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1 Introduction

In this paper we study the problem of saving for retirement with contribution payments and

labor income as a benchmark for investments. We consider the retirement saving problem from

the point of view of a plan sponsor. The plan sponsor makes contribution payments to an

investment fund in order to save for the future retirement of an employee. The goal is to ensure

that the employee can continue his consumption pattern after retirement. As the consumption

habits of the employee are related to his wages, the plan sponsor considers the labor income of

the employee as a benchmark for investments.

Clearly, the plan sponsor is not only concerned about the welfare of the employee and also

wants to minimize his contribution payments. We formalize this in a multi-period retirement

saving model, where the plan sponsor makes a trade-o� between the utility of low contribution

payments and the utility of high fund values at retirement, relative to the labor income of the

employee. The solution of the model reveals the optimal dynamic investment strategy and the

optimal funding policy of the plan sponsor.

The retirement saving model presented in this paper includes both a de�ned contributions

pension plan and a `�nal pay' de�ned bene�ts plan as special cases. The generality of the model

allows us to circumvent the large di�erence in pension schemes throughout the world: we focus

on the core of the retirement saving problem. Clearly, not every plan sponsor or pension fund

considers labor income as a benchmark for investments. However, we believe that it is in the

interest of the employees to do so, without any adverse consequences.

An important assumption throughout the paper is that the labor income of the employee can

not be replicated with the available assets: consequently, the �nancial market is incomplete.

Moreover, we assume that the wage growth rate is partly predictable. Given the basic model

setup, we derive optimal decision rules by applying dynamic programming. The optimal de-

cision rules specify the asset weights and the contribution payment as a function of the state

variables (the wealth-to-income ratio and the wage growth rate) and provide direct insight into

the underlying problem.

We are particularly interested in the following issues, which are relevant for retirement saving

and have not been studied adequately in the literature yet:

1. What is the magnitude of the demand for the hedge portfolio against random changes of

the wage growth rate?

2. What is the impact of contribution payments on the optimal asset allocation?

3. What is the optimal multi-period investment strategy for investment objectives based on

downside risk measures, which are very popular in practice?

With our implementation of the dynamic programming algorithm we were able to address these

three main questions about optimal investment and funding in the retirement saving model.

The conclusions to be drawn from our analysis and computational experiments are as follows:
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1. Regardless of his utility function, the plan sponsor invests in a hedge-portfolio against

random uctuations of the employee's labor income. The hedge portfolio depends on the

covariance of the asset returns with the wage growth rate. Whether the plan sponsor

dynamically changes his holdings of the hedge portfolio depends on the relative risk aversion

of the investment objective. Furthermore, the dynamic feature of the hedging strategy is

solely driven by wealth e�ects as substitution e�ects are absent in our economy. The

numerical results demonstrate that the correlation between asset returns and wage growth

has a substantial inuence on portfolio composition. Dynamic adjustments of the hedging

strategy due to changes of the wage growth rate are relatively small.

2. Contribution payments change the optimal investment strategy considerably, even for a

plan sponsor with constant relative risk aversion over fund value. The portfolio weights

are no longer constant and there is a strong tendency to gamble at low levels of wealth.

Intertemporal measurement of utility over wealth can reduce these gambling e�ects. We

also �nd that contribution payments lead to a strong investment horizon e�ect. Moreover,

additional constraints on the funding policy can completely alter investment strategies.

3. Plan sponsors increase the weight of risky assets in the portfolio at low levels of wealth,

if they maximize the expected fund value subject to a penalty on downside-risk. This

gambling policy can be attributed to the increasing relative risk aversion property of the

downside-risk measure.

The insights gained from the basic retirement saving model studied in this paper may help plan

sponsors to formulate dynamic investment policies and choose reasonable objectives. Further-

more, the optimal decision-rules derived here can be implemented in simulation-based systems

for ALM, where additional market imperfections such as transaction costs could be added.

In order to place this paper in the literature, we could interpret the retirement saving problem

with labor income as an asset-liability management (ALM) problem. In the literature many

single-period ALM models have been studied (Sharpe and Tint 1990 and Leibowitz, Kogelman,

and Bader 1994). These models indicate that investors should take the correlation between assets

and liabilities into account, while deciding about the investment strategy. However, saving for

retirement typically involves a long-term investment goal, and one-period models are therefore

inappropriate due to stochastic opportunity sets and non-myopic preferences.

There is a large stream of literature about the application of stochastic programming methods

for multi-period ALM (see Mulvey and Ziemba 1998 for an overview). Stochastic programming

models formulate an accurate answer to the question: how to invest today, given optimal re-

course in the future? However, the optimal policies do not explicitly reveal the relation between

the decisions and the state-variables. Our main objective is to gain insight in optimal deci-

sion rules for portfolio choice and funding in a simple micro-economic model without market

imperfections.1

Due to the focus on dynamic programming and micro-economic analysis this paper is related to

the individual consumption-investment literature, which we review in Section 2.3. Our retire-

1The knowledge gained from a simple micro-economic ALM model might be applied for the formulation and

interpretation of normative stochastic programming models with additional market imperfections.
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ment saving model can be classi�ed as a model with a stochastic opportunity set (predictable

wage growth), with both negative and positive consumption (the net contribution payment)

and without a riskless asset (due to market incompleteness). Koo (1999) analyzes a simple

discrete-time model with labor income for power utility (constant relative risk aversion) and

has to apply numerical techniques to solve it completely. As our model is more elaborate and

as we additionally want to study more general objectives than power utility, we clearly need a

numerical solution method.

Recently a number of consumption-investment models have been solved numerically in order to

study the impact of relevant, but analytically complicated, issues such as predictability, trans-

action costs and parameter uncertainty (Brennan, Schwartz and Lagnado 1997, Balduzzi and

Lynch 1999a, Barberis 1999). Unfortunately the numerical techniques applied are speci�cally

intended for power utility functions. An alternative approach is the approximation technique

of Campbell (1993), which can be used to solve general consumption-investment models quasi-

analytically. However, the derived investment policies do not converge to the optimal solutions

and could entail serious approximation errors (Campbell e.a. 1998).

In this paper we do not rely on simplifying assumptions or approximation techniques for the

computations. We introduce a implementation of the dynamic programming algorithm with

several improvements to increase the eÆciency of the method. The improvements include trans-

formation and interpolation of the value function, which are crucial to solve any investment

model with power or HARA-utility. As we apply dynamic programming, the optimal policies

are derived in feedback form and we acquire direct insight into the structure of the strategies.

This paper is organized as follows. In Section 2 we introduce the retirement saving model and

the main assumptions. Moreover, we review the literature and introduce our implementation of

the dynamic programming algorithm. In Section 3 we study the optimal investment strategies

in detail for di�erent investment objectives. We show that the widely used class of downside-risk

measures leads to peculiar investment policies in a multi-period setting. In Section 4 we study

the additional e�ect of funding payments on the investment strategy. Section 5 concludes and

summarizes the paper.

2 Retirement Saving Model

2.1 Model De�nition and Assumptions

In this section we introduce the model for retirement saving that will be studied in this paper.

We assume that a plan sponsor pays contributions in order to �nance the retirement of an

employee at time T . The plan sponsor has established an investment fund with initial wealth

Wt at time t = 0 in order to achieve the retirement goal at the planning horizon T . At the

beginning of each period t = 0; 1; :::; T � 1 the plan sponsor decides either to add a contribution

payment of C+
t � 0 to the fund or extract cash from the fund C�

t � 0. We represent the net

cashow into the fund by Ct = C+
t � C�

t .
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After the cash in- and outows a total amount of (Wt +Ct) is left for investment in the capital

market. There are I+1 assets available for investment in the economy at time t, each providing

a discretely compounded random return of Ri;t+1 at time t+1 for i = 0; 1; :::; I. Each period the

plan sponsor invests a fraction wit of the investment fund's wealth into asset i = 1; :::; I, while

the remaining fraction (1�
PI

i=1 w
i
t) is invested in asset 0.

The investment goal of the plan sponsor is to enable the employee to continue his consumption

habits after retirement. As the employee's consumption pattern is likely to be related to his labor

income, the plan sponsor considers the employee's wages at retirement IT as a benchmark for

investments. We assume that the plan sponsor measures wealth relative to the labor income of

the employee and maximizes a utility function U(FT ; T ) over the relative fund value FT =WT =IT
at retirement. The function U(FT ; T ) is increasing and concave in the fund value FT .

Additionally, the plan sponsor tries to minimize his contribution payments by maximizing the

utility function V (�Ct; It; t) over the intertemporal payments Ct for t = 0; 1; :::; T � 1. The

function V (:; It; t) is increasing and concave in its �rst argument. Higher contribution pay-

ments therefore decrease the utility of the plan sponsor and increase the marginal utility of a

unit reduction in payments. We formalize the trade-o� between fund value at retirement and

contribution payments in the following retirement saving model:

(RS) Retirement Saving Model

maxwit;Ct E0

"
T�1X
t=0

V (�Ct; It; t) + �U(WT =IT ; T )

#
(1)

s:t: Wt+1 = ( Wt + Ct )

 
IX

i=1

wit(1 +Ri;t+1) + (1�

IX
i=1

wit)(1 +R0;t+1)

!
;(2)

for t = 0; 1; :::; T � 1:

where � > 0 is a parameter inuencing the relative impact of utility over fund value FT =WT =IT
at retirement T .

The general model for retirement saving needs a more detailed speci�cation for a meaningful

analysis. As a �rst building block, we will assume that the wage growth rate �t follows a

mean-reverting process:

Assumption 1 Labor income It at time t grows with the continuously compounded wage growth

rate �t+1, which follows a mean-reverting process

It+1 = Ite
�t+1 = It (1 + �t+1)(3)

��t+1 = �(�� � �t) + �t+1; �t+1 � IID(0; �2�)(4)

where ��t+1 = �t+1 � �t, 0 < � < 1 is the mean reversion parameter, �� is the long run

mean wage growth rate and �t+1 is an identically intertemporal independently distributed (IID)
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innovation with expectation zero and variance �2�. For ease of exposition we also de�ne the

discrete wage growth rate �t+1 = e�t+1 � 1.

Secondly, we assume that the asset returns are not correlated intertemporally and imperfectly

correlated with the wage growth innovation:

Assumption 2 The joint distribution of the continuously compounded asset returns ri;t+1 and

the wage growth innovation �t+1 is equal in each period t = 0; 1; :::; T � 1. The vector of mean

asset returns is � = f�ig
I
i=0 and the covariance matrix is 
 = f�ijg

I
i;j=0. The correlation vector

of the asset returns with the wage growth innovation �t+1 is denoted by �I� = f�i�g
I
i=0. The

asset returns are not correlated intertemporally: Cov(ri;t+1; ri;t) = 0 for t = 0; 1; :::; T � 1. The

discretely compounded asset return is de�ned as Ri;t+1 = eri;t+1 � 1.

Assumption 2 implies that there is no direct compensation for wage growth in the nominal

asset returns, although the returns can still be imperfectly correlated with the wage growth

rate. Consequently, this assumption entails that there is no perfect hedge for wage ination: the

�nancial market is incomplete.

Thirdly, we assume that the plan sponsor measures the utility of a contribution payment Ct

relative to employee's wage income It at time t:

Assumption 3 The utility V over contribution payments is a function of time and the ratio

Ct=It only: V (�Ct; It; t) = H(�Ct=It; t). We de�ne ct = Ct=It as the contribution rate relative

to the employee's labor income.

Assumption 3 allows us to reduce the state space of the retirement saving problem from three

variables (wealth Wt, income It and wage growth �t) to two variables (the wealth-income ratio

Ft and wage growth �t). As a result the e�ort needed for solving the model reduces signi�cantly.

In our opinion this reduction of complexity makes up for the slight loss of generality. Moreover,

the assumption of utility over contribution rates is also made by Boender (1997) in a widely

used decision support system for pension funds.

In practice pension schemes are often categorized as either a de�ned contributions plan or a

de�ned bene�ts plan. We would like to point out that our retirement saving model can include

both schemes as special cases. If we �x the contribution payments Ct at a constant non-

negative level, then we replicate a de�ned contributions scheme. The retirement saving model

also includes a `�nal pay' de�ned bene�ts scheme, where the plan sponsor guarantees to pay

M times the employee's labor income at retirement (i.e. MIT ).
2 In the next sections we will

discuss solution methods for the retirement saving model.

2In order to guarantee MIT at retirement, the plan sponsor either has to pay an additional amount of C+

T =

maxf0;MIT �WT g or he receives the redundant fund value C�

T = maxf0;WT �MIT g. Suppose that the plan
sponsor maximizes a utility function H(cT ; T ) over the �nal contribution rate cT = (MIT �WT )=IT =M � FT .

We can model this equivalently with a utility function U(FT ; T ) over �nal fund value FT , as in the objective (1)

of the retirement saving model.
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2.2 Dynamic Programming and First Order Conditions

A well-known solution technique for sequential decision problems under uncertainty is dynamic

programming (see Bellman 1957 and Bertsekas 1976). It is based on the observation that an

optimal policy for the entire sequential decision problem should also be optimal starting from

any given state at a later date. This property is known as the principle of optimality. Given

Assumption 1, 2 and 3, we can describe the state of the retirement fund at time t completely

with the relative fund value Ft = Wt=It and the wage growth rate �t. Let the value function

J(Ft; �t; t) denote the maximum expected utility obtainable for the �nancial institution starting

at time t in state (Ft; �t):

J(Ft; �t; t) = max
wit;ct

Et

2
4T�1X
j=t

H(cj ; j) + �U(FT ; T )

3
5(5)

s:t: Ft+1 = ( Ft + ct )

 
IX

i=1

wit

(1 +Ri;t+1)

(1 + �t+1)
+ (1�

IX
i=1

wit)
(1 +R0;t+1)

(1 + �t+1)

!
;(6)

for t = 0; 1; :::; T � 1:

The �nancial institution's initial planning problem is de�ned by J(F0; �0; 0). Using the principle

of optimality, the dynamic programming algorithm derives this function recursively by solving

the following sequence of one-period problems:

J(Ft; �t; t) = max
wit;ct

f H(ct; t) + Et [J(Ft+1; �t+1; t+ 1)] g;(7)

s:t: Ft+1 = ( Ft + ct )

 
IX

i=1

wit

(1 +Ri;t+1)

(1 + �t+1)
+ (1�

IX
i=1

wit)
(1 +R0;t+1)

(1 + �t+1)

!
;(8)

for t = 0; 1; :::; T � 1:

where J(FT ; �T ; T ) = �U(FT ; T ).

We now state the �rst order conditions of optimality for the investment and funding policies of

the retirement saving model, following from the dynamic programming equations (7):

0 = Hc(c
�
t ; t)�Et

�
JF (Ft+1; �t+1; t+ 1)

(1 +R�
t+1)

(1 + �t+1)

�
; for t = 0; 1; :::; T � 1:(9)

0 = Et

�
JF (Ft+1; �t+1; t+ 1)

(Ri;t+1 �R0;t+1)

(1 + �t+1)

�
; for i = 1; :::; I and t = 0; 1; :::; T � 1:(10)

where R�
t+1 =

PI
i=1w

�
it(Ri;t+1 �R0;t+1) +R0;t+1 denotes the optimal portfolio return.

In general it is not easy to solve to �rst order conditions for the optimal policies and in most

cases numerical techniques are required. Before we present our numerical method, we will �rst

discuss related literature on optimal portfolio choice.
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2.3 Related Literature

The retirement saving model can be counted as a multi-period asset-liability management model,

if we interpret the employee's labor income at retirement as a liability. In the literature many

single-period ALM models have been studied (Sharpe and Tint 1990 and Leibowitz, Kogelman,

and Bader 1994). These models indicate that investors should take the correlation between

assets and liabilities into account, while deciding about the investment strategy. However,

pension funds typically have a long investment horizon, and one-period models are therefore

inappropriate in a context with stochastic opportunity sets or non-myopic preferences.

There is a large stream of literature about the application of stochastic programming methods

for multi-period ALM (see Mulvey and Ziemba 1998 for an overview). Stochastic programming

models formulate an accurate answer to the question: how to invest today, given optimal recourse

in the future? However, the optimal policies do not explicitly reveal the relation between the

decisions and the state-variables. Our main objective is to gain insight in optimal decision rules

for portfolio choice and funding in a simple micro-economic model without market imperfections.

Given our focus on a dynamic programming and micro-economic analysis, the discrete-time

individual consumption-investment literature is more closely related to this paper. Early refer-

ences are Hakansson (1970), Mossin (1968) and Samuelson (1969), which study a multi-period

consumption-investment problem for an investor with constant relative risk aversion (CRRA),

i.e. power utility. Under the additional assumption of intertemporally independent asset returns

they prove that the portfolio weights are equal in each period, independent of the individual's

age and wealth. The investment policies are called myopic as the investor behaves identical to

a single-period investor.3

In a continuous time framework, where the time-step between consecutive decisions becomes in-

�nitesimally small, Merton (1969,1971) con�rms the �ndings of Samuelson (1969) and Hakansson

(1969,1971).4 Recent papers by DuÆe et al. (1997) and Koo (1998) apply the theory of viscos-

ity solutions to study a continuous time model with labor income and bankruptcy constraints.

A complete solution for HARA-utility (including CRRA as a special case) requires numerical

techniques, equivalently to the discrete-time case studied by Koo (1999). Another important

development in the �eld is the martingale methodology of Pliska (1986), Karatzas, Lehockzky

and Shreve (1987) and Cox and Huang (1989). As the martingale methodology heavily relies on

a complete markets setting, it is not suited for our model with non-traded wage income.5

3Hakansson (1969,1971) generalizes the multi-period model further and adds stochastic wage income, serially

correlated asset returns and uncertainty about the individual's lifetime to the basic setup. All these results are

limited to CRRA or the class of hyperbolic absolute risk aversion (HARA) utility functions with a negative

threshold parameter.
4The closed-form solutions of Merton (1971) are limited to HARA-utility functions (including CRRA as a

special case), under the additional assumption that the asset prices can be described with geometric Brownian

motions. Sethi and Taksar (1988) have shown that some of the solutions in Merton (1971) are incorrect since

bankruptcy problems are ignored. Explicit constraints are necessary to prevent bankruptcy, and closed-form

solutions are more diÆcult to derive.
5Some progress has been made in extending this methodology to incomplete markets (see He and Pearson

1991), however the non-uniqueness of an equivalent martingale measure causes serious complications.
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In the modern consumption-investment framework our retirement saving model can be classi�ed

as a model with a stochastic opportunity set (predictable wage growth), with both negative and

positive consumption (the net contribution payment) and without a riskless asset (due to market

incompleteness). In the de�ned contributions case it reduces to a model without consumption

and with �xed labor income (the constant contribution rate). Koo (1999) analyzes a simple

discrete-time model with labor income for power-utility, but has to apply numerical techniques

to solve it completely. As our model is more elaborate and as we additionally want to study

preferences outside the HARA class, we clearly need a numerical solution method.

Recently several authors have solved consumption-investment problems numerically in order to

investigate research questions that can not be addressed analytically. These numerical schemes

are often based on approximations or simulations and consider CRRA in order to facilitate cal-

culations. Brennan, Schwartz, and Lagnado (1997) study the impact of time-varying expected

returns under power utility. Brandt (1999) studies the impact of stochastic opportunity sets

under power utility with an approximation based on the method of moments. Barberis (1999)

considers parameter uncertainty and uses simulations for power utility. Balduzzi and Lynch

(1999a,1999b) consider the impact of transactions costs and predictability using numerical tech-

niques for power utility.

Campbell (1993) introduces a simple approximation technique which allows for quasi-analytical

solutions of consumption-investment problems with recursive utility and stochastic opportunity

sets. The approximation is based on a log-linearization of the Euler equation and the budget

equation. As a result the optimal consumption and portfolio decisions are quadratic and lin-

ear in the state-variable respectively. Campbell and Viceira (1999a,1999b) and Viceira (1999)

have applied this technique to solve interesting consumption-investment problems approximately.

However, a disadvantage of the approximation method is that the derived solutions do not con-

verge to the optimal strategies.6

Apart from serious approximation errors there are other drawback associated with the method

introduced by Campbell (1993). First, all the consumption-investment models considered have

an in�nite horizon, which greatly simpli�es the problem since the solutions no longer depend on

time. Second, it does not seem straightforward to take additional restrictions into account such as

limits on borrowing and constraints to prevent bankruptcy. We now propose a numerical solution

technique that does not su�er from the drawbacks indicated above and moreover converges to

the optimal solution.

2.4 Implementation of the Discretized Dynamic Programming Algorithm

We apply a numerical solution technique for dynamic programming that is based on a discretiza-

tion of the state space, i.e. a grid for the values of the state variables Ft and �t. For each point

on this grid we solve the dynamic programming equation (7) numerically for the optimal in-

vestment and funding decisions. Note that the required computations easily get out of hand, as

6Campbell et al. (1998) show that the approximation error can indeed be quite large compared to a more

general approximation technique based on polynomial decision rules for consumption and investment.
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the expectation of next period's value function has to be integrated numerically. An additional

complicating factor is the curse of dimensionality: the size of the state grid grows exponentially

with the number of state variables.

We propose an implementation of the discretized dynamic programming algorithm with four

crucial additions that increase the eÆciency of the method:

1. Variance reduction techniques in order to improve Monte-Carlo simulations.

2. Interpolation of the value function in order to reduce the size of the grid.

3. Transformation of the value function in order to facilitate interpolation methods.

4. Fast numerical optimizations using restarts from neighboring grid points.

We apply Monte-Carlo simulation to calculate expectations over the return distributions, with

an additional variance reduction technique to reduce the approximation error of the simulation

method. We employ the method of antithetic sampling to replicate the mean of the underlying

asset return distributions. Additionally we rescale the entire sample of returns in order to �t the

variance of the returns exactly. This particular variance reduction method seems appropriate, as

the mean and the variance of the return distributions play an essential role in portfolio selection.

Note that each simulated drawing from the distribution of the state variables tends to lie in

between the points on the grid at time t+ 1. In order to calculate the expectation at time t of

the value function at time t + 1 in equation (7) we require an estimate of the value function

in each simulated point. In the backward recursion of the dynamic programming algorithm we

already know the value function in all points on the grid at time t + 1. We can pick a point

on the grid that lies close to the simulated state, in order to obtain an estimate. Subsequently,

the expectation of the value function can be computed as the sample mean of all the simulated

estimates. Note that this simple version of the discretized dynamic programming algorithm

approximates the value function at time t+ 1 with a piecewise linear function.

A more smooth and accurate approximation of the value function can be achieved if we apply

interpolation methods. In order to facilitate interpolation we �rst transform the value function to

a roughly linear shape with a power function (see Appendix B for details). Next we interpolate

the transformed value function in between grid points and apply the inverse transformation

to obtain the approximation. The transformation of the value function is crucial to ensure

accurate interpolation of utility functions with a vertical asymptote (e.g. power and HARA

utility functions), which would otherwise require extremely �ne-grained grids.

We interpolate the transformed value function with a local rational polynomial, which is a reli-

able and accurate method for nearly any functional form (see Press et al. 1989). Unfortunately

the rational interpolation method is rather slow. Therefore, we calculate the scaled second

derivative of the transformed value function to determine whether the function is locally linear.

Depending on the value of this scaled second derivative we either apply rational, polynomial or

linear interpolation (see Appendix B). We have tested this interpolation-rule on a number of

functions and found that it provides a nice combination of reliability and eÆciency.
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Finally, we exploit Powell's method (Press et al. 1989) for the numerical optimizations in the

dynamic programming equation (7). The computation-times can be cut drastically by using the

optimal policy of a neighboring grid point as initial guess for the optimization method. Note

that Powell's method does not explicitly handle bounds on the decision variables. However, we

can still impose lower and upper bounds on the variables by simple transformations with an

exponential or arctangent function.

Our implementation of the discretized dynamic programming algorithm converges to the optimal

solution, given a number of mild continuity assumptions about the utility functions. Convergence

in this context means that the numerical approximation of the value function at time t = 0 will

get arbitrarily close to the actual value function, as the distance between points on the grid

becomes smaller. We refer to Bertsekas (1976) for a convergence proof of the discretized dynamic

programming algorithm without interpolation schemes. With the additional use of interpolation

it can easily be shown that this proof still holds, if we ensure that the interpolation estimates

stay within the boundaries of surrounding function values on the grid.

We have tested our implementation of the discretized dynamic programming algorithm by com-

paring numerical results with known analytical solutions and found satisfactory results. In

practice the implementation allows us to solve problems with two state variables accurately and

eÆciently on a desktop PC. In the next two sections we will apply our algorithm in order to

investigate the three main research questions which are listed in the Introduction.

3 Investment Policies for Retirement Saving

3.1 Portfolio Separation and Liability Hedging Credits

We try to gain insight in the optimal policies of the retirement saving model by analysing di�erent

parts in isolation. In this section we focus on optimal investment policies in a model without

contribution payments, while in Section 4 we will investigate the additional e�ect of funding

decisions. Mostly we will apply our numerical method to solve the model completely, except for

the special case of a CRRA investor. Throughout the following sections we will assume that the

discrete asset returns and the wage growth are log-normally distributed:

Assumption 4 The joint distribution of the continuously compounded asset returns ri;t+1 and

the wage growth innovation "t+1 is multi-variate normal in each period t = 0; 1; :::; T � 1, with a

constant mean vector and a constant covariance matrix (see Assumption 2). Consequently, the

discrete returns (1 +Ri;t+1) = eri;t+1 and the discrete wage growth (1 + �i;t+1) = e�t+1 follow a

multi-variate log-normal distribution.

Before we apply our numerical technique to solve the retirement saving model completely, we

�rst pay some attention to the general structure of investment strategies. First of all, the

correlation of the asset returns with the wage growth rate is very important for investments in

the retirement saving model. We can observe this by studying the variance of the asset returns
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in excess of the wage growth (ri;t+1 � �t+1), which drive the development of the relative fund

value Ft:

V ar(ri;t+1 � �t+1) = �2i � 2�i� + �2�:(11)

The variance of the excess return decreases as an asset provides higher covariance with wage

growth. This e�ect is related to the concept of liability hedging credits, introduced by Sharpe

and Tint (1990): the investor is willing to accept lower expected returns in exchange for more

protection against random uctuations of the wage growth rate.

In order to provide more insight into the optimal investment strategies, we prove in Appendix C

that three fund separation (12) holds for any investment objective, given Assumption 4, a linear

approximation of continuously compounded returns and the assumption that asset 0 is riskless:

w�
t = �

Et[JF ]

FtEt[JFF ]

�1(�� �r0) +

�
1�

Et[JF�]

FtE[JFF ]

�

�1�I�(12)

where w�
t is the vector of optimal portfolio weights.

The optimal asset weights of the plan sponsor can be separated into a market portfolio, a hedge

portfolio for the wage growth rate and a riskless portfolio. The fund separation result also holds

for investors who minimize the variance of the fund value return V ar(Ft+1=Ft) subject to a given

expected return E[Ft+1=Ft], if we ignore the part
Et[JF�]

FtE[JFF ]

�1�I� in (12). This particular part

of the investment strategy represents the intertemporal hedge against predictable changes of the

wage growth through time, which is clearly missing in a one-period model. In the next section we

will quantify the investment strategy numerically, without the simplifying assumptions needed

for the fund separation result.

3.2 Constant and Decreasing Relative Risk Aversion

The portfolio separation result holds for any investment objective, but does not provide a com-

plete solution as the investment rule depends on the unknown value function J(Ft; �t; t). In

order to learn more about the optimal investment strategies we will now study the special case

of constant relative risk aversion. We assume that the plan sponsor maximizes a power utility

function over the relative fund value FT at the retirement date T :

U(FT ; T ) = (1 + �)�T
1

�
(FT )

� ;(13)

RU (FT ; T ) =
�FTUFF (FT ; T )

UF (FT ; T )
= 1� �(14)

where � < 1 is the relative risk aversion coeÆcient and � > 0 is the intertemporal discount

factor.
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The function RU (FT ; T ) in (14) is the Arrow-Pratt measure of relative risk aversion, which is

constant for power utility. In a simple investment model with one risky asset and one riskless

asset the portfolio weight of the risky asset increases (decreases) as a function of wealth, if the

relative risk aversion is decreasing (increasing) in wealth. An investor with constant relative

risk aversion does not change the risky asset weight and chooses a constant portfolio. It is

not obvious whether these results also hold for the retirement saving model, as it additionally

includes a stochastic opportunity set and contribution payments.

In Appendix A we derive the following result for the power utility objective (13), under the

additional assumption of zero contribution rates ct = 0 for t = 0; 1; :::; T � 1:

dw�
it

dFt
= 0 and

dw�
it

d�t
= 0; for t = 0; 1; :::; T � 1 and i = 0; 1; :::; I:(15)

where w�
it denotes the optimal asset weight for i = 0; 1; :::; I.

We conclude from (15) that the plan sponsor does not adjust the portfolio weights if the fund

value or the wage growth changes, in the case with a CRRA objective and without intertemporal

contribution payments. Note that wage growth does not a�ect the drift rate and the volatility

of the asset returns in our economy and therefore substitution between assets as a result of a

change of the wage growth is needless. Wealth e�ects are present, but have no consequence for

portfolio choice as we consider an investor with constant relative risk aversion.

We will now study utility functions with decreasing relative risk aversion (DRRA), in order to

investigate whether the optimal investment strategies are indeed di�erent. We introduce the

following class of utility functions with DRRA, which can be applied in our economy without

causing feasibility problems:7

U(FT ; T ) = (1 + �)�T
�

1

�� p
F
�p
T +

�

�

�
F�
T ;(16)

RU (F; T ) = �FT
UFF (FT ; T )

UF (FT ; T )
=

(1� �+ p) + (1� �)�F
p
T

1 + �F
p
T

:(17)

where � < 1, p > 0 and � > 0 are constant parameters.

It is easy to prove that UF (FT ; T ) > 0, UFF (FT ; T ) < 0 and RU
F (FT ; T ) < 0 hold: U is a

utility function with DRRA. If FT is close to zero then the relative risk aversion coeÆcient

equals (1 � � � p), while it decreases monotonically to (1 � �) as the fund value increases to

in�nity. Figure 1 shows a graph of the relative risk aversion function (17) for the parameter

values � = �0:5, p = 3 and � = 3.

7HARA-utility functions with a positive sustenance level � > 0 also have the property of DRRA, however we

can not apply them in our incomplete market as they would cause bankruptcy problems (the constraint Ft > �

of the HARA-utility function can not be satis�ed under all circumstances).
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We would like to investigate the impact of DRRA on optimal investment strategies, however

analytical solutions are not readily available under this particular utility speci�cation and there-

fore we rely on our numerical method. First we specify the coeÆcients that will be used in all

numerical examples from now on:

Assumption 5 For the numerical cases we consider a retirement fund 10 years before the

retirement date, i.e. T = 10. The discount rate � is 2% per year. The initial wealth of the

fund is W0 = 1 and the initial labor income of the employee is I0 = 1. At the beginning of

each period t = 0; 1; :::; T � 1 the plan sponsor can adjust the asset portfolio of the retirement

fund. Two assets are available for investing, a risky bond and a risky stock. There is no riskless

asset and short selling is not allowed. Consequently, the asset weights of the bond and the stock

are within 0% and 100%. The asset returns are jointly log-normally distributed with expected

returns �B = 6:8% and �S = 8:6% for the bond and the stock respectively, standard deviations

�B = 5:9% and �S = 15:7% and a correlation of �BS = +0:38. The long run mean wage growth

rate is �� = 5:7% , the mean reversion parameter equals � = 0:31 and the standard deviation

is �� = 3%. We will make speci�c assumptions about the correlation between asset returns and

wage growth later on.

These parameters for the distribution of the asset returns and the wage growth rate are based on

a Dutch yearly dataset from the period 1956-1994 (see Kouwenberg 1998). We only consider two

risky assets in order to facilitate the interpretation of the results. We now apply the discretized

dynamic programming algorithm and solve the retirement saving model with DRRA numerically:

Case 3.1 We solve the retirement saving model with DRRA utility function (16) for � = �0:5,

p = 3 and � = 3. As a benchmark, we also solve the model with CRRA objective (13), for

� = �0:5 and � = �3:5. In order to distinguish the impact of the objective we ignore uncertainty

about labor income in this example: the wage growth rate is �xed at �t = 3% annually. We

apply the discretized dynamic programming algorithm on a grid consisting of 36 equally spaced

fund values F = 0 to F = 3:5 (step size 0:1). Expectations over the return distribution are

approximated with 10000 simulation points:

Figure 2 shows the optimal proportion invested in stocks at time t = 0, as a function of initial

fund value. The investment strategy is clearly myopic for the two constant relative risk aversion

cases � = �0:5 and � = �3:5, demonstrating the convergence of the numerical algorithm. With

decreasing relative risk aversion the weight of stocks increases from 28% to 90%. It is clear that

this optimal investment strategy can be explained quite well by the corresponding decreasing

relative risk aversion function in Figure 1.

We will now additionally investigate the impact of uncertainty about the wage growth rate. We

already know that a plan sponsor with CRRA utility follows a myopic investment strategy, as

there is no substitution between assets in our economy if the wage growth changes. Note that

a change of the wage growth rate does inuence the expected fund value. Consequently, we

hypothesize that a plan sponsor with DRRA hedges intertemporally against changes of wage

growth, as his investment strategy is inuenced by changes in (expected) wealth. We will now

demonstrate this e�ect numerically:
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Case 3.2 The plan sponsor maximizes DRRA utility function (16) with parameter values � =

�0:5, p = 3 and � = 3. Additionally, the wage growth rate �t is stochastic, with the parameters

speci�ed in Assumption 5. For the correlation between wage growth and asset returns we consider

two cases: 1. bond returns are positively correlated with wage growth, while stock returns are

uncorrelated (�B� = +1=3 and �S� = 0) and 2. the opposite case (�B� = 0 and �S� = +1=3).

We apply the discretized dynamic programming algorithm on a two-dimensional grid for the

state variables consisting of 36 equally spaced fund values F = 0 to F = 3:5 (step size 0:1) and

17 wage growth rates � = �0:10 to � = +0:22 (step size 0:02). Expectations over the return

distribution are approximated with 10000 simulation points:

Figure 3 shows the optimal stock proportion at time 0 as a function of fund value and the initial

wage growth rate, in the case that bond returns are positively correlated with wage ination.

We observe two major e�ects. First, the fraction invested in stocks increases as the fund value

becomes larger: this is the familiar result for DRRA. Second, an increase in the expected wage

growth leads to a larger proportion of bonds in the portfolio in order to hedge against the

expected reduction of future wealth, as we hypothesized earlier.

Figure 4 displays the results for the case where stock returns are positively correlated with the

wage growth rate. We clearly observe that the fraction invested in stocks increases at any level

of fund value and wage ination, compared to the situation in Figure 3. This parallel shift of

the investment strategy can be explained by the increased liability hedging credits of stocks. If

we concentrate on the dynamic hedging strategy, the results in Figures 3 and 4 are similar: an

increase of expected wage growth reduces the proportion of stocks in the portfolio, regardless of

the underlying correlation structure.

3.3 The V-Shaped Consequences of Downside-Risk Measures

In practice a popular objective is to maximize the expected fund value, subject to a penalty if

wealth drops below the investment benchmark, i.e. a penalty on downside-risk. Downside-risk

measures have been introduced as a substitute for standard risk measures such as variance, as

it seems unreasonable to penalize negative and positive deviations from the benchmark equally.

Popular measures include: shortfall probability, expected shortfall and semivariance (see Bawa

and Lindenberg 1977).

In this section we study the optimal investment strategy if the plan sponsor maximizes the

expected fund value at retirement, subject to a quadratic penalty if he fails to outperform the

investment benchmark (i.e., if FT < 1):

max
wit

E0[U(FT ; T )] =
1

(1 + �)T

�
E0[FT ] � �E0[minf0; 1 � FT g

2]
�

(18)

where U(FT ; T ) = (1 + �)�T
�
FT � �minf0; 1 � FT g

2
�
and � > 0 is a constant risk aversion

parameter .
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In the normative ALM literature for pension funds the downside-risk concept is highly successful

and seems to have replaced traditional utility functions. Investors that try to meet their liabilities

usually apply a threshold of 1 for the funding ratio, i.e. the ratio of assets to liabilities. Even

regulating authorities nowadays advocate the use of downside-risk measures to improve the

solvency of institutional investors. Not much attention has been paid however to the optimal

investment strategies for downside-risk objectives in a multi-period model.

Downside-risk averse investors can be considered as expected utility maximizers with a risk-

neutral (linear) utility function above the threshold FT = 1 and a utility function with increasing

relative risk aversion (IRRA) below the threshold. The e�ect of IRRA below the threshold might

be gambling behavior: a decrease of wealth increases the portfolio weight of stocks. Furthermore

risk-neutrality above the threshold should lead to a strong increase in the demand for stocks.

Consequently, in a two-asset economy we expect a V-shaped �gure if we draw the optimal stock

weight as a function of fund value Ft. We will now solve the retirement saving model numerically

in order to investigate these e�ects.

Case 3.3 We solve the retirement saving model with downside-risk objective (18) for risk aver-

sion values � = 16 and � = 64. In order to distinguish the impact of the investment objective

clearly we ignore uncertainty about labor income: the wage growth rate is �xed at �t = 3%. We

apply the discretized dynamic programming algorithm on a grid consisting of 36 equally spaced

fund values F = 0 to F = 3:5 (step size 0:1). Expectations over the return distributions are

approximated with 10000 simulation points.

Figure 5 shows the optimal initial weight of stocks for risk aversion levels � = 16 and � =

64. The optimal investment strategy has a clear V-shape: at low wealth levels the weight of

stocks decreases, while it increases at higher wealth levels. We �nd equivalent results for other

downside-risk measures such as expected shortfall and shortfall probability, which have a similar

relative risk aversion function. Given the wide-spread acceptance of downside-risk measures it

is questionable whether investors are fully aware of the accompanying gambling behavior at low

wealth levels.

4 Consumption and Funding Decisions

4.1 The E�ect of Funding Payments

In the previous section we have ignored contribution payments by the plan sponsor, while we

focused on optimal investment strategies for the retirement saving model with labor income as a

benchmark. In this section we study the additional e�ect of funding payments on the retirement

saving problem. As a �rst example, we consider the impact of a �xed non-negative contribution

payment.

Case 4.1 We solve the retirement saving model with a �xed contribution rate ct = 0:05 for

t = 0; 1; :::; T � 1. The utility over fund value at retirement is CRRA (13) with � = �3:5, �2
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and �0:5. We ignore uncertainty about labor income in this example: the wage growth rate is

�xed at �t = 3% annually. The grid of the discretized dynamic programming algorithm consists

of 36 equally spaced fund values F = 0 to F = 3:5 (step size 0:1) and the return distributions

are approximated with 10; 000 simulation points:

Figure 6 displays the optimal investment strategy at time t = 0 for the three levels of risk

aversion. Due to the contribution payments, the portfolio weight of stocks is decreasing as a

function of fund value for � = �2 and �3:5 and the weight is always at the upper bound for

� = �0:5. The plan sponsor appreciates the �xed payment more at low fund values than at

high fund values (i.e. marginal utility of the contribution payment decreases). Poor returns on

investments therefore have less impact on utility at low fund levels than at high fund values,

which explains the decreasing optimal portfolio weight of stocks for � = �2 and �3:5.

We will now study the case where the plan sponsor can change the contribution payments

intertemporally. Clearly, the plan sponsor has to make a trade-o� between low contribution

payments and high fund values at retirement. Given Assumption 3, we formalize this as a

trade-o� between the utility H(ct; t) of contribution rates ct and the utility �U(FT ; T ) of fund

value at retirement. A widely used and intuitively attractive way for modelling preferences over

contribution payments is to minimize the expected net present value. In our framework this can

be speci�ed as H(�ct; t) = �ct=(1 + �)t, subject to the �xed bounds c� ct � c. Note however

that interior solutions never occur: the optimal contribution rate c�t is always at the lower or

upper bound: c�t =c or c�t = c.

Instead of the net present value rule, the plan sponsor can specify an increasing and strictly con-

cave utility function H(�ct; t) over contribution rates. We know that if H(�ct; t) and U(FT ; T )

are both power utility functions with equal risk aversion coeÆcient, then the funding policy is

linear and the investment strategy is myopic.8 However, power utility enforces the constraint

�ct > 0 and the plan sponsor will only extract cash from the fund. We will investigate HARA-

utility (19) for the contribution rates, as it allows the plan sponsor to make payments ct > 0:

H(�ct; t) =
1� 



�
�ct + c

(1� )

�

; �1 � ct < c(19)

where  < 1 is the risk aversion coeÆcient and c > 0 is the upper bound of the contribution

rate.

The HARA-utility function H(�ct; t) is increasing and concave in its �rst argument and enforces

the upper bound c > 0 on contribution rates. Moreover it has the property of increasing relative

risk aversion (IRRA). We investigate in Case 4.2 whether this property inuences the investment

strategy:

Case 4.2 We solve the retirement saving model with HARA-utility (19) for contribution rates,

with risk aversion parameters  = �1:5,�2 and �2:5 and upper bound c = 0:1. The utility

8This result holds in a consumption-investment model with constant opportunity sets and a risk free asset, see

Hakansson (1969), Mossin (1968) and Samuelson (1969).
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function over fund value at retirement is CRRA with � = �2. The trade-o� parameter between

utility over contribution rates and fund value is � = 250; 000. We choose this value for � to

make sure that contribution rate is positive for funding levels F � 1.

Before we discuss the results, we �rst explain why the value 250; 000 is reasonable for �. The

parameter � inuences the trade-o� between utility over contribution rates and fund value in

the objective function. In numerical experiments we have found that the impact of � on the

optimal solution is limited to the slope of the contribution rates as a function of fund value.

As positive contribution rates take on values between 0 and 0:10 (given upper bound c = 0:1),

we require a high value for the trade-o� parameter � to get positive contribution rates at fund

values F � 1.

Figure 8 displays the optimal contribution rate ct at time t = 0 as a function of initial fund value

Ft, for the cases  = �1:5, �2 and �2:5. The optimal contribution rates are decreasing linearly

as function of fund value, while higher risk aversion  over contribution rates leads to lower

rates. Figure 7 shows the investment strategy at time t = 0 and we �nd the same decreasing

stock weight pattern as in the case of a �xed contribution rate (see Figure 6), although more

pronounced.

4.2 Horizon E�ects and Gambling

So far we have displayed the optimal investment and contribution strategy at time t = 0. We

now study to what extent the optimal strategies change as the retirement date T approaches.

In the case of CRRA over fund value and without contribution payments, the asset weights are

constant through time. For DRRA, Figure 9 shows the optimal investment strategy at times

t = 9, 4 and 0 (based on Case 3.1). We �nd that the weight of stocks increases with the

investment horizon for fund levels between F = 0:4 and F = 2.

In the case of a �xed contribution rate horizon e�ects are even present for a CRRA investor.

Figure 10 shows the optimal stock weight at times t = 9, 4 and 0, for a CRRA objective with a

�xed contribution rate ct = 0:05 for t = 0; 1; :::; T � 1 (based on Case 4.1). One period before

retirement (t = 9) the investment strategy is still constant, while we observe a drastic increase

of the stock weight at low fund values for longer investment horizons (t = 4 and t = 0).

With exible contribution rates and HARA-utility (19), the horizon e�ect is even stronger.

Figure 11 shows the optimal stock weight at times t = 9, 4 and 0, for HARA-utility over

contribution rates with  = �2 and c = 0:1 and with a CRRA objective over fund value with

� = �2 (based on Case 4.2). The corresponding contribution rules are displayed in Figure 12.

We �nd that the contribution rates tend to decrease as we move further from the retirement

date, while the stock weight at low fund levels increases.

We have shown that the payment of intertemporal contributions to the retirement fund leads

to a gambling strategy: the plan sponsor prefers a high proportion of stocks at low fund levels.

Moreover, the gambling becomes worse for longer horizons. This investment behavior might be
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considered imprudent, most notably in the case of a de�ned bene�ts pension scheme. We will

now demonstrate that the propensity to gamble can be reduced considerably if the plan sponsor

cares about intertemporal fund values Ft at times t = 1; 2; :::; T � 1 before the planning horizon

T . We �rst introduce the following objective for the plan sponsor, with intertemporal utility

over fund values:

max
wit;ct

E0

"
T�1X
t=0

H(ct; t) + �

TX
t=1

U(Ft; t)

#
(20)

One might argue that it is not rational for the plan sponsor to worry about fund value before

the actual retirement date T . Note however that solvency requirements could force the plan

sponsor to do so, specially in the case of a de�ned bene�ts pension plan. In the next case we

calculate investment strategies for an objective with intertemporal utility over fund values:

Case 4.3 We solve the retirement saving model with CRRA utility for fund values, measured

intertemporally according to (20), with � = �2. The utility function over contribution rates is

HARA (19), with risk aversion parameters  = �2 and upper bound c = 0:1. The trade-o�

parameter between utility over contribution rates and fund value is � = 250; 000. We choose this

value for � to make sure that contribution rate is positive for funding levels F < 1.

Figure 13 and 14 show the optimal investment and contribution policy. From Figure 13 it is

clear that the optimal weight of stocks is still slightly higher at low fund levels, however the

e�ect has reduced considerably and can hardly be considered a pure gambling strategy anymore.

Figure 14 is also interesting, as it show that the horizon e�ect for the contribution rates has

reversed: as the retirement date T gets nearer, the plan sponsor pays less contributions. We

conclude that a focus on fund value before the retirement date can reduce the gambling behavior

induced by contribution payments.

4.3 Constraints on the Funding Policies

In practice the contribution rate might be constrained by explicit restrictions (see Boender

1997). The HARA-function (19) naturally imposes an upper bound on the funding payment

as marginal utility approaches �1 near the level c. We now consider the additional e�ect of

a lower bound on funding payments (ct >c), which we enforce in the implementation of the

discretized dynamic programming algorithm.

Case 4.4 We solve the problem of Case 4.2 again, with the addition of a lower bound c= 0 on

funding payments (i.e. the plan sponsor can not extract cash from the fund). The upper bound

equals c = 0:1 and the risk aversion coeÆcients of the utility functions H(ct; t) and U(FT ; T )

are  = �2 and � = �2.

With an additional lower bound the optimal contribution rate is decreasing linearly as a function

of the fund value until it hits the lower bound c= 0 at F0 = 1:5 and from thereon it remains
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constant. In contrast to this predictable result, the optimal investment strategy displayed in

Figure 15 is more surprising. The stock weight �rst decreases to a minimum around F0 = 1:9

and from this point onwards it starts to rise, up to 100%.

The declining stock weight pattern before the contribution rate reaches the lower bound can

be explained by the IRRA property of the HARA-function (19) over contribution rates. The

increasing stock weight trend in the right side of the graph can be interpreted as a gambling

policy: the potential losses of stocks become less important as the funding payment is stuck at

an involuntary `high' level (providing a cushion for possible losses) while the potential gains of

stocks remain the same.

Another interesting constraint on the funding policy is one induced by a maximum allowable

level of the fund value. Suppose that the plan sponsor decides that the value of the retirement

fund should never exceed F times the labor income of the employee, as this fund value is already

suÆcient to provide a good retirement income. Consequently, if the fund value Ft exceeds the

`saturation' level F , then the plan sponsor extracts cash from the fund (i.e. ct < 0) in order to

reduce the fund value back to F .

Case 4.5 We consider Case 4.2, with the addition of a maximum fund level at F = 2. The risk

aversion coeÆcients are � =  = �2 and the upper bound for funding c = 0:1.

The optimal funding policy in this case is piecewise linear: at fund values above F = 2 the

plan sponsor extract large amounts of cash from the fund. The e�ect on the optimal investment

strategy is depicted in Figure 16. For low fund values the optimal stock weight is decreasing up

to F = 2, remaining at the minimum of 12% from thereon. As a consequence of the maximum

fund level, the plan sponsor drastically reduces stock exposure at wealthy fund values. The gains

of investing in stocks at high fund values are reduced by refunds, while the losses of investing in

stocks still loom as large as before.

5 Conclusions

In this paper we studied a retirement saving model with labor income as a benchmark for invest-

ments and periodic contribution payments by the plan sponsor. Due to market incompleteness it

is very hard to derive closed-form solutions for the optimal investment and contribution policies

of the plan sponsor. We introduced an eÆcient implementation of the dynamic programming

algorithm in order to solve the problem numerically. The main conclusions to be drawn from

our analysis and computational experiments are as follows:

1. Regardless of his utility function, the plan sponsor invests in a hedge-portfolio against

random uctuations of the employee's labor income. The hedge portfolio depends on the

covariance of the asset returns with the wage growth rate. Whether the plan sponsor

dynamically changes his holdings of the hedge-portfolio depends on the relative risk aversion

of the investment objective. Furthermore, the dynamic feature of the hedging strategy is
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solely driven by wealth e�ects as substitution e�ects are absent in our economy. The

numerical results demonstrate that the correlation between asset returns and wage growth

has a substantial inuence on portfolio composition. Dynamic adjustments of the hedging

strategy due to changes of the wage growth rate are relatively small.

2. Contribution payments change the optimal investment strategy considerably, even for a

plan sponsor with constant relative risk aversion over fund value. The portfolio weights

are no longer constant and there is a strong tendency to gamble at low levels of wealth.

Intertemporal measurement of utility over wealth can reduce these gambling e�ects. We

also �nd that contribution payments lead to a strong investment horizon e�ect. More-

over, additional constraints on the funding policy can have a large impact on the optimal

investment strategy.

3. Plan sponsors increase the weight of risky assets in the portfolio at low levels of wealth,

if they maximize the expected fund value subject to a penalty on downside-risk. The

gambling policy can be attributed to the increasing relative risk aversion property of the

downside-risk measure.

The conclusions of this paper have important implications. The insights gained through the

numerical computations in this paper may aid fund-managers to formulate dynamic policies and

choose reasonable investment objectives. Furthermore, the decision-rules derived here could

be applied in simulation-based models for asset-liability management, where additional market

imperfections such as transaction costs and position limits can be taken into account.
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A Investment under Constant Relative Risk Aversion

In order to learn more about the optimal investment strategies, we study the case of constant

relative risk aversion in this appendix. We assume that the plan sponsor maximizes a power

utility function (13) over the funding ratio FT at the planning horizon T . As can be inferred

from (14), the power utility function displays constant relative risk aversion. We will now prove

that this feature implies that the fraction invested in each asset is independent of the funding

ratio and the wage growth rate.

If we di�erentiate the �rst-order condition (10) with respect to Ft, then we obtain the following

expression:

dw�
it

dFt
= �

Et

h
JFF (Ft+1; �t+1; t+ 1)

(Ri;t+1�R0;t+1)(1+R
�

t+1)

(1+�t+1)2

i
FtEt

h
JFF (Ft+1; �t+1; t+ 1)

(Ri;t+1�R0;t+1)2

(1+�t+1)2

i(21)

Using the relative risk aversion function we can formulate the change in demand for asset i as

follows:

dw�
it

dFt
=

1

F 2
t

Et

h
JF (Ft+1; �t+1; t+ 1)RJ(Ft+1; �t+1; t+ 1)

(Ri;t+1�R0;t+1)

(1+�t+1)

i
Et

h
JFF (Ft+1; �t+1; t+ 1)

(Ri;t+1�R0;t+1)2

(1+�t+1)2

i :(22)

Similarly we can study the general e�ect of a change in the current ination rate on the optimal

investment strategy by studying the derivative dw�
it=d�t. Di�erentiating the �rst-order condition

(10) with respect to �t we obtain:

dw�
it

d�t
= �(� � 1)

Et

h
JF (Ft+1; �t+1; t+ 1)RJ(Ft+1; �t+1; t+ 1)

(Ri;t+1�R0;t+1)

(1+�t+1)

i
FtEt

h
JFF (Ft+1; �t+1; t+ 1)

(Ri;t+1�R0;t+1)2

(1+�t+1)2

i(23)

�(� � 1)
Et

h
JF�(Ft+1; �t+1; t+ 1)

(Ri;t+1�R0;t+1)

(1+�t+1)

i
FtEt

h
JFF (Ft+1; �t+1; t+ 1)

(Ri;t+1�R0;t+1)2

(1+�t+1)2

i

We know that the value function at time T : J(FT ; �T ; T ) = H(FT ; T ). Hence, we can conclude

from (22) and the �rst order condition (10) that:

dw�
i;T�1

dFT�1
=

(1� �)

F 2
T�1

ET�1

h
HF (FT ; T )

(RiT�R0T )

(1+�T )

i
ET�1

h
HFF (FT ; T )

(RiT�R0T )2

(1+�T )2

i = 0(24)
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Moreover at time T the value function is independent of the ination rate and hence from (23)

and the �rst order condition (10):

dw�
i;T�1

d�T�1
= �(1� �)

(1 � �)

F 2
T�1

ET�1

h
HF (FT ; T )

(RiT�R0T )

(1+�T )

i
ET�1

h
HFF (FT ; T )

(RiT�R0T )2

(1+�T )2

i = 0(25)

Let a(�T�1) = ET�1

h�
1+R�

T

1+�T

��i
and R�

T =
PI

i=1w
�
i;T�1(RiT � R0T ) + R0T , then the value-

function at time T � 1 is given by

J(FT�1; �T�1; T � 1) = a(�T�1)
1

�
F�
T�1(26)

Next, it is straightforward to show that
da(�T�1)

d�T�1
= ��(1 � �)a(�T�1) and hence we have the

following relation:

JF�(FT�1; �T�1; T � 1) = ��(1� �)JF (FT�1; �T�1; T � 1)(27)

Hence from (22) and (23) we may conclude that

dwi;T�2

dFT�2
= 0 and

dwi;T�2

d�T�2
= 0:(28)

Recursively working backward and repeating the same steps we therefore derive that

dwit

dFt
= 0 and

dwit

d�t
= 0; for t = 0; : : : ; T � 1:(29)

Hence, the investor with constant relative risk aversion ignores future asset returns and does

not hedge dynamically against uctuations in the wage growth rate. Note that this conclusion

di�ers from the standard result in the literature for investors with CRRA facing a stochastic

opportunity set. However, in our economy the wage growth does not a�ect the drift rate and the

volatility of the asset returns and therefore substitution between assets as a result of a change

of the wage growth is needless. Wealth e�ects are present, but have no consequence for the

portfolio choice of an investor with CRRA.

B Implementation of the Dynamic Programming Algorithm

In this appendix we specify the decision rules for interpolation and transformation that were used

to solve the numerical cases in the paper with the discretized dynamic programming algorithm.
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First we consider the cases without stochastic wage growth. Let n = 0; 1; :::; N represent the

points on the grid for the fund value F (wealth-to-income ratio), with a �xed step size of �F

between the N + 1 points and minimum fund value F . Let J(n; t) denote the value function in

point n = 0; 1; :::; N on the grid at time t = 0; 1; :::; T .

Suppose that we are at time t in the dynamic programming algorithm and want to know the

value function at F � at time t+1 (in order to approximate the expectation of the value function

numerically). Let n� denote the point on the grid with fund value closest to F �: n� = b(F �
�

F )=�F c. We apply interpolation with points surrounding n�, as F � tends to lie in between

the available fund values F + n�F on the grid for n = 0; 1; :::; N , . Moreover, in some cases

F � is larger than the maximum fund value on the grid (F � > F + N�F ) and then we apply

extrapolation.

In order to facilitate both interpolation and extrapolation for utility functions with a vertical

asymptote, we �rst transform the value-function: y(n; t) = H(J(n; t)), where H(:) is an invert-

ible transformation-function. The goal of the transformation is to get rid of the asymptote at

low fund values near F (in order to improve the quality of interpolation) and to get a roughly

linear function at high fund values (in order to improve the quality of extrapolation).

Note that the utility function U(FT ; T ) over fund value at retirement is crucial for the asymptote

of the value function and not the utility function over contribution rates H(ct; t). As the plan

sponsor controls the contribution rate ct he will never let the utility function over contribution

rates go to minus in�nity at a faster rate than the value function itself (at low levels of wealth

F !F ). Below is a list of the transformations applied for the cases studied in the paper:

1. Power and DRRA utility over fund values, see the speci�cation in (16):9

y(n; t) = J(n; t)1=(��p) for n�F � 0:5 and

y(n; t) = J(n; t)1=� for n�F > 0:5.

2. Expected fund value subject to a downside-risk penalty, see the speci�cation in (18):

no transformation required (no vertical asymptote)

Before we interpolate or extrapolate the transformed value function we would like to know its

shape near F �. Therefore we estimate the scaled second derivative of the transformed value

function. Let �y(n; t + 1) denote a numerical estimate for the �rst derivative of y(n; t + 1) at

time t+1 with respect to fund value F , while �2y(n; t+1) is a numerical estimate of the second

derivative of the transformed value function.10 The estimate of the scaled second derivative

9Power utility is a special case of DRRA with p = 0 and � = 0.
10We use a mid-point formula to calculate numerical estimates for the points n = 2; 3; ::; N � 2. For the points

on the edge of the grid, n = 0; 1 and n = N �1; N , we use a one-sided approximation of the derivatives (see Press

e.a. 1989).
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(absolute risk aversion) is:

z(n; t+ 1) =
�2y(n; t+ 1)

�y(n; t+ 1)
; for n = 0; 1; :::; N:(30)

Depending on the magnitude of the scaled second derivative we choose an interpolation method.

Interpolation with a local rational polynomial is a good method for nearly any function, even

with an asymptote (see Press e.a. 1989), however it is rather slow. If we know that the value

function is locally linear then we rather apply a fast linear interpolation scheme with two points.

Moreover, if the value function has an abrupt change in the second derivative due to a `break' (as

in the case of downside-risk measures near the threshold) it is safer to apply linear interpolation.

We use a decision rule for choosing the interpolation method, in order to increase the eÆciency

of the algorithm without sacri�cing its reliability. Extensive numerical testing of eÆciency and

reliability resulted in the following speci�cation:

1. Power and DRRA utility over fund values:

If F � > F +N�F then we apply linear extrapolation with 2 points.

If jz(n�; t+ 1)j > 4:5 then we apply rational interpolation with 10 points.

If 0:5 < jz(n�; t+ 1)j � 4:5 then we apply polynomial interpolation with 4 points.

If jz(n�; t+ 1)j � 0:5 then we apply linear interpolation with 2 points.

2. Expected fund value subject to a downside-risk penalty:

If F � > F +N�F then we apply linear extrapolation with 2 points.

If F � < 0:9 and jz(n�; t+ 1)j > 0:5 then we apply polynomial interpolation with 4 points.

In other cases we apply linear interpolation.

After applying the interpolation or extrapolation above, we obtain y� as an estimate of the

transformed value function in the point F �. As a last step, we use the inverse transformation

H�1(y�) = J�, to get the required estimate of the original value function in the point F �.

Finally, if we additionally consider mean-reverting wage growth rates then the state space grid

becomes 2-dimensional. In the wage growth dimension we use linear interpolation with two

points, as there are no problems with asymptotes or abrupt changes of the value function. We

apply the transformation and interpolation methods as described previously in the fund value

dimension. We refer to Press e.a (1989) for an introduction to multi-dimensional interpolation.
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C Portfolio Separation in Discrete-Time

Given Assumption 4 and an additional linear approximation rule for discrete returns, we will

prove that three-fund separation holds for any investment objective. Fund separation results are

well known for log-normal return distributions in continuous time since Merton (1971), but to

our knowledge this is the �rst proof for a discrete time model. In order to derive these results, we

�rst apply the following linear approximation for the continuously compounded returns ri;t+1:
11

(1 +Ri;t+1)

(1 + �t+1)
= eri;t+1��t+1 � 1 + ri;t+1 � �t+1(31)

� N
�
1 + �i � (�t + �(�� � �t)); �

2
i � 2�i� + �2�

�
; for i = 0; 1; :::; I

Moreover, we assume that the nominal return of asset 0 is riskless: r0;t+1 is constant for t =

0; 1; :::; T � 1 and will be denoted by r0. This assumption is purely for notational convenience

and does not change our conclusions.

Consider the general �rst-order condition for investment (10) at time t in the dynamic program-

ming recursion. We may formulate this equation as follows, using the de�nition of covariance:

0 = Covt(JF ; ri;t+1 � r0) + Et[JF ]Et[ri;t+1 � r0]; for i = 1; 2; :::; I(32)

Given that the continuously compounded asset returns and wage growth rate are joint normally

distributed we apply Stein's Lemma12, yielding

0 = FtEt[JFF ]Covt(r
�
t+1 � �t+1; ri;t+1 � r0) + Et[JF�]Covt(�t+1; ri;t+1 � r0)(33)

+ Et[JF ]Et[ri;t+1 � r0] = 0; for i = 1; 2; :::; I

Solving this equation for the vector of optimal portfolio weights w�
t we obtain:

w�
t = �

Et[JF ]

FtEt[JFF ]

�1(�� �r0) +

�
1�

Et[JF�]

FtE[JFF ]

�

�1�I�(34)

11The proof presented here holds exactly, if the discretely compounded asset returns are generated by a multi-

variate normal distribution. We have to apply an additional approximation because we assume a multi-variate

log-normal distribution for the discrete asset returns.
12Stein's Lemma states that Cov(f(X); Y ) = E(f 0(X))Cov(X;Y ), for a di�erentiable function f(�) and X;Y

bivariate normally distributed. A proof for the multi-variate case is available upon request from the authors.
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Figure 1: Relative Risk Aversion Function for DRRA
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This �gure shows the Arrow-Pratt measure of relative risk aversion (17) of utility function (16) as a function

of the wealth-income ratio F , for parameter values � = �0:5, p = 3 and � = 3.

Figure 2: Stock weight for DRRA
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This �gure shows the fraction invested in stocks for constant relative risk aversion levels � = �3:5 (dotted

line) and � = �0:5 (dashed line) and decreasing relative risk aversion (solid curve). A more risk averse

investor dedicates less to stocks (28% for risk aversion level � = �3:5 compared to 90% for risk aversion level

� = �0:5). Moreover decreasing relative risk aversion implies that the investor desires less exposure to stocks

when real wealth drops.
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Figure 3: Stock weight for DRRA with stochastic wage growth (�S� = 0 and �B� = 0:33)
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This �gure shows the fraction invested in stocks when returns on bonds are positively correlated with wage

growth. The percentage of stocks in the optimal portfolio slightly decreases for increasing wage growth levels.

Figure 4: Stock weight for DRRA with stochastic wage growth (�S� = 0:33 and �B� = 0)
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This �gure shows the fraction invested in stocks when returns on stocks are positively correlated with wage

growth. Compared to Figure 3 the graph is shifted only in a parallel way, i.e. the weight increases generally

when stock returns are positively correlated with wage growth. Adjustments of the portfolio as a function of

the wage growth rate are small and comparable to Figure 3.
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Figure 5: Stock weight for Downside-Risk Objective
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This �gure shows the fraction invested in stocks at time t = 0 as a function of the wealth-income ratio for risk

aversion parameters � = 16 (solid curve) and � = 64 (dotted line). Note that the investor cannot dedicate

more than 100% to stocks due to a borrowing constraint.
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Figure 6: Stock weight for CRRA with �xed contribution rates
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The �gure shows the stock weight at time t = 0 for power-utility with risk aversion � = �0:5 (dashed line),

� = �2 (solid line) and � = �3:5 (dotted line), with a �xed contribution rate of ct = 0:05 for t = 0; 1; :::; T�1.

Due to the �xed contribution rate the portfolio weight of stocks increases at low levels of fund value (wealth-

to-income ratio).

Figure 7: Stock weight with HARA-utility over contribution rates
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The �gure shows the fraction invested in stocks at time t = 0 for power-utility with � = �2 over fund value

and HARA-utility over contribution rates with  = �2:5 (dashed line), �2 (solid line) and �1:5 (dotted line).

The weight of stock increases to the upper bound 100% at low levels of fund value, due to the increasing

marginal value of the contribution payment.
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Figure 8: Contribution rates with HARA-utility
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The �gure shows the contribution rate at time t = 0 for power-utility with � = �2 over fund value and

HARA-utility over contribution rates with  = �2:5 (dashed line), �2 (solid line) and �1:5 (dotted line).

The contribution rates decrease approximately linear as a function of fund value.

Figure 9: Stock weight at time t = 9,4 and 0 for DRRA utility
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The �gure shows the fraction invested in stocks for di�erent investment horizons, given DRRA utility with

parameter values � = �0:5, p = 3 and � = 3. The dotted line represents the optimal fraction with only one

year left (t = 9). The dashed line correspond to an intermediate period (t = 4) and the solid line represents

the initial portfolio choice (t = 0).
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Figure 10: Stock weight at time t = 9,4 and 0 for CRRA utility, with a �xed contribution rate
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The �gure shows the fraction invested in stocks for di�erent investment horizons, given CRRA utility with

risk aversion � = �2 and a �xed contribution rate ct = 0:05 for t = 0; 1; :::; T � 1. The dotted line represents

the optimal fraction with only one year left (t = 9). The dashed line correspond to an intermediate period

(t = 4) and the solid line represents the initial portfolio choice (t = 0).

Figure 11: Stock weight at time t = 9,4 and 0, with HARA utility over contribution rates
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The �gure shows the fraction invested in stocks for di�erent investment horizons, given CRRA utility with

risk aversion � = �2 and HARA-utility over contribution rates with  = �2. The dotted line represents the

optimal fraction with only one year left (t = 9). The dashed line correspond to an intermediate period (t = 4)

and the solid line represents the initial portfolio choice (t = 0).
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Figure 12: Contribution rate at time t = 9,4 and 0, with HARA utility over contribution rates
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The �gure shows the contribution rate for di�erent investment horizons, given CRRA utility with risk aversion

� = �2 and HARA-utility over contribution rates with  = �2. The dotted line represents the optimal

contribution rate with only one year left (t = 9). The dashed line correspond to an intermediate period

(t = 4) and the solid line represents the initial portfolio choice (t = 0).

Figure 13: Stock weight at time t = 9,4 and 0, with intertemporal utility over fund value
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The �gure shows the fraction invested in stocks for di�erent investment horizons, given intertemporal mea-

surement of CRRA utility over fund values with risk aversion � = �2 and HARA-utility over contribution

rates with  = �2. The dotted line represents the optimal fraction with only one year left (t = 9). The

dashed line correspond to an intermediate period (t = 4) and the solid line represents the initial portfolio

choice (t = 0).
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Figure 14: Contribution rate at time t = 9,4 and 0, with intertemporal utility over fund value
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The �gure shows the optimal contribution rate for di�erent investment horizons, given intertemporal mea-

surement of CRRA utility over fund values with risk aversion � = �2 and HARA-utility over contribution

rates with  = �2. The dotted line represents the optimal contribution rate with only one year left (t = 9).

The dashed line correspond to an intermediate period (t = 4) and the solid line represents the initial portfolio

choice (t = 0). Due to the intertemporal measurement of utility over fund value, the contribution rates

increase for longer investment horizons (contrary to the results in Figure 12).

Figure 15: Stock weight for CRRA with a lower bound on funding payments
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This �gure shows the fraction invested in stocks with lower bound c = 0 on contribution rates. The upward

part of the smile is due to the lower bound on funding payments, which provide a cushion against losses.
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Figure 16: Stock weight for CRRA with an upper bound on fund value
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This �gure shows the fraction invested in stocks with an upper bound F = 2 on fund values, enforced with

negative contribution rates (i.e. refunds). Beyond the maximum allowed fund value F = 2 the stock weight

becomes constant at a low level.


