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Abstract

In this chapter we use a simulation experiment to examine whether the seasonal
adjustment methods Census X12-ARIMA and TRAMO/SEATS effectively remove
seasonality properties from time series data, while preserving other features like the
stochastic trend. As data generating processes we use a variety of processes that are
actually found in practice. These processes include constant seasonality, changing
seasonal patterns due to seasonal unit roots and processes with periodically varying
parameters. To check for seasonality, we consider tests for seasonal unit roots, for
deterministic seasonality, for seasonality in the variance, and for periodicity in the
parameters. Our simulation results show that both adjustment methods are able to
remove stochastic seasonal patterns from the data with the exception of changing
seasonal patterns due to periodicity in the parameters. On average, the two methods

perform equally well.
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1 Introduction

Many quarterly observed macroeconomic time series, such as Gross Domestic Product,
Private Consumption, and Industrial production often display (i) an upward trend, (ii)
substantial intra-year seasonal variation, (iii) several aberrant observations and (iv) non-
linearity. Macroeconomists and policymakers tend to be interested mainly in the trend
and in variable-specific business-cycle variation.

Some macroeconomists tend to feel that seasonal variation is likely to blur the view
on the trend and the business cycle in macroeconomic time series and therefore they want
this variation to be removed from the data before any business cycle analysis. Indeed, a
first glance at almost any graph of a quarterly macroeconomic time series immediately
indicates that seasonal variation can be quite dominant. Rough calculations, based on
regressing the growth rates of such variables on quarterly seasonal dummies, show that
almost 80 to 90 per cent of the variation may be attributable to seasonality, see, for
example, Miron (1996). Whether this is the best way of summarizing the data is not
beyond discussion, see Hylleberg (1994) among others, but it does indicate that business-
cycle variation is not immediately and visually obvious in the presence of such substantial
seasonality:.

There are two main criticisms on (the use of) seasonally adjusted data. The first
states that seasonal variation can be important to study in its own right, and it might, for
example, be informative concerning which variables lead others into or out of a recession,
see Miron (1996), Hylleberg (1994), Ghysels (1994), Franses and Paap (1999) and Matas-
Mir and Osborn (2003), among many others. Of course, the analysis of unadjusted data
is more involved, as one needs to include specific parameters and variables in the model to
capture seasonality. However, recent advances in the area of modelling seasonality show
that this analysis need not be that difficult, see Ghysels and Osborn (2001) and Franses
and Paap (2004).

The second criticism is that the process of seasonal adjustment may change (dynamic)
correlations between macroeconomic variables. Long-run relationships and short-run dy-
namics in multivariate models tend to differ across models calibrated with unadjusted
and with adjusted data. Only in case the seasonal adjustment filter is linear and common
to all variables, there is no conflicting inference, see Sims (1974) and Wallis (1974) for
early references, and Ghysels and Perron (1993) and Ericsson et al. (1994) for more recent

evidence. Ghysels et al. (1996) however challenge the linearity of the Census X-11 filter.



In this chapter we abstain from a discussion on whether one should seasonally adjust
data or not. As starting point we will assume that one is simply interested in seasonally
adjusted data and that one needs an automatic adjustment method to remove seasonality
from many time series. For this purpose, there are two popular methods for seasonal
adjustment. The first method is the Census X12-ARIMA method, see Findley et al.
(1998). This method is data-based and consists of several steps including outlier correc-
tion, trading-day correction and various sequences of moving average filters. The second
method TRAMO/SEATS is more model-based, see Gémez and Maravall (1997). There, a
reasonably adequate univariate time series model for the data is specified, and the seasonal
adjustment filter is derived from the model properties.

To judge the quality of both adjustment methods, in this chapter we consider a sim-
ulation experiment. Instead of comparing the adjusted series with the raw series, our
main focus is to analyze whether seasonal adjustment methods are able to remove the
seasonal patterns in time series in an adequate way while leaving the possible stochastic
trend properties of the series untouched. To stay close to reality, we use data generating
processes which are likely to be found in practice. These processes display either constant
seasonality or changing seasonal patterns due to seasonal unit roots and processes with
periodically varying parameters. Plausible parameter values are obtained by estimat-
ing the corresponding time series models for fourteen US industrial production series. To
search for seasonal patterns before and after correction, we consider tests for seasonal unit
roots, for deterministic seasonality, for seasonality in the variance, and for periodicity in
the parameters.

The outline of the remainder of this chapter is as follows. In Section 2 we briefly
discuss the two seasonal adjustment procedures we apply in this chapter. In Section 3
we discuss several diagnostic and specification tests that we use to evaluate the quality
of both seasonal adjustment filters. Section 4 discusses the data generating processes for
our simulation experiment. The outcomes of our simulation study are given in Section 5.

We conclude in Section 6.

2 Seasonal adjustment procedures

In this section we briefly discuss the two seasonal adjustment methods under scrutiny.
We have no intention to be complete and we strongly suggest readers to consult other
studies, like Hylleberg (1986), Findley et al. (1998), Maravall (1985, 1995) and Harvey



(1989) for more details.
The main assumption of seasonal adjustment is that a seasonally observed time series

yi, t=1,...,T, can be decomposed into two unobserved components, that is,
Y=y Yy (1)

(or y; = y*y; in case of multiplicative seasonality) with y"* denoting the nonseasonal
component containing the trend, cycle and all kinds of other features, and y; denoting
the seasonal component.

When seasonality is purely deterministic, y; is assumed to be a function of sine and co-
sine functions. When seasonality is not constant over time, one can consider certain mov-
ing average filters to characterize changing seasonality. Preferably, these filters are linear,
symmetric and centered around the current observation, see Grether and Nerlove (1970).
Denoting the backward shift operator as L, defined by LFy, = v, k = 0,+1,£2, ...,

such a linear moving average filter is given by

Co(L) =co+ > ci(L'+ L7, (2)
i=1

where c¢g, c1, ..., ¢y, are the weights. A simple example is the C;(L) filter with ¢ = 1/2
and ¢; = —1/4, which equals —1/4(L?*—2L+1)L~!, where it is used that LL™! = 1. This
filter assumes two unit roots at the nonseasonal frequency because (L*—2L+1) = (1—L)2.
Hence, it removes the stochastic trend (in fact, it removes two such trends). Generally,
when one aims to remove stochastic trends, it holds that C,,(1) = ¢ +2>.7" ¢ = 0.

Notice that the commonly applied differencing filter (1 — L) is not a symmetric filter.
Following the same line of thought, to remove changing seasonality in quarterly data,

one may opt for a filter like
403(L) = 1+ L+ L*+ L)+ L'+ L2+ L7 (3)

This C3(L) filter has two times three seasonal unit roots, that is, two times —1 and two
times +i, see Hylleberg et al. (1990). Writing (3) as (2), we have that 4¢y = 4, 4¢; = 3,
4cg = 2 and 4c3 = 1. Generally, for filters that remove changing seasonality, it holds that
co+2>" ¢; =1 (which also holds for (3) after scaling). More details of the use of linear
moving average filters are given in Maravall (1995) and in Grether and Nerlove (1970),

where it is shown that filters like (3) have certain optimal properties.



2.1 Census X12-ARIMA

The X12-ARIMA method is one of the most popular seasonal adjustment procedures
around. The key references for this approach are Shiskin and Eisenpress (1957) and
Shiskin et al. (1967). A recent extensive documentation of this method appears in Findley
et al. (1998). Apart from the treatment of holiday, trading-day and calendar effects, the
additive version of the X12-ARIMA method concerns two main actions. The first is the
sequential application of a set of linear moving average filters as in (2) to characterize the
trend and seasonal fluctuations. The filters have to be selected by the practitioner, that
is, one has to select the value of m, where often m equals 5, 7 or 9 for quarterly data.
The second and very important action is the removal of outlying observations in several
rounds of moving average filtering, and the replacement of these observations by data
points that are somehow weighted. Again, this involves decisions that should be made by
the practitioner and that will vary across the time series at hand. The outlier weighting
part makes the overall procedure an intrinsically nonlinear method in the sense that the
weights will depend on the choice of moving average filters. Indeed, Ghysels et al. (1996)
show that after seasonally adjustment nonlinear features may appear in linear time series.
Neglecting the outlier removal part of the official Census method, it is possible to give
a linear symmetric moving average approximation to an often applied sequence of moving
average filters in the Census X-11 program. For quarterly time series, the weights in this
Cys(L) filter are given in Laroque (1977). An approximate version of the Cag(L) filter is
given in Ghysels and Perron (1993), and a detailed version in Franses (1996, Table 4.1).
In Laroque (1977, Table 3) it is shown that the linear Cog(L) filter approximately contains
the component
(1+L+L*+ L% =(1+L)*1—iL)*(1 +iL)? (4)

see also Bell and Kramer (1996). Hence, the resulting seasonal adjustment filter from the
Census program approximately encompasses the C3(L) filter in (3).

In order to seasonally adjust observations at time ¢ with the Cog(L) filter, one needs
the observations over the sample y;_os, . .., yr108. Since such observations are not available
at the beginning and at the end of a sample, one needs to obtain backcasts and forecasts of
y:. One approach is now to estimate seasonal ARIMA models for y;, t =1,2,...,T, and
to generate §_o7,. .., Y0, Urs1, - - -, Yrios, see Dagum (1980) for details. The ARIMA esti-
mation routine is known as regARIMA. This routine also allows for additional regressors

to capture, for example, calendar effects and allows for outlier correction.



In our simulation study below, we use the X12-ARIMA procedure with all the default
settings. In accordance with the data generating processes we consider, we impose an
additive seasonal pattern (so, no natural logs are taken). As regressor variables we only
use an intercept. The ARIMA model selection is done using the automatic procedure.
We let X12 select the best ARIMA specification out of a (default) set of options.

2.2 TRAMO/SEATS

In response to the possible ambiguities involved in the application and evaluation of
the Census X-11 procedure, Hillmer and Tiao (1982) propose the so-called ARIMA-
model-based approach to seasonal adjustment, see also Burman (1980) and Gémez and
Maravall (1994). A lucid exposition of the model-based method is given in Maravall
and Pierce (1987). The most popular seasonal adjustment method in this area is the
TRAMO/SEATS (Time Series Regression with ARIMA Noise, Missing Observations,
and Outliers/Signal Extraction in ARIMA Time Series) method of Gémez and Maravall
(1997). The adjustment method consists of two steps. In the first step (TRAMO) a time
series model is estimated. The second part (SEATS) deals with the extraction of the
seasonal pattern from the selected ARIMA model.

In a very simple version, it is assumed that a time series can be decomposed as (1).
The seasonal component in (1) is described by seasonal ARIMA model as proposed by
Box and Jenkins (1970) and Box et al. (1994), for example,

(1+ L+ L+ L)y; = (L), (5)
and the nonseasonal part by a nonseasonal ARIMA model like,

(1= L)y = 0(L)&, (6)

where (L) and (L) are polynomials in L. The two components are imposed to be
orthogonal. This routine also allows for outlier correction and for additional regressors to
capture, for example, calendar effects. After model selection by TRAMO, in the SEATS
part the Wiener-Kolmogorov filter is used to extract the seasonal component from the
series.

In our simulation study below, we apply the TRAMO and SEATS procedures with
the default settings. To fit the data, we do not use the standard data transformation
to logs. With the default settings the TRAMO/SEATS procedure uses an Airline model

(see Section 4.4 below) to estimate the seasonal component of a series.
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3 Diagnostic tests

There are several criteria that can be used to evaluate the quality of seasonally adjusted
data obtained from the above procedures. An extensive discussion of several such criteria
is given in Hylleberg (1986, Chapter 3) and Bell and Hillmer (1984). In this chapter we
judge the quality of a seasonal adjustment procedure by applying a number of diagnos-
tic and specification tests concerning the presence of seasonal patterns before and after
correction. Each test focusses on a property that should (or should not) be present in
seasonally adjusted data. We consider tests for the presence of seasonal unit roots, the
presence of changing seasonal means, the presence of deterministic seasonality, the pres-
ence of correlation at the seasonal lag, the presence of periodicity in the autoregressive
parameters and the presence of seasonality in the variance of the series. In this section

we consider tests for quarterly data but the tests can easily be extended to monthly data.

3.1 HEGY test

The unit roots in seasonal data, which can be associated with changing seasonality, are
the so-called seasonal unit roots, see Hylleberg et al. (1990). For quarterly data, these
roots are —1, i, and —i. For example, data generated from the model vy, = —y;_1 + &
would display seasonality. Similar observations hold for the model y; = —y;_o + &4, which
can be written as (1+ L?)y; = &;, where the autoregressive polynomial 1+ L? corresponds
to the seasonal unit roots i and —i, as these two values solve the equation 1 + 22 = 0.
Hence, when a model for y; contains an autoregressive polynomial with roots —1 and/or
i, —i, the data are said to have seasonal unit roots.

To test for the presence of seasonal unit roots, we consider the approach of Hylleberg
et al. (1990), henceforth abbreviated by HEGY. The HEGY method amounts to a re-
gression of Asy; = y; — y;—4 on deterministic terms like seasonal dummies and a trend
andonry; = (1+ L+ L2+ L3y 1, oo = (=1 + L — L* + L3y, 1, 23s = —(1 + LYy, _1,
zy = —(1 + L?)y;_o, and on lags of Ayy;, where Ajyy = v — y;—;. The test regression

reads

4 P
Ay = Z BsDsy + 7t + TT1y + ToTo + T3T3 + TaTay + Z GiDayr—i + €4, (7)

s=1 i=1
where D, = 1if ¢ corresponds to season s and 0 otherwise. The ¢-test for the significance
of the parameter for zy; (m) is denoted by ¢;, the t-test for my by t9, and the joint

significance test for w3 and 74 is denoted by Fj34. If the m parameters are equal to 0, this
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corresponds to the presence of the associated root(s), which are 1, —1, and the pair i,
—1, respectively. Critical values of these test statistics are given in Hylleberg et al. (1990,
Table 1).

We argue that in a properly seasonally adjusted times series seasonal unit roots —1, i
and —i should not be present. Ideally, the finding of the unit root 1 should not be altered
if it is present, as this root is associated with the stochastic trend in the series. The value

of p can be determined using an information criterion such as the Bayesian Information

Criterion [BIC].

3.2 Canova-Hansen test

The test developed by Canova and Hansen (1995) takes as the null hypothesis that the

seasonal pattern is deterministic. To explain the test, consider the process

4
Yy = Z 0stDst + & (8)
s=1
with
01 = e + g — 3y Oop = e — Qupp + i3y

(9)

03¢ = by — iy — Qigy dup = i + 0op + iy,

where the stochastic trend is defined as

pe =+ g1+ & (10)

with & ~ N(0, ag) and the stochastic seasonal terms are given by
e = B + g1 + e (11)

with n;; ~ N (0, 0]2) for j =1,...,3. The process has a stochastic seasonal pattern if one
or more 07 > 0. If 7 = 0 for all j, we have deterministic seasonality. The Canova-Hansen
test corresponds to jointly testing for 0? = 02 = 02 = 0. The asymptotical critical values
are given in Canova and Hansen (1995). For the quarterly case and a significance level of
5%, the critical value is 1.010. We will denote this test by CH in the remainder of this
chapter.

The CH test also allows for testing for stationarity of the process itself, that is, testing
for ag = 0. However, this is not considered here as we only focus on the seasonal prop-
erties of the data. In fact, given our data generating process we apply in our simulation

experiment the CH test to the first difference of the series to circumvent possible size



distortions in the test for the seasonal part, see, for example, Taylor (2003) and Busetti
and Taylor (2003).

The null hypothesis in the CH test is rejected in case seasonality of a series is not
constant. After seasonal adjustment the CH test therefore should not reject the null

hypothesis. Note that having no seasonal pattern at all also implies constant seasonality.

3.3 Test for equal seasonal dummies

A basic test for the presence of seasonality in a time series is to regress the time series
on four seasonal dummies. If there is no seasonality in the series, the four coefficients
associated with these dummies should be equal. This property can easily be tested with

a standard F-test. The test regression equals

4
Ay, = Zﬁst,t + &, (12)
s=1

where Avy; = y+ — -1 and D, = 1 if ¢ corresponds to season s and 0 otherwise. If
seasonal adjustment is properly done, and hence there is no seasonality, the F-test for
(1 = P2 = (B3 = [4 should not reject the null hypothesis.

3.4 Test for correlation at the seasonal lag

Seasonal time series typically display autocorrelation at seasonal lags. To test for signifi-

cant autocorrelation at the seasonal lag we consider the following regression model

Ay = p 4 O1A 11 + 2D 1yr—o + 3D Y3 + QaD1Yr—a + €1 (13)

and we test for ¢, = 0 using a t-test. Insignificant values of the ¢-test mark the absence
of correlation at the seasonal lag. One has to be a little cautious with this approach.
Autocorrelation at the seasonal lag does not have to imply seasonality as the true lag-
order of the series may be 4 or higher. Note that we do not include seasonal dummies in
the test regression as we want to focus on testing for correlation at the seasonal lag. The

previous test in (12) should already indicate the presence of unequal seasonal means.

3.5 Test for periodicity in AR parameters

Another property which may indicate the presence of seasonality in time series concerns

different autoregressive parameters across the seasons, see Franses and Paap (2004). To
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investigate this periodicity we consider the PAR(p) model

p

Ay =p+ Z GisDs 1 A1ys—i + &4 (14)

i=1

Absence of periodicity corresponds with the restriction ¢;1 = ¢ = ¢y3 = @iy for i =
1,...,p. This can be tested with a standard F-test. If the F-statistic is not significant,
there is no statistical evidence for periodicity in the autoregressive parameters. The value
of p can be determined using an information criterion such as the BIC. Again, the test
regression does not contain seasonal dummies as we focus on periodicity in the autore-
gressive structure. Given the linear and not seasonal-specific structure of the seasonal
adjustment procedures we expect that both procedures are not fully capable of removing

periodicity from the parameters.

3.6 Test for seasonality in the variance

The previous tests mainly consider the presence of seasonality in the mean of the series. To
test for the presence of seasonality in the variance of the series we consider the estimated

residuals &; of an AR(p) model for Ay,

p
Ayy = p+ Z PiA1y—i + €. (15)
i=1
The LM-test for seasonality in the residuals amounts to testing for 3, = By = (53 = 34 in

the auxiliary regression

4 P
é? = Z BsDsy + Z Pil\1Ys—i + My (16)
s=1 i=1

using a standard F-test, where &; denotes the estimated residuals of (15), see Franses
and Paap (2004, p. 40). A significant value of of the F-statistic indicates the presence of
seasonality in the variance. The value of p can again be determined using BIC. In the

ideal case, seasonal adjustment methods should remove any seasonality in the variance.

The abovementioned diagnostic tests will now be used to analyze the quality of the
two seasonal adjustment methods in a simulation experiment. In the next section we

discuss the data generating processes we will use in this experiment.
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Table 1: US Industrial production series

Series

industry code

sample

Total index 1 1919.1-2000.4
Final products 2 1939.1-2000.4
Total products 30 1939.1-2000.4
Consumer goods 1000 1939.1-2000.4
Automotive products 1001 1947.1-2000.4
Auto parts & allied goods 1002 1947.1-2000.4
Other durable goods 1006 1947.1-2000.4
Clothing 1012 1947.1-2000.4
Chemical products 1016 1954.1-2000.4
Paper products 1017 1954.1-2000.4
Energy products 1018 1954.1-2000.4
Fuels 1019 1954.1-2000.4
Durable consumer goods 1020 1947.1-2000.4
Foods & tobacco 1022 1947.1-2000.4

4 Data generating processes

To analyze whether seasonal adjustment methods are capable of removing seasonal proper-
ties from seasonal time series, we perform a simulation experiment. In this section we dis-
cuss the five data generating processes we consider. The DGPs are chosen such that they
mimic series which are frequently encountered in reality. Plausible values of parameters
are obtained by applying the model corresponding to each DGP to the logarithm of four-
teen quarterly observed US Industrial production series for different industry codes. These
are given in Table 1. The series can be downloaded from http://www.economagic.com.
A thorough analysis of the seasonal properties of these series can be found in Franses and

Paap (2004). All artificial series are generated with standard normal innovations, that is,

gy N(O, 1)
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4.1 DGP1: Constant annual growth

The first data generating process assumes a constant unconditional yearly growth rate for
each quarter. It is an autoregressive [AR] process of order 5 for the annual growth rate,
that is,

5
(Agye — p) = Z Gi(Asy—i — p) + oey. (17)
i=1

Table 2 displays the parameter settings we use for this DGP, which are based on the true
parameter estimates of the fourteen US industrial production series.

This model assumes the presence of three seasonal unit roots, that is, —1 and +i and
hence it allows for a changing seasonal pattern. We expect that both X12-ARIMA and
TRAMO/SEATS are capable of removing the changing seasonal pattern from these series.

4.2 DGP2: Deterministic seasonality

The second process we consider is a seasonal autoregressive moving average [ARMA]
process for the first difference of the series with different but constant unconditional

growth rates per quarter. The exact specification is
(1= ¢aL*)(Arys — o = 61D1y — 02Dz — 03D3) = (L + L+ ¢uLh)oe.  (18)

Table 3 displays the values of the parameters which are used to generate the data. The
values corresponds to the parameter estimates of (18) for the fourteen US industrial
production series.

This particular specification allows for a nonzero expected growth over an entire year.
Nonzero values of the §, parameters imply different growth rates in each quarter. The
seasonal pattern in these series is however constant over time. Also for this DGP, we
expect all seasonal adjustment procedures to perform well although the methods impose
seasonal unit roots which should appear as moving average seasonal unit roots in the

adjusted series.

4.3 DGP3: Stochastic seasonality

For some economic series the seasonal pattern changes over time. The third DGP in our
simulation experiment mimics this feature through stochastic seasonality. We consider a

structural time series process with a random walk with drift and trigonometric seasonality,
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that is,

Yo = pt + 02 + 034 + 0y

M= o -1+ O

01t = 0241 + 01&1 (19)
dot = 0141 + o1&

03¢ = —0341 + 03&3t,

where 7, €14, &or, €3¢ ~ NI1D(0, 1), see, for example, Harvey (1989, p. 41) for a discussion.
This DGP is close to the process in DGP1, although now seasonality does not change as
quickly. Table 4 displays the parameter values used to generate the series based on the
fourteen industrial production series.

DGP3 does not assume seasonal unit roots in the series, but it does assume random
walk like patterns in the parameters. When the variances of the error terms are large,
it is quite likely that the data from this process can be approximated by a model with
seasonal unit roots. When the variances are zero, this process collapses to DGP2. When
the variances are very small, the data from this process can display slowly changing

seasonal patterns.

4.4 DGP4: Airline model

The fourth data generating process in our simulation experiment is exactly the model
underlying the TRAMO/SEATS method, that is, the airline model. This process is
specified as

A1Ay = (14 L)(1 + 4 L*)oe,. (20)

DGP4 assumes 3 three seasonal unit roots. Bell (1987) shows that when the MA(4)
parameter gets closer to —1, the model generates data that are close to those of DGP2.
In principle, the airline model can describe data that show varying patterns of changing
seasonality over time.

It is to be expected that TRAMO/SEATS will yield the best seasonally adjusted
series for this DGP. The parameter values based on parameter estimates for the fourteen

industrial production series are given in Table 5.
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4.5 DGP5: Periodic autoregressive process

The final DGP we consider is a periodic autoregressive process of order 2, that is,

4 2
Y = Z((Sst,t + 75D 4T} + Z GisDs1yi—i) + o¢y, (21)

s=1 =1
where T; = [(t — 1)/4] + 1 where [-] is the integer function, see Franses and Paap (2004)
for a survey on periodic models. The values of the autoregressive parameters are different
across the seasons. In fact, test results in Franses and Paap (2004, Table 3.2) show that
this feature cannot be rejected for any of the fourteen industrial production series. The
values of the parameters are displayed in Table 6 and are based on parameter estimates

of a periodic autoregression of order 2 for the fourteen series.

This DGP displays a slowly changing seasonal pattern. As the seasonal adjustment
filters do not use periodic filters, we expect that the seasonal adjustment methods are not

able to fully remove this seasonal pattern from the series.

5 Simulation results

In this section we discuss the results of our simulation experiment. The setup of our
experiment is as follows. For each DGP in Section 4 we simulate 1000 time series with
the fourteen different parameter settings and hence we obtain 5 times 14000 seasonal time
series with different properties. Each time series contains 60 years of quarterly data. The
first ten years are discarded to initialize the data generating process. The analysis below
is based on the remaining 50 years. All series are seasonally adjusted using X12-ARIMA
and TRAMO/SEATS using default options. We apply the diagnostic tests discussed in
Section 3 to the raw series and both seasonally adjusted series.

The results of our simulation experiment are presented in Table 7!. The table dis-
plays the rejection frequencies of the diagnostic tests for the raw data and the seasonally
adjusted data using X12-ARIMA and TRAMO/SEATS for the five DGPs. All tests are
performed with a 5% level of significance. For the ease of interpretation of Table 7, Table 8

displays the desired outcomes of the diagnostic tests after seasonal adjustment.

LAll simulations were done in Ox 3.4 (Doornik, 1999). The actual seasonal adjustment was done
through calls to the original procedures of CENSUS X12-ARIMA and TRAMO/SEATS which are shipped
with EViews 5.
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Table 8: Null hypotheses of tests and favorable outcomes after seasonal adjustment

Test H, | Pjavorable
rejection frequency
HEGY (zero frequency, 1) presence of unit root unchanged
HEGY (seasonal frequency, —1, £i) presence of seasonal unit root high
CH stationary seasonal process low
Seasonality in mean equal seasonal dummies low
Seasonal lag absence of correlation low
Periodicity in AR parameters absence of periodicity low
Seasonality in variance absence of seasonality low
DPG1

The first panel of Table 7 displays the simulation results of DGP1. Columns 4-6 show
the results of the HEGY tests. The rejection frequency of the test for the root at the zero
frequency is 5% for the unadjusted series as expected. For the seasonally adjusted series
they are about 5% and hence both seasonal adjustment methods do not seem to affect
the unit root in the series. The rejection frequencies for the roots —1 and =i are about
10%. The slight size distortion is due to the fact that we select the lag-order of the test
regression using BIC to mimic reality. If we fix the lag-order at the true value the size
is 5%. Both seasonal adjustment methods remove the seasonal unit roots from the series
leading to 100% rejection frequencies. The CH test rejects constant seasonality in 89%
of the cases for the unadjusted series. After seasonal adjustment constant seasonality
(if present) cannot be rejected and hence this suggests that both seasonal adjustment
methods remove the seasonal unit roots in an adequate way. The seventh column shows
that the presence of different seasonal means is rejected after applying both seasonal
adjustment methods. X12-ARIMA seems to remove fourth order correlation from the
series in a better way than TRAMO/SEATS where in 97% of the cases a zero coefficient
for seasonal lag is rejected. The absence of periodicity in the AR parameters and the
absence of seasonality in the variance is rejected in about 5% of the cases for the adjusted
and unadjusted data. Note that there is a slight size distortion in the test for periodicity

for the raw series which is again due to the fact that we select the lag-order of the test
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regression using BIC.

DPG2

The second panel of Table 7 displays the results for DGP2. Again we reject the presence of
the root 1 in about 5% of the cases for the unadjusted and adjusted data. The presence of
seasonal unit roots -1 and =i is rejected in more than 88% of the cases for the unadjusted
series and always rejected after correction. The CH tests for constant seasonality is
rejected in 14% of the cases for the unadjusted series. The small size distortion is due
to the fact that we have a large MA component which is not completely captured by the
nonparametric estimate of the serial correlation in the series. After seasonal correction the
rejection frequency is zero. The pattern of the outcomes of the remaining tests corresponds
to the results for DGP1. However, the rejection frequency for a zero parameter at the
seasonal lag is now higher for the X12-ARIMA than for the TRAMO/SEATS corrected
series. Hence, TRAMO/SEATS performs slightly better.

DPG3

The HEGY procedure rejects the presence of seasonal unit roots in about 75% of the
cases as can be seen from the third panel of Table 7. This rejection frequency is 100%
for the adjusted series. The presence of the nonseasonal unit root is rejected in about 6%
of the cases for both the unadjusted and adjusted series. Constant seasonality is rejected
in 60% for the raw series and never rejected for the adjusted series. The outcomes of
the remaining tests correspond to the results for DGP2. Hence, the performance of both

seasonal adjustment methods is about the same.

DPG4

TRAMO/SEATS uses the airline model to remove seasonality from a series. Hence, we
expect that this correction should perform best for this DGP, see fourth panel of Table 7.
Remarkably, the presence of a unit root at the zero frequency is rejected in 12% of the cases
after applying TRAMO/SEATS, while X12-ARIMA reports a rejection frequency of about
5%. Seasonal unit roots are removed properly as the rejection frequencies after seasonal
adjustment are 100%. Note that we have a little size distortion for the seasonal unit roots
tests for the raw series which is again due to the fact that we select the lag order of the

test regression using BIC. The CH test rejects constant seasonality in 8% of the cases
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after applying TRAMO/SEATS, while X12-ARIMA never rejects constant seasonality.
The parameter belonging to the seasonal lag remains significant after seasonal correction
with X12-ARIMA. For TRAMO/SEATS, however, we reject in 78% of the cases. Hence,
TRAMO/SEATS seems to perform a little bit better. The outcomes of the remaining

test are as expected.

DPG5

The final panel of Table 7 displays the results for DGP5. The presence of a unit root is
rejected in about 38% of the cases for the adjusted and unadjusted series. This is due to
the fact that many of the parameter settings correspond to processes which are close to
unit root type behavior. Seasonal unit roots are rejected in about 80% of the cases for the
raw series and in 100% of the cases for the adjusted data. The CH test reports constant
seasonality after seasonal correction. A clear difference with the previous DGPs is that
the test for equal autoregressive parameters is rejected in more than 60% of the cases.
This holds for both the unadjusted and the adjusted series. Hence, both adjustment
filters do not remove this type of seasonality from the series. After seasonal adjustment
there also seems to be more seasonality in the variance. This is not a surprise as periodic
time series with constant variance of the error term, may have different variances across
the season, see, for example, Franses and Paap (2004, p. 31-33). Finally, although the
DGP5 is a second order autoregressive model, we reject in about 80% of the cases a zero
parameter at the seasonal lag. After seasonal adjustment this percentage is reduced for
both seasonal adjustment methods but TRAMO/SEATS performs better.

In sum, we conclude that both seasonal adjustment methods remove stochastic sea-
sonal patterns due to seasonal unit roots or stochastic trigonometric seasonality in an
adequate way. Rejection frequencies of seasonal unit roots are 100% after applying the
seasonal adjustment filters. The CH test for constant seasonality is never rejected after
applying the seasonal adjustment filter except for DGP4 where we reject constant season-
ality in 8% of the cases after applying TRAMO/SEATS. Both adjustment methods do
not seem to affect the presence of a unit root although for DGP4 there is a slight increase
in the rejection frequency after applying TRAMO/SEATS. Different means across the
seasons are fully captured by both methods. We detect significant correlation at the sea-
sonal lag after applying TRAMO/SEATS in fewer cases than after applying X12-ARIMA.
Applying TRAMO/SEATS also leads to less periodicity in the autoregressive parameters
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but the differences with X12-ARIMA are relatively small.

6 Concluding Remarks

In this chapter we have demonstrated that, when averaged over many realistic DGPs
and large samples, the CENSUS X12-ARIMA and TRAMO/SEATS methods seem to
perform about equally well. We acknowledge the possibility that for specific series the
adjusted series may well be different across methods, but on average our simulations do
not indicate a preference for either one of the two methods.

Hence, in the end, our results suggest that a preference for one of the methods
merely amounts to a matter of taste. We must say though that an advantage of the
TRAMO/SEATS method is that it easily allows for the construction of confidence bounds
around seasonally adjusted data, see Koopman and Franses (2002). This feature seems
to do justice to the fact that, after all, seasonally adjusted data are estimates which are

based on real data.
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