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Abstract

In an oligopoly, prior to competing in the market, �rms have an opportunity to form

pair-wise collaborative links with other �rms. These pair-wise links involve a commit-

ment of resources and lead to lower costs of production of the collaborating �rms. The

collection of pair-wise links de�nes a collaboration network. We study the architecture

of strategically stable networks.

Our analysis reveals that in a setting where �rms are ex-ante identical, strategically

stable networks are often asymmetric, with some �rms having a large number of links

while others have few links or no links at all. We characterize such asymmetric net-

works; the dominant group architecture, stars, and inter-linked stars are found to be

stable. In asymmetric networks, the �rms with many links have lower costs of produc-

tion as compared to �rms with few links. Thus collaboration links can have a major

inuence on the functioning of the market.
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1 Introduction

Empirical work suggests that R&D collaboration between �rms is common.1 This empirical

work has also drawn attention to two striking features of collaboration relationships. The �rst

feature is the di�erence in the number of links across the �rms; some �rms have a lot of links

while others have relatively few links. These di�erences lead to asymmetric collaboration

structures. The second feature is intransitive relations. Intransitive relationships arise when

�rms i and j have a link and �rms j and k have a link, respectively, but i and k have no

collaboration link. 2 This paper develops a simple model to understand the incentives of

�rms to form collaborative links and the nature of strategically stable networks.

Our model has the following structure: We consider an oligopoly setting in which �rms form

pair-wise collaborative links with other �rms. These pair-wise links involve a commitment

of resources on the part of the collaborating �rms and yield lower costs of production for

�rms which form the link.3 The collection of pair-wise links de�nes a collaboration network

and induces a distribution of costs across the �rms in the industry. Given these costs, �rms

then compete in the market. A distinctive feature of our model is that we allow a �rm to

form collaboration relations with other �rms without seeking prior permission of current

collaborators. This has important strategic e�ects and requires novel methods of analysis.4

We start by analyzing the case where the costs of forming links are small. In this setting,

we are able to characterize the nature of strategically stable networks under fairly general

conditions. We consider two types of market competition: moderate and aggressive. In a

market with moderate competition, all �rms make positive pro�ts but lower cost �rms make

1For instance, in the area of biotechnology the number of collaborations involving the world's largest

�rms rose from a total of around 100 in the pre-1987 period, to over 150 in the period 1988-1991. Moreover,

the number of �rms involved in these collaborations also increased sharply, doubling from one period to the

next (Delapierre and Mytelka, 1998). A similar pattern is observed in the area of information technology

(Hagedoorn and Schakenraad, 1990).
2Several authors have plotted the network of collaboration between �rms; see e.g., Delapierre and Mytelka

(1998). These plots indicate asymmetric collaborative structures as well as intransitive relations. An example

of intransitive relations observed was the following. In the late 1980's and 1990's, Bristol-Mayers and Bayer

had collaborative links, but Bayer also had collaborative links with Hoechst,, while there were no links
between Bristol-Mayers and Hoechst.

3We interpret a link as a collaborative R&D project, which involves complementary facilities of the two

�rms. The project is costly and hence calls forth resources from the collaborating �rms; it yields a process
innovation which lowers the costs of production of the �rms involved.

4The number of possible collaboration networks is very large. In a market with n �rms, there are

2n(n�1)=2 possible networks of collaboration. Thus, if n = 10, then there are over a billion possible networks
of collaboration!
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larger pro�ts.5 We �rst show that every pair of �rms with the same costs must be linked.

This implies that in the class of symmetric networks, i.e., networks where every �rm has

the same number of collaboration links, only the complete network can be stable.6 We then

develop suÆcient conditions for this network to be the unique stable network (Theorem 3.1).

We �nd that these conditions, though strong, are satis�ed by a variety of standard models.7

Under aggressive competition, all but the lowest cost �rms make zero pro�ts. This allows

for two cases of interest: �rst, in which a lowest cost �rm makes pro�ts only if it is the

unique such �rm, and second, if all lowest cost �rms make positive pro�ts. We �nd that in

the �rst case, the empty network is the unique strategically stable network.8 The latter case

corresponds to a model of a patent race with the largest collaborating group winning the

race. In this case, we provide a complete characterization of strategically stable networks

(Theorem 3.2). In particular, we show that stable networks have an asymmetric architecture:

the �rms divide themselves into two groups, with one group containing at least three �rms

and having the feature that every pair of �rms has a collaboration link, while the second

group consists of isolated �rms. We refer to this structure as the dominant group architecture.

We next consider the case where costs of forming links are signi�cant. The analysis now

focuses on the relationship between these costs and the nature of stable networks. For

reasons of tractability we work with the linear demand Cournot model. We �rst derive

a general property of the returns from link formation: �rms have increasing returns from

links. This implies, in particular, that the empty network and the complete network are the

only symmetric networks that are stable. We then show that the only asymmetric network

that is stable is the dominant group architecture, with the size of this group being sensitive

to the cost of forming links. An interesting aspect of our analysis is a non-monotonicity

in the sustainable size of the dominant group as the costs of forming links increase. Non-

monotonicity manifests itself over an intermediate range of costs: over the initial part of

this range, large as well as small dominant groups are strategically stable; however, over the

latter part, only medium-sized dominant groups are stable and small and large groups are

no longer sustainable (Proposition 4.1).

5Moderate competition accommodates quantity competition under homogeneous or di�erentiated de-
mand, and price competition under di�erentiated demand.

6The complete network is one in which every pair of �rms has a link.
7In particular, the homogeneous product model with quantity competition, and the di�erentiated product

model with price and quantity competition fall in this category.
8The Bertrand model with homogeneous demand falls under the �rst case. The empty network is one in

which there are no links.
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The property of increasing returns from link formation suggests that a �rm with many links

may have an incentive to induce a �rm with few links to form a collaboration relationship

by o�ering to subsidize its costs of link formation. This motivates an examination of stable

networks when transfers are allowed between �rms. Again we �nd that the only symmet-

ric networks that can be stable are the empty and the complete network. In the class of

asymmetric networks, the dominant group architecture continues to be stable. In addition,

the only other asymmetric architectures that are stable are the star and inter-linked stars

(Propositions 4.2-4.3). The results are interesting from an empirical point of view, since

these intransitive network architectures have been oberved in practice.9 The stability of the

star and inter-linked star architectures also illustrates in a somewhat dramatic fashion how

market dominance can arise in a setting with ex-ante identical �rms. They also bring out

clearly the role of transfers across links, since such structures would not be stable in the

absence of transfers.

Our paper is a contribution to the study of group formation and cooperation in oligopolies.

The model of collaborative networks we present is inspired by the recent work on strategic

models of network formation; see e.g., Aumann and Myerson (1989), Bala and Goyal (2000),

Dutta, van den Nouweland and Tijs (1995), Goyal (1993), Jackson and Wolinsky (1996), and

Kranton and Minehart (2000).10 We now place our work in relation to the existing literature

on the endogenous formation of groups.

The work of Kranton and Minehart (2000) deals with networks between vertically related

�rms. In contrast, our paper studies collaborative ties between horizontally related �rms,

i.e., �rms which compete in the market subsequently. This leads us to incorporate an explicit

market competition element in our collaboration model. Our paper should thus be seen as

complementary to their work. The analysis in our paper suggests that market competition

has major implications for the nature of collaboration networks.

Issues relating to group formation and cooperation have been a central concern in economics,

and game theory in particular. The traditional approach to these issues has been in terms of

coalitions. In recent years, there has been considerable work on coalition formation in games;

see e.g., Bloch (1995), Kalai, Postlewaite, and Roberts (1979), Ray and Vohra (1997), and

Yi (1997,1998). For a survey of this work, refer to Bloch (1997). One application of this

9See for instance, Figures 4.3 and 4.4 in Delapierre and Mytelka (1998), which plot the architecture of

the collaboration networks in the pharmaceutical and biotechnology industry.
10The present paper subsumes our earlier paper, Goyal and Joshi (1999).
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theory is to the formation of groups in oligopolies. In this literature, group formation is

modeled in terms of a coalition structure which is a partition of the set of �rms. Each �rm

therefore can belong to one and only one element of the partition, referred to as a coalition.

In our paper, we consider two-player relationships. In this sense, our model is somewhat

restrictive as compared to the work referred to above, which allows for groups of arbitrary

size. However, the principal distinction concerns the nature of collaboration structures we

examine. Our approach accommodates collaborative relations that are non-exclusive. From

a conceptual point of view, this distinction is substantive. It means that we allow for re-

lationships across coalitions. Thus, we consider a class of cooperative structures which is

signi�cantly di�erent from those studied in the coalition formation literature. In particu-

lar, our approach leads to collaboration networks such as stars/inter-linked stars which are

empirically observed but are ruled out in the coalition literature.

A direct comparison of the results in our paper with this literature is diÆcult since there

are other substantive di�erences in the models such as the role of spillovers. We therefore

discuss the results of Bloch and Yi in greater detail, after presenting our results, in Section

3.

The paper is organized as follows. In Section 2, we present the basic model. In Section 3, we

analyze the formation of networks when the costs of forming links are small, while section 4

examines the case where costs of forming links are large. Section 5 concludes.

2 The Model

We consider a setting in which a set of �rms �rst choose their collaboration links with other

�rms. These collaboration agreements are pair-wise and costly and help lower marginal costs

of production. The �rms then compete in the product market. We now develop the required

terminology and provide some de�nitions.

2.1 Networks

Let N = f1; 2; :::; ng denote a �nite set of ex-ante identical �rms. We shall assume that

n � 3. For any i; j 2 N , the pair-wise relationship between the two �rms is captured by

a binary variable, gi;j 2 f0; 1g; gi;j = 1 means that a link is established between �rms i
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and j while gi;j = 0 means that no link is formed. A network g = f(gi;j)i;j2Ng, is a formal

description of the pair-wise collaboration relationships that exist between the �rms. We let G

denote the set of all networks. Let g+ gi;j denote the network obtained by replacing gi;j = 0

in network g by gi;j = 1. Similarly, let g � gi;j denote the network obtained by replacing

gi;j = 1 in network g by gi;j = 0.

A path in g connecting �rms i and j is a distinct set of �rms fi1; : : : ; ing such that gi;i1 =

gi1;i2 = gi2;i3 = � � � = gin;j = 1. We say that a network is connected if there exists a path

between any pair i; j 2 N . A network, g0 � g, is a component of g if for all i; j 2 g0, i 6= j,

there exists a path in g0 connecting i and j , and for all i 2 g and j 2 g, gi;j = 1 implies

gi;j 2 g0. We will say that a component g0 � g is complete if gi;j = 1 for all i; j 2 g0. Finally,

let Ni(g) = fj 2 N ; gi;j = 1g be the set of �rms with whom �rm i has a link in the network

g, and let �i(g) = jNi(g)j be the cardinality of this set.

We now de�ne some networks that play a prominent role in our analysis. The complete

network, gc, is a network in which gi;j = 1; 8i; j 2 N , and the empty network, ge, is a

network in which gi;j = 0; 8i; j 2 N , i 6= j. Two other architectures will play a prominent

role in our analysis: the dominant group architecture and the star architecture. The dominant

group architecture is characterized by one complete non-singleton component and a set of

singleton �rms. Thus, there is a set of �rms N 0 � N with the property that gi;j = 1 for

every pair i; j 2 N 0 while for any k 2 NnN 0, gk;l = 0, 8 l 2 Nnfkg. We will let gk denote

the network in which there is one non-singleton component of size k and the remaining n�k

�rms are singletons. The star is a network in which there is a �rm i such that gi;j = 1 for

all j 6= i and gj;k = 0 for every pair of �rms j; k 6= i.

2.2 Collaboration Links and Cost Reduction

A collaboration link in our framework can be interpreted as an agreement to jointly invest

in cost-reducing R&D activity. We will suppose that a collaboration link requires a �xed

investment, given by f > 0, from each �rm. The �rms are initially symmetric with zero �xed

costs and identical constant returns-to-scale cost functions. Collaborations lower marginal

costs of production. We will use the following speci�cation:

ci(g) = 0 � �i(g; 1) ; i 2 N: (1)
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where 0 is a positive parameter representing a �rm's marginal cost when it has no links.

In this case, �rm i's marginal costs are linearly declining in the number of links it has with

other �rms.11

In the general case, we will assume that �rm i's marginal cost in the network g is a function

of its collaboration links with other �rms and is strictly decreasing in the number of these

links:12

ci(g) = c(�i(g)); c(�i(g) + 1) < c(�i(g)); i 2 N: (2)

To rule out uninteresting cases, we will always assume that ci(g) � 0, 8i 2 N , 8g 2 G. A

network g, therefore, induces a marginal cost vector for the �rms which is given by c(g) =

fc1(g); c2(g); :::; cn(g)g. Given this cost vector, and the speci�cation of the demand functions

in the product market, the �rms compete in the second stage in the market. For every

network g, we assume there is a well-de�ned Nash equilibrium in the second stage product

market game. The pro�ts of �rm i, gross of the cost of forming links are given by �i(g).
13

2.3 Stable Networks

A network g is said to be stable if any �rm that is linked to another in the network has a

strict incentive to maintain the link and any two �rms that are not linked have no strict

incentive to form a link with each other. This de�nition is inspired by the notion of stability

presented in Jackson and Wolinsky (1996). We need to adapt this general de�nition slightly

to accommodate the di�erent cases of �xed costs we consider. We, therefore, state the formal

de�nitions in Sections 3 and 4.

The requirements above are very weak and should be seen as necessary conditions for a

network to be stable. Our analysis illustrates that these weak requirements provide suÆcient

structure in an interesting class of network formation games.14

11This is a natural extension to the network framework of the speci�cation used in Bloch (1995) where

marginal cost of i decreases linearly in the number of �rms belonging to the same coalition as i.
12We are assuming that there are no spillovers across links in this model. We briey address the issue of

spillovers in Section 5.
13This implicitly assumes that there are no coordination problems in choosing across di�erent equilibria

at this stage.
14We have also examined an alternative non-cooperative formulation of the network formation game. In

this formulation, every �rm announces a set of links it intends to form with other �rms. A link between two

�rms i and j is formed if both i and j announce an intention to form such a link. This announcement game
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3 Small Costs of Link Formation

In this section, we will provide a fairly general analysis of network formation when the �xed

costs of forming links are small. When two �rms collaborate, they help lower each other's

costs. There are two e�ects at work here: collaboration lowers a �rm's cost but also lowers

its competitor's cost. In addition, a collaboration between two �rms generates competitive

e�ects on non-participating �rms. The precise nature of these e�ects depend on the nature

of market competition. The main point of this section is to illustrate the inuence of market

competition on the architecture of strategically stable networks.

We will suppose that there are small but positive costs to forming links. This motivates

the following simple de�nition of strategic stability. A network g is stable if the following

conditions are satis�ed:

(i) For gi;j = 1, �i(g) > �i(g � gi;j) and �j(g) > �j(g � gi;j)

(ii) For gi;j = 0, if �i(g + gi;j) > �i(g), then �j(g + gi;j) � �j(g)

We have adapted this de�nition from Jackson and Wolinsky (1996). This de�nition of

stability reects two main ideas. First, while a link can be severed unilaterally, forming a

link is a bilateral decision, i.e. a link is formed if and only if the two �rms involved agree to

form the link. Second, there are no transfers possible across links. Taken together with the

idea of small but positive costs of link formation, this implies that both �rms must make

strictly greater pro�ts by forming a link.

3.1 Example: Homogeneous Product Oligopoly

We begin by providing a complete characterization of collaboration networks in a homoge-

neous product oligopoly, i.e., a market where the outputs of the �rms are perfect substitutes.

In particular, we restrict attention to the following linear inverse market demand:15

of link formation was introduced in Dutta et al (1995). We assume that there are some positive but small

costs to forming links. Given any network, the payo�s to a �rm are then de�ned as in the model presented in

Section 3. We examined the structure of networks that arise in Nash equilibrium in undominated strategies
of this announcement game. Our analysis yields results analogous to those presented in Section 3 below.

15We analyze the general oligopoly model later in this section.
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p = � �
X

i2N

qi ; � > 0 (3)

The pro�ts of the �rms will depend on the nature of market competition. In this section we

will assume that marginal cost of �rm i 2 N is given by (1).

We start with the case of Cournot competition. Given any network g, the Cournot equilib-

rium output can be written as:

qi(g) =
(�� 0) + n�i(g; 1)� 

P
j 6=i �j(g; 1)

(n + 1)
; i 2 N (4)

In order to ensure that each �rm produces a strictly positive quantity in equilibrium, we will

assume that (�� 0) + (n� 1)2 > 0. Aggregate Cournot output for any given g is:

Q(g) =
X

i2N

qi(g) =
n(�� 0) + 

P
i2N �i(g; 1)

(n+ 1)
(5)

The second stage Cournot pro�ts for �rm i 2 N are given by �i(g) = q2i (g). In our study of

stable networks, we will �nd it convenient to use a positive monotone transform of the �rm's

pro�ts to write the payo�s as follows:

Ti(g) = (�� 0) + n�i(g; 1)� 
X

j 6=i

�j(g; 1) ; i 2 N (6)

We can now characterize the stable collaboration networks under quantity competition.

Proposition 3.1 Suppose there is quantity competition among the �rms. If the marginal

cost function satis�es (1) and demand satis�es (3), then the complete network, gc, is the

unique stable network.

The proofs of Propositions 3.1 and 3.2 are given in Appendix A. Figure 1a gives an example

of a complete network. The intuition behind the above result is as follows. First note that if

two �rms form a link, then the costs of all other �rms are una�ected, while the cost advantage

to both �rms forming a link is the same under (1). An inspection of the pro�t expression in

(6) reveals that the positive e�ects on the pro�ts of a �rm i from a link with another �rm

9



j are given by n, while the negative e�ects are given by . Thus link formation is clearly

pro�t enhancing. This argument shows that any network other than the complete network

cannot be stable. To see why the complete network is stable, note that no further links can

be added, while the deletion of a link by a �rm i, with (say) �rm j only increases the costs

of �rm i and j but leaves the costs of all other �rms una�ected, lowering pro�ts of �rm i by

(n� 1). Thus it is not pro�table to delete links either. This completes the argument.

It is useful to contrast our result with that of Bloch (1996) who, under a similar speci�-

cation of demand and marginal cost, derives a stable coalition structure consisting of two

asymmetrically-sized blocs in which the number of �rms in the larger coalition is the integer

closest to 3(n + 1)=4. This sharp di�erence in the results is in part due to the absence of

spillovers in our setting. To see this, let us examine the incentives for link formation for a

�rm in a large component and an isolated �rm. In our framework, the above arguments show

that both the �rms have an incentive to form a link. By contrast, in the setting of Bloch,

due to the implicit assumption of perfect spillovers, the isolated �rm gains access to a large

amount of cost-reduction since it accesses all the �rms in the component; similarly all the

�rms in the component also gain access to this (erstwhile) isolated �rm. Thus the returns to

the competing �rms are much greater than in our setting, and it is possible that no �rm in

the large component wishes to form a link with an isolated �rm, and an incomplete network

can be stable. We discuss the issue of spillovers further in the concluding section.

The simultaneous open membership game in Yi (1998) obtains the grand coalition as the

unique outcome of the game. This approach is similar to one in which the decision to join

a coalition is one-sided. In such a game, in the presence of perfect spillovers, a member of

a smaller group always has an incentive to join a larger group. In our paper, link formation

is based on pair-wise incentive compatibility and there are no spillovers. Thus, our result

provides an alternative explanation as to how a grand coalition may endogenously emerge

in equilibrium.

We next take up the case of Bertrand competition. Given a network g, what are the payo�s

of di�erent �rms under Bertrand competition? Standard considerations (exploiting the idea

of a �nite price grid) allow us to state that there exists an equilibrium, and in this equilibrium

a �rm will make pro�ts only if it is the unique minimal cost �rm in the market. In other

words:

�i(g) = 0; if ci(g) � cj(g); for i 6= j; �i(g) > 0; if ci(g) < cj(g); 8 j 6= i: (7)
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Since g is arbitrary, the above expression allows us to specify the payo�s for all possible net-

works. What are the stable networks of collaboration in this setting of extreme competition?

The following result provides a complete answer to this question:

Proposition 3.2 Suppose there is price competition among the �rms. If the marginal cost

function satis�es (1) and demand satis�es (3), then the empty network, ge, is the unique

stable network.

Figure 1b presents an example of an empty network. The intuition behind this result is

simple. Suppose g is a non-empty network and that �rm i has a link in this network. It is

either the unique minimum cost �rm, in which case its collaborators (of whom there must

be at least one) have a incentive to delete their links. If, on the other hand, �rm i is not the

unique minimum cost �rm then it has a incentive to delete its links. Thus a network g in

which �rm i has a link cannot be stable. These arguments are very general; in particular, we

do not make use of the linear structure of the demand or the cost function. This suggests that

the absence of collaborative links is likely to obtain in general settings where competition is

extreme. This result should be seen only as a benchmark case; incentives to form links are

very di�erent if we allow for a slight amount of di�erentiation in products (see Appendix A

for an illustration of this).

Propositions 3.1 and 3.2 suggest that the nature of market competition has a signi�cant

inuence on incentives for collaboration and the architecture of stable networks. We now

study this inuence under more general conditions.

3.2 Moderate Competition

We consider the case where all �rms make positive pro�ts but lower cost �rms make higher

pro�ts. Such a situation is described as moderate competition. Formally, this situation is

reected in the following assumption:

Assumption MC Fix some g. �i(g) > 0 for all i 2 N ; �i(g) = �j(g) if ci(g) = cj(g), while

�i(g) > �j(g) if ci(g) < cj(g).

The next assumption concerns the payo�s of similar cost �rms.

11



Assumption SY1 Fix some g. Suppose that for a pair of �rms i and j, ci(g) = cj(g). (i) If

gi;j = 0 then �i(g + gi;j) > �i(g) > 0 and �j(g + gi;j) > �j(g) > 0. (ii) If gi;j = 1 then

�i(g � gi;j) < �i(g) and �j(g � gi;j) < �j(g).

Yi (1998, Lemma 3) demonstrates that (SY1) holds under a set of reasonable restrictions on

general homogeneous demand (downward-sloping, concave) and costs (total cost is convex

in own output, total and marginal cost are strictly decreasing with the number of links)

along with a joint restriction on demand and costs. These conditions ensure that a favorable

cost shock to a pair of symmetric �rms will increase their net pro�ts. Yi (1998, Section

5) also shows that (SY1) is valid for symmetrically di�erentiated demand (where �rm i's

payo� depends only on the aggregate output of the rival �rms). Symmetry in the presence

of moderate competition implies the following property of stable networks.

Proposition 3.3 Suppose that (SY1) and (2) hold. Consider a stable network, g. If �i(g) =

�j(g), then gi;j = 1.

Proof Let g be stable. If �i(g) = �j(g) = n, then by de�nition gi;j = 1. Therefore,

consider the case where �i(g) = �j(g) < n and gi;j = 0. Under (2) the costs of i and j are

identical if �i(g) = �j(g). Under assumption (SY1)(i), it follows that �i(g+ gi;j) > �i(g) and

�j(g+gi;j) > �j(g). This violates requirement (ii) of stability and contradicts the hypothesis

that g is stable.

2

Proposition 3.3 has several interesting implications for the nature of stable networks. The

�rst implication is that a stable network cannot have two or more singleton components.

This implies in particular that the empty network cannot be stable. The second implication

is that the star/hub-spokes network is not stable. This is because in all these networks,

there are at least two �rms i and j who have the same number of links but gi;j = 0. By

Proposition 3.3, such �rms have an incentive to form a link.16 A third implication of this

result is that if a stable network contains two or more complete components then they must

be of unequal size. The result above thus implies that if all �rms have the same cost, then

every pair of �rms must be linked; thus, the only symmetric network that can be stable is

the complete network. Our next result derives conditions under which the complete network

is the unique stable network.

16Our analysis in section 4 will illustrate that this property also obtains for large costs of forming links
but is no longer valid when we allow for transfers across �rms.
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Theorem 3.1 Suppose that hypotheses (MC) and (SY1) hold. Then the complete network,

gc, is stable. If in addition, for every network g and any link gi;j = 0 it is true that �i(g +

gi;j) > �i(g) and �j(g + gi;j) > �j(g) then the complete network, gc, is the unique stable

network.

Proof We provide a proof of the �rst statement. The second statement is immediate and

a proof is omitted. In gc, �i(g
c) = n � 1; 8i 2 N . Therefore, all �rms have the same cost

and this is the minimum cost. There are no links to add so requirement (ii) of stability is

automatically satis�ed. We check requirement (i) next. Suppose we set gi;j = 0 for some

pair i and j. In the ensuing network, gc� gi;j, assumption (SY1)(ii) implies that both �rms

i and j loose strictly. This implies that requirement (i) is also satis�ed. Thus gc is stable.

2

The additional monotonicity condition in Theorem 3.1 may seem strong. However, it is

satis�ed by a variety of standard oligopoly models. First, we note that it satis�ed by the

standard model of a di�erentiated oligopoly, with linear demand and linearly reducing costs

(as in expression (1)). The calculations for both price and quantity competition are given in

Appendix A. Second, we note that the monotonicity condition is also satis�ed if each of the

�rms is a monopoly in its own market. This is true since the only `costs' of forming links in

our model arise out of the greater competitiveness of a �rm whose costs are lowered. However,

if the other �rms are in unrelated markets then there is no `cost' to forming additional links

while there are bene�ts in terms of of lowering marginal costs of production. It is then

immediate that in such a case every pair of �rms has an incentive to form links and thus the

unique stable network is the complete network. Finally, it can be shown that it is satis�ed by

Cournot oligopoly under fairly general demand conditions. Suppose that the inverse demand,

p(Q), satis�es the following general speci�cation: p(Q) is a twice continuously di�erentiable

function with p0(Q) < 0 and p00(Q) � 0. We have shown that if inverse demand satis�es

this condition and the cost reduction is linear, then the additional monotonicity condition

on pro�ts of the �rms is also satis�ed.17

17Due to space constraints, we have omitted them from the paper. The details of these derivations are
available from the authors upon request.
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3.3 Aggressive Competition

The notion of aggressive competition should be seen as a generalization of Bertrand compe-

tition with homogeneous products. We will say that competition among �rms is aggressive

if all but the lowest cost �rms make zero pro�ts. This section provides a complete charac-

terization of strategically stable networks under aggressive competition.

There are two sub-cases: one, the lowest cost �rm makes positive pro�ts only if it is the

unique such �rm, and two, all the lowest cost �rms make positive pro�ts. The former case

is written as follows:

Assumption B Fix some g. If ci(g) � cj(g), then �i(g) = 0, while if ci(g) < cj(g) for all

j 2 Nnfig then �i(g) > 0.

This speci�cation generalizes the Bertrand competition to allow for general demand functions

and also general cost reduction functions. The arguments in the proof of Proposition 3.2

generalize in a straightforward way to show that the empty network is the unique strategically

stable network under Assumption (B).

We now take up the case where every lowest cost �rm make positive pro�ts. By way of

motivation, consider a set of �rms that are competing to apply for a patent for a cost

reducing process technology. Suppose that each of the �rms has some useful complementary

knowledge. If they collaborate, then this knowledge can be jointly used to lower costs.

Moreover, only the lowest cost technology is patented. Once the patent is available, it is

randomly allotted to one of the �rms who have the lowest cost technology. Price competition

then ensures that only this �rm makes pro�ts. The positive pro�ts should be seen as the

(ex-ante) expected pro�ts from collaboration.

Assumption AC Fix some g. If ci(g) > cj(g), then �i(g) = 0, while if ci(g) � cj(g) for all

j 2 Nnfig then �i(g) > 0.

In our analysis we shall use the following symmetry assumption with respect to the lowest

cost �rms.

Assumption SY2 Fix some g. Suppose that for a pair of �rms i and j, ci(g) = cj(g) =

mink2N ck(g). (i) If gi;j = 0 then �i(g + gi;j) > �i(g) > 0 and �j(g + gi;j) > �j(g) > 0. (ii)

If gi;j = 1 then �i(g � gi;j) < �i(g) and �j(g � gi;j) < �j(g).
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Assumption (SY2) is weaker than Assumption (SY1) since it applies only to the minimum

cost �rms. Once again, suÆcient conditions on demand and costs under which (SY2) holds

are provided in Yi (1998, Lemma 3 and Section 5). Symmetry in the presence of aggressive

competition has strong implications for collaboration. This is demonstrated in the following

result.

Theorem 3.2 Let n � 4. Suppose (AC) and (SY2) hold and marginal cost is speci�ed

by (2). Then a network is stable if and only if it is a dominant group network gk, with

k 2 f3; 4; � � � ; ng.

The proof of this result is given in Appendix A. Figure 2 presents the dominant group

networks in a market with 5 �rms. We provide a sketch of the arguments. First, we show

that any non-singleton component in a stable network must be complete. In proving this

property, we also establish that all �rms in a non-singleton component must have the same

costs and that these costs must be the minimum in the given network. Second, we show that

there can be at most one non-singleton component in a stable network. These two properties

reduce the set of candidates for stable networks dramatically to a subset of dominant group

networks.18

We note that the number of stable networks is very small as compared to the number of

total networks. For example, when n is 3, 4, 5 or 6, the total number of networks is given by

8, 64, 1024 and 32768, respectively. By contrast, the number of stable networks is given by

3, 5, 16, and 42, respectively. Thus the two simple requirements of stability lead to a strong

restriction on the class of networks.

4 Large Costs of Link Formation

In general, R & D collaboration agreements will involve commitment of funds. This leads us

to study the model where the costs of forming links are substantial. We suppose that each

link imposes a cost of f > 0 on each of the two �rms forming the link. No costs are incurred

if the link is not formed. The main results in this section pertain to the relationship between

the costs of forming links and the architecture of strategically stable networks.

18The above result is stated for n � 4. It is easily seen that in case of n = 3 an analogous result obtains:

a stable network is either complete or has two components, one component with two �rms and the other
component with a singleton �rm. We have stated the result for n � 4 as it allows for a simpler statement.
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In the analysis so far, we have worked with the assumption of negligible costs. This has

allowed us to study incentives of link formation simply in terms of the `sign' of the terms.

In the presence of large costs of forming links, an assessment of the incentives to form links

requires an explicit measurement of the bene�ts of links. This complicates the analysis

considerably, and to get our main points across easily, we study the Cournot model with

linear demand. We believe that some of our main insights hold more generally and we will

clarify the scope of the analysis below.

We incorporate the �xed costs of forming links in the payo�s as follows. Fix a network g.

The net pro�t of each �rm i 2 N is given by: �i(g) = �i(g) � �i(g)f , while the gross

pro�t is given by �i(g) = q2i (g). Given a network g, let g�i denote the network in which all

of �rm i's links are deleted. We can now de�ne a stable network as follows.

De�nition 4.1 Let f be the �xed cost of link formation. A network g is stable, if the

following conditions hold.

1. For gi;j = 1, �i(g)� �i(g � gi;j) � f; �j(g)� �j(g � gi;j) � f

2. For gi;j = 0, �i(g + gi;j)� �i(g) > f =) �j(g + gi;j)� �j(g) < f

3. For every i 2 N , �i(g)� �i(g)f � �i(g�i).

In words, the �rst two conditions require respectively that in a stable network, any �rm that

is linked to another has no incentive to sever the link, and any two �rms that are not linked

should have no incentive to establish a collaboration link. These two conditions constitute

a \marginal" check for stability. The third condition is an \aggregate", or \global", check

for stability which requires that a �rm should �nd it pro�table to maintain its collaboration

links in the network rather than not having any links. This condition can be seen as an

individual rationality condition for participation in the network.

We focus on the homogeneous demand model with linear demand. We �rst note that with

small costs of forming links the empty network was the unique stable network under price

competition. Clearly, the same result will obtain once we assume that there are large costs

of forming links. Therefore, in the rest of the analysis in this section, we will focus our

attention on quantity competition.

Our �rst result establishes that gross pro�ts of a �rm exhibit increasing returns to the number

of links which the �rm has with other �rms.
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Lemma 4.1 Consider any network g and distinct �rms i; j; k 2 N such that gi;j = gi;k = 0.

Then:

�i(g + gi;j + gi;k)� �i(g + gi;j) > �i(g + gi;j)� �i(g) (8)

Proof First of all note that the Cournot output of �rm i is strictly increasing with each

additional link: qi(g + gi;j)� qi(g) = (n� 1)=(n+ 1) > 0

Recall that for any network g, the gross pro�t of i is �i(g) = q2i (g). It follows that:

�i(g + gi;j + gi;k)� �i(g + gi;j) =
(n� 1)

(n+ 1)
[qi(g + gi;j + gi;k) + qi(g + gi;j)]

>
(n� 1)

(n+ 1)
[qi(g + gi;j) + qi(g)]

= �i(g + gi;j)� �i(g) (9)

This proves the result.

2

We note that by virtue of increasing returns in gross pro�ts, condition (3) implies condition

(1) in the de�nition of stability. Therefore, it suÆces to verify conditions (2) and (3) when

checking the stability of any network.

We now develop a complete characterization of the architecture of stable networks. We start

by noting a `transitivity' implication of the increasing returns property.

Lemma 4.2 Let g be a network which is stable under �xed cost f of link formation. Let i

and j be two distinct �rms. Then g satis�es the following property: suppose there exists a

�rm k 6= i; j such that gi;k = 1 and a �rm l 6= i; j such that gj;l = 1; then, gi;j = 1.

Proof The proof is by contradiction. Suppose that g is stable but gi;j = 0. Since g is stable,

it follows that �i(g) � �i(g � gi;k) � f . From the property of increasing returns (Lemma

4.1)it follows that �i(g+ gi;j)� �i(g) > �i(g)� �i(g� gi;k) � f: Thus �rm i has an incentive

to form a link with �rm j. The only property we have used is that �rm i has a link with

some other �rm. In this respect the situation of �rm j is symmetric. Therefore, using an
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identical argument, we can show that �rm j has an incentive to form a link with �rm i. This

establishes that g is not stable, a contradiction.

2

This result has a number of interesting implications. Firstly, it implies that any stable

network g can have at most one non-singleton component, g0. Furthermore, g0 must be

complete, i.e. all �rms in this component must have links with each other. Thus, a stable

network will have the dominant group architecture. Recall that gk denotes the network in

which there is one non-singleton complete component of size k and the remaining n � k

�rms are singletons. Secondly, this result implies that there are only two possible symmetric

stable networks: the empty and the complete.

We now provide a complete characterization of stable networks. Recall that gk refers to a

dominant group network in which the dominant group has k �rms.

Proposition 4.1 Suppose that marginal cost satis�es (1), demand satis�es (3) and that

�rms compete in quantities. Then there exist numbers F0, F1, F2, and F3, where F0 < F1 <

F2 < F3, with the following property: (1). For f < F0, g
c is the unique stable network. (2)

For F0 � f < F1, a network gk is stable if and only if k 2 fk(f); :::; ng, with k(f) > 1.

(3) For F1 � f < F3, a network gk is stable if and only if k 2 fk(f); :::; �k(f)g, with

1 � k(f) < �k(f) < n. (4) For f > F2, g
e is a stable network. Moreover, if f > F3 then ge

is the unique stable network.

Proof Consider a dominant group network, gk. A �rm in the non-singleton component of

size k has no incentive to delete all its links if:

Y (k) �
(n� 1)

(n + 1)2
[2(�� 0) + (k � 1)(n+ 3� 2k)] � f (10)

If the above condition is satis�ed, then by virtue of the property of increasing returns (Lemma

4.1), a �rm in the non-singleton component would always want to form a link with an isolated

�rm. Therefore, if g is stable, then the isolated �rm should have no incentive to form a link

with a �rm in the non-singleton component. This requires:

X(k) �
(n� 1)

(n+ 1)2
[2(�� 0) + (n� 1) � 2k(k � 1)] < f (11)
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A network gk is stable if and only if it satis�es (10) and (11). By inspection, we see that

X(k) is declining in k. Further, X(n�1) = F0. Regarding Y (k), it is initially increasing and

then decreasing in k. Note that F1 = Y (n), F2 = Y (2) = X(1), and F3 = Y (k�). Further,

F0 < F1 < F2 < F3. The proof now follows from Figures 3 and 4.

2

Figure 4 illustrates the nature of stable architectures, as the cost of forming links f varies.

We �rst note that the cost of forming collaboration links has a signi�cant impact on the

structure of the collaboration network. In particular, for low costs, the complete network is

uniquely stable, for moderate costs only networks with relatively large dominant groups are

stable, for high costs, only medium size dominant groups are stable (small and large groups

are not sustainable), while for very high costs, the empty network is uniquely stable. Hence,

the e�ect of R&D costs on the size of the dominant group is non-monotonic. The intuition

for this pattern is as follows: when costs are low, the incentive constraint of the isolated

�rm to form a link is binding. The marginal payo� to an isolated �rm from an additional

link is declining in the size of the dominant group. Hence, as the costs of forming R&D

collaboration links increase, smaller groups are suÆcient to discourage the isolated �rm from

forming a link. However, beyond a certain cost level, the incentive constraint for a �rm in

the dominant group to retain its links is binding. The returns from links to a �rm in a

dominant group are non-monotonic in the size of the dominant group: they are increasing

for group sizes until some critical value k�, and then declining. This implies that for high

cost levels, small and large dominant groups are not stable.

Secondly, we note that the architecture with dominant groups reects sharp asymmetries

in the market outcome. This suggests that the possibilities of collaboration lead to very

asymmetric outcomes in spite of ex-ante identical �rms. And, most importantly, for a large

class of parameters, such asymmetric networks are the only stable networks. This means

that in these circumstances, �rms only want a certain number of collaborators; this creates

an incentive to preempt and form links early.

Finally, we note that the key property which drives the characterization results of this

section is increasing returns in gross pro�ts. This property ensures that only the empty

and complete networks can be stable in the class of symmetric networks, and only the

dominant group architecture can be stable in the class of asymmetric networks. Our analysis,

therefore, implies that only three architectures - empty, complete and dominant group - will
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be candidates for stability in any general model of network formation where the reduced

form payo� to each player displays increasing returns.

4.1 Transfers

The property of increasing returns suggests that �rms with many links may have an incentive

to make transfers to �rms who are poorly linked to induce them to form links. These con-

siderations motivate an analysis of the nature of stable networks when transfers are allowed

across �rms. This section provides a characterization of stable networks when transfers are

allowed. We �nd that stars (and variants of this architecture) are strategically stable in this

setting.

Let ti = ft1i ; :::t
n
i g be the transfers o�ered by �rm i to other �rms. We shall suppose that

t
j
i � 0, for all i; j 2 N , and that tii = 0, for all i 2 N . We modify the concept of stability to

accommodate the possibility of transfers. The concept of strategic stability we use is de�ned

as follows.

De�nition 4.2 A network g is stable against transfers if:

1. For all gi;j = 1, [�i(g)� �i(g � gij)] + [�j(g)� �j(g � gi;j)] > 2f

2. For all gi;j = 0, [�i(g + gi;j)� �i(g)] + [�j(g + gi;j)� �j(g)] < 2f

3. There exist transfers ti 2 Rn, i = 1; 2; :::n such that

�i(g)� �i(g)f +
X

j2Ni(g)

(tij � t
j
i ) � �i(g�i); (12)

We �rst note that increasing returns from collaboration obtain in this setting as before. This

in turn implies that there can be at most one non-singleton component in a stable network.

A related implication of increasing returns is the following result on the local structure of a

stable network. The following lemma shows that if �rm i has a link with �rm j in a network

g which is stable against transfers, then it must also have a link with every �rm k which has

as many links as j in the network g � gi;j.

Lemma 4.3 If g is stable against transfers, then it satis�es the following property: suppose

gi;j = 1 for distinct i; j 2 N ; then, gi;k = 1 for all k 2 N satisfying �k(g� gi;j) � �j(g� gi;j).
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Lemma 4.3 provides a simple \marginal" check for stability against transfers by examining

the incentive for two �rms in a network g to be jointly better o� by forming a link. If i and

j can jointly pro�t from a link, then this will lower the pro�ts of all �rms k 6= i; j and may

lead some other �rms to sever their links. What is true, however, throughout this process of

readjustment is that the original network g could not have been stable against transfers.

We start by noting that an implication of increasing returns in gross pro�ts is that in the

class of symmetric networks there are only two possible stable networks: the empty and the

complete. The proof follows as a corollary of the property of increasing returns (see Lemma

4.1) and is, therefore, omitted.

We now turn to the characterization of asymmetric networks. We start with a class of

asymmetric connected networks that are commonly observed in empirical work and are stable

only in the presence of transfers. These are the star and inter-linked star architectures. We

�rst determine the conditions under which the star (or hub-spokes network) is stable against

transfers.

Proposition 4.2 Let n � 4. Suppose that cost satis�es (1), demand satis�es (3) and that

�rms compete in quantities. Then there exist FH and FL, where 0 < FL < FH such that the

star architecture is stable against transfers if and only if FL < f < FH.

The proof requires a veri�cation of the three conditions of stability. First, we need to establish

that no �rm has an incentive to delete an existing link. This generates a upper bound on

the value of f . Next we check that no pair of spoke �rms has an incentive to form a link.

This generates a lower bound on the value of f . Finally, we check that the transfers required

to induce the spoke �rms to form links with the center (or hub) are indeed feasible. This

generates another upper bound on the value of f . Putting these bounds together yields the

conditions in the result. The details of the computations are given in Appendix B.

We now elaborate on this result. First, in the star, each of the spoke �rms derives a relatively

low return from its link, due to the relative cost disadvantage with respect to the center.

Hence, the stability of the star architecture is critically dependent on transfers from the

center. If transfers were not permitted, each spoke �rm would sever its link with the hub

�rm. This is also indicative of how market dominance can arise in a setting with ex-ante

identical �rms.
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Second, inspecting the terms FL and FH in the proof of Proposition 4.2 shows that the star

is stable for all f 2 [0;1) as n ! 1, i.e over the entire parameter space. This result is

once again a consequence of increasing returns in gross pro�ts: for any �xed cost f of link

formation, however high, the center will be able to use transfers to induce spoke �rms to form

a link if its marginal pro�ts from the links are high enough; the center's marginal pro�ts in

turn will be large enough if there are a suÆcient number of spoke �rms (i.e. a large enough

value of n(f)) for the center to potentially form links with.

Third, Lemma 4.3 highlights an important relationship between a star and the connectedness

of a stable network. In particular, it implies that if a network g is stable against transfers,

and the non-singleton component is a star, then g must be connected. To see this, let k be

some �rm which does not belong to the star component. Since there can be at most one

non-singleton component in a stable network, �k(g) = 0. Now consider a hub, i, and a spoke,

j, in the star component. By de�nition, �j(g� gi;j) = �k(g� gi;j) = 0. Then, by Lemma 4.3,

i should have had a link with k as well.

In addition to the star, the only other candidates for stability in the class of connected

asymmetric networks are the inter-linked stars. In order to motivate the inter-linked star

architectures, let g be any connected network. Consider a partition of the set of �rms,

fh1(g); h2(g); : : : ; hm(g)g, with hl(g)\hk(g) = ; for l 6= k, and [m
l=1hl(g) = N . Further, (i) if

i; j 2 hl(g), then �i(g) = �j(g), (ii) if i 2 hl(g) and j 2 hk(g), l < j, then �i(g) < �j(g), and

(iii) if i 2 h1(g), then �i(g) � 1 (since g is connected). We now characterize the number of

links within an element hl(g) as well as across hl(g), l = 1; 2; :::; m in a stable network. This

characterization result shows that stable networks have an inter-linked star architecture.

Proposition 4.3 Suppose that marginal cost satis�es (1), demand satis�es (3) and that

�rms compete in quantities. Let g 6= gc be a connected network. If g is stable against transfers

then it satis�es the following properties. (i). If i 2 hl(g), j 2 hl0(g), l 6= l0.j; then�i(g) �

�j(g)j � 2. (ii) If i 2 hm(g), then �i(g) = n� 1. (iii) If gi;j = 1 for i 2 hl(g) and j 2 hl0(g),

then gi;k = 1 for any k 2 hl00(g) where l00 � l0. Moreover, for any i 2 h1(g), gi;j = 1 if and

only if j 2 hm(g). (iv) If i 2 hm�l(g), then gi;j = 1 if and only if j 2 hk(g), k > l.

The proof of this result is given in Appendix B. Inter-linked stars are illustrated in Figure 5.

For the case n = 6, these are the only asymmetric connected networks that are stable

against transfers according to Proposition 4.3. Figure 5a presents a star, Figure 5b presents
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a network with two inter-linked stars with �rms 1 and 2 forming two hubs, Figure 5c presents

a network with three inter-linked stars with �rms 1,2 and 3 forming the hubs. Finally, Figure

5d presents a network with four inter-linked asymmetric stars: the star with �rm 1 as the

hub is larger (in the sense of being connected to more spoke �rms) than the three smaller

stars with �rms 2,3 and 4 as the hubs.

Proposition 4.3 also implies that in the class of unconnected asymmetric networks, if the

non-singleton component is incomplete, then it will be an inter-linked star. Note, however,

that the non-singleton component cannot be a star by virtue of part (i) of the proposition.

In fact, as we argued earlier, if the non-singleton component is a star, then the network

must be connected. If the non-singleton component in an asymmetric unconnected network

is complete, then we have the familiar dominant group network, gk. With regard to this

architecture, we can now prove:

Proposition 4.4 Suppose that cost satis�es (1), demand satis�es (3) and that �rms compete

in quantities. If gk is stable against transfers then it is also stable. The converse, however,

is not true.

Proof Suppose gk is stable against transfers. Then, for any i; j such that gi;j = 0, net

pro�ts must satisfy:

�i(g) + �j(g) < �i(g + gi;j) + �j(g + gi;j) (13)

This implies that if �i(g + gi;j) > �i(g), then �j(g + gi;j) < �j(g). Therefore, condition (2)

in the de�nition of stability is also satis�ed.

Since gk is stable against transfers, for any i; j such that gi;j = 1:

�i(g) + �j(g) > �i(g � gi;j) + �j(g � gi;j) (14)

However, in gk, the only �rms who are linked are those which belong to the non-singleton

complete component. Therefore, these �rms have the same net pro�ts, i.e. �i(g) = �j(g)

and �i(g � gi;j) = �j(g � gi;j). It follows from (14) that �i(g) > �i(g � gi;j) and �j(g) >

�j(g � gi;j). Therefore, condition (1) in the de�nition of stability is also satis�ed.
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Since all �rms in the non-singleton complete component have identical pro�ts, it follows that

any net transfers between these �rms must be zero. Therefore, if gk satis�es condition (3)

in the de�nition of stability against transfers, then it also satis�es condition (3) of stability.

The converse of the above implication is not true: it is possible for gk to be stable for some

range of values of f but not be stable against transfers. Consider the case where n = 4 and

the network g2 where �rms 1 and 2 are linked while �rms 3 and 4 are singletons with no

links. It can be veri�ed that g2 is pairwise stable if f 2 (3
25
[2(��0)�] ; 3

25
[2(��0)+2]).

However, by virtue of Lemma 4.3, g2 is not stable against transfers.

2

This result shows that in the class of dominant group networks, allowing for transfers re�nes

the set of stable networks.

5 Conclusion

Empirical research suggests that collaboration among �rms is common; there is also some

evidence to suggest that this collaboration has been increasing in recent years. Collaboration

between �rms seems to display two striking patterns: one, the overall structure of collabora-

tion in an industry is often asymmetric and two, the relations are intransitive. In this paper,

we have developed a simple model of network formation to examine the incentives of �rms

to form collaboration links with other �rms. In particular, we have been concerned with the

interaction between market competition, on the one hand, and the networks of collaboration,

on the other hand.

Our analysis has clari�ed the nature of collaboration structures that are strategically stable

under di�erent market conditions. An important �nding is that even in settings where �rms

are (ex-ante) symmetric, strategically stable networks are often asymmetric, with some �rms

having many collaboration links, while other �rms are poorly linked. We characterized such

structures, �nding that the star, inter-linked stars and the dominant group architecture are

strategically stable. These asymmetries translate into di�erent levels of competitiveness

for �rms and hence have a serious inuence on market performance. The model of links

between �rms which we have used is quite simple and should be seen as a �rst step in a more

systematic analysis of the interaction between �rms' collaboration networks and markets.

We now briey discuss some issues that should be explored in future work.
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First, we take up the issue of spillovers. Our analysis does not accommodate spillovers across

the collaborative links of �rms. In the received literature, spillovers from the R&D activity of

�rm i is assumed to a�ect �rms j 6= i uniformly.19 In our framework, one plausible de�nition

of `distance' between �rms in a network, is the number of links in the shortest path between

the �rms. This would allows us to implement the more realistic idea that �rms that are `far

apart' receive lower spillovers as compared to �rms that are `close' in the network.

The second issue is social welfare. The potential conict between stable and eÆcient out-

comes is an important one which has �gured prominently in the coalition formation literature.

We have been able to obtain a characterization of eÆciency in the case of a homogeneous

product oligopoly with small �xed costs of link formation. In the case of price competition,

a network g is eÆcient if and only if there are two or more �rms with (n�1) links. Since the

empty network is uniquely stable, we see a conict between stability and eÆciency. In the

case of quantity competition, the complete network is uniquely eÆcient over a large range of

parameter values (� > 30 and 0 > (n� 1)). Over this range, there is no conict between

stable and eÆcient networks.20 Clearly, the architecture of eÆcient networks, particularly

in the presence of large �xed costs of link formation, is an important one which needs to be

examined in future research.

Thirdly, we discuss the role of ex-ante asymmetries between �rms. In our analysis, we have

assumed that all �rms are ex-ante symmetric with respect to initial costs and have the same

cost reduction function. This seems to us to be the natural starting point, and our results

illustrate how signi�cant network asymmetries can emerge even in such a symmetric setting.

In some important cases, however, it is natural to start with asymmetric �rms. While we

expect that asymmetric networks will become more prominent, further work on this subject

is needed to clarify the precise structure of such networks.

19There is a very large literature on the subject of R& D spillovers. See e.g., d'Aspremont, and Jacquemin
(1988), Katz (1986), Suzumura (1992) and Vonortas (1994).

20We thank Sang-Seung Yi for pointing out that over some parameter range, a dominant group network
with k = n� 1 may be eÆcient.
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6 Appendix A

Proof of Proposition 3.1 We �rst show that gc is stable. In gc; �i(g
c) = n� 1; 8i 2 N .

Therefore, �rm i has a marginal cost of 0 � (n� 1) and payo� of:

Ti(g
c) = (�� 0) + (n� 1) (15)

There are no links to add so condition (ii) of stability is automatically satis�ed. We check

condition (i) next. Suppose we set gi;j = 0 for some pair i and j . In the ensuing network,

gc � gi;j, the payo� to i is given by:

Ti(g
c � gi;j) = �� (n� 1)[0 � (n� 2)] + (n� 2)[0 � (n� 1)] = (�� 0) (16)

The payo� to �rm j is identical. There is no incentive to delete link gi;j = 1 since T (gc) �

Ti(g
c � gi;j) = (n� 1) > 0.

We now show that gc is the unique stable network. Consider a stable network g 6= gc. Then,

there exists a pair of �rms i; j 2 N with gi;j = 0. We show that both i and j are strictly

better o� by forming a link. In the network, g + gi;j, the payo� to �rm i is given by:

Ti(g + gi;j) = (�� 0) + n�i(g + gi;j)� �j(g + gi;j)� 
X

k 6=i;j

�k(g + gi;j)) (17)

Note that �l(g + gi;j) = �l(g) + 1 for l = i; j and �k(g + gi;j) = �k(g) for k 6= i; j. Therefore,

Ti(g + gi;j) � Ti(g) = (n � 1) > 0. An identical argument establishes that for �rm j,

Tj(g + gi;j) � Tj(g) = (n � 1) > 0. Thus, condition (ii) is violated and g is not stable, a

contradiction. 2

Proof of Proposition 3.2 Consider some non-empty network g. There are two possi-

bilities. First, there is some �rm i 2 N which is the unique lowest cost �rm. But this

implies that �rm i must have at least two links since all �rms are ex-ante identical. However,

since �rm i is the unique lowest cost �rm, all other �rms make zero pro�ts. In particular,

consider j 6= i such that gi;j = 1. For this �rm, condition (i) of stability is violated since

�j(g) = �j(g� gi;j) = 0. Hence, �rm i cannot be uniquely minimal cost in a stable network.

The second possibility, given that links are bilateral, is that one or more pairs of �rms have

minimal cost. Let i; j 2 N be two �rms with minimal costs. Under price competition both
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�rms make zero pro�ts. If these �rms would delete their links they would still make zero

pro�ts. Thus �i(g) = �i(g � gi;j) = 0. This once again violates condition (i) of stability.

Thus the only candidate for a stable network is ge. Condition (i) is trivially satis�ed since

there are no links to sever. In the network ge + gi;j, there are two lowest cost �rms, i and j.

From (7), it follows that both �rms will get a payo� of zero. Thus condition (ii) is satis�ed.

This completes the proof. 2

The Di�erentiated Product Oligopoly: Consider �rst the case of quantity competition

in a di�erentiated oligopoly. The inverse demand for �rm i 2 N is given by:

pi = �� qi � �
X

j 6=i

qj ; i 2 N (18)

where 0 < � < 1. The Cournot output of �rm i 2 N , given a network g, is:

qi(g) =
(�� 0)(2� �) + [2 + (n� 1)�]�i(g)� �

P
k �k(g)

[2 + (n� 1)�][2� �]
(19)

The Cournot equilibrium pro�ts are given by �i(g) = q2i (g). Under a positive monotonic

transform, the payo� to �rm i 2 N can be written as:

�i(g) = (�� 0)(2� �) + [2 + (n� 1)�]�i(g)� �
X

k

�k(g) (20)

Under (1), it can be easily veri�ed that for n � 3:

�i(g + gi;j)� �i(g) = [2 + (n� 3)�] > 0 (21)

Therefore, the additional monotonicity condition of Theorem 3.1 is met, (which also implies

that (SY1) is satis�ed). Hence, the complete network is the unique stable network in the

case of quantity competition. This result can be contrasted with Bloch (1995, Proposition

3) where, under the restriction 0 < � < 1, the equilibrium coalition structure consists of two

asymmetrically-sized coalitions with the size of the larger coalition being the integer closest

to (3n� 1)=4 + 1=(2�).
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Next, we consider price competition in a di�erentiated oligopoly. Inverting the inverse de-

mand given by (18) yields the demand functions:

qi = a� bpi + c
X

j 6=i

pj ; i 2 N (22)

where the parameters of the demand function satisfy:

a =
�

1 + (n� 1)�
; b =

1 + (n� 2)�

(1� �)(1 + (n� 1)�)
; c =

�

(1� �)(1 + (n� 1)�)

The Bertrand equilibrium prices, given the network g, are:

pi(g) = =
a+ b0

2b + (1� n)c
�

b�i(g)

2b+ c
�

bc
P

k2N �k(g)

[2b+ (1� n)c][2b + c]
(23)

The Bertrand equilibrium pro�ts are:

�i(g) = b [pi(g)� 0 + �i(g)]
2
; i 2 N (24)

Under a positive monotonic transform, the Bertrand payo�s can be written as:

�i(g) = pi(g)� 0 + �i(g) (25)

Under (1), it can be veri�ed that the second condition of Theorem 3.1 holds:

�i(g + gi;j)� �i(g) =
 [2b2 + (1� n)(b + c)c]

[2b + (1� n)c][2b + c]
(26)

Note, however, that 2b2+(1�n)(b+ c)c > 0 is equivalent to 2+�[(3n� 3)��(2n� 3)] > 0,

and the latter is clearly true since 0 < � < 1. Thus the additional monotonicity condition

of Theorem 3.1 is satis�ed. Therefore, the complete network is the unique stable network

in the case of price competition also. In contrast, Bloch (1995, Proposition 4) shows that

the unique equilibrium coalition structure in this case is identical to the one derived for the

Cournot model.
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Proof of Theorem 3.2: The proof builds on two lemmas. We state and prove them �rst.

Lemma A: Let g be a stable network. Then every non-singleton component in g is complete.

Proof Suppose that g is a stable network and g0 � g is a non-singleton component of g.

We show that g0 must be complete. We know that no unique �rm can have the lowest cost

in g0; this follows from an argument as in the �rst part of Proposition 3.2. Thus, there must

exist at least a pair of �rms i; j 2 N such that ci(g) = cj(g) = mink2N ck(g). Consider any

other �rm l 2 g0, l 6= i; j. If such a �rm has cl(g) > ci(g), then under (AC), clearly this

cannot be uniquely optimal for the �rm. For instance, �rm l can delete a link gl;k = 1 and

retain zero pro�ts. Hence, all �rms in g0 must have the same costs, and these costs must be

minimum. Thus, cj(g) = mink2g ck(g) 8j 2 g0. Finally, if i; j 2 g0 are not connected, then

under Assumption SY2(i), they can do strictly better by forming a link. Thus g0 must be

complete. 2

Lemma B: In a stable network g, there can be at most one non-singleton component.

Proof Suppose there are two non-singleton components, g0 and g00 and let �rm i 2 g0 and

that �rm j 2 g00. From the proof of Lemma A we know that �rms i and j are minimum

cost �rms. It now follows from Assumption SY2(i), that these �rms can do strictly better

by forming a link. This violates condition (ii) in the de�nition of stability. Thus g is not

a stable, a contradiction. This shows that a stable network cannot have more than one

non-singleton component. 2

We have shown that in a market with four or more �rms there can be at most one non-

singleton component, and that it is complete. This means that the only candidates for

stable networks are networks of the following form: there is a complete component with

k � 1 �rms and there are n� k singleton components. The proof of the theorem shows that

networks with k = 1 and k = 2 are not stable, while the networks with k � 3 are stable.

We are now ready to complete the proof of Theorem 3.2.

Proof of Theorem 3.2: The candidates for stable networks can be parameterized in

terms of the size of the non-singleton component, k. Given the ex-ante symmetry of �rms,

Assumption SY2(i) immediately implies that a network with k = 1 cannot be stable. Next

consider k = 2. This is a network with one component with 2 �rms and (since n � 4) at least

2 singleton components. Given speci�cation (2), it follows that if the two singleton �rms

form a link then they have will have the same costs as the two �rms already in the 2 �rm
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component. Under Assumption (AC) this yields them positive payo�s, violating requirement

(ii) in the de�nition of stability. Thus any network g with k = 2 is not stable. We are left

with networks where k � 3. In such a network every �rm i in the non-singleton component

is a minimum cost �rm, with (say) marginal cost ci(g). Under speci�cation (2), it follows

that ci(g) < cj(g), for all �rms j which are singleton components. Thus under assumption

(AC), �i(g) > 0 and �j(g) = 0. Now suppose a �rm j forms a link with another �rm i. Then

the marginal cost of the former �rm will fall still further and under (2) will remain below the

marginal cost of �rm j. Thus �rm j has no incentive to form such a link. Since k � 3, and

competition is speci�ed by assumption (AC), it is also clear that two singleton component

�rms j and k do not have an incentive to form a link either. Finally, using assumption

(SY2(ii)), it follows that �rms in the non-singleton component have no incentive to delete a

link. We have thus shown that both requirements (i) and (ii) are satis�ed for any network

with the structure: a non-singleton complete component with k � 3 �rms and n�k singleton

�rms. This completes the proof. 2

7 Appendix B

Proof of Lemma 4.3: Since g is a stable network, i and j should have no incentive to

sever their link. Letting ��i(g � gi;j) � �i(g)� �i(g � gij):

��i(g � gi;j) + ��j(g � gi;j) > 2f (27)

Let Ti(g� gi;j) � (�� 0) + n�i(g� gi;j)� 
P

l 6=i �l(g� gi;j). The above inequality can be

written as:

(n� 1)

(n+ 1)2
[Ti(g � gi;j) + Tj(g � gij) + (n� 1)] > f (28)

Now consider k 6= i; j such that �k(g� gi;j) � �j(g� gi;j) but gi;k = 0. Consider the network

g + gi;k and let �i(g) � �i(g + gi;k)� �i(g). Then:

��i(g) + ��k(g) =
2(n� 1)

(n+ 1)2
[Ti(g) + Tk(g) + (n� 1)] (29)
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Note that:

�l(g) = �l(g � gi;j) + 1; l = i; j

�k(g) = �k(g � gi;j) � �j(g � gi;j)

�l(g) = �l(g � gi;j); l 6= i; j; k (30)

Therefore, Ti(g) = Ti(g � gi;j) + (n� 1) and Tk(g) � Tj(g � gij)� 2. Substituting in (29)

and recalling (28) it follows that:

��i(g) + ��k(g) =
2(n� 1)

(n+ 1)2
[Ti(g � gi;j) + (n� 1) + Tj(g � gi;j)� 2 + (n� 1)]

= ��i(g � gi;j) + ��j(g � gi;j) +
2(n� 1)(n� 3)2

(n+ 1)2

> 2f (31)

Therefore, i and k have a pro�table deviation from g by forming a link. This contradicts the

stability of g against transfers. 2

Proof of Proposition 4.2: Suppose that gs is a star network with 1 �rm at the center and

(n� 1) �rms at the spokes. Denote the center �rm by n and typical �rms at the spokes by

i and j. If �rm n deletes all its links then we arrive at the empty network, denoted by ge.

If �rm i or �rm n deletes a link, then we arrive the network gs � gn;i. We now write down

the three incentive requirements. The requirement that �rm n and �rm i wish to maintain

their link may be written as:

[�n(g
s)� �n(g

s � gn;i)] + [�i(g
s)� �j(g

s � gn;i)] > 2f (32)

The requirement that �rms i and j do not have an incentive to form a link may be written

as follows:

[�i(g
s + gi;j)� �i(g

s)] + [�j(g
s + gi;j)� �j(g

s)] < 2f (33)

The requirement that there exists a set of transfers such that �rms have no incentives to

isolate themselves by deleting all their links is written as follows. For some ti, for i = 1; 2; ::n,
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it is true that

�n(g
s)� (n�)f +

X

j2Nn(g)

(tnj � tjn) � �n(g
e)

�i(g
s)� f + (tin � tni ) � �i(g

s � gn;i); 8i 2 Nnfng: (34)

We note that the gross pro�ts for di�erent �rms can be written as follows:

�n(g
s) =

[�� 0 + (n� 1)2]2

(n+ 1)2
(35)

�n(g
s � gn;i) =

[�� 0 + (n� 2)(n� 1)]2

(n+ 1)2
(36)

�n(g
e) =

[�� 0]
2

(n+ 1)2
(37)

�i(g
s) =

[�� 0 + (3� n)]2

(n+ 1)2
(38)

�i(g
s � gn;i) =

[�� 0 � 2(n� 2)]2

(n+ 1)2
(39)

�i(g
s + gi;j) =

[�� 0 + 2]2

(n+ 1)2
(40)

We now substitute the above payo� terms in the incentive conditions(32)-(34). We start

with (32). After substitution and rearrangement, we get the following term.

(n� 1)[4(�� 0) + (n� 1)(2n� 3)� (3n� 7)]

(n + 1)2
> 2f (41)

Similarly, (33) can be rewritten as follows:

2(n� 1)[2(�� 0) + (2� n+ 3)]

(n + 1)2
< 2f (42)

De�ne:

F 0 =
(n� 1)[4(�� 0) + (n� 1)(2n� 3)� (3n� 7)]

2(n+ 1)2
(43)

FL =
2(n� 1)[2(�� 0) + (2� n + 3)]

2(n+ 1)2
(44)
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Conditions (32) and (33) are satis�ed if and only if the �xed costs are such that FL < f < F 0.

It is easily veri�ed that FL < F 0 if n > 3.

Finally, we construct the set of transfers. Recall that we only require that there exists a set

of transfers which makes �rms want to retain their links in gs rather than delete all their

links. Note that for the star to be stable it must be the case that the spokes do not have an

incentive to form a link with each other. Given the symmetry in their situation, it follows

that their marginal payo�s from the additional link are the same. This requirement taken

along with increasing returns implies that if the star is to be stable then it must be the case

that each of the spoke �rms also do not have an incentive to form a link with the central

�rm. Thus transfers have to made by the central �rm to each of the spokes. The minimum

value of this transfer is given by:

tin = �i(g
s � gn;i)� �i(g

s) + f (45)

Given the above expressions we can rewrite this minimum transfer as:

tin = f �
(n� 1)[2(�� 0)� (3n� 7)]

(n+ 1)2
(46)

We wish to show that the central �rm has an incentive to make such transfers to each of the

spoke �rms rather than delete all links. This incentive is satis�ed if and only if:

�n(g
s)� (n� 1)(f + tin) � �n(g

e) (47)

After some rearrangement this requirement can be expressed as:

(n� 1)[4(�� 0) + (n� 1)2 � (3n� 7)]

(n+ 1)2
� 2f (48)

De�ne:

F 00 =
(n� 1)[4(�� 0) + (n� 1)2 � (3n� 7)]

2(n+ 1)2
(49)

It can be checked that F 00 > FL, for all n > 3. De�ne FH = minfF 0; F 00g. The proof now

follows. 2

Proof of Proposition 4.3 We prove the parts in sequence.
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(i). Suppose g is connected and asymmetric. It follows then that g induces a partition

with at least two elements. The claim is proved if we show that �i(g) � �j(g) � 2 for any

pair i 2 hl+1(g) and j 2 hl(g) with 1 � l � m � 1. Suppose �i(g) � �j(g) = 1. Then

there exists some player k 6= i; j such that gi;k = 1 but gj;k = 0. However, note that

�i(g � gi;k) = �j(g � gi;k) = �j(g). Hence, from Lemma 4.3 we infer that g is not stable

against transfers, a contradiction.

(ii). Suppose to the contrary that �i(g) < n� 1 for i 2 hm(g). Consider any j 6= i such that

gi;j = 0. Since g is connected, there exists some k 6= i; j such that gj;k = 1. However, by

de�nition of hm(g), �i(g � gj;k) > �k(g � gj;k). Lemma 4.3 now implies that since gi;j = 0, g

is not stable against transfers.

(iii). Suppose not. Then there exists some k 2 hl00(g), l
00 � l0, such that gi;k = 0. However,

by assumption, �k(g� gi;j) > �j(g� gi;j). Therefore, from Lemma 4.3 g is not stable against

transfers, a contradiction. This completes the proof of the �rst part of the statement.

We now show that if i; j 2 h1(g), then gi;j = 0. Suppose not. From the previous argument,

gi;k = 1 8k 6= i. This implies �i(g) = n� 1, a contradiction to the hypothesis that i 2 h1(g).

We next show that if i 2 h1(g) and j 2 hm(g), then gi;j = 1. Suppose to the contrary that

gi;j = 0 for some i 2 h1(g) and j 2 hm(g). This implies from the previous argument that

gi;k = 0 8k 2 Nnfig, thereby contradicting the connectedness of g.

Finally we show that if i 2 h1(g) and j 2 hl(g), for l < m then gi;j = 0. Suppose to the

contrary that gi;j = 1 for some i 2 h1(g) and j 2 hl(g) for 1 < l < m. By the argument

above, this implies that �rm j has a link with all �rms k 6= j, i.e. �j(g) = n � 1. Hence,

j 2 hm(g), a contradiction. We note that this result also implies that h1(g) is the unique

element of the partition with this property.

(iv). We prove this part by induction. Fix l = 1. We �rst show that if i 2 hm�1(g) then

gi;j = 0, for j 2 h1(g). Suppose this claim is false. Then gi;j = 1 for some j 2 h1(g).

From part (iii), this implies that gi;k = 1 8k 2 hl(g), l � 1, which implies �i(g) = n � 1.

This contradicts the hypothesis that i 2 hm�1(g). We next show that if j 2 hk(g), k > 1,

then gi;j = 1. Suppose not and let gi;j = 0. Then from part (iii) it follows that gj;k = 0

8k =2 hm(g). Then from part (iii) this implies j 2 h1(g), a contradiction.

Now suppose that the hypothesis is true for l̂ � 1, i.e. if i 2 hm�l̂(g), then gi;j = 1 if and

only if j 2 hk(g), k > l̂. We now show that the hypothesis is also true for l̂ + 1.
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We �rst prove that if i 2 hm�l̂�1(g) and j 2 hk(g), k � l̂ + 1, then gi;j = 0. Suppose the

claim is false. Then gi;j = 1 for some j 2 hl(g), l � l̂ + 1. From part (iii), this implies

gi;r = 1, 8r 2 hl(g), l � l̂ + 1. Using the induction hypothesis, this means �i(g) � �r(g) for

r 2 hm�l̂(g). This contradicts the hypothesis that i 2 hm�l̂�1.

To prove the converse, we need to show that for any j 2 hk(g), k > l̂ + 1, implies gi;j = 1.

Suppose not. Then gi;j = 0 for some j 2 hl(g) for l > l̂ + 1. Then gj;k = 0, 8k 2 hl0(g),

l0 � m� l̂ � 1. However, this implies j 2 hl̂+1(g), a contradiction. 2
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Figure 1a: Complete Network

Figure 1b: Empty Network

Figure 1: Symmetric Pair-Wise Stable Networks for n=5



Figure 2a: Dominant Group with No
Fringe Firms

Figure 2b: Dominant Group with
One Fringe Firm

Figure 2c: Dominant Group with
Two Fringe Firms

Figure 2: Dominant Group Architecture for n=5



Figure 5b: Two Inter-Linked Stars
with Firms 1 and 2 as the Centers

Figure 5a: Star Network with Firm 1
as the Center

Figure 5c: Three Inter-Linked Stars
with Firms 1,2 and 3 as the Centers

Figure 5d: Four Asymmetrically-
Sized Inter-Linked Stars

Figure 5: Asymmetric Connected Networks that are Pair-Wise Stable Against Transfers for
n=6
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Figure 3: Pair-Wise Stability of the Dominant Group Architecture

 



Figure 4: Non-Monotonicity in Size of Dominant Group with respect to Cost of
Link Formation


