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Abstract

Rotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral
products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a
recombinant monovalent antibody fragment (referred to as Anti-Rotavirus Proteins or ARP1) derived from a heavy chain
antibody of a llama immunised with rotavirus was able to neutralise rotavirus infection in a mouse model system. In the
present work we investigated the specificity and neutralising activity of two llama antibody fragments, ARP1 and ARP3,
against 13 cell culture adapted rotavirus strains of diverse genotypes. In addition, immunocapture electron microscopy
(IEM) was performed to determine binding of ARP1 to clinical isolates and cell culture adapted strains. ARP1 and ARP3 were
able to neutralise a broad variety of rotavirus serotypes/genotypes in vitro, and in addition, IEM showed specific binding to
a variety of cell adapted strains as well as strains from clinical specimens. These results indicated that these molecules could
potentially be used as immunoprophylactic and/or immunotherapeutic products for the prevention and/or treatment of
infection of a broad range of clinically relevant rotavirus strains.
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Introduction

Rotavirus is a non-enveloped, icosahedral virus of the Reoviridae

family containing a genome of 11 segments of double stranded

RNA (dsRNA). Recently, it has been estimated that each year,

rotavirus causes more than a 100 million episodes of gastroenteritis

which results in 25 million clinic visits, 2 million hospitalizations,

and more than 611,000 deaths in children below 5 years of age

[1]. By 5 years of age, nearly every child worldwide will have had

at least one episode of rotavirus gastroenteritis [2]. Children in

developing countries account for 82% of rotavirus deaths.

Therefore, rotavirus remains the most important cause of severe

and life threatening viral gastroenteritis and dehydrating diarrhoea

in young children worldwide [3,4,5].

Rotavirus replicates in mature enterocytes of the small intestine

leading to a reduction of enterocyte-specific gene expression and

an induction of virus gene expression and inflammatory mediators

and is thought to be a multi-factorial process [6,7] which include a

reduction in epithelial surface area, replacement of mature

enterocytes by immature cells, down regulation of genes involved

in digestion and absorption of nutrients, salt and water, an osmotic

effect resulting from incomplete absorption of carbohydrates from

the intestinal lumen and the secretion of intestinal fluid and

electrolytes through activation of the enteric nervous system

(reviewed in [8,9,10], Despite the prevalence of rotavirus

diarrhoeal disease and extensive studies in different animal

models, rotavirus pathogenesis is still not completely understood.

Rotaviruses are currently divided into seven serotypes (Rotavi-

rus A–G). They exhibit broad genetic and antigenic diversity due

to reassortment among rotavirus strains and the accumulation of

point mutations in the surface protein genes. Group A rotaviruses

are the major human pathogens, and have been further

categorised on the basis of the outer capsid proteins, VP4 (P-

type) and VP7 (G-type), and the intermediate layer protein VP6

(subgroups [SG]). Currently, there are 35 P-types and 27 G-types

[11,12,13,14] and four VP6 SGs [15,16] recognised. As well as

showing different G and P types and a variety of combinations of

these, there is also intratypic variation. The incidence and

distribution of group A rotavirus genotypes varies between

geographical areas during a rotavirus season, and from one season

to the next [17]. Globally, G1P [8], G2P [4], G3P [8], G4P [8]

and G9P [8] are the most common G and P types of rotavirus

causing disease in humans. However, the introduction of

molecular typing methods has revealed the existence of other G

and P types such as G5, G6, G8, G10, G12, P [6] and P [11]

causing infection in humans which have most likely emerged
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through zoonotic transmission. Zoonotic transmission and the

ability of rotaviruses to reassort following double infections provide

the potential for the emergence of novel strains [18].

Several oral, live-attenuated vaccines have been developed in

recent years. Two of them have been licensed and are in use in

several countries in universal vaccination programmes. There is, to

date, no satisfactory therapeutic means for controlling rotavirus

disease, and alternative therapies are thus needed urgently. Also,

prophylactic measures, in particular in a high risk setting (for

example, outbreaks, the immunocompromised, etc) may be a

useful addition to current rotavirus prevention strategies. The

usefulness of any such treatment will be determined to a great

extent on their ability to be effective against the broad spectrum of

rotavirus types commonly circulating in the population worldwide.

Previously we have shown that specific antibody fragments

derived from llama heavy chain antibodies (VHH fragments) can

be obtained against different types of antigens [19]. Furthermore,

by using modern biotechnology, these fragments can be produced

in bakers yeast, Saccharomyces cerevisiae, in a cost effective way [20].

It has been demonstrated that monovalent VHH binding domains

can neutralise bacteriophages [21]. Previously, we described the

production of anti-rotavirus VHH fragments after immunising a

llama with the rhesus rotavirus (RRV) [22]. It was demonstrated

that one of these anti-rotavirus VHH fragments (VHH1, now

referred to as Anti-Rotavirus Protein 1 or ARP1) was able to

neutralise RRV in an mouse model system [22]. Furthermore, in a

recent human intervention study ARP1 has been shown to reduce

the stool output in young children with rotavirus diarrhoea with

about 50% (Sarker et al, submitted).

This study describes the ability of ARP1 and ARP3 (derived in

the same manner as ARP1) fragments to bind and neutralise

rotaviruses of different genotypes, including those genotypes found

with the highest incidences in cases of infantile diarrhoea

worldwide. The knowledge obtained from this work may be

useful for the development of compounds able to prevent rotavirus

diarrhoea in young children.

Materials and Methods

Rotavirus strains
For the in vitro neutralization studies, cell culture adapted

rotavirus strains WI61 (G9P [8]) and DS-1 (G2P [4]) were

obtained from the ATCC. The human rotavirus strain Wa (G1P

[8]), one strain of the rhesus rotavirus strain RRV (G3P [3]) and

the simian rotavirus strain SA-11 (G3P [1]) were kindly provided

by Dr. M. Koopmans (RIVM, Bilthoven, The Netherlands). Cell

culture adapted strains ST-3 (G4P [6]), 69M (G8P [10]), RV4

(G1P [8]), F45 (G9P [8]), Va70 (G4P [8]) and P (G3P [8]) were

kindly provided by Dr C. Kirkwood (Murdoch Children’s

Research Institute, Melbourne, Australia), and a second strain of

RRV was obtained from Dr Harold Marcotte of the Karolinska

Institute, Stockholm, Sweden. These strains were cultured

according to the methods previously described [23]. For the

IEM studies, cell culture adapted and human stool samples

containing G1P [8], G2P [4], G3P [8], G4P [8], G9P [6], G9P

[8], G10P [11] and G12P [9] rotavirus strains were used.

Antibody fragments
Llama derived ARP1 and ARP3 raised against a G3P [3]

rotavirus strain were obtained as described in Vaart et al. [22]. A

control fragment from a llama immunized with the hapten antigen

azodye RR6 coupled to BSA, VHH R2, was used throughout

[20]. All 3 fragments were produced in yeast as previously

described [20] and purified from yeast culture medium by ion

exchange chromatography. In brief, the yeast culture medium was

diluted 5 times in 25 mM sodium acetate buffer pH 4.5 (Sigma,

Zwijndrecht, Netherlands) and loaded on a 10 ml Sp-Sepharose

FF column (GE Healthcare, Little Chalfont, UK). Unbound

material was removed by washing with 25 mM sodium acetate

pH 4.5. Bound llama fragment was eluted with 40 mM Na2HPO4

pH 12 (Sigma, Zwijndrecht, Netherlands). The eluted fraction was

brought to the biotinylation buffer (50 mM Ca2CO3 pH 8) using a

PD10 column (GE Healthcare, Little Chalfont, UK).

ARP1, ARP3 and VHH R2 were biotinylated by adding NHS-

biotin (N-Hydroxysuccinimidobiotin in DMSO, Sigma, Zwijn-

drecht, Netherlands) to the llama fragments in a molar ratio of

20:1 (NHS-biotin : llama fragment). Unbound biotin was removed

by dialysis against PBS after incubating on a rotary mixer for

2 hours at room temperature.

Rotavirus neutralisation studies
The rotavirus neutralisation studies were performed indepen-

dently in two laboratories, the Laborotory Pediatrics, Erasmus

MC-Sophia, Rotterdam, The Netherlands, and The Enteric Virus

Unit, Virus Reference Department, Health Protection Agency,

London, UK.

At the Laboratory of Paediatrics, Erasmus MC, CaCo-2

(ATCC, HTB-37) or MA104 (ATCC, CRL-2378.1) cells were

maintained in Dulbecco’s Modified Eagle’s Medium (DMEM,

GibcoBRL, Paisley, Scotland) containing 10% (v/v) foetal calf

serum (FBS, Integro, Dieren, The Netherlands), 100 U/ml

Penicillin, 100 mg/ml Streptomycin and 1% (v/v) non-essential

amino acids (BioWhittacker, Verviers, Belgium) at 37uC and in an

atmosphere of 5% CO2-air.

To test the neutralising activity of the llama antibody fragment

ARP1 and a control antibody (VHH R2), 1.56104 CaCo-2 cells

were plated on heavy Teflon coated microscope slides ( 7 mm,

Cell-line/Erie Scientific, Portsmouth, NH) as described previously

[23]. Cells were rinsed 3 times with culture medium in the absence

of FBS (DMEM-FCS) and incubated with different concentrations

of the llama antibodies for 1 hour at 37uC prior to infection.

Simultaneously, rotavirus was treated for 1 hour at 37uC with

10 mg/ml trypsin (Sigma, Zwijndrecht, Netherlands) diluted in

DMEM-FCS. Subsequently, CaCo-2 or MA104 cells were

inoculated with 100 fluorescent focus forming units (fffu) of

rotavirus in absence or presence of decreasing concentrations of

the llama antibodies (10 mg/ml-0.16 mg/ml in doubling dilutions.

At 15 hours post-inoculation (p.i.), cells were fixed in ice-cold

methanol at 220uC for 10 minutes and stored in phosphate

buffered saline (PBS) pH 7.2. Infectivity was determined by an

indirect immunofluorescence assay (IFA). The methanol-fixed cells

were incubated for 90 minutes at room temperature with the

polyclonal rabbit anti-rotavirus serum (K3ppIV, kindly provided

by Dr. M. Koopmans, RIVM, Bilthoven, The Netherlands)

diluted in PBS (1:1600), rinsed four times with PBS, and stained

for 1 hour with goat anti-rabbit Texas Red conjugated IgG

(Jackson ImmunoResearch Laboratories Inc., West Grove, PA)

diluted in PBS (1:300). Finally, cells were washed extensively and

mounted in Mowiol (Calbiochem, San Diego, CA) containing

2.5% w/v DABCO (1,4-diazabicyclo[2.2.2]octane) and 0.5 mg/ml

DAPI (49,6-diamidino-2-phenylindole dihydrochloride:hydrate;

Sigma-Aldrich, Zwijndrecht, Netherlands). Fluorescence was

viewed with a Nikon Eclipse E800 microscope. The number of

infected cells in the antibody-treated and control cells was

expressed as a percentage of the average number of infected cells

in the control cell cultures. Each titration experiment was

performed at least twice.

Rotavirus Neutralisation by Llama Antibodies
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At the Enteric Virus Unit, Health Protection Agency, London,

UK, MA104 (ATCC, CRL-2378.1) cells were maintained in

MEM (Life Technologies, Paisley, UK) supplemented with 10%

foetal calf serum (Life Technologies, Paisley, UK) and gentamicin

(Life Technologies, Paisley, UK) (50 mg/L). One hundred

microliters of MA104 cells at a concentration of 16105 cells/ml

were seeded onto 96-well cell culture plates (Cellstar, Greiner,

Gloucestershire, UK) and incubated at 37uC, in an atmosphere of

5% CO2-air until cells were confluent (24–36 hours). Media was

replaced with 100 ml serum-free media the day before infection

and the cells were incubated overnight at 37uC in 5% CO2-air.

Rotavirus strains were activated with porcine-trypsin (Sigma,

Dorset, UK) at 5 mg/ml by incubation at 37uC for 30 minutes

prior to infection. Trypsin-activated virus was diluted to 100 fffu

per 100 ml (16103 fffu/ml) in a total volume of 5 ml serum-free

media. A total of 100 ml (or 100 fffu) of activated virus was mixed

with 100 ml of ARP1, ARP3 or VHH R2 antibodies in serial

twofold dilutions in a separate dilution plate to give final antibody

concentrations from 10 mg/ml to 0.16 mg/ml and incubated at

37uC for 1 hour. Experiments were performed in duplicate, and a

control with no antibody was included in duplicate in each

experiment. After removing media from the 96-well plate

containing the MA104 cells, 200 ml of virus/VHH mix were

added to the cells, the plates were sealed and centrifuged at

10006g for 20 minutes. The plate-seal was removed and the

inoculated cells were incubated overnight at 37uC in 5% CO2-air.

Rotavirus infected cells were detected by immuno-fluorescence

(IF). Cells were washed with 300 ml of PBS after removal of the

inoculum and then fixed with methanol (VWR, West Sussex, UK)

before air drying. A total of 100 ml/well of an anti-VP6 rotavirus

monoclonal antibody (AMS Biotechnology, Abingdon, UK);

diluted 1:200 in PBS) was added and incubated at 37uC for

30 minutes. Cells were washed 3 times with PBS-Tween20

(0.05%) before 100 ml of a rabbit anti-mouse IgG FITC (Dako,

Ely, UK) diluted 1:20 in PBS with 0.005% Evans Blue

(Euroimmun, Pontypool, UK) as a counterstain was added. Plates

were incubated 30 minutes at 37uC followed by 3 washes with

PBS-Tween20. Finally, cells were allowed to air dry and 50 ml of

10% glycerol (Sigma, Dorset, UK) in saline were added to prevent

desiccation. Cells were visualised using an epifluorescence inverted

microscope (Nikon Eclipse) and the number of fluorescent foci

recorded. Experiments were conducted on at least 2 separate

occasions for each strain and antibody concentration, and the

antibody concentration needed to reduce the number of

fluorescent foci by 50% was calculated for each antibody/rotavirus

strain tested

SDS-PAGE and Western blotting
Five millilitres of cell culture grown rotavirus was clarified by

centrifugation at 10006g, 10 minutes, the supernatant ultra-

centrifuged at 48,0006g, 45 minutes (Optima L-100 XP

Ultracentrifuge, Beckman Coulter, USA) and the virus resus-

pended in 100 ml MEM (Life Technologies, Paisley, UK).

Recombinant VP6 and VP7, expressed in a baculovirus/insect

cell expression system and lyophilised (in house and in

collaboration with Baylor College of Medicine, Houston, TX)

were resuspended to 1 mg/ml each. Uninfected MA104 cells

(used to propagate the virus) were included as a negative

control. A total of 6.25 ml 46NuPage LDS Sample Buffer (Life

Technologies, Paisley, UK) and 2.5 ml 106 NuPage Reducing

Agent (Life Technologies, Paisley, UK) were added to 16.5 ml

sample, and incubated at 70uC, 10 minutes. Twenty five

microlitres of denatured protein sample was separated on a 4–

12% SDS-PAGE gel (Life Technologies, Paisley UK) at 100 V,

10 minutes then 150 V, 1 hour in 16NuPage MOPS Running

Buffer (Life Technologies, Paisley, UK). Proteins were trans-

ferred from the gel to a nitrocellulose membrane (GE

Healthcare Life Sciences, Buckinghamshire, UK) in 16NuPage

Transfer Buffer (Life Technologies, Paisley, UK) with NuPage

Antioxidant (Life Technologies, Paisley, UK) and 10% meth-

anol (VWR, West Sussex, UK) for 1 hour at 30 V.

For the Western Blotting, the membrane was blocked in 5%

milk in PBS-Tween20 at 37uC, 1 hour. The membrane was then

incubated with either 5 mg/ml biotinylated ARP1, ARP3,

VHHR2 or 1:2000 monoclonal mouse anti-VP6 (AMS Biotech-

nology, Abingdon, UK) in 5% milk in PBS-Tween20 at 37uC,

1 hour. The membrane was then washed in PBS-Tween20 3

times, 10 minutes/wash and incubated with either 1:5000 alkaline

phosphatase-conjugated streptavidin (Promega, Southampton,

UK), for membranes treated with biotinilated primary antibodies

or 1:1000 goat anti-mouse HRP (Dako, Ely, UK), for membranes

treated with the mouse monoclonal antibodies, in 5% milk in PBS-

Tween20 at 37uC, 1 hour. The membrane was then washed in

PBS-Tween20 3 times, 10 minutes/wash. Membranes were

developed using the appropriate chemilluminescence reagent,

either CDP-Star (Life Technologies, Paisley, UK) for the alkaline

phosphatase or ECL Reagent (GE Healthcare, Little Chalfont,

UK) for the HRP.

Immune electron microscopy - Immune capture
Formvar-coated copper grids were coated by floating on a

solution of streptavidin (Prozyme, Hayward, CA, USA) (5 mg/ml)

in distilled water overnight. Grids were washed by floating on

distilled water, blotted and floated onto a 1:10 or 1:20 dilution of

the biotinylated antibody (ARP1 or control VHH R2). The grid

was incubated for 1 hour at 37uC and washed as before. The grids

were floated onto 10% suspensions of rotavirus positive faeces or

undiluted cell culture supernatants and incubated at 37uC for

1 hour. Grids were washed twice and floated onto 3% phospho-

tungstic acid (pH 6.3) (Agar Scientific Ltd, Essex, UK) for

1 minute, blotted and allowed to dry in air before examination

in the JEOL JEM 1200EX electron microscope. The number of

virus particles seen in 5 grid squares was determined and the

results expressed as particles/grid square. Specific reactivity was

inferred from an increase ($4 fold) in the number of particles/grid

square in the grid coated with ARP1 when compared to the

control grid.

Results

In vitro neutralising activity of the ARP1 and ARP3
antibody fragments

The initial experiments carried out in The Netherlands with

strains Wa, SA11, RRV, or WI61 were performed in CaCo-2

cells, and in MA104 for strain DS-1, and only neutralising activity

of ARP1 was determined with VHH R2 as control. In subsequent

experiments carried out in the UK, in MA104 cells, both ARP1

and ARP3 rotavirus-specific antibodies were tested in addition to

the control VHH R2.

The combined results are shown in Table 1. ARP1 showed

neutralising activity with all strains but SA11 and one of the RRV

strains. ARP3 showed similar neutralising activity to ARP1 with

the strains that were tested. The concentration of ARP1 or ARP3

required to give a 50% reduction in fffu was different among

strains and ranged from 0.63 mg/ml to 5 mg/ml (Table 1 and

Figure 1). No neutralising effect in any of the assays was detected

with the control antibody VHH R2.

Rotavirus Neutralisation by Llama Antibodies
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Characterization of the binding specificity of the Llama
antibody

Immune-EM showed that ARP1 bound rotavirus strains of

different genotypes from clinical samples including the recently

emerged G8, G10 and G12 strains (Table 2). Binding was also

demonstrated for those cell culture adapted rotavirus strains for

which ARP1 showed neutralisation activity. Two different strains

of RRV were used, whilst one showed binding, the other did not,

and these results were in agreement with the inability of the

rotavirus-specific antibodies to neutralise one of the RRV strains.

No significant binding was observed for strains SA11, P and RV4.

Determination of proteins involved in antibody binding
by Western blotting

In order to identify the viral protein recognised by these

antibody fragments, rotavirus strains RRV, SA11, ST-3, 69 M,

Va70 and F45, were subjected to SDS-PAGE. Recombinant VP6

and VP7 proteins derived from clinical isolates and expressed in a

baculovirus/insect cell system were included as controls. The

results showed that both ARP1 and ARP3 recognised bands

corresponding to those also recognised by the anti-VP6 monoclo-

nal antibody, representing polymeric VP6, including the recom-

binant VP6 protein (Figure 2). Neither antibody reacted with any

other rotavirus protein, nor did VHH R2 show any reactivity.

Discussion

Llama antibody fragments ARP1 and ARP3, obtained after

immunisation of a llama with RRV G3P [3], were tested for

binding and/or neutralising activity towards a broad range of

different rotavirus genotypes that were representative of the most

common and recently emerged strains worldwide.

Results obtained in the neutralisation assays show that ARP1

neutralised infectivity with rotavirus strains Wa (G1P [8]), DS-1

(G2P [4]), WI-61 (G9P [8]), 69M (G8P [10]), F45 (G9P [8]), Va70

(G4P [8]), RV4 (G1P [8]), M37 (G1P [6]), ST-3 (G4P [4]) and P

(G3P [8]), although there were differences in the concentration of

antibody required to achieve a 50% reduction in fffu. ARP3

demonstrated similar neutralisation activity to ARP1, with one

exception. ARP3 showed greater neutralising activity against

strain P than ARP1, and lower concentrations were required to

achieve a 50% reduction in fffu. The control antibody did not

neutralise any of the tested rotavirus strains, indicating the

neutralising activity was specific for ARP1 and ARP3. Neither

ARP1 nor ARP3 were able to neutralise SA11. Interestingly, two

RRV strains sourced from different laboratories exhibited different

binding patterns and neutralisation results. It is unclear whether

these differences are due to the differences in the cell line used for

virus propagation and neutralisation assays, or whether the strains

represent different clones, one of which may have a mutation or

mutations in an epitope recognised by these antibody fragments.

Previously, Pant et al [24] demonstrated neutralising ability of

ARP1 both in vitro and in vivo in a mouse model, and reported that

125 ng/ml of VHH1 (ARP1) was able to show 80% reduction in

infection in cell culture using MA104 cells. Detailed characterisa-

tion through genome sequencing and comparison of the deduced

amino acid sequences of the viral proteins of these two strains may

reveal mutations responsible for the observed differences and

could also provide some insight into the viral protein that is

recognised by these llama antibody fragments.

It has been suggested both in this study, and in other published

works, that VP6 is recognised by ARP1, but the rotavirus

protein(s) involved viral neutralisation has yet to be fully

characterised. Immune EM experiments using EDTA-treated

virus particles (to remove the outer layer and expose the VP6) have

been inconclusive in elucidating the exact mechanism by which

virus neutralisation occurs (data not shown). Previous work has

showed that ARP1 and ARP3 recognised different epitopes as they

do not compete (H. Marcotte, personal communication). The

broad reactivity and neutralising capacity of these antibody

fragments indicates that they recognise cross-reactive epitopes.

The outer layer proteins VP7 and VP4 both contain neutralising

Table 1. Infection neutralisation of different rotavirus strains with rotavirus-specific antibody fragments ARP1 and/or ARP3.

Infection neutralisation with antibody fragments

RV strain Genotype Cell line ARP1
conc. for $50%
reduction fffu ARP3

conc. for $50%
reduction fffu VHH R2

Wa G1P [8] CaCo-2 Yes 0.63 mg/ml NT No

SA11 G3P [1] CaCo-2 No NT No

RRV (RIVM strain) G3P [3] CaCo-2 Yes 2.5 mg/ml NT No

WI61 G9P [8] CaCo-2 Yes 2.5 mg/ml NT No

69M G8P [10] MA104 Yes 0.63 mg/ml Yes 0.63 mg/ml No

F45 G9P [8] MA104 Yes 0.63 mg/ml Yes 0.63 mg/ml No

Va70 G4P [8] MA104 Yes 0.63 mg/ml Yes 0.63 mg/ml No

RV4 G1P [8] MA104 Yes 1.25 mg/ml Yes 1.25 mg/ml No

M37 G1P [6] MA104 Yes 1.25 mg/ml Yes 1.25 mg/ml No

DS1 G2P [4] MA104 Yes 5.0 mg/ml Yes 5.0 mg/ml No

ST-3 G4P [4] MA104 Yes 5.0 mg/ml Yes 5.0 mg/ml No

P G3P [8] MA104 Yes 5.0 mg/ml 2.5 mg/ml No

RRV (KI strain) G3P [3] MA104 No No No

SA11 G3P [1] MA104 No No No

A summary of neutralisation of different tissue-culture adapted rotavirus strains with ARP1 and/or ARP3, with the concentration of antibody required to achieve a 50%
reduction in fffu. VHH R2, a non-related llama antibody fragment, was used as a control.
doi:10.1371/journal.pone.0032949.t001
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epitopes, but these tend to be type-specific. The middle layer

protein, VP6, is the most abundant and immunodominant viral

protein, and contains the group and subgroup determining

epitopes, and mostly cross-reactive epitopes; for this reason

antibodies that recognise this protein are often used in diagnostic

immunocapture assays.

Western blots were performed using biotinylated ARP1, ARP3

and VHH R2, and a variety of rotavirus strains that were

neutralised by ARP1 and ARP3 as well as the SA11 and RRV

strains that were not neutralised. ARP1 and ARP3 recognised the

polymeric VP6 of all strains tested, including SA11 and RRV.

This suggests that binding may not necessarily correlate with

neutralising activity, and that neutralisation may be dependent on

the recognition of a conformational epitope which may also be

influenced by the adjacent proteins VP7 and VP4, similar to

previously reported phenotypic changes for VP4 depending on the

VP7 context [25].

The immune-capture experiments indicated that the ARP1

bound to a range of rotavirus genotypes. Interestingly, of the

rotavirus strains derived from faecal samples, the antibody was

most reactive against G3P [8], whereas reactivity was highest

against Wa (G1P [8]) when the cell culture supernatants were

examined, when compared against the VHH R2 control. Also,

several of the cell culture adapted strains did not show

significant reactivity with ARP1 in immune EM although their

infectivity was neutralised in cell culture. This apparent

contradiction in the results is likely to be due to low viral titres

in some of the cell culture supernatants as reflected by the

particle counts obtained in the absence of antibodies. Typically,

viral loads as high as 1011–1012 virus particles per gram of faeces

are found in clinical samples during the acute phase of disease,

whereas typical viral loads achieved in cell culture range from

103–107/ml. For example, for those strains for which the results

of the neutralisation and immune-EM assays did not provide a

good correlation, the titres were 3.86103 fffu/ml, 9.16104 fffu/

ml and 2.86105 fffu/ml for strains RV4, P and 69 M,

respectively.

For some time it was thought that antibodies directed against

VP6 have no neutralising activity, however, evidence to the

contrary has been mounting. Anti-VP6 secretory IgA binds to

rotavirus double-layered particles conferring protection by

intracellular neutralisation following transcytosis in mice

[26,27,28]. Recently, llama-derived antibodies that bind specif-

ically to rotavirus VP6 have been shown to neutralise infection

with a variety of rotavirus genotypes in vitro, and in a neonatal

mouse model [24]. The mechanism by which the llama

antibodies neutralise infection is not yet understood, but

Garaicoechea et al speculated that the VP6-specific VHH may

block VP6 interaction with a cellular receptor [29,30] or induce a

conformational change which prevents attachment of the virus

particle. The neutralising capacity of these antibodies may relate

to their phenotypic small size, as bivalent VHH antibodies

showed much reduced neutralising activity compared to the

monovalent VHH [29].

Currently there is no specific therapy to treat rotavirus disease

other than oral or intravenous rehydration solution. However, in

the areas of the world where rotavirus disease takes the biggest

toll, the use of oral rehydration solution is still disappointingly

low, and rotavirus infection is still a major cause of mortality in

young infants. Several oral vaccines have been developed

recently, and these are highly efficacious in preventing severe

disease. However, questions remain about their effectiveness in

the poorest regions of the world where oral vaccines often fail to

induce protection due to concomitant infections in malnourish-

ment children. In these populations many doses are often

required, with concomitant cost and logistical implications, but

Figure 1. Neutralisation of cell culture adapted rotavirus strains in MA104 cells. Neutralisation experiments were performed using
rotavirus-specific antibody fragments ARP1 and ARP3 and control antibody VHH R2. Bars represent percentage of infected cells (fffu) compared with
absence of any antibody. A 95% confidence interval is shown by the error bar. A dashed line indicating 50% reduction in fffu is highlighted, and the
antibody concentration at which this is achieved is boxed. Concentration of ARP or VHH R2 is expressed in mg/ml on the X-axis in each graph.
doi:10.1371/journal.pone.0032949.g001

Table 2. Immune EM with rotavirus strains of different
genotypes from clinical samples or cultured reference
rotavirus strains.

Particles per grid square

Sample Genotype ARP1 VHH R2
Ratio ARP1:
VHH R2

Rotavirus from Clinical samples

Sample 1 G1P [8] 168 12 14

Sample 2 G1P [8] 30 5 6

Sample 3 G1P [8] 91 13 7

Sample 4 G2P [4] 40 ,1 40

Sample 5 G3P [8] 1600 30 53.3

Sample 6 G4P [8] 47 ,1 47

Sample 7 G9P [6] 217 25 10.8

Sample 8 G9P [8] 74 3 24.7

Sample 9 G12P [9] 77 13 5.9

Sample 11 G10 P [11] 30 2 15

Sample 12 G10 P [11] 116 ,1 $116

Sample 12 G10 P [11] 22 1 22

Cell culture Fluid

Wa G1P [8] 330 ,1 330

WI61 G9P [8] 11 14 0.78

DS1 G2P [4] 227 3 75.7

RRV (RIVM Strain) G3P [3] 455 27 16.9

UP3 G9P [6] 12 ,1 12

SA11 G3P [1] 2 ,1 2

SA11 G3P [1] 5 ,1 $5

RV4 G1P [8] 3 2 1.5

P G3P [8] 1 4 0.3

ST-3 G4P [6] 82 1 82

Va70 G4P [8] 88 1 88

69M G8P [10] 6 2 3

F45 G9P [8] 10 ,1 $10

RRV (KI strain) G3P [3] 5 24 0.2

Two different antibody batches were used, one batch was used at 0.14 mg/ml
and the results are shown in italics, the second batch was used at 0.15 mg/ml.
The number of virus particles seen in 5 grid squares was determined and the
results expressed as particles/grid square. Specific reactivity was inferred from
an increase ($4 fold) in the number of particles/grid square in the grid coated
with ARP1 when compared to the control grid.
doi:10.1371/journal.pone.0032949.t002
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also, as rotavirus infections occur very early in life; children are

exposed to natural rotavirus infection before vaccine-induced

protection can be achieved. Recent vaccine trials in Africa and

Bangladesh showed that the efficacy of the current live-

attenuated vaccines is significantly lower to that observed in

developed countries [31,32]. However, it is considered that even

with this reduced efficacy, they are expected to have a major

impact in the reducing mortality and SAGE recommends the

inclusion of rotavirus vaccination of infants into all national

immunization programmes (http://www.who.int/wer/2009/

wer8423.pdf).

Several studies have been performed following passive

immunisation strategies using bovine colostrum [33,34] or

hyperimmunised chicken egg yolk immunoglobulin [35]. These

studies indicated the possible benefits that can be achieved

through anti-rotavirus prophylaxis. However, product yield and

cost remain the limiting factors. An antiviral chemotherapeutic

agent has also been trialled for the treatment of rotavirus

diarrhoeal disease, acetorphan (racecadotril). This encephalinase

inhibitor has in fact been shown to be effective in reducing the

stool output of young children with acute diarrhoea [36]. Finally,

probiotics have attracted a renewed interest in last few years,

particularly focusing on their effects in treating and preventing

diarrheal diseases [37]. However, costs will also remain a

limiting factor for the broad use of these promising new

developments in developing countries, where they are most

needed. As a consequence, there is no satisfactory prophylactic

(or therapeutic) means of controlling rotavirus infection, and

alternative therapies are still needed. Here we have provided

evidence that the two llama-derived antibody fragments, ARP1

and ARP3, have the potential to be used as new antiviral

prophylactic or therapeutic products and may provide a valuable

complementary prophylactic measure, particularly for those

populations in which the efficacy of the live attenuated vaccines

is suboptimal. ARP1 has previously been shown to reduce

rotavirus-induced diarrhoea in the mouse model [22]. However,

only human intervention studies currently under way will

determine their usefulness in the prevention or treatment of

rotavirus-induced diarrhoeal disease.
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Figure 2. Western blots. Western blots were performed with either [a] monoclonal mouse anti-VP6 or [b] ARP1-biotin. Concentrated cell adapted
rotaviruses were run on an SDS-PAGE gel, transferred to a nitrocellulose membrane, and blotted with appropriate antibodies.
doi:10.1371/journal.pone.0032949.g002
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