches for integrated models will be based on previous research on the 

separate models. Existing knowledge about the structure and properties of a specific 

subproblem can be exploited in solving integrated models. Lot sizing problems are 

challenging because many extensions are very hard to solve. Jans and Degraeve 

(2005) review several techniques to tighten the formulations (Dantzig-Wolfe 

decomposition, Lagrange relaxation, cutting planes and variable redefinition) and to 

obtain good quality solutions using (meta-) heuristics. The development of algorithms 

based on the combination of some of these techniques has already led to promising 

results. Vanderbeck (1998) combines branch-and-price and cutting planes for solving 

the CLSP. Dantzig-Wolfe decomposition can be combined with Lagrange relaxation 

to speed up the column generation process, either by using Lagrange relaxation to 

solve the master (Cattrysse et al. 1993 , Jans and Degraeve 2004a) or by using 

Lagrange relaxation to generate new columns (Degraeve and Jans 2003). To obtain 

stronger bounds, Lagrange relaxation is applied to a variable redefinition 

reformulation (Jans and Degraeve 2004b). Many more opportunities for combining 

algorithms are still largely unexplored.  
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