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1. Introduction

Since the pioneering work of Akerlof (1970), economists have regarded the presence of
asymmetric information as one of the man sources of market falure. The adverse
sdection problem points to the fact that prices that the uninformed sde of the market is
willing to pay for the expected quality are unaccepteble for those agents a the informed
dde of the market that possess the better qudities. As a consequence, in any market
equilibrium good quality products do not change ownership (see dso, Wilson, 1979, 1980).
Subsequent work has investigated the extent to which non-market ingtitutions can reved
information about qudity. The role that is played by certification intermediaries, leasing,
guarantees and other inditutions in durable goods markets that suffer from adverse
sdection has recently been studied by Guha and Wadman (1997), Lizzeri (1999) and
Wadman (1999), among others. This paper, in contrast, is driven by a more basc
question, namely: to what extent can the market mechanism itsdf, by changing prices over
time, provide adequate incentives for sdlers of different qudities to sort themsdves over
time? This question is relevant in markets where goods have a use value that extends over
some time periods and where high quality goods have a higher use vdue than low qudity
goods. In such an environment preferring not to sdl can be a sgnd of having good
quaity.

Durahility introduces some additiond factors that are not explicitly taken into account
in the static model: goods not taded in any period can be offered for sde in the future and,
in addition, new cohorts of potentid sdlers may enter the market over time.  Janssen and
Roy (1999a, 1999b) and Janssen and Karamychev (2000) have investigated some of the
issues that arise when durability is explicitly taken into account in a dynamic modd. All
these papers study modds where markets open and close in different time periods. Janssen
and Roy (1999a) address the issue whether a given stock of goods can be traded over time.
They show tha in any dynamic compeitive equilibrium al goods eventudly will be
traded. The main idea behind this result is that given a sequence of prices high qudity
sdlers have more incentives to wait (and enjoy a higher use vdue before sdling) tan low
qudity sdlers do. Once cetan (low) qudities are s0ld, only reatively high qudities
reman in the market. Risk-neutrd consumers can predict that sdlers of different qudities

! Taylor (1999) shows that when potential buyers can inspect quality, time on the market may be a signal of
low, rather than of high quality. We show in the context of a pure adverse selection model where quality
inspection istoo costly, areverse result.
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will sort themsdlves into different time periods and, hence, they are willing to pay higher
prices in later periods. The equilibrium is thus one in which higher qudities are sold in
later periods at higher prices.

Janssen and Roy (1999b) and Janssen and Karamychev (2000) address the same issue
in the context of markets where identical cohorts of perfectly durable goods enter the market
in eech time period. In such markets, the infinite repetition of the datic equilibrium under
adverse sdection is an equilibrium in the dynamic modd. In fact, it is the unique
sationary equilibrium and adso the only equilibrium where prices and average qudity
traded are (weakly) monotonic over time. These papers show that there exist other
equilibria, however, where all goods are traded within finite time after they have entered
the market. These equilibria are cyclicd in prices and quantities in the sense that once al
goods are traded, prices (and quantities) will fal. Up to the moment dl goods are sold,
however, the dynamic process of prices and quantities is monotonicaly increasng.

This paper invedtigates which factors are driving the results obtained in Janssen and
Roy (1999b) and Janssen and Karamychev (2000). A first issue is whether it matters that
trade takes place in discrete time.  Some markets (like financid markets) are characterized
by continuous time trading and a continuous time mode provides a better description of
such markets than a discrete time modd.? We show that the continuous time mode
exhibits quditativdly samilar properties as the discrete time model.  Second, in the discrete
time dynamic modeds it is difficult to assess the role of the discount factor in determining
the equilibrium path. In the continuous time modd, we are able to show that changes in
the discount parameter only effect the speed with which goods can be traded rather than
the quditaive properties of equilibrium trading. Findly, as the continuous time modd is
eader to andyze, we are able to congder important extensons showing that smilar results
hold true when consumers are not risk-neutrd, which is important in insurance markets, or
when the good is not perfectly durable.

Our basc modd is as follows. We condder a competitive market for a perfectly
durable good where potential sdlers are privately informed about the qudity of the goods
they own. Each moment in time a condant flow of sdlers with an identica but arbitrary
digribution of quality enters the market. In order to concentrate on the possbility of time



acting as a sorting mechaniam, the demand Sde is kept as Smple as possble in the basic
modd. All buyers are identicd, have unit demand and for any given qudity, a buyer's
willingness to pay exceeds the reservation price of a sdler for that quality. As buyers do
not know the qudity, ther willingness to pay equds the expected vauation of goods
traded a a certain time. The flow of such buyers into the market is larger than the flow of
slers s0 that, in equilibrium, prices are equa to the expected buyers vauation. Once
traded, goods are not re-sold in the same market.®

The Akerlof-Wilson modd can be consdered the datic verson of our basc modd

and adverse Hection implies that in equilibrium only a certain range of low qudities is
traded. The infinitedly repested verson of a datic equilibrium outcome is dso an
equilibrium in our dynamic modd. In this paticular equilibrium of the continuous time
model high quality goods remain unsold forever.

We concentrate on the existence of other equilibria with more interesting properties.
A fird result says that changes in the interest rate, which is related to changes in the
discount factor in discrete modds, do not affect the nature of equilibria in any way.
Interest rates only determines the speed of evolution dong an equilibrium path and in
paticular, higher interest rates implies a higher volume of trade a each moment as it is
easer to separae goods of different qudity. Next, we argue that there are infinitely many
equilibria where the range of qudity which is eventudly traded in the market exceeds that
of the dationary (datic) outcome. Moreover, sdlers of different qudities within the inflow
of entrants separate themselves out over time. As the use vaue of low qudity goods is
lower than that of high qudity goods low qudity sdlers sl earlier then high qudlity
slers. A third, more powerful, result says that there exist an infinite number of equilibria
where every potentid sdler entering the market trades within a finite time after entering
the market. When the qudity digribution is such that there are rddivey few sdlers
around the datic equilibrium qudity such equilibria only exis when we dlow price to be a

discontinuous function of time before dl goods are sold.

2 Inderst and Muller (2000) study a continuous time model where a market consists of several sub-markets.
They show in an endogenous search model, that high quality goods may be traded in sub-markets with high
prices and low probability of selling.

3 For example, in car markets, it is publicly observable how many owners a car has had up to particular point
intime. Hence, second hand markets may be distinguished from third-hand markets, and so on.
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We dso consder two extensons.  First, we show that the results obtained for the basic
mode easly extend to models that adlow for risk averse or risk-loving behavior. Second,
we consder the case where goods are not perfectly durable but depreciate over time. The
main result we obtain here is that if the depreciation rate is low enough, i.e, if goods are
"dmog perfectly durable’, the results of the basc modd roughly hold true eventudly, al
goods are sold (even those high quality goods that just came to the market and did not
depreciate very much). If the depreciation rate is higher, owners of high qudities will first
wat until the quaity of the good becomes worse before sdling. Stationary equilibria,
different from the datic equilibria; may then emerge where low qudity "new" goods and
depreciated goods that origindly were of high qudity are traded a the same time. A full
anaysis of the depreciation case turns out to be rather complicated, however. We indicate,
mainly by resorting to examples, possible equilibrium phenomena.

The results obtained in the paper provide a different perspective on the adverse
section problem.  In the datic Akerlof-Wilson modd, the adverse sdection problem
manifests itsdf in the fact that high quality goods cannot be traded despite the potentia
gains from trade. When trade takes place in time and goods are durable, the lemons
problem is not so much the impossibility of trading relaively high quality goods, but rather
the fact tha sdlers of high qudity goods need to wait in order to trade. When the good is
imperfectly dureble, sdlers of good qudities may have to wat until ther good has
depreciated enough before sdlling.

The paper is organized as follows. Section 2 sets out the basc modd and the
equilibrium concept.  Section 3 shows that for dl digributions of goods entering the
market, cydlicd equilibria exig where, within a cyde, price and margind qudity ae
continuoudy increedng functions of time. The man result of the paper reaing to the
exigence of an infinite number of equilibria where dl goods are traded within finite time
after entering the market is outlined in section 4. This section aso shows that for a specid
cdass of didributions there exist equilibria such that, within a cyde, price and margind
qudity are continuoudy increesing functions of time. Section 5 discusses the extensons

and section 6 concludes. Proofs are contained in the Appendix.



2. TheBasc Modd

Consder a Wadrasan market for a perfectly durable good whose quality, denoted by q,
vaies between g and g, where 0<g<q<¥ . Time denoted by t, is continuous and
runs from zero up to infinity. For every time moment t a constant flow of sdlers | enters
the market. Let t be the entry time of sdler | and let g be the qudity he is endowed
with. The set of dl sdlers therefore, is 1 ={i}={(q.t)}. We denote by nfq) the
Lebesgue measure of sdlers in the flow | who own a good of qudity less than or equd to
g. We assume that nfq) is srictly increasing absolutdly continuous with respect to the
L ebesgue measure and congtant over time,

Each sdler i knows the qudity g of the good he is endowed with and derives flow

utility from ownership of the good until he sdls it. Therefore, the sdler's reservation price
is the present discounted value of the flow of gross utility and we normdize this to be

equal to g . Thisimpliesthat the gross utility flow is rq , where r isthe discount rate.

On the demand dde there is an inflow of new buyers, which is larger in Sze than
n(a) All buyers are identical and have unit demand. A buyer's vauation of qudity q is
equd to vq, where v>1. Thus, under full information, there are gains from trade. All
buyers know the ex ante qudity digribution n(q) but do not know the quaity of the good
offered by a particular sdler. Goods that are once bought are not re-sold in the same
market. Buyers and sdlers discount the future at the common rate r and maximize ther
expected utility.

We will denote by h({1¢$) the expected quality of a good from sdler i that belongs to
a certain subset 161 1. It follows that h(19° 5 qdnfid, where nf{1¢)=nifi 14).

Adverse sdection implies that vh({1})<q, i.e, the willingness to pay for the average
qudity in the popuation is lower then the reservation price of the sdler of the bast quality.
Thus, the datic Akerlof-Wilson verson of the modd has a largest equilibrium qudity,
which wewill denote by ¢ .

To gmplify our andyss we introduce the following regularity assumption.
Throughout this paper, we assume that this assumption holds.



Assumption 2.1. The messure function niq) is differentisble on U =[q - e,,q] for
some g,>0. Let f(g)=3. The funcion f(q) is strictly positive and Lipschitz
continuous function, i.e, f(q)3 € >0 and for some M, |f(q9- f(q8]<M, ¢ q¢ for

dl g¢gdi U .

Given an evolution of market prices p(t), ti [O,¥), each sdler i chooses whether or
not to sdl and if he decides to i, the sdling time. If he chooses not to sdl his gross

surplus is equa to g and, therefore, his net surplus equas zero. On the other hand, if he

decidesto sdl attime t 3 t. his gross surplus becomes
t
gae“d+eplt)=q+e (p(t)- q),
t
and, therefore, his net discounted surplusis equd to
s(t)=e"(plt)- a).
The st of time momentsin which it isoptimal to sdl for asdler i isgiven by
T (p(t) > argmax{s (t)s (t)* 0} = argmaxie “(p(r) - a)}plt)* a).

If p,-q <O fordl t3t then T, (p(t)) = £.

Each potentidl sdler i chooses atime t,1 T whento sdl. Let 6={t }

i, beasetof
dl #ling decisons. This implies that there is a flow of goods being offered for sde. We
will denote this flow by J, and it follows that J, © {ift, =t}. This generates a certain
digribution of quadities in that flow and the expected qudity of the goods offered for sde
intimemoment t ish =h({J}).

A dynamic equilibrium is an eguilibium where dl players raiondly maximize their
objectives, expectations are fulfilled and market aways clears. As dl buyers are identica
they have identica expectations about qudity a any time t, which are denoted by E(t).

Definition 2.1. A dynamic equilibrium is described in terms of a path of prices p(t),
buyers quality expectations E(t) and aset of selling decision 6={t .}

such that:

a) Sdlers maximize: t, 1 T(p(t)) for dlil I, i.e, every sdler i chooses time t, to
trade optimally.



b) Buyers maximize and market clear: If nf{J,})>0 then p(t)=VE{t), ie, if a time
t there is a drictly pogtive flow of goods offered for sde, then each buyer earns zero
net surplus so that he is indifferent between buying and not buying and market clears.
If nf{J})=0 then p(t)3 vE(t), i.e, if there are (Amost) no goods for sde a time t
then each buyer can earn a most zero net surplus. Hence, it is optima for him not to
buy a that time aswell.

c) Expectationsare fulfilled when trade occurs: If nf{J,})>0 then E(t)=h,.

d) Expectationsarereasonable even if notrade occurs: Foradl t E(t)2 g.

Given the s#t-up described above, conditions @)-(c) are quite standard. Condition (d)
is introduced for the forma reason that expected qudity is not defined when no trade
occurs.  The condition says that even if the flow of goods offered for sde is zero, buyers
should believe that the expected qudity is larger than the apriori lowest possble qudity.
This condition assures that autarky, i.e, no trade a any time, cannot be sustained in an
equilibrium of the dynamic modd. Given the condition, the willingness to pay, hence the
price a any time, is redricted from beow by vq and sdlers with low enough qudities
prefer to sdl againg this price rather than not sell.

It is easily seen that the infinitely repeated outcome of the static modd, i.e, p(t) =0

ad sdlers with qudity ql [g,0s] sdl immediaely upon entering the market, is a

dynamic equilibrium of our modd. Hence, an equilibrium dways exigs In the next
section we will show that in the dynamic modd there are infinitdy many other equilibria
In dl these other equilibria eventudly more goods with higher qudities are sold than in the
datic equilibrium.

3. Multiple Equilibria

We will now show that for any didribution of qudity entering the market and for dl vaues
of the parameters v and r there exigs an infinite number of dynamic equilibria trading al

goods from a certan range [g,(i ], where (iT (os,a ]. The arguments we provide show
how to find a price path p(t) that entirdly determines the dynamic ecuilibrium. Al the
equilibria are cydlica in the sense that the function p(t) is periodicd, i.e, for some T >0
andforal t1 [0,%) p(t+T)= p(t). Withinthecyde p(t) isstrictly incressing.



We dat our andyss by arguing that if a good of cetan qudity sdis a time t, then
al goods with lower qualities that have entered the market before (and are ill in the
market) will dso sdl a that time. Given any p(t) asdler i of qudity g by sdling a
time t earns a net discounted surplus € "(p(t)- q). Maximizing this expressort yields
the first order conditions:

3 tla)=t, it p(t,)+rq £rp(t,), or
b) plt(a))+ra =rplt(a)) if plt)+ra >rp(t).
The second order conditionissimply pft )< rplt)if t(g) >t,.

We firgt will look for equilibria that satisfy the second order condition for dl q . This
implies that for any given q the optima sdling time t(q) is unique if it exiss® Then, the
first order condition (&) says that a sdler should sdll immediately upon entering the market,
i.e, atime t, if the bendfit of usng a good rather than sdling & time t., i.e, the use vaue

of the good rq plus capitd gain p(t, ), is smaller than the opportunity cost of owing the
good a the entry time, which is equal to rp(t,). If, on the other hand, the benefit is larger
than the cog, then the sdler should wait until the moment they are equa to each other and
sl at thet time (condition b).

It follows thet if a sdler of qudity g <dlIs a time t then dl sdlers with qudities from
the range [g,q ], who are in the market a time t , aso prefer to sl a that time t . This
dlows us to define for any t a margind dler q(t) as the sdler of the highest qudity at
timet:

qlt)=2miafit 3} = plt)- +p(t), or

plt) = r(p(t)- alt)). (1)
Differentiating (1) gives

p-rp=r(p-d)- rp=-a,

which implies that the second order condition requires q(t) to be an increasing function.

* Implicitly, we have assumed that p(t) istwice differentiable. Aswe will see, the solution that we obtain is
such that this assumption is satisfied.

® We will see that there are equilibria such that high quality sellers will never sell. If thisis the case then the
first order conditions are never satisfied for them and the optimal selling time does not exist.
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Having established that a flow of goods offered for sde a any time t is a range of
qualities [g,q(t)], we denote by h(q) the expected qudity of goods from | conditiona on

those goods having a qudlity in therange [g,q ] and it followsthat h(qg) = F(lachq:im
q

Now we ae able to derive the man eguation tha must be satidfied dong the
equilibrium path.  Let us consder an infinitdy short time interva (t,t +dt) such tha

g(t)l U. All qudities that entered before and a time t from the interva [g,q(t)] have

dready been traded and al qualities from (q(t),q] that have entered before are il in the

market. Then the measure of goods with qudity lessthan q, which are in the market a the
moment t + dt , becomes
i ng)dt forq<q(t)
=L g+ + ) ) fora>a) @
and the expected quaity from the range[q,q(t + dit )] will be

t +dt

0 et O i) i

| d;*gjmgv) oa) g ") ]

alt)

as q(t)>0. Therefore, priceat time t must be equal to

- ania)+ trlakia
nfa) (e

Rewriting gives
= nal(p- vhla)
tf ()(var - p)
Together with (1) we have findly obtained the following sysem

} =r(p-q)
. ellp- vhia). ®

Tq_ tf(a)(va- p)

which describes the evolution of price and margind qudity dong an equilibrium path.

Notethat >0 and p >0 aslongas p >vh(g) and q< p<vq.
We firg argue that the set of dynamic equilibria is independent of the interest rate.

The parameter r only determines the speed with which prices and margind qudities
change over time. To this end, we rescae time by the parameter r asy =rt, where y is
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a new "time' varidble.  Then the net discounted surplus of a sdler i if he decides to sl a
"ime'y =rt3 rt, °y, agangtheprice ply ), becomes

§by)=ev(ply )-a).
Hence, the margind sdler a "time' y will be a fundion qly) of y . Findly, dong an
eqilibrium path By ) =vh({J, }), where 3, is the set of sdlers with qualities smaller than

qly ) who have entered before or just a "time' y . So, we have closed the system in 'y
while r drops out from dl conditions to be satisfied except one now the inflow of agents
(buyers and sdllers) become X times lager (as the new “time" vaigble y is & times

denser than the old one) and we have to use a new messure function jg) =2nfqg). On the

other hand, expected quality 1, =h(J, ) does not depend on the size of the flow J, , but
only on the didribution of qudity. Thus r disgppears completdy from our andyss and

we have our fird result.

Proposition 3.1. The sat of dynamic equilibria of the modd does not depend on the
interest rate r. The interest rate only determines the speed of the evolution aong an
equilibrium path.

Usng Propostion 3.1 we redrict the anadyss without loss of gererdity to the case
r =1 and consder sysem (3) for that case only. Figure 3.1 shows the vector fidd of the
system for some t > 0,° which isgiven by

dp _p_, fla)va- p)p-a)

da g nfa)(p- vhia))

As p(t)=vh and h <g(t) no dynamic path that is a solution to system (3) can be above

theline p=vg. On the other hand, for any solution to be a dynamic equilibrium it must
sidfy p3 q, i.e, the surplus of the magind sdler may not be negative For dl

intermediiate values of prices p, g<p<vg, ®£>0. Fndly, if p:vh(q) then =0 and

dq

tangents at such points are verticd forany t > 0.

® This is non-autonomous system and the vector field changes over time.

11



G > C

Figure3.1.
Our objective, therefore, is to show that there exists a neighborhood U such thet for

ay qlU sygem (3) with intids q(0)=qg and p(0)= pg =vh(gg) has a solution
(a(t.a,). p(t.q,)), like the solution denoted by the dotted line in Figure 3.1, with p3 g.
Wha we will prove then in Propostion 3.2 is tha for dl g,1 U there exigs a time
T(q))>0 such that dl equilibrium conditions are fulfilled, prices and margind qudities
increase over the time intervd  (0,T(q,)) and either q(T.q,) =q or q(T.q,)=p(T.q,)>qs.
In both cases q(T,qp) is the largest qudity that can be traded and we can extend
[alt.a). plt.cp)) in a periodic way, namely by defining p(t +T) = p(t) and qlt+T)=qft),
in this way we obtain a dynamic equilibrium where dl goods from the range [g,d] are
traded with g =q(T).

Propodtion 3.2. There exids an infinite number of dynamic equilibria trading al goods
from acertain range [g,d], where (iT Qqsaj :

Proposition 3.2 implies that the repetition of the doaic equilibrium is the only
dationary equilibrium. If we choose any abitrary q, <qg, the dynamic path will be such
that eventualy more than the static equilibrium amount of goods will be sold.

12



4. Equilibria Trading All Goods

So far, we have shown that for dl distributions we can trade more than the datic
equilibrium qudity if we dlow for trade to take place over time. In this section we extend
this result by showing that al goods can be traded if we relax the assumption about
continuity of p(t).

In the following Propostion 4.1 we show that there exids an infinite number of
cydlica dynamic equilibriawhere dl goods are traded at time T,2T,3T,....

Proposition 4.1. There exists an infinite number of dynamic equilibria (q(t), p(t)) such

that for some T :

8 plt+T)=plt) and oft+T)=qft);

b af)=a;

o q(t) ad p(t) ae srictly increasing functions for dl t1 (0,T) except (& mos) a a

finite number of points {t (k)}le where both functions are discontinuous.

Figure 4.1 represents a typica equilibium path qt). Within each cyde n, where
tT (nT,(n+2)T], the path is piecewise continuous, i.e, qft) is a solution of (3) for every
subcyde t1 (t%),t«9], k=12,...,K, where K is a finite number defined in the proof of
Proposition 4.1. The equilibrium congruction is such that al sdlers of qudity ¢, earn the
same discounted surplus by sdling a t=t&, k=01,...,K- 1. Hence, they are indifferent
between sdlling at each of these moments.

The discontinuities described in Figure 4.1 are used to build up enough time and high
qudity goods to dlow the expected qudity to improve enough to trade al goods. One may

Ad(t)

' — .

0=t® @ ¢ 2) @ +(0) TT +1©0 T +¢@

Figure4.1.
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wonder whether these discontinuities are required for al digtributions of quality. Next, we
will show that for certan digributions we can condruct infinitdy many equilibrium paths

with gt) and p(t) being continuous and strictly incressing over the whole cyde (0,T). In
the proof of Proposition 3.2 we have defined a = a(g) and afunction a(q) on U as

a(a)° #vhla) == vf(a)a- hla)), @
We will now show that this parameter a plays a crucid role in anadyzing when continuous
price equilibria exist. Firgt, we will provide an economic interpretation of the parameter a
and argue that genericdly, it must be that O<a<1. To this end, consder the surplus of
the margindl sdller in the static model, denoted by s, asafunction of q:

s®a)° pla)- a=vh(a)- a=v;godnta)- ., and

ds<:éqs) :V:_qg%(lﬂ Qqqdn(q)gqs) -1=-(1- a).

Hence, 1- a can be interpreted as the way in which the surplus of the margind sdler
changes in the neighborhood of the largest daic equilibrium qudity. Using a Tallor
expangon, the surplus of the margina sdller can be written as

s¥a)° s¥a) +(a- a)gsas) + ol - ag) = - (1- @)l - a) +ola- a).

Suppose then that a>1.” This would imply that s'®(g) >0 in some right neighborhood of
Q;. But this contradicts the assumption that ¢ is the highest datic equilibrium qudlity.
Hence, generically, a<1. Laslly, a(g) > 0 under Assumption 2.1.

It turns out that the value L2 determines the qualitative behavior of (%,9) and that the
functions >“<(t) and Q(t) behave quite differently depending on whether 2 is smaler or
larger than 1, i.e, whether a is larger or amdler than %.8 Figure 4.2 shows the solution
(% 9) as a parametric function §(X) with the parameter t, for two different values of a,
a=0.1and a=0.6. One can see that in the former case §(X) osxillates around the origin
so that the second order condition (> 0) is not satisfied. In case a=0.6 )2(t) and y(t)

are increasing functions so that in the neighborhood of the datic equilibrium quality, prices
and margind qualities are increasing functions as well.

’ The case where a =1 isanon-generic case.

8 Inthe proof of Proposition 4.1 we use the so-called Kummer's function (Abramowitz and Stegun, 1972, pp.
504-515) with L2 as one of the parameters.
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Proposition 4.2 condructs for quity didributions with a>2 equilibria treding @l

goods where price and margina quaity are continuous in every cycle. It is easy to see that
in cese qudity is uniformly disributed s®(q)° X(q+g)- g and a=%. As adverse

sdectionimplies 1<v <2, it iscdear that the uniform digtribution satisfies this condition.

Proposition 4.2. If a>2Z,

then there exigs an infinite number of cyclicd dynamic
equilibria (q(t), p(t)) such that:

3 plt+T)=p(t) and gt +T)=q(t);
b) oT)=a;
¢) q(t) and p(t) arestrictly increasing and continuous functionson (0,T).
The result obtained in Proposition 4.2 says that in case a>1 we can choose q0)

aufficiently close to ¢ such that we do not need to build more than one subcycle in order

to build up enough time and high qudity goods to dlow the expected quaity to improve
enough to trade al goods. Badcdly, the condition a>+ says that in a neghborhood of

Q. there is a sufficient mass of goods so0 that a the moment when the margind qudlity

becomes larger then ¢, the margina sdller is able to make a positive surplus.

15



5. Extensons

So far, we have mainly focussed on the issue whether the evolution of market prices can be
such that sdlers of different qualities sort themselves over time.  To this end, the demand
sde of the modd has been kept as smple as possble. Also, we have consdered the case
of perfectly durable goods. In this section we relax these assumptions. We first condgder a
much larger class of preferences, including risk averse and risk loving behavior. In the
context of adverse sdection gpplications risk averson is important when consdering
insurance markets. Next, we focus on the case where goods depreciate over time dlowing
usto address the case of imperfectly durable goods.

5.1 More General Demand Structure

The basic model can be easly extended to incorporate more generd demand structures.
Suppose that a buyer's vauation of quaity q is equal to v(g), where v(q)- q>e, and
g—;>ev for some e >0 and dl i [g,q], i.e, abuyers vauation of a good of qudity q

is given by an abitrary function such that (i) there are gains from trade under the full
information, and (ii) higher qudity goods ae vdued more than lower qudities. Having

bought a good of qudity q a time t3t aganst price p(t), a buyer derives utility
u(v(@)- p), where u(0)=0 and u¢>e,>0. This utlity function alows for risk averse

risk neutral and risk loving preferences. The rest of the modd remains as before.

In any equilibrium the expected buyers utility must be equd to zero, i.e,

§"ulvla) - plt)dmicr)=o, ©
where m(q) is the digribution of qudities within the flow of goods being offered for sde
a time t. In this environment the static equilibrium is defined by ésu(v(q) - ¢, )dm=0.

As the supply sde is modded in the same way the firg differentid equation (1)
remains the same as wdll as the second order condition saying q(t) >0. In order to get the

second differential equation we consider an infinitdy short time intervel (t,t +dt) such

that q(t)T U . Giventhequdity distribution (2), we can rewrite (5) as

Qq(t)u(v(x) ) p(t))dnﬁx) + U(V(Q(t)) - p(t))tf (q(t))q(t) =0,o0r

16



YU ) Eigt), )
(q( Nulvlalt)- ptt)  tf@(thu(valt))- plt)’

)
where F(q, p)° - (v(x) p)dmix) is differentisble in both aguments and drictly

q(t)=-

incressingin p . By definition F(gg,q.)=0.
Thus, we have the system
B O
£ talt)u(Malt))- plt)

In this case we define a(q) © d‘(’;((j‘jo)(q) and using the definition of F(q, p) it follows that

alg)=—1Ma)- pla)tl@)
Quév(x)- pola)dnix)

As in the basic mode it can be shown that generically it must be that a© a(gg)i (01). It

can be checked that dl propogtions from sections 3 and 4 are 4ill vdid for the extended

model when we use the new notion of a(q).

5.2 Depreciation

The dtuation changes when the good under consideration is not perfectly durable and
depreciates over time. Let di [0,%) be the rate a which goods depreciate.  This implies

that the quality owned by a sdler i, who entered the market a t , becomes a function of
time q(t)=qe?®%). We normaize sdlers gross utility flow to be equa to (r +d)q (t),
ingead of rq , asinthebasc modd. The rest of the model remains asin the basic modd.
If aseller i sdlsatimet?3 t againgt p(t) hisnet discounted surplus equals
s(t)=e"(plt)- e**)q).
Maximizing surplus with respect to the sdling time t3t, asuming p(t) is twice
differentiable, yidds g =-%

r+d

(rp- p) as the margind quality traded a time t. The second

order condition in this case becomes q+dq >0.
In a gmilar way as we have done in section 3, one can derive the sysem describing

the dynamic behavior of prices and margina qudities:

17



p
@ )(p- Vh(Q)) e
{97 dqé vq- p e )- i) 5

Proposition 3.1 remains vaid for the extension considered here® Taking without loss of
generdity r =1, we get the following system:

o i) ”
P J(p- v 49 6
{97 g ke i)

The man new feature of (6) is that the system becomes autonomous for large t when

qe* 3 a which is guaranteed by the second order condition q+dg >0, and, therefore,
rr(qed‘): njﬁ) In other words, for large t the system (6) becomes independent of t.

We dat our andysis arguing that if v<1+d, then in any continuous equilibrium path
((t), p(t)) price decreases over time as p=p- (1+d)gEvq- (1+d)g=(v- 1- dg <0,
and, therefore, q(t) must drop beow g a a certan time. From this moment on q

decreases exponentidly with rate d, which implies that dl sdlers with qudity higher then
g will never sdl and sdlers with qudity lower than g have dready sold. Hence, n case
v<1+d there is no trade &fter a certain time. Note that this condition is somewhat smilar
to the case v<1 in the basc modd. Buyers do not vaue the good enough and there can be

no trade. From now onweassumev>1+d.

Now we will show that there exists a Steady date (q*, p*), not necessarily unique,
such that for al t3 dilnaﬁ_h-10 @(t).plt)) =g, p’) is a solution of system (6). Indeed,
olving for qt) = p(t)= 0 yidds

ip =@+d)g

.n(q)( 1+d)- vhig')- g (v- 1- d)(nfg)- nfg’))=0 (7)

Note that &t g =q the left-hand side of the second equation is negative, while & g =q it

is positive.  Therefore, there exists at least one point g 1 ba) such that the left-hand side
equals zero. Hence, thereis at least one Steady Sate.

°If we introduce d =4 asa"relative depreciation rate” the structure of the system allows usto get rid of r
by substitutiony =rt.

19 This condition follows from setting qe™ ¢ g and solving for t.
18
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The naturd question about the local stebility of the singular point (g, p°) can be

resolved by taking a linear andysis of (6) in the neighborhood of (q*, p*). One can derive
the following sufficient conditions for (q", p’ ) to besteble: d > 2.

In the scope of this paper we will not fully investigate the solution of (6). We first
observe that the conclusons reached concerning the basc modd generdize when the

depreciation rate d is smdl enough. Let us consder an example, where q =10, a:ZO,

f(q)=€"©%, v=12 and d=0.01. Figure 5.1 shows that &l goods can be sold in finite
time even if there exigs a daionary equilibrium (which is unstable) denoted by a cross in
the figure. Propostion 5.1 generdizes this example and argues that we can extend the

concluson of Proposition 4.2 to the case where d issmdl enough.

Propodtion 5.1. If a>41, then there exids a d >0 such that for dl di [O,a) there exist
an infinite number of cydicd dynamic equilibria (gt,d), p(t,d)) such that for some
T¢>0:

8 plt+T¢)=plt) and gt +T¢)=qft);

b ofr’)=a;

C) q(t,d) and p(t,d) are continuous functions on t1 (O,Td).

The proof rdies on the fact that the system (6) can be written as
ip=p-g-dq
1= 55 (e nfop - vhia) + a5, p.t)

where

(8)
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_ nfae')- nia)
Gla, p.t)° rrh)(r;(—q\)/h(Q))yf(qihem)_ rt%) -a(va- p).

As G(q,p,t) is finite for dl p, t>0, d>0 and qi baej system (3) is an

goproximation of (6) for smdl d .

When d is lage quditaivdy new phenomena may emerge in equilibrium.  This is
shown in Fgure 5.2 and Figure 5.3 by means of examples. Figure 5.2 shows that the
dable seady date can be ether below the datic equilibrium (left graph, where g =10,

q=20, f(g)=e®?, v=12, d=01, q »11.82 and ¢ »13.01) or above the static
equilibrium ~ (right graph, where =10, q=30, f(g)=e®"@%) v=12, d=01,
g »17.32 and g, »14.94). Unlike the datic equilibrium in the basic modd, in these

dationary equilibria dl qudities are eventualy traded in the market. However, owners of
quaitiesq >q" first wait until their good has depreciated to " before sdlling.

B2 cyde d =0.09

(periodic solutiog)#

13

12,8

12,6

12,4

12,2 T T T
10,5 11 11,5 12 12,5

Figure5.3.
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In the second case, Figure 5.3, where q=10, q=20, f(g)=¢e©%, v=1.2 and
d=0.09, d is "digntly" bdow “i. Then (q*,p*) is not stable but there exigts a cydle,

v+l ”
i.e, a periodicd solution of the corresponding autonomous system. In the long run, prices
aswdl asmargind quality fluctuate with an asymptoticaly congant period.

6. Condugons

In this paper, we have provided a different perspective on the way the adverse sdection
problem may manifest itsdf in durable good markets, where entry takes place and trading
occurs in continuous time.  In the static Akerlof-Wilson modd, adverse sdection results in
high quality goods not being able to trade despite the potentia gains from trade. The
infinite repetition of this daic equilibrium is dso an equilibrium in the dynamic modd
where a durable good is traded in a competitive market. One result of this paper, however,
says that there are infinitdly many other equilibria where dl goods are sold within finite
time after entering the market. This result holds true even if consumers are not risk-neutrd
or when the good is not pefectly durable  When the deprecition rate is above a critical
vaue, however, new dationary equilibria emerge where dl goods are evertudly traded. In
this type of equilibrium, owners of high qudity goods sdl only after the good has
depreciated enough.
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Appendix.
Proof of Proposition 3.2.

Under Assumption 2.1 for any t, >0 and (q,, p,) such that vg, ! p, sysem (3) has a
uniqee  olution  (q(t,qp, Pyt ), P(t. G, By ot,))  With initid  condiions  q(t,)=q, and

p(t,) = p,, which is continuous w.rt. @, and p,. Consdering q as a function of g, p
nfa)(p- vh(q))
tf(@)(va- p)
- vila) _ rial0)p(0)- vhle(o) _
e ) RO R0 ORI
Therefore, sysem (3) has a solution even for t,=0, but not necessarily unique.

andt,ie, g=0Q(q, pt)° , dlows us to teke the following limit

Uniqueness of the solution is guaranteed by the fact that tQ(q, p,t)? g+l ,whee | isa

congtant. Findlly, thet solution is differentisble a t=0 as long &s lim (tQ(al, p.t)) =0, i.e,

p, =Vh(q,), and we will denote it &

@lt.a). plt.ay)) ° (@lt 6, vh(cp).0), plt.cp vhic)0)).  Indefiniteress of q(0,q,) s

resolved by continuity:

_ima)p-vhi@) . nfa) . p-vhia)
wo tfg)va- p)  fla)lvap- p)eo

Using the mean va ue theorem we have thet the later expression equas

loa) =l

1y [Po* POt )]~ vhla,) + alaetcpJabot.ap ]

ala,) o t
_ 1o Pxta)t- alabctabbota - 1 (0 o) B g
g : T (- k)= -

where a(q,) °© gediqvh(q)%: = Ul 0)51(:230)h(%)) ,

x1(01), %1 (01) ad G,°d(0q), p,° p(0.). Rewiting yidds ¢, =5ty p, M

apo _f _ _aed o)
Hence, c—= =-2=2alqg, )>alg,)=c=—vhlg)= .

YUf it had been that tQ(q, p,t)°q+1, or equivalently, =L, then we would have had

q(O) = |t|®ng el = |tig0] @ :q(o), that isidentity. Therefore, in this case q(o) is not defined and can be chosen

arbitrarily, that gives rise to multiple solutions.
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Thisimpliesthat for smal t >0 pl(t,q,)> vh(g(t.q,)) aslongas p, = vh(g,)- g, > 0.
Now we define ¢ as ¢, =irf {at al (aga,):vh(a)>q} and U as U = (o_b,qs)C;U
suchthat fordl 7 U vh(g,)>q,.

Findly, we will show thet there exists a neighborhood U | U such tha for any
solution (q(t,q,), p(t.q,)) of (3), where q,T U, there exisis a time T(q,)>0 such that for
dl t1 (0T) p>q and (p(T)- q(T))g- qT))=0, i, dther al goods are sold or the

margind surplus is zero & time T . If this were not the case then there would have been

Itgr; p -tngq =q¢*2. But then the equation q = ntf‘q(zg)(vq (S))) for large t becomes

q= Largqqe- vhiad) , e(t)g where lim e{t) = 0, and, therefore,
@

(& f(ad(v-1)ae

mad(a¢ vhiad)
q(t) > 2f(qq®(v 1)2 Int + const

for sufficiently large t. Hence, lim g(t)=¥ unlessq¢ vh(gd=0,i.e, g¢t=q,.

In order to rule out the possibility that q¢=q, (and, hence, that qt,q,) and p(t.q,)

convergeto gé< a ) we rewrite system (3) asfollows
p=(p-a)-(@-a)

da- a)g, aéqos)

gp &)- ala- o)+ o g -Bq pg(p Q)

&G”'?o

g
1
where a=a(q,) and |B(q, p)]<¥ uniformly*® in a certain neighborhood of ¢ U U.

Thus fordl q,7 U thesolution (q(t,q, ), p(t.q,)) can bewritten as

palt.a,) =as +(as - g,)X(t) + olos - )
7 plt.Gn) =0 + (0 - &) 9(t) + ofck - a)”

where (X(t), %(t)) solvesthe corresponding linearized system

9)

2 As p and q areincreasing and bounded: q<q, p<vg <vg, and lim p=0=lim(p- q)-
t® ¥ t® ¥

13 The proof of thisclaim is available from the authors.
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with initds x(0)=-1, y(0)=-a. Deining k(t)=%J dlows us to rewrite (9) as
k=-(1- k- k&£). Obvioudy, for dl tT (0,¥) x<0, y<0 and y>ax.** Hence,
kT (0,a) and for sufficiently lage t k<-%2<0 and, therefore, limk(t)=-¥, which is
in contradiction with k1 (0,a).

So, forany q,i U $T(g,)>0 such tha dither q(T,q,)=q or q(T.q,)=p(T.q,). In
both cases we extend (g, p) in a periodic way, namely plt +T) = p(t) and q(t+T)=q(t).

In order to show that q(T) >q, when q(T) = p(T) <q let us consider two cases.

a q(T)=q,. This contradicts with the uniqueness of the solution with initids
q(T)=q,. Indeed, we aways have a static solution qt,qs) = plt,qs) =95 and we
have found another, namdly (g(t,q, ), plt.q,)), suchthat g(T,q,) = p(T.q,) = ¢ -

b) q(T)<q. Thisimpliestha vh(g(T))>q(T), which can never happen as for small t
vh(q(t)) <g(t) and no solution may crossthe curve p = vh(q) from abovea g <q.
Hence, q(T) > .

As we have obtained adiscontinuous function p(t), we logt the sufficiency of the first
and second order conditions. So, we must check the optimality of the stipulated sdlers
behavior directly.

Let us teke any sdler i with quaity g and entry time t T [nT,(n+1)T), where n is
the entry cyde's number. If g >q(T) then he will never sdl, which is dearly optima for
him. If, on the other hand, g <q(T) then there are two possibilities.

a q>qt). In this caee he maximizes his surplus by sdling in the current cyde n at
time t,(q), where qft,)=q, and geting s(t,)=slt,), see Figure A.1(a), and it
follows that t, >t °. Indeed if he had been waiting for the next cyde (n+1) he
would have chosen time t&q)=t, +T to sdl, where q(td=q, and got s(td=st9.
But p(t,)=p(t, +T)= plt 9 andthesdler i will certainly choose the earlier time t, .

¥ Asq<q p<q ad p>vh(g).
15 within acycle the first and second order conditions still work so thereis a unique optimal selling time t.
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b) q<qt). In this cae le&t us firs invesiggte the margind surplus function

dt)° e'(p- g). From (3) it followsthat

Although the above expresson has been obtained only for ti [O,T] it holds for any
tT [0,¥). Toseethis, suppose tT (nT,(n+1)T]. It then follows that

g—z(t):- e‘”TE(t- nT)=-e"e® M =_g foral ti [0,¥). (10)

dq

Hence, St) is a positive, decreasing and convex function on (nT,(n+1)T). These
propeties dlow us to vdidate the maximum principle across different continuous
segments of an equilibrium path.

Now let us define t,(q) such that t,T (nT,(n+1)T] and qft,)=q, in thiscase t, <t,,
see Fgure A.1(b). If seller i sdlsimmediately after the entry, i.e, @ time t, , he gets
s(t)=e"(plt)-a)=e"(plt)- alt)+e"(alt)- a)=slt)+e"(qlt)- a).

while if he waits until the next cyde (n+1) he will choose time tdg)=t, +T to sl
where g(t 9 =q, and, therefore, his surplus becomes
st9=e"(pltd-a)=e"(pltd-alt9)=st9.

In oder to show tha s(t)>st)! for dl q<qt) le us condder

D(g)° s(t)- s(td asafunctionof q and apply the mean-value theorem:

dtd=sft +7)+ @t 9- alt + Tz ) =7 s+ @lt)-a)e
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forsomet; 1 (Gt +T). Then
ofa)=sli)+e*lt)-a)- e st )- ()~ a)e -
=st)t- e7)+lat)- aet- e )>0
Therefore, we have shown that for any q,1 U (g(t.q,), p(t.q,)) constitutes a dynamic

equilibrium trading all goods from the range [ g,d], where ci :q(T) >0 . [
In order to prove the following propositions we need the following lemma

Lemmal. For any Suppose that for any numbers g1 (osa) and p,1 (q,vq,) there
exigs >0, depending on p, - q,, such that for dl t, >{ system (3) has a unique solution

with iniids q(t,)=q, and plt,)= p,. Moreover, there exists a finite ime T >{ such that

q(T)=a.
Proof. Under Assumption 2.1 for any t, system (3) has a unique ®lution passing through
(@, p,). All we need to show then is the existence of T if t, is teken to be sufficiently
large. Wedefine a © min{p, - q,,%*q,} and
fo ﬂ@i (12)
V- Deac

As a isafunction of p,-q, sois {. Now let us consider the solution mentioned above
when t, > and supposethat p(t)- q(t)=a for somet3 t,. Then

S(p0)- alt) =) (pl)- o) =22 19=G 2. 2

_.&f()p-aq)lvg- p) 0 & efa((Vj 1)q a)_ 0
A ) R I A
2 . 28 (v- l)eaq S0

- : 0
T b 5 % anplE s

Thus p(t)- q(t)>a >0 fordl t3t,. Now it becomes clear (see Proof of Proposition

3.2.) that for some T we must have q(T)=q. O
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Proof of Proposition 4.1.

We firgt define functions (q(t), p(t)) for dl tT [0,t,] and some t, such that the condition of
Lemmal is sdtisfied, ie, t,>f(p(t,)-q(t,)), and q(t,)=q,. Then we show that
((t), p(t) actualy is an equilibrium path. Lastly, Lemma1l says that al goods are traded

by acetantime T .
In section 3 we have shown that for ay q,1 U and p, =vh(q,) sysem (3) has a

solution (q(t.q,), p(t.q,)) and g(T)>qg for some T. As qt,q,) >0, it follows that for al
bl [q,,q(T)] there exigs an inverse t(b,q,) such that q(t(b,q,).q,)=b. Function
t(b,q,) is continuously differentisble on b1 [q,,q(T)] and continuous w.rt. q,. Hence,

p(t(b,q,).q,) is continuous w.rt. g, aswel. We define t(q,) by t(q,)=t(a.q,), so that
ot (0).0,) =0 foral q,T U . Notethat p(t (cp).cp) >t (0) ) =k -

Now we will solve the linearized system (9). Firdly, it can be rewritten as Kummer's
equation (see Abramowitz and Stegun, 1972, pp. 504-515):

6+ (2- t)x- x- £2)=0.
with iniids x(0)=-1, %(0)=%2. The unique solution is the negative to the so-caled

Kummer's function M (al,az,t),with a, =- %2 and a, =2. Turning back to (9):

[ 1-a§  Qn-ta)

i X{t)=-M(- L2 2t)=-1+ t"

i () ( a ) a:- (n+1) G(l 1a) W
9(t)=-ag(tM(- 2 2,t)) §e1+1 as G(” )

] = (N al- %) 5

where G(x) = (‘Se't t*'dt is the Gamma-function, and
_La
e o) )

Now we define w as X(w) =0 and it followsthat w> 0 and §{w)>0. As

1allt.o) =0 + (0 - 6)X(t) + olag - o)
 plt.Go) =0 + (0 - &) () + ofck - a)’

the functions X(t) and §(t) describe the behavior of the solution (g(t.q,), plt.q,)) in the
neighborhood of p =g =q, and it follows that
lim t(q,) =w,

Go®as
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4 ®ds ds- G

Therefore, there exids a left neghborhood of the datic equilibium  qudity

U™ (g a)l U suchthaforall g,1 U* t(g,) > 2w.

Now we are ready to construct the pair of functions ( () p(t)). Let us take any
a1 U” and define t@Wot(g¥), q¥{t)° glt.q) and p®(t)° plt.g®) on ti (0t ],
s9t)o e (p?(t)- g¥(t)). By construction wehavet¥ > 2w and s(l)t ))>0

Let us now consider the function r ®(g,)° pft (gp).0)- 0 - sOft ()) as a function of

Q- Itiscontinuouson [q,q.]. Moreover,

)= e )al)- a,- SO P)=a +e " ) - $Ut)> 0, e

“0g) = plt (Gs)0k)- - sV ?)=a, - o - ¢ 0t ) <.
Therefore,  $q®1 (q¥,q;) depending on t(g,) suwch tha r®g?)=0, ie,
ol (@@)q®)=sk0).  Agin we define t@0t(g?), q¥()° qt.q?) and
p@(t)° plt,g®) on tT (0t@], sD(t)° sf,q?) and, again, t @ > 1w.

k
Repesting this process, we get a sequence {t(k)} such that Iklglé t0) =¥ . We define
j=1

K
K 3 1 to be the smalest number such that §t >f(p(1)(t (1))- q(l)(t (1))). Then, we define

=1

t(k) as t(k) — éKt (i) ’ 0 that t(K) =0, t(K-l) =t (K), t(K-Z) =t (x) +t (k1) t(O) = éKt(J') >f_
j=k+1 j=1

Finally, we define an eqilibrium path for t1 (0,t] asfollows

pt.cp) ={p® - t®),if t1 (t®),tl2,

alt.ge) =fa® {t - t*),if t1 (t©, 1097,

dt,0) ={e " sVt~ %) if 11 (10,109,
For t>t© we take the solution (q(t,ql(to), p(l)(t(o)),t(o)), p(t,q(l)(t ) pt )(t(o) )) of (3)
as an equilibrium path.

It can be easly seen that within every interva ¢*),t*V] a seller chooses the time to
trade optimaly. In order to check that he behaves optimdly even across those intervas

(subcycles) and across cycles, again, like in the proof of Propostion 3.2, we use (10) and
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considering a sdler i with qudity q and entry time t 1 (nT +t& nT +t&kY].  As the
aguments are quite smilar to the ones given in the proof of Propodtion 3.2 we skip the
details here.

Like in Propodtion 3.2 any sler i optimdly waits until the fird moment after entry
when the margind quality is larger than or equa to his own qudity. Hence, the par of
functions (q(t), p(t)) constructed above satisfies al equilibrium requirements.  Then, it

follows from Lemmal tha $T such tha q(T)=q. The constructed eguilibrium path is

entirdy determined by choosing g which is an arbitrary point from U". Therefore, we

have obtained infinitely many (continuum of) equilibria. [

Proof of Propostion 4.2.

If a>=, then each term (gpart from the constant) in the Tailor expanson (12) is podtive

as Gl- l'Ta)>0 and its radius of convergence is infinity. Hence, X and § are defined by

(12)foral t1[0,¥), lim ¥{t)= im {t)= lim y(t)= lim x(t) = +¥ , and

t® +¥ t® +¥ t® +¥

T T T

I|m¥:llm—¥:llm¥—:llm .

@+ Y e+ § @+ Y @y Y 4@y I
at dt af

x>

X . € -
)i = lim até1+(%a 1
- X% t® +¥ é y_ 2

:+¥’

=3
(e ey e

A A A A A N 34 n_1._atn—1
asy-ax>y-Xx>y- 2ax:(1- a)a (n-S!((n+1a)!)G(1 )>Ofordlt>0,

Thisimpliesthat for a> 2
im tim PEG) A _ iy i A+~ )
@ aeasq(t,gp)- s © ¥ aas K(t)+Olcg - @) @ K(t)
In other words, for any M >0 $t€M) such that for dl t>t¢ $U(t,M)=(q2(t.M).q5)

suchthatforal g, 1 U®;

p(tah)- G ),
alta)- o

Wetake a=%lq,, M=%=2¢_>2 and t = max{t(a),tM )}, where f(..) isas

defined (11), Lemma 1. Then it follows that

(o M__2onf) _ onfoju?

M-1(v-teags (v- JecM - 1)’
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For thist there exists aneighborhood U ®(t,M ) such that for dl g, T U ®

p.Gh) - G oy
Q(t ,Cb)‘ Us

We will show thet $t@3 t such tha pltéq,)? qltég,)+a. Suppose to the contrary

that p(t,g,) <qlt.q,)+a fordl t3t . Thenit must be the case that
p(t’qo)_ qS 3 M
Q(tiQO)' Gs

fordl t 3t , otherwise there would have been some t®3 t such that

%) . _
dga)a =M

and, therefore, for t =t @

@__p_,vl_d___d_(ﬁ M)= e elp-a)fl)va- p) 8

dt q-Qs d-ds ~ d-0s \g a-0s nh)(p- Vh(q)) B
.ae(p-qs_q )e(q qg- a) 0
>—q—(;t g-9s , q-4 -MT>
i S o
% 0
¢ o M-De(lv-1h-sta)

>q_f’«Eg(V_1) eq. M- 1) ”G@V' NGl e Eb)esg
e

q-ds [} 17
>_q_&2M((V 1)q5 7106)-19>M_35M_19: )

Tl S e

where 1 (c,q). Butthen p- > (M - 1)(q- g) and lim g =¥ , which isnot possible.

So plt€g,)? gteq)+a for some t#t >f(a)3 f(p(tqg,)- qlteq,) and
Lemma 1 applies. [

Proof of Proposition 5.1.

One can see that for any fixed q, the solution (q(t,q,,d), p(t.q,.d)) of (8) converges to the
solution (q(t,qp ), p(t.cp)) of (3):
lim q/(t,q,,d) =q(t.c,0) =qt.q ), and

d®0

lim pt..d)= plt.c.0) = plt.c)
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uifomly  for dl t provided nfqt.q))(p(t.a,)- vhig(tq))>€  and

p(t.q,) - alt.q,)>€ for anabitray smdl € >0, inother words, for dl ti (e,T- €)
At t =0 convergenceis preserved as

im p(0.cp.d) =lm(p(0.a,,d)- (L+d)(0.cp.d)) = p, - G = by, and

d® 0

da)l(% Yo — p(0.d0)

lim q(Oq0 d) = lim 2080} s =0

d®0 &%

As a>31 then there exists a left neighborhood of gy, namdy U?, such that for dl
g1 U? the soluion (g(t.q,), p(t.q,)) stisfies dl the requirements  This implies that
q(t,d) and plt,d) are continuous functionson t1 [0,T- ] andat d=0. On the other

hand,
lima(T- &,0,)=q(T.q,)=0, a

e®0

lim p(T - &.0,)= p(T.)>q

Let ustake e suchthat fordl e [0,e]:

p(T - eioo) >a ’ and

nfo(T - eq,)) —vh@n(q)

Now we define d(e) asthe largest d >0 such that

p(T- eq,.d)? (1+d)a,and

T- d
nq(T - eq,, —ﬁvhq ).
It can be easily seen that p(t,cp,,d) >0 and dt,q,,d)>0 foral di [0,d) and t>T- e.

Moreover, $T° >T - e such that q(Td ,qo,d):q and p(Td ,oo,d)>a. O
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