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Abstract

This paper provides a new way of analyzing tenure profiles in wages,
by modelling simultaneously the evolution of wages and the distribution
of tenures. Starting point is the observation that within-job log wages for
an individual can be described by random walk. We develop a theoretical
model based on efficient bargaining, where both log outside wage and log
wage in the current job follow a random walk. This setting allows the
application of real option theory. We derive the efficient separation rule,
which stipulates that workers switch jobs when the difference between the
outside wage and the wage in the current job reaches a threshold. The
model fits well the observed distribution of job tenures. Since we observe
outside wages only at job start and job separation, our empirical analysis
of within job wage growth is based on expected wage growth conditional
on the outside wages at both dates. Our modelling allows testing of the
efficient bargaining hypothesis. The model is estimated on the PSID.
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1 Introduction
A large empirical literature has looked at wage returns to job seniority using a
whole arsenal of econometric techniques, see Farber (1999) for a survey. The
conclusions of this research still diverge, despite analyzing data from the same
countries (mainly the USA) or even the same longitudinal datasets (mostly
the PSID): while some authors find that large estimated returns are spurious
and wage returns to tenure are actually very small, e.g. Altonji and Shakotko
(1987), Abraham and Farber (1987), Altonji and Williams (1997, 2005), Abowd
et al (1999), others confirm large and significant wage returns close to cross-
section estimates, e.g. Topel (1991), Dustmann and Meghir (2005), Buchinsky
et al (2005). Here we provide a new direction for investigating the wage-tenure
relationship. From a theoretical point of view large "true" returns to tenure
are problematic. Were there really large returns, the worker-firm match would
spoil large gains from trade at the moment of separation. Why would a worker
separate when he loses his tenure profile by doing so? Hence, separation is likely
to be induced by the firm, what we call a layoff. But why would the worker and
the firm not renegotiate the wage instead of separating? Although some models,
such as efficiency wage models, can explain why this renegotiation process might
not be fully efficient, the size of the wage returns to seniority reported in some
papers remains puzzling. In fact, the empirical evidence offers support for at
least some form of renegotiation. For instance Jacobson, LaLonde and Sullivan
(1993) have shown that displaced workers face severe wage cuts of up to 25% just
before separation. This paper addresses explicitly whether the existing evidence
is consistent with efficient separations by modelling simultaneously the evolution
of wages and the distribution of job tenures.
We take efficient bargaining as benchmark. Hence, quits and job layoffs are

observationally equivalent, as in McLaughlin (1991). The model explains the
observed correlation between wages and job tenure from the random evolution
of wages after job start. This random evolution is due to the random evolu-
tion of the job’s productivity value. Separation occurs when the value of the
productivity in the job falls below the value of the outside option1, which also
evolves randomly. We refer to this outside option as the reservation wage. The
observed correlation between wages and tenure is caused by the fact that only
jobs that evolve favorably relative to the reservation wage survive. Hence, there
is no such thing as "the" return to tenure in this model. In some jobs wages go
up because the job’s productivity value evolves favorably. In others wages go
down for mutatis mutandis the same reason. However, the latter group is grad-
ually eliminated from the stock of ongoing employment relations just because
there are no options for mutually gainful renegotiation left and hence separation
becomes efficient.

1We regard the outside option as the alternative activity to the current job. The payoff of
this alternative activity, also labelled outside wage or reservation wage, is equal to the value
of the individual’s "productivity" in this outside activity. In the paper we shall thus use the
terms "value of the outside option" and respectively, "outside wage" or "reservation wage",
interchangeably.
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The evolution of an individual’s within-job log wage is reasonably described
by a random walk with transitory shocks, as previously found in Abowd and
Card (1989), Topel (1991) and Topel and Ward (1992), hypothesis that we
verify on our PSID estimation sample. Whereas this observation received little
attention among labor economists, we take it as cornerstone of our modelling.
Both log productivity value in the job and log reservation wage are assumed to
follow a random walk. We assume a linear sharing rule of the surplus between
the log productivity value in the job and the log reservation wage. This ensures
that log wages in the job follow a random walk as well. Hence, the difference in
the drift between the log wage in the job and the log reservation wage is what
we traditionally call "the return to tenure".
Each job requires some form of specific investment. That specificity can be

anything. Training is just one aspect. For most jobs other aspects are more
important, such as getting to know your new colleagues, knowing where to
make photocopies or where to get a cup of coffee, organizing your home-to-work
travel efficiently, etc. Upon separation the worker and the firm lose the value
of these specific investments. Since separation is irreversible, the investments
have an option value. The combination of irreversible specific investment and
productivity and reservation wages following a random walk implies that we
can apply the theory of real options, see for example Dixit (1989), Bentolila and
Bertola (1990), and Dixit and Pindyck (1994). Teulings and van der Ende (2000)
used this model for the analysis of distribution of job tenures. The predicted
hazard rates of this model are well in line with the empirical distribution of the
job exits.
From the distribution of job tenures we are able to estimate the initial surplus

of the job’s productivity above the reservation wage and a (linear) drift of this
surplus, up to a normalizing constant (the variance of the random walk). We
obtain a positive drift surplus, indicating that some 10% of all jobs will end
only by retirement. We use these parameters to compute the expected surplus
in both completed and incomplete job spells, which will enable us to estimate the
evolution of wages. The typical problem in this literature is that the researcher
only observes the reservation wage at job start and at job separation. At job
start, the worker chooses the best option that is available at that moment, which
is by definition equal to the reservation wage. Using the same reasoning, the
reservation wage at job transition is equal to the first wage in the new job2.
Our estimation procedure exploits both pieces of information on the reservation
wage to the maximum. To that end, we elaborate an idea first explored by
Abraham and Farber (1987): we condition the expected wage growth within a
job not only on the elapsed duration since job start -that is: current job tenure-
but also on the remaining time span left till the next separation, so we take
into account the complete duration of the job. We can calculate a closed form
expression for this expectation. As a first result, we show that this expression
does not depend on the drift surplus. This implies that the evolution of wages in

2 In practice, we shall define the reservation wage not as the first wage in the new job, but
as the lowest acceptable wage in the old job.

3



completed spells is uninformative on the return to tenure. This is a remarkable
conclusion given the fact that so many papers have tried to identify the return
to tenure from this type of data. The only sources of information on the return
to tenure are the distribution of completed tenures and the evolution of wages
in incomplete job spells. The fat right tail in the tenure distribution, with many
jobs never ending, is an indication of large returns to tenure: the return to
tenure is so high that separation is rarely efficient, except for cases where the
random walk evolves really unfavorably.
As a second result, we demonstrate the fragility of the tenure profile iden-

tification. The problem is not so much the selectivity in the observed wage
profile, as the selectivity in the reservation wage. Observed reservation wages
are positively selected, since we observe them only at the moment when work-
ers switch jobs and since workers switch jobs only when reservation wages are
high. We show that this effect can be identified from the wage change for job
movers, but that this is a thin line of identification. Surprisingly, selectivity in
the reservation wage turns out to be an empirically important phenomenon.
The empirical results show that our model does very well in explaining the

concavity in the "observed" tenure profile. Since the "true" tenure profile, the
drift in the surplus of productivity above the reservation wage, is linear by
assumption, this concavity is fully due to selection. One can argue that our
identification procedure relies heavily on functional form assumptions. Nev-
ertheless, there is one strong test of our assumptions: the estimated variance
of the innovation in wages is consistent with the concavity in the "observed"
tenure profile. There is nothing in our estimation procedure that drives this
result. Furthermore, we do observe a smaller wage increase during the first half
of the job spell than at similar tenures for jobs that separate later or not at all,
as predicted by the model. However, we do not observe wages falling during
the second half of the job spell, as also predicted by the model. This fits the
idea of downward rigidity, as discussed for example by Beaudry and DiNardo
(1991), who find that within a job spell wages go up in the upturn, but do not
go down in the downturn. Nonetheless, at the moment of separation, the gap
is filled by an additional wage decline for job changers. Hence, our empirical
results provide support for an amended version of the model, where we allow
for downward rigidity in wages. This rigidity does not however really fit the
efficient bargaining hypothesis. In unionized jobs, the fall in wages at the date
of separation is much larger. It is hard to see how these results can be squared
with the efficient bargaining hypothesis. The estimated tenure profile is on the
high end of the spectrum, 5% per year, though two thirds of the return take the
form of a declining reservation wage instead of a rising wage in the current job.
The paper is structured as follows: the model is discussed in Section 2, the

empirical analysis in Section 3, and Section 4 concludes.
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2 The Random Productivity Growth Model

2.1 Model Assumptions

Our modelling extends the analysis on the tenure distribution by Teulings and
van der Ende (2002) to wages. Consider a labor market in continuous time,
where a job is a unique match between a risk neutral worker and a risk neu-
tral firm. The risk neutrality of both players implies that there is no insurance
problem. We ignore any disutility of effort, so that the worker’s utility depends
only on her income. There is no search cost involved from either party in find-
ing the optimal match. A worker picks therefore that vacancy that yields the
highest expected net discounted value. At the start of the employment relation-
ship specific investments are made, which are irreversibly lost upon a separation
between the worker and the firm. However, the firm retains the property right
on the vacancy. That is, it can hire at any future time, provided that the new
worker and the firm are prepared to pay the cost of the specific investment
again. These specific investments are verifiable, so that there are no hold-up
problems: the worker and the firm can always agree on a side payment at the
start of their relation that offsets expected unbalances in bargaining power. We
shall relax this assumption later on, when discussing the impact of unions. Fur-
thermore, the investments are made instantaneously and do not require any
time for implementation. The log productivity of the job and the log reserva-
tion wage evolve over time according to a random walk. Both worker and firm
are perfectly informed about their current value, but their future evolution is
unknown. The worker and the firm bargain over the surplus of the productiv-
ity and the reservation wage. This bargaining is efficient: as long as there is
a surplus, the worker and the firm will agree on a sharing rule. At some mo-
ment the productivity has fallen below the reservation wage so that separation
becomes the efficient alternative. Then, separation occurs at mutual consent
since there are no gains from trade left. The turnover is therefore efficient, and
quits and layoffs observationally identical (although behaviorally distinct), as in
McLaughlin (1991). For the sake of convenience, we shall refer to separations
as the firm firing the worker in the rest of the paper, though separations can
be both quits or layoffs. Given these assumptions (risk neutrality, no hold up
problems, and efficient bargaining), wage setting and separation decisions can
be analyzed separately, since matching and separation decisions maximize the
joint surplus. This section focuses on the separation decision, wage setting being
discussed in the next section.
We assume that job’s productivity Pt follows a geometric Brownian with

drift. The worker’s reservation wage Rt is also a geometric Brownian with drift.
Rt is defined such that separation is efficient as soon as Pt ≤ Rt. The specific
investments at the moment of job start are proportional to the reservation wage:
RtI. We can think of I as cost of investment measured in units of labor time
and of Rt as the price of one unit. Using lower cases to denote the logs of the
corresponding upper cases, the law of motion between arbitrary dates s and t,

5



with s < t, is characterized by a bivariate normal distribution:·
pt − ps
rt − rs

¸
∼ N

£
(t− s)µ, (t− s)Σ

¤
where:

Σ =

·
σ2p σpr
σpr σ2r

¸
, µ =

·
µp
µr

¸
(1)

Let V (Pt, Rt) be the option value of a vacancy and J (Pt, Rt) the expected

present value of a job, both as functions of productivity Pt and the reservation
wage Rt. Hence, J (Pt, Rt) is the net discounted value of Ps−Rs, for s running
from t till the expected future moment of separation T , plus the option value
V (PT , RT ) of filling the vacancy at a later time s > T . The current values of Pt
and Rt are sufficient statistics for the calculation of J (·) and V (·) since both Pt
and Rt are martingales. A firm will hire a worker at the first moment S that the
value of a filled job exceeds the value of a vacancy plus the cost of investment:

J (PS , RS) = V (PS , RS) +RSI (2)

Similarly, a firm will fire the worker at the first moment T that Pt = Rt, or
equivalently, when the value of a filled job is less than that of vacancy:

V (PT , RT ) = J (PT , RT ) (3)

Therefore we shall refer to Pt − Rt as the absolute current surplus of a job.
Define:

Bt ≡ Pt
Rt

Since Pt and Rt follow a geometric Brownian, Bt also follows a geometric Brown-
ian:

bt − bs ∼ N
£
(t− s)µ, (t− s)σ2

¤
(4)

σ2 ≡ σ2p + σ2r − 2σpr
µ ≡ µp − µr

where again bt denotes logBt. By construction, BT = 1, bt = pt − rt, and
bT = 0. We shall refer to bt as the relative current surplus of a job, or easier,
the job surplus. Using this definition we can write the absolute current surplus
of a filled job as:

Pt −Rt = Rt (Bt − 1)
Thus, all potential future investment cost RsI and all future benefits Rs (Bs − 1)
for future dates s > t are proportional to Rs. Since Rs follows a geometric
Brownian, E[Rs|t] = RtE[exp (rs − rt)] = Rt exp

£¡
µ+ 1

2σ
2
¢
(t− s)

¤
. Hence,

the expectation of future values of Rs is proportional to Rt. It follows that J (·)
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and V (·) are proportional to Rt. These value functions can therefore be written
as:

J (Pt, Rt) = Rtj (Bt)

V (Pt, Rt) = Rtv (Bt)

Hence, we can write the hiring and separation conditions (2) and (3) as:

j (BS) = v (BS) + I

v (BT ) = j (BT )

The optimal hiring and separation rules depend therefore purely on Bt: fill a
vacancy at the first time that Bt rises up to Bh, fire the worker at the first time
Bt falls below Bs. The value of Bh and Bs can be expressed as a function of the
model’s parameters I, µ,Σ and the interest rate ρ, using techniques described
in Dixit and Pindyck (1994). Since we do not need these expressions for the
subsequent analysis, we do not present them here, see Teulings and Van der
Ende (2000) for that.

2.2 Job Tenure Distribution

Without loss of generality we normalize the moment of job start to zero, S = 0,
so that b0 = bh. From that moment on, bt evolves according to its law of
motion specified in equation (4). The separation occurs at the first moment
t = T when bt = bs. Hence, T is the completed tenure of that job spell.
Analogously to the probit model, where the variance of the error term is non-
identified and can therefore be normalized to unity without loss of generality, σ,
the standard deviation of bt, is unidentified in this model. We normalize thus
all other parameters by σ. Define:

Ωt ≡ bt − bs

σ
(5)

Ω ≡ bh − bs

σ

π ≡ µ

σ

Hence, Ωt is a Brownian with drift π and unit variance per unit time, with
Ω0 = Ω and ΩT = 0. The distribution of job tenures is the "First Passage time"
distribution (eg. Cox and Miller, 1965), i.e. the distribution of durations till
the random walk Ωt passes the single absorbing barrier Ωt = 0 for the first time.
The density function of Ωt conditional on Ω0 = Ω reads:

1√
t
φ

µ
Ωt − Ω− πt√

t

¶
where φ(·) is the standard normal density. However, a realization of Ωt is not
interesting if separation has occurred before time t. This situation cannot cor-
respond to a job-worker match since separation decisions are by assumption
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irreversible. We are thus interested in the density of Ωt conditional on the fact
that no separation has occurred before time t, that is Ωs > 0 for all 0 ≤ s < t.
A simple methodology can be applied in this regard, often used in pricing bar-
rier options in mathematical finance, the stochastic reflection principle: there is
a one-to-one correspondence between trajectories from Ω to Ωt having crossed
Ωs = 0 at least once, and trajectories from −Ω to Ωt. This latter group of
trajectories should thus be subtracted from the trajectories from Ω to Ωt for
the calculation of the density of all trajectories from Ω to Ωt that never crossed
Ωs = 0. Let g (ω, t,Ω) be the joint density/probability of Ωt = ω and T > t, so
g (ω, t,Ω) ≡ Pr(Ωt = ω∧T > t|Ω) (we add the parameter Ω as an argument for
future reference). This density satisfies:

g (ω, t,Ω) =
1√
t

·
φ

µ
ω − Ω− πt√

t

¶
− e−2Ωπφ

µ
ω +Ω− πt√

t

¶¸
(6)

where the factor e−2Ωπ corrects for the differential effect of the drift on the
density for upward and downward trajectories. The cumulative distribution of
jobs surviving at time t, 1−F (t,Ω), is calculated by integrating g (ω, t,Ω) over
Ωt ∈ [0,∞) (since negative values of Ωt are inconsistent with T > t):

1− F (t,Ω) ≡ Pr(T > t|Ω) =
Z ∞
0

g(ω, t,Ω)dω (7)

= Φ

µ
Ω+ πt√

t

¶
− e−2ΩπΦ

µ−Ω+ πt√
t

¶
where Φ(.) is the standard normal CDF. The distribution of completed job
tenures is therefore fully specified by two parameters, the distance from the
separation threshold at job start Ω and the drift π. The corresponding density
function is the derivative of F (t,Ω) with respect to t:

f(t,Ω) =
Ω

t
√
t
φ

µ
Ω+ πt√

t

¶
(8)

where we have used φ
³
Ω+πt√

t

´
= e−2Ωπφ

³
−Ω+πt√

t

´
.

The job exit rate is then given by f(t,Ω)/[(1−F (t,Ω)]. It is straightforward
to check that the exit rate is hump shaped, starting from 0, reaching a peak
at t∗, 0 < t∗ < 2/3Ω2, and afterwards declining monotonically to 0 for positive
drift π > 0 and respectively to 1/2π

2 for negative drift π < 0. Farber (1994),
Teulings and Van der Ende (2000) and Horowitz and Lee (2002) have docu-
mented this hump shaped pattern using NLSY data. A positive drift implies
a non exhaustive behavior, where some jobs never end. We plot the exit rates
for pairs Ω = 0.32 and π = 0.15 and respectively Ω = 0.30 and π = 0.23 (these
are mean values for Ω and π from our estimations of the tenure distribution
parameters, see Section 3 below) in Figure 1. In both cases the peak is reached
at t ' 0.04 years. Since π > 0, the hazard rate converges to zero and a positive
fraction of the jobs will never end. The fraction of surviving job spells for π > 0
is given by the survivor function (7) when t → ∞, hence by 1 − e−2Ωπ. For
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mean values of parameters of Ω = 0.32 and π = 0.15 about 10 % of the jobs
never end. We conclude that the parameters Ω and π can be identified from
data on the distribution of job tenures, but the parameter σ cannot.

0.5 1 1.5 2
t

1

2

3

4

5

Hazard Rate

Ω=0.32 , π=0.15

Ω=0.30 , π=0.23

Figure 1: Predicted Job Hazards

2.3 Tenure Profile in Wages

2.3.1 Sharing Rule of Surpluses

We now extend the model with an explicit sharing rule of surpluses during the
course of the job spell. We use a rule stipulating that log instantaneous surplus
pt − rt is shared in fixed proportions between the worker and the firm.3 The
worker’s log wage wt then satisfies:

wt = rt + β (pt − rt) = rt + βbt = rt + σΩt (9)

where σ ≡ βσ. We interpret β as the worker’s bargaining power. Log wages
within a job follow a Brownian with drift µr + σπ. The term σπ is the tenure
profile. At the start of each job, t = 0 and Ωt = Ω. After job start, Ωt goes
up in expectation with π every period, conditional on the fact that Ωt remains
positive. Were job separations independent of the realization of Ωt (and of rt),
we would have:

E (wt|t < T ) = E (rt) + σ (Ω+ πt)

3This approach is more pragmatic than what is commonly used in the literature, where
the wage setting is done by Nash bargaining leading to a sharing rule of the return on the
expected discounted value of all future absolute surpluses instead of the instantaneous relative
surplus. One can view our approach as a first order expansion of this rule.
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In that case, the tenure profile would be estimated easily, for instance in dis-
crete time by first differencing the equation above and then comparing log wage
growth for job stayers and job changers:

stayers : ∆E (wt|1 < t < T ) = µr + σπ

changers : ∆E (w∗t |t = T ) = µr − σπ (T − 1)
where ∆ is the first difference operator and where the superscript ∗ indicates
that we compare log wages in the new and the old job; hence, ∆w∗T compares
the starting wage in the new job to the wage one year before separation in the
old job.
However, in completed job spells Ωt is correlated to T for three reasons: (i)

Ω0 = Ω, (ii) ΩT = 0, and (iii) Ωt > 0 for 0 ≤ t < T . Empirically, rt is only
observed at the beginning of a job: r0 = w0 − σΩ, and at the end of a job:
rT = wT . In between, the researcher has no information on rt, but only on wt.
Our strategy is to calculate E(Ωt) conditional on the three pieces of information
available, (i), (ii), and (iii), and to enter this expectation as a regressor in a
regression of within job log wage growth. Mutatis mutandis the same applies
to job spells that do not end before the end of the time span covered by the
data, the incomplete job spells. Let L be the the last date on which data are
available. What we know about an incomplete job spell that it is still running
at L. Hence, there are again three pieces of information: (i) Ω0 = Ω, (ii)
T > L > t , and hence (iii) Ωt > 0 for 0 ≤ t < L. And again we calculate the
conditional expectation E(Ωt). Below we discuss the conditional expectation
first for completed and then for incomplete job spells.

2.3.2 Conditional Expectation of Ωt for Completed Spells

Let h (ω, t, τ) be the density of Ωt = ω conditional on (i) Ω0 = Ω, (ii) Ωτ = 0,
and (iii) Ωt > 0 for 0 ≤ t < τ . Comparing this density to g (ω, t,Ω), there
is one additional condition: Ωτ = 0, or equivalently, T = τ . When we want
to apply Bayes’s rule, we need the distribution of T conditional on Ωt = ω.
Since Ωt is a martingale, the distribution of T conditional on Ωt = ω is equal
to the distribution of T = τ − t conditional on Ω = ω. Hence, its density is
f (τ − t, ω), see equation (8). Then h (ω, t, τ) can be calculated from f (·) and
g (·) by Bayes’s rule, see equations (6) and (8):

h(ω, t, τ) =
f(τ − t, ω)g (ω, t,Ω)R∞

0
f(τ − t, x)g (x, t,Ω) dx

(10)

The conditional expectation reads:

E(Ωt|0 < t < T = τ) =

Z ∞
0

ωh(ω, t, τ)dω (11)

= 2
p
f (t) tφ

³p
f (t) /tΩ

´
−
µ
t

Ω
+ f (t)Ω

¶h
1− 2Φ

³p
f (t) /tΩ

´i
f (t) ≡ τ − t

τ
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where τ denotes the realization of T . The derivation is discussed in Appendix
A1. The remarkable feature of this expression is that it does not depend on the
tenure profile in wages, π. Hence, conditional on the model that we specified,
the evolution of wages in completed job spells does not provide any information
at all on the tenure profile in wages. Given the many papers that have tried to
do so, this is a staggering conclusion.

E(Ωt|0 < t < T = τ) satisfies the following conditions:

lim
t−>0

E(Ωt|0 < t < T = τ) = Ω

lim
t−>T

E(Ωt|0 < t < T = τ) = 0

lim
t−>0

dE(Ωt|0 < t < T = τ)

dt
=

1

Ω
− Ω

τ

lim
t−>τ

dE(Ωt|0 < t < T = τ)

dt
= −∞

d2E(Ωt|0 < t < T = τ)

dt2
< 0

The full expression of derivatives as a function of t can be found in the Appendix
A1. The first two lines above fit our assumptions that a job starts at Ω0 = Ω and
ends at ΩT = 0. The third line says that the initial slope is negative for short
spells, T < Ω2, and positive for longer spells. For short spells, the expected sur-
plus must decline immediately to reach ΩT = 0 in time. Therefore these spells
are a selective sample of trajectories for which the expected surplus declines
right from the start of the job spell. Correspondingly, the long spells T > Ω2

are the selective sample for which the opposite holds. The fourth line shows
that the expected surplus declines infinitely fast just before separation. Tra-
jectories that separate the next minute are therefore a highly selective sample.
This result is consistent with the empirical evidence by Jacobson, LaLonde and
Sullivan (1993) on the decline in the wage profile in the period just before the
moment of separation. The final line above shows that the second derivative is
always negative. Hence, the expected surplus is concave in t; it is monotonically
decreasing for short spells T < Ω2 and it is hump shaped for longer spells. The
tenure profile is plotted for the estimated mean value Ω = 0.32 and for various
values of T in Figure 2. For T ≤ 0.1 years the tenure profile is monotonically
decreasing, while for larger T it is increasingly concave. The top of the profile is
increasing in T , showing the importance of conditioning on the eventual tenure.

2.3.3 Conditional Expectation of Ωt for Incomplete Spells

The conditional expectation for incomplete job spells, E(Ωt|t < L < T ), is
calculated by using the same methodology as in the case of the completed job
spells. Let h∗(ω, t, L) be the density of Ωt = ω conditional on (i) Ω0 = Ω, (ii)
Ωt > 0 for 0 ≤ t < L, and (iii) T > L. The application of the Bayes rule leads
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Figure 2: Expected Surplus in Completed Job Spells

to the following expression for the conditional density:

h∗(ω, t, L) =
[1− F (L− t, ω)] g (ω, t,Ω)R∞

0
[1− F (L− t, x)] g (x, t,Ω) dx

(12)

This density can by used for the calculation of the conditional expectation in
the same way as equation (11). Contrary to the case of completed spells, there
is however no explicit expression for the conditional expectation in this case,
cf. Appendix A2 for the final expressions on which numerical integration is
performed. Figure 3 presents the trajectory of E(Ωt|t < L < T ) for Ω =
0.32, π = 0.15 and L = 1, 3, 5, 10. The higher L, the more information on T is
available, since T > L.

E(Ωt|t < L < T ) for a fixed t is increasing in L. The reason is that higher
values of L imply a greater selectivity, since more and more trajectories leading
to a separation have been selected out. Were there no selectivity, then the
trajectory would be linear, E(Ωt|t < L < T ) =E(Ωt) = Ω+πt. The trajectories
are strongly concave, implying that selection plays an important role. Contrary
to the completed spells case, incomplete spells do provide information on the
drift π. Nevertheless the impact of the drift is negligible compared to selectivity,
as documented by Figure 4, which compares the trajectories of the conditional
expectation in completed spells, in incomplete spells and in absence of any
selectivity. The concavity outweighs the linear trajectory by far, at least for the
first five years.
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Figure 3: Expected Surplus in Incomplete Job Spells

We also plot conditional expectations of the surplus for mean values of the
tenure distribution parameters in both completed and incomplete job spells, for
very long job durations. Trajectories of the expected surplus for T = 10, 20 and
respectively L = 10, 20 are plotted in Figure 5. One notices that the difference
between the expected surplus in completed job spells and incomplete job spells
increases with the time span. At the same time the strong concavity due to
selection is clearly visible in both cases.

2.3.4 Expected Within-Job and Between-Job Wage Growth

We can apply the conditional expectations of Ωt in incomplete and completed
job spells for the analysis of the expected wage growth ∆wt within a job and re-
spectively ∆w∗T between jobs. For this purpose, we decompose the random
variables [∆pt,∆rt] in two orthogonal components ∆bt and ∆zt, such that
Cor(∆bt,∆zt) = 0. Given the previous assumptions on the joint normality
of ∆pt and ∆rt, such a decomposition is always feasible. Hence, for 1 < t < T ,

∆rt = ∆zt − γβ∆bt = ∆zt − γσ∆Ωt (13)

∆wt = ∆zt + (1− γ)β∆bt = ∆zt + (1− γ)σ∆Ωt

with ∆zt ∼ N
¡
µz, σ

2
z

¢
and Cov(∆zt,∆bt) = 0. Obviously, the parameter γ can

be expressed in terms of the covariance matrix Σ and the bargaining power β,
but that is of little help here. It is more useful to interpret it as a reflection
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of the correlation between the match surplus and the reservation wage. In the
one extreme case γ = 0, we can write ∆pt = ∆rt + ∆bt, with both right-
hand side variables being uncorrelated. Then ∆rt reflects the evolution of the
general human capital of the worker in this job as well as in all other jobs,
which evolves independently of the value of the specific capital in the present
job, ∆bt. Hence, the duration of the actual job is fully determined by its own
(mis)fortune. Though the distinction between quits and layoffs makes little
sense in this model, separations look like layoffs in this case: the firm fires the
worker since she is no longer productive. In the opposite extreme case γ = 1,
we can write ∆rt = ∆pt −∆bt, again with both right-hand side variables being
uncorrelated. Now, ∆pt reflects the evolution of the general human capital
of the worker in this job as well as in all other jobs; ∆bt reflects the specific
evolution of outside opportunities, e.g. new technologies emerging in other firms.
Separations look like quits in this case: the worker quits because she can get a
better job elsewhere. We can use equation (13) to specify four OLS regressions,
which are discussed below.
Taking expectations in the second equation of (13) yields:

E(∆wt|1 < t < T = τ) = µz + (1− γ)σE(∆Ωt|1 < t < T = τ)(14)

E(∆wt|1 < t < L < T ) = µz + (1− γ)σE(∆Ωt|1 < t < L < T )

Var (∆wt|t < T ) ≡ σ2w

The first equation from (14) applies for completed spells, where we observe T =
τ ; the second equation applies for incomplete spells, where we only know that
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the job ends beyond the period covered by the data, T > L. Since separation
decisions are fully determined by the evolution of bt (or, equivalently, Ωt) and
since ∆bt and ∆zt are uncorrelated, there is no selectivity in ∆zt. Hence,
the conditioning 1 < t < L < T can be omitted in E(∆zt). As discussed
before, Ω and π can be estimated from the distribution of observed job spells.
These parameters are sufficient statistics for the calculation of the conditional
expectations of ∆Ωt. These expectations can be used as explanatory variables
in a regression of within job log wage growth, ∆wt.4 These equations identify
(1− γ)σ, but not γ and σ separately. Hence, we can only infer the part of the
tenure profile that is associated with the selectivity in wt, not in rt.

4There is an alternative estimation strategy for within job log wage changes for completed
spells. We observe rt at the beginning and at the end of the job spell: r0 = w0 − βΩ and
rT = w∗T − βΩ, where w∗T is the starting wage in the new job. We can add these conditions
to our regression analysis. Hence:

E (∆rt|1 < t < T, r0, rT ) =
rT − r0

T
=

w∗T −w0

T

Then, taking first differences and expectations in equation (9) yields:

E (∆wt|1 < t < T, r0, rT ) =
w∗T − w0

T
+ βσE (∆Ωt|1 < t < T )

We do not use this methodology here since it can only be applied to completed job spells,
which, moreover, start within the observation period of the data (for otherwise, we do not
observe w0). This is a small subset of the total number of job spells.
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For job changers, we can write a similar equation:

E(∆w∗t |t = T ) = µz + (1− γ)σE(∆Ωt|t = T ) + σΩ (15)

The term E(∆Ωt|t = T ) reflects the wage decline in the old job the year before
separation.5 It is always negative, see Figure 2. The term Ω reflects the wage
increase due to entering the new job, where the log productivity pt is again
substantially above the log reservation wage rt. Equation (15) allows the sepa-
rate identification of γ and σ, by the final term, the upward jump in wages as
a return to the specific investment in the new job, σΩ. Hence, we are able to
identify γ, and hence the selectivity in rt, only by comparing the concavity of
the tenure profile within job spells to the jump in wages when changing jobs.
Otherwise, the data do not provide another way to estimate this part of the
selectivity.
Finally, the change in starting wages from one job to another provides in-

formation on σ2z:

E (w∗0 − w0) = µzT + σ(Ω∗ − Ω) (16)

Var (w∗0 − w0) = σ2zT =
h
σ2w − (1− γ)

2
σ2
i
T

The first equation above follows immediately from the first equation of (13),
since Ω0 = Ω. The first term reflects the general drift in log wages. Though till
sofar the value of Ω was held constant across jobs, so that the second term drops
out since the difference between the value of Ω for subsequent jobs vanishes,
Ω∗ − Ω = 0, we retained this term for future reference. The second equation
in (16) follows from the second equation of (13), using the orthogonality of
∆zt and (1−γ)β∆bt and Var[(1− γ)β∆bt] = (1− γ)2 σ2. The relation between
the regression coefficients on E(∆Ωt|.) in equations (14) and (15) on the one
hand, and the variances of ∆wt and w∗0 − w0 on the other hand, provides a
strong test for the model:

(1− γ)σ =

r
σ2w −

1

T
Var (w∗0 − w0) (17)

This test relates the observed variance of wage changes within job spells, net of
the variance of the overall shock z, to the degree of concavity in wages. If the
model survives this test, it shows that the concavity in the tenure profile can be
fully explained by selectivity.

5 Implicitly, we assume here that separation takes place exactly at the end of the year of
observation. Taking the model literally, this is an important assumption, since wages decline
steeply in the last year before separation, see Figure 2. If separation occurs earlier on during
the year of observation, part of the fall in wages during the last year before separation is
captured by the previous observation. We leave this complication aside in what follows.
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3 Empirical Analysis

3.1 The Data

We use a dataset based on a PSID extract of 18 waves, covering the years 1975
through 1992, same as the one used by Altonji and Williams (1997, 1999). Our
model does not work very well when employed people consider other alterna-
tives than switching to another job, like retirement, leaving the labor force or
taking up full time education. The availability of these other alternatives yields
two problems. First, we do not observe the reservation wage at the point of
separation when people do not accept another job. Second, with only one alter-
native to the present job, the decision problem is simply whether a particular
indicator switches signs. With more alternatives, that choice process becomes
far more complicated. Therefore we restrict the sample to people who do not
switch in and out the labor force regularly and for whom retirement is not a
relevant option: white male heads of household with more than 12 years of ed-
ucation and less than 60 years of age. Furthermore, we restrict the attention
to those individuals that were employed, temporarily laid off, or unemployed at
the time of the survey, and were not from Alaska or Hawaii. We use the tenure
and experience measures constructed with the algorithm described by Altonji
and Williams (1999 and previous working versions). Table 1 presents summary
statistics of the variables of interest. There are missing values for all variables.
Most missing values are reported for the log wage variable. However, we do not
need this variable in the tenure distribution analysis and thus we include also
the observations for which the log wage is not reported. One can distinguish
four types of job spells. Apart from the distinction between completed and in-
complete spells (right censoring), one can also make a distinction between spells
that start before the time span covered by the data, and spells that start after-
wards (left censoring). The table provides the number of spells of each of these
four types. There is, however, a fundamental difference between these types of
censoring. While right censoring implies that we do not know when a job spell
has ended, left censoring does not imply that we do not know when a job has
started because at the start of the observation period workers are asked for how
long they hold their present job.

3.2 Test of the Random Walk Hypothesis

To prepare the ground for our formal analysis we document some stylized facts
on wages. In particular, we verify that log wages follow a random walk, as
assumed in our theoretical modelling. For this purpose we repeat the analysis
of wage dynamics by MaCurdy (1982), Abowd and Card (1989) and Topel and
Ward (1992). In the process of this analysis we document some further stylized
facts that are useful in the subsequent analysis. First, we run a regression of
within-job log wage differentials on a number of controls. Next, we construct a
covariogram of residuals from this regression, from which we infer the process
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Table 1: Summary Statistics Dataset
Variable Mean Std. Dev. Min. Max. Observations

logwage(1) 2.44 0.49 0.06 4.82 18151
tenure (years) 7.45 7.88 0.08 43.69 20175
experience (years) 15.07 9.4 0.08 43.69 21099
year of observation 84.01 5.06 75 92 21099
job per individual 1.85 1.42 1 14 21099
age 34.56 9.68 18 60 21099
education (years) 13.69 1.77 12 17 20857
metropolis 0.61 0.49 0 1 21099
union member 0.21 0.41 0 1 20725
married 0.85 0.36 0 1 21099

Dataset for Estimating the Tenure Distribution Parameters
Number observations discarded from AW (1997) 5431
Number of individuals 2837
Total number job spells 5484
- started before the observed range 1924
- started within the observed range 3560
Completed job spells 1911
- started before the observed range 434
- started within the observed range 1477
Incomplete job spells 3573
(1)reported average hourly wage deflated using the implicit price deflator with 1982 base year

driving the wage dynamics. Finally, we show that the variance of the innovations
in wages does not depend on experience and tenure.
Consider the following model with a very simple tenure profile:

wit = α+ β1Eijt + β2E
2
ijt + γ1Tijt + γ2T

2
ijt + ηi + vj + uit (18)

where j (i, t) is the job j where worker i is employed at time t (we leave out the
arguments of j (·) for convenience); ηi is a random individual effect (e.g. ability),
vj is a random job effect, and uit is a time-varying stochastic component of
wages. E stands for labor market experience and T for job tenure. For the sake
of the argument, let us assume that Tijt is orthogonal to uit. First-differencing
equation (18) for job stayers yields:

∆wit = (β1 + γ1) + β2∆E
2
it + γ2∆T

2
ijt +∆uit (19)

Since Eit and Tijt increase at the same pace within jobs, we are not able

to identify β1 and γ1 separately. This is one of the main problems in the
identification of the tenure profile in wages: only workers who switch jobs allow
us to distinguish β1 and γ1. However, β1 + γ1 is estimated consistently in an
OLS regression. We allow β1+γ1 to vary by education level, for union members,
for married people and for people living in a metropolitan area. Furthermore,
we add a full set of year dummies to account for general variation in real wage
growth and inflation, so that we do not obtain a single estimate for β1 + γ1.
First-differencing for job movers yields:

∆w∗it = β1 − γ1 (Tijt − 1) + β2∆E
2
it − γ2

¡
T 2ijt − 1

¢
+∆uit (20)

18



where the superfix ∗ indicates that a job change has taken place and where Tijt
is the tenure in the old job. In this simple model, we can estimate the first order
effect of the tenure profile by the effect of tenure on the change in wages for job
movers. The regression results are displayed in Table 2.

Table 2: Within and Between-Jobs Wage Change Regressions

Within-Jobs Between-Jobs
Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

Intercept 0.055∗∗ (0.016) -0.058 (0.091)
∆Tenureijt -0.001 (0.009)
∆Tenure2ijt -8e-4∗ (4e-4) 7e-4 (0.001)
∆Tenure3ijt e-5† (8e-6) -e-5 (2e-5)
∆Experience2it -0.002∗∗ (4e-4) -0.003 (0.002)
∆Experience3it 2e-5∗∗ (7e-6) 3e-5 (4e-5)
Educationijt 9e-4 (9e-4) 0.008 (0.006)
Metropolisijt 0.007∗ (0.003) -0.011 (0.020)
Union memberijt 0.001 (0.004) -0.133∗∗ (0.030)
Marriedijt -0.006 (0.005) -4e-4 (0.024)

Observations 11834 1448
SER(1) 0.179 0.361
R2 0.0219 0.039
Wald time(2) χ2

(16)
: 144.96∗∗ χ2

(13)
: 20.02†

Wald joint(3) χ2
(24)

: 264.72∗∗ χ2
(22)

: 57.86∗∗

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
The regressions include time effects
(1) SER= standard error of the regression (root mean square error)
(2) Wald test for joint significance of time dummy coefficients
(3) Wald test for joint significance of all covariates

We run separate regressions for job stayers and changers. In the regression
for stayers, we find evidence for concavity in the tenure and experience pro-
files, though the higher order terms of the tenure profile are smaller and less
significant than those for the experience profile. Other variables do not mat-
ter, except for living in a metropolitan area, which positively influences wage
growth. The results for job movers do not fit the simplest theory of a deter-
ministic tenure profile that is unrelated to uit, since the coefficients γ1 and γ2
are both insignificant. The only factor that matters is union membership. This
result is consistent with the right to manage model of the union, see for example
MaCurdy and Pencavel (1986), where unions negotiate wages above the going
market rate, but where firms decide on employment. It is inconsistent with a
model of efficient union bargaining (the labor demand curve model), because
according to that model the union and the firm should have renegotiated the
wage contract instead of the firm firing the worker.

Table 3 presents the covariogram of the residuals of the within-job wage
change regression. Residuals are strongly negatively correlated to their first lag,
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Table 3: Residual Autocovariances for Within-Job Wage Innovations
Lag Autocovariance Autocorrelation Sig. Level Obs.
0 .03213 1 0 11834
1 -.01056 -.35175 0 8992
2 -.00098 -.03342 .004 7385
3 .00072 .02484 .049 6293
4 .00025 .00866 .525 5381
5 -.00048 -.01781 .227 4590
6 -.00024 -.00913 .570 3875
7 -.00042 -.01657 .346 3238
8 .00015 .00591 .759 2691
9 -.00024 -.00917 .666 2209
10 .00066 .02358 .323 1755
11 -.00036 -.01402 .604 1370
12 .00007 .00323 .917 1034
13 .00061 .02944 .422 746
14 -.00061 -.02618 .553 516
15 -.00087 -.04970 .399 289
16 .00054 .04069 .681 104

while autocorrelations for longer lags are small and statistically insignificant be-
yond lag 3. Lag 1 and 2 are strongly significant, lag 3 is only marginally signifi-
cant at 5%. This outcome is very similar to results obtained by MaCurdy(1982),
Abowd and Card (1989) and Topel and Ward (1992). Our covariogram is thus
typical of an MA(2) process or even an MA(1) once we note that the second
order lag autocovariance is close to 0.6 For simplicity, we focus on the MA(1)
case.
We decompose the stochastic time-variant component of the wage equation

from (18) in a martingale persistent component eit and a transitory component
ηit:

uit = eit + ηit (21)

∆eit = εit

where ηit and εit are i.i.d. with Var(ηit) = σ2η and Var(εit) = σ2w, as defined
before. Then:

Var (∆uijt) = σ2ε + 2σ
2
η

Cov (∆uijt,∆uijt−1) = −2σ2η
Cov (∆uijt,∆uijt−k) = 0, k > 1

This is a reasonable description of the pattern of autocorrelations in the covar-
iogram in Table 2. A back-of-the-envelope calculation yields σ2w = 0.022 and

6We also considered the partial autocorrelation function (PACF) for the lagged residuals.
The PACF values, lag 1 to 16, are the following, with starred values statistifically significant
at 10% or better: −0.35∗∗∗, −0.20∗∗∗, −0.07∗∗∗, −0.04∗∗∗, −0.02, −0.015, −0.04∗∗, −0.011,
−0.03, 0.03, 0.008, 0.02, 0.06, −0.06, −0.08, 0.29∗. Hence, the PACF pattern further supports
the pure MA specification versus a mixed ARMA type process.
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σ2η = 0.005. Our result for the variance of persistent income shocks is similar
to that reported by Meghir and Pistaferri (2004) for the PSID7. Hence, a ran-
dom walk with transitory shocks provides a fairly accurate description of the
dynamics of log wages. The standard deviation of yearly permanent innovations
is substantial: 15% of the wage level per year. The transitory shocks ηit might
reflect measurement error.

Table 4 present results for the Koenker (1981) "Studentized LM" version
of the Breusch-Pagan (1979) test for homoskedasticity of uit for both stayers
and movers: the squared residuals are regressed on a constant term and on all
control variables.

Table 4: BP Heteroskedasticity Test for Wage Changes Within and Between-
Jobs

Within-Jobs Between-Jobs
Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

Intercept -0.018 (0.015) 0.114 (0.090)
∆Tenureijt -0.003 (0.009)
∆Tenure2ijt -2e-4 (3e-4) 6e-4 (0.001)
∆Tenure3ijt -3e-6 (7e-6) -2e-5 (3e-5)
∆Experience2it e-4 (4e-4) 0.001 (0.002)
∆Experience3it 2e-6 ( 6e-6) -2e-5 (4e-5)
Educationijt 0.003∗∗ (9e-4) -7e-4 (0.006)
Metropolisijt 0.004 (0.003) 0.018 (0.020)
Union memberijt -0.017∗∗ (0.004) 0.033 (0.030)
Marriedijt 0.004 (0.005) -0.027 (0.024)

Observations 11834 1448
SER 0.166 0.357
R2 0.007 0.014
Wald time χ2

(16)
: 35.20∗∗ χ2

(13)
: 16.90

Wald joint χ2
(24)

: 89.28∗∗ χ2
(22)

: 21.34

Breusch-Pagan(1) χ2
(24)

: N*R2=87.57∗∗ χ2
(22
: N*R2=21.43

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
The regressions include time effects
The dependent variable is the square residual from Table 2.
We use Koenker’s (1981) modified version of the Breusch-Pagan test

The null hypothesis of homoskedasticity is rejected for stayers, but only be-
cause of education and union membership. The evolution of wages in unionized
jobs is largely governed by predetermined wage scales, explaining the low vari-
ance of wage changes. The higher variance for better educated workers squares
with the conclusions from studies analyzing risk in educational choice and is
confirmed also by other empirical applications on the PSID. In the regression

7For their whole PSID sample of males heads of household, Meghir and Pistaferri (2004)
obtain 0.031 as variance of the permanent income shocks. For highschool graduates without
college degree (the largest part of individuals in our PSID extract) they report an even closer
result to ours, 0.027.
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for job movers homoskedasticity is not rejected. However, the variance in wages
for movers is much higher than for stayers, so there is clearly heteroskedasticity
between movers and stayers. At first sight this result is hard to square with our
theoretical framework, where wages follow a random walk and where there is
a perfect frictionless market for alternative job opportunities. However, essen-
tial for our purpose is that there is no heteroskedasticity with respect to either
job tenure or experience. For example, a simple learning model would imply a
higher variance early on in the career, when people still have to learn their capa-
bilities and comparative advantages before finding their optimal profession, see
Jovanovic (1979) and Topel and Ward (1992). The results reported in Table 4
do not confirm this idea. Instead they provide support for the ideas put forward
in Section 2, where wt is assumed to follow a random walk. When we assume
that workers are able to disentangle permanent and transitory shocks (which
is certainly true if the transitory component ηit reflects measurement error or
variation in hours worked), then the transitory shock will not have an effect on
job changes because changing jobs permanently is not a useful response to a
shock that has only a transitory effect: as soon as you have changed jobs, the
cause for changing has faded away. Hence, we feel safe to ignore the effect of
transitory shocks of job relocation in the subsequent analysis.
Our preparatory ground work provides support for the main ingredient of

our model, wages following a random walk, where neither the variance of the
innovations nor the wage loss of moving to another jobs depend on tenure and
experience. There are two aspects which do not fit our theoretical framework
well: (i) the larger wage loss for union members upon job change, which seems to
be prima facie evidence against efficient bargaining, at least for unionized firms,
and (ii) the larger variance of wages upon job change, which suggests that there
are substantial search frictions on the market for alternative job opportunities.

3.3 The Parameters of the Tenure Distribution

The parameters of the tenure distribution for the initial surplus Ω and the
drift π can be estimated by maximum likelihood, using the density function
(8). Till sofar, we have treated both parameters as constants which do not
depend on worker characteristics. However, one can expect that workers choose
their optimal job type according to their characteristics. Hence, Ω and π are
likely to differ according to both observed and unobserved worker characteristics.
Since we deal with longitudinal data we can take into account random worker
effects. We do not consider random job effects for both theoretical and empirical
reasons. From a theoretical point of view, our assumption of a frictionless market
for alternative job opportunities, where the only constraint on instantaneous
mobility is the specific investment in the present job and not the cost of getting
another job offer, each worker type will choose that job type that fits best
her comparative advantages, like in Sherwin Rosen’s famous hedonic world of
kissing curves. Hence, job characteristics are implied by worker characteristics.
The only job characteristic that we allow for is union membership. From an
empirical point of view, we observe each job only once, so that we have no
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basis for identifying random job effects otherwise than from functional form
assumptions. Taking into account that Ω has to be positive, the following
specification for Ω and π is adequate:

Ωi = exp
¡
x0ijβΩ + uΩi

¢
(22)

πi = x0ijβπ + uπi

where uΩi and uπi are normally distributed random worker effects with mean 0
and standard deviations σΩ and σπ, and where xij is a vector of observed worker
characteristics, i.e. education, experience at the start of the job spell, a dummy
for union membership, a dummy for living in a metropolitan city and a dummy
for being married. We take all covariates (including the dummy variables) in
deviations from their means over jobs. Hence, the intercept can be interpreted
as the mean value for Ω and π respectively. We assume both random effects to
be uncorrelated. Then, the log likelihood function reads:

logL =
NX
i

ln

Z Z
JiQ
j=1

[1− F (Tij)]
1−dij · f(Tij)dijdΦ

µ
uΩi
σΩ

¶
dΦ

µ
uπi
σπ

¶
(23)

where j (i) is the jth job held by worker i (we leave out the argument i of j (i)
for the sake of convenience), where dij is a dummy variable, taking the value
dij = 1 if the job spell is completed and the value dij = 0 otherwise, where Tij
is the completed tenure if dij = 1 and respectively the tenure at time L, the last
moment of observation in the panel, otherwise, and where N is the number of
individuals and Ji is the number of jobs for individual i.
There are two reasons why we have to make amendments to the simple like-

lihood function in equation (23). First, we could restrict the estimation to job
spells that have started within the observation range of our PSID extract. How-
ever this means that we do not consider jobs starting before the beginning of the
observation period. By construction, this would limit the maximum completed
tenure in the data to the maximum time span covered by the PSID sample, that
is 17 years. Since long tenures contain relevant information, we want to include
spells starting before the first observation period of the PSID. We know all xij ’s
for these spells since there are neither dummy indicator changes, nor education
changes during the course of a job and since we can compute experience at the
beginning of a job by subtracting current tenure from current experience. How-
ever, we observe these spells only conditional on the fact that they have lasted
till the start of our observation period. We should correct the log likelihood
function for this condition:

logL =
NX
i

ln

Z Z
JiQ
j=1

[1− F (Tij)]
1−dij · f(Tij)dij

1− F (tij)
dΦ(

uΩi
σΩ
)dΦ(

uπi
σπ
) (24)

where tij is the tenure of individual i in job j at the start of the PSID. Note that
for spells started after the start of the PSID, tij = 0, so F (tij) = 0, meaning
that we are back in the simple case from (23).
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Second, since the PSID collects data at a yearly interval, job spells completed
in less than a year are underreported. We know the elapsed tenure in months
at the first moment a job spell is observed, by a retrospective question8, but
we do not know whether there has been another job spell between the job
observed a year ago and the job observed now. Since the hazard rate implied
by our model is hump shaped, with the hump likely to be within the first year,
cf. Farber (1994), this phenomenon is expected to have a large impact on the
estimation results. We are likely to overestimate Ω and π, since we miss part
of the short tenures in our data. Hence, we have to correct for this form of
left censoring. One solution to this problem is to use a similar conditioning as
in equation (24), where tij is the initial tenure in months as measured at the
first observation after the start of the spell. However, this approach does not
use the distribution of these tij ’s itself9 We can use this distribution if we are
prepared to make the additional assumption that the starting date of job spells
is distributed uniformly over the first year. Then, the density q (·) of initial
dates of spells that started throughout the year and are still incomplete at the
end of the year satisfies:

q (t) =
1− F (t)R 1

0
[1− F (x)] dx

Then, the total contribution to the likelihood of a spell with initial tenure t and
completed tenure T reads:

f (T )

1− F (t)
q (t) =

f (T )R 1
0
[1− F (x)] dx

Hence, the log likelihood reads:

logL =
NX
i

ln

Z Z
JiQ
j=1

[1− F (Tij)]
1−dij · f(Tij)dijR 1

0
[1− F (x)] dx

dΦ(
uΩi
σΩ
)dΦ(

uπi
σπ
) (25)

The log likelihood that accounts both for jobs starting before the first wave of
the PSID and for the left censoring for spells shorter than a year started after
the first wave of the PSID, can therefore be written as:

logL =
NX
i

ln

Z Z
JiQ
j=1

[1− F (Tij)]
1−dij · f(Tij)dij
Dij

dΦ(
uΩi
σΩ
)dΦ(

uπi
σπ
)(26)

where Dij =

½
if spell starts after start PSID

R 1
0
[1− F (x)] dx

if spell starts before start PSID 1− F (tij)

8 Initial tenures are either reported or inferred by making them consistent with the latest
reported tenures- see appendix for more details on this process of constructing tenures in the
PSID

9Maximum likelihood estimation using this approach yields a huge hump in the hazard
rate, which implies a much higher share of spells shorter than a year that can be justified
from the distribution of tij for jobs started after the first wave of the PSID.
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We report results for (25), where we use only the jobs that start within the
observation period of the PSID, and for (26), where we use the sample including
job spells starting before the first wave of the PSID10.

Table 5: MLE Tenure Distribution Parameters

Small Sample(1) Big Sample(2)

Variable Drift π Dist Ω Drift π Dist Ω
Intercept 0.228∗∗ -1.208 ∗∗ 0.158∗∗ -1.132∗∗
(st. errors) (0.021) (0.155) (0.0015) (0.014)
Education 0.017 0.040 -0.0005 -0.032∗∗
(st. errors) (0.012) (0.039) (0.0008) (0.007)
Initial experience 0.008∗∗ -0.009 0.011∗∗ 0.007∗∗
(st. errors) (0.002) (0.009) (0.0002) (0.001)
Union member 0.233∗∗ 0.271 0.138∗∗ 0.795∗∗
(st. errors) (0.056) (0.175) (0.003) (0.025)
Metropolis 0.015 0.070 0.009∗∗ -0.133∗∗
(st. errors) (0.043) (0.140) (0.002) (0.023)
Married 0.091† 0.121 -0.033∗∗ -0.012
(st. errors) (0.049) (0.162) (0.003) (0.030)
Random worker effects σ 0.277∗∗ 0.0001 1.34e-8 1.75e-7
(st. errors) (0.050) (5.51) (0.001) (0.010)

Number Observations (job spells) 1911 5484
(1)Small sample= sample of job spells starting within the range of the PSID sample
(2)Big sample= sample of all job spells
All covariates are taken in deviations from their means over jobs
Standard errors in brackets under each coefficient
Significance levels: † : 10% ∗ : 5% ∗∗ : 1%

The estimation results are presented in Table 5. Theoretically, the results for
both likelihood functions should be identical, but that turns out not to be the
case. Including the long spells that started before the first wave of the PSID
matters substantially, suggesting that there is some degree of mispecification
left. Though the estimated intercepts of Ω and respectively π are more or less
identical (remember that all other xij are taken in deviation from the mean, so
that the intercept is something like the mean value for Ω and π), the coefficients
for other variables differ substantially. However, the difference is small, as shown
by Figure 1, which shows the predicted hazard rate for both sets of estimation
results from Table 5.
Two observations are in place. First, as stated before, though both sets

of estimation results are statistically different, the theoretical hazards for both

10 In order to estimate the log-likelihood functions above, we used simulated maximum
likelihood techniques, cf. Stern (1997). Sampling from a joint normal distribution with mean
0 and variances σ2π and σ2Ω and using a sampling size of 500 sampling points (the results are
in fact robust to altering the sampling dimension to any size between 100 and 500 sampling
points) we achieved strong convergence in a reasonable number of iterations. We used the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for convergence of derivatives, allowing
for a tolerance of 1E-4 times the absolute value of the log likelihood.
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models look very similar, the only difference being the height of the peak (lower
for the case where we use all job spells). Secondly, a number of results in Table
5 are consistent across both sets of estimation results. First, spells started at
higher age and spells at unionized firms have a larger drift πij . When we include
the spells started before the first wave of the PSID, these variables also have a
positive effect on the initial surplus Ωij . The positive effect of experience would
be consistent with the idea that workers start their career with some initial job
hopping, before settling down in a job that fits one’s comparative advantages
best. For the positive effect of union membership, economic theory provides
two explanations, one in which union membership causes a high Ωij and one
in which the causality runs the other way around. The first argument relies
on a hold up problem. Unions extract part of the firm’s compensation for the
specific investment at job start. Firms respond by postponing job openings
till the initial surplus Ωij is so large that even their smaller share in it provides
sufficient compensation for their investment. This type of argument is supported
by empirical findings in Bertrand and Mullainathan (2003) where if firms are
insulated from takeovers, wages rise, while the rates of destruction of old plants
and creation of new plants fall. The second argument relies on the idea that
the larger Ωij , the larger the workers’ incentives to get a proper share in it, and
hence the greater the payoff of setting up a union. Our estimation results do
not allow distinguishing between these two scenarios. The second result that is
consistent between both set of estimation results is that the intercept for πij is
positive and large. In both cases, there are hardly observations for which πij is
negative. This implies that some job spells will last until the retirement of the
worker. The fraction of jobs that never end for mean values of the parameters is
about 10%, as calculated in Section 2. This observation will play an important
role in the rest of the analysis.
One remarkable conclusion is that there are no unobserved worker effects

when we use the sample including the spells started before the first wave of
the PSID, while there is unobserved heterogeneity in the drift for the sample
without these spells. Since the long spells started before the first wave contain
crucial information, we focus on the estimation results obtained from the full
sample of job spells in what follows.
For future reference and as a test of the goodness of fit of the model, we

compute the density of incomplete job spells after a fixed working experience, in
this case L = 32 years.11 Figure 6 depicts both the predicted and the empirical
density of incomplete job spells. There is a reasonable correspondence between
both densities. The peak in the first year is overestimated, but otherwise the

11This density is calculated by a recursive scheme. We divide the 32 years time period in
32 × 256 subperiods. We calculate the distribution of completed tenures for jobs starting at
the beginning of the career, in the first subperiod. For some of these jobs, T > 32, which is
the density of incomplete tenures of 32 years. Then we calculate the distribution of completed
tenures for jobs starting in the second subperiod, which is the number of jobs started in
the first subperiod that separate in the second. We add this number to the corresponding
completed tenures of the jobs started in the first subperiod. Then we calculate the completed
tenure for jobs started in the third subperiod, etc. In these calculations we account for the
effect of experience at the job start on the parameters Ω and π.
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shapes of the two densities are identical. Note the small peak in the density
for short incomplete spells, which is due to the hump shape pattern in the
hazard: if your job ends for instance in the last five years before the end of
the observation period, there is a substantial probability that you experience
further separations afterwards due to the peak in the hazard rate, leading to
a peak of short incomplete tenures. Close alignment of the predicted and the
empirical densities suggests that our model works well.
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Figure 6: Density of Incomplete Job Spells with Exit Option

3.4 Wage Regressions

Table 6 presents estimation results on wage changes with heteroskedasticity-
robust standard errors12.

Table 6: Wage Changes in Completed Spells, Incomplete Spells and Job Transitions

1: Completed Spells 2: Incomplete Spells 3: Job Transition
Variable Coef St Err Coef St Err Coef St Err

A: Unrestricted Wage Changes Regression Estimates
Continued on next page...

12We tested for the absence of individual specific effects. We left out being married as a
regressor since it was insignificant in all regressions.

27



... table 6 continued
Intercept 0.060∗∗ (0.015) 0.054∗∗ (0.010) 0.216∗ (0.102)
∆E(Ωijt) 0.008 (0.006) 0.039∗∗ (0.013) 0.137∗ (0.062)
Ωi,j+1,0 0.308∗ (0.145)
Expijt -0.004∗ (0.002) -0.005∗∗ (9e-4) -0.007 (0.007)
Exp2ijt 8e-5 (5e-5) 9e-5∗∗ (2e-5) 6e-5 (e-4)
Educijt(1) 0.002 (0.002) e-4 (0.001) 0.031∗∗ (0.009)
Unionijt 0.006 (0.010) -0.004 (0.003) -0.163∗∗ (0.062)
Metropolisijt 0.007 (0.008) 0.011∗∗ (0.003) -0.017 (0.031)
Observations 2022 9653 618
SER 0.177 0.180 0.362
R2 0.007 0.011 0.061
Wald joint χ2(6): 15.84

∗ χ2(6): 110.76
∗∗ χ2(7): 43.05

∗∗

B: Restricted Wage Changes Regression Estimates
Intercept 0.049∗∗ (0.017) 0.147† (0.079)
+∆E(Ωijt)(2) 0.051∗ (0.025) 0.075∗∗ (0.026)
-∆E(Ωijt)(2) -6e-4 (0.007)
Ωi,j+1,0 0.288∗ (0.142)
Expijt -0.003† (0.002) -0.005 (0.007)
Exp2ijt 6e-5 (5e-5) 7e-5 (e-4)
Educijt(1) 0.002 (0.002) 0.030∗∗ (0.009)
Unionijt 0.007 (0.010) -0.161∗∗ (0.061)
Metropolisijt 0.007 (0.008) -0.016 (0.031)
Observations 2022 618
SER 0.177 0.360
R2 0.009 0.067
Wald joint χ2(7): 20.09

∗∗ χ2(7): 45.78
∗∗

C: General Wage Change Reg. for All Spells
Variable Coef St Err
Intercept 0.053∗∗ (0.008)
+∆E(Ωijt) 0.041∗∗ (0.009)
-∆E(Ωijt) -0.006 (0.006)
Ωi,j+1,0 0.332∗∗ (0.065)
Expijt -0.005∗∗ (7e-4)
Exp2ijt 8e-5∗∗ (2e-5)
Educijt(3)(1) 0.031∗∗ (0.008)
Unionijt(3) -0.174∗∗ (0.053)
Metropolisijt 0.010∗∗ (0.003)
Observations 12293
SER 0.99981
R2 0.0286
Wald joint χ2(8): 166.48

∗∗

D: Initial Wage Changes Regression at Job Transitions(4)

1: Mean 2: Variance(5)

Variable Coef St Err Variable Coef St Err
Intercept Intercept 0.092∗∗ (0.024)
Teni,j−1,T 0.057∗∗ (0.011) Teni,j−1,T -1 0.019∗∗ (0.007)
∆Ωij0 0.075 (0.251)
∆Exp2ij0

(6) -0.001∗ (4e-4)
Observations 336 336
SER 0.379 0.297
R2 0.14 0.017
Wald joint χ2(3): 41.16

∗∗ χ2(1): 7.44
∗∗

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
(1) Education is taken in deviation from the means over all jobs of an individual
(2) The +/- split of ∆E(Ωijt) is only relevant for completed spells
(3) In the general regression union and education are interacted with job change
(4) We only keep completed jobs that last more than 1 year (Teni,j−1,T >1)
(5) The dependent variable is the squared residual from the left column estimation
(6) ∆Exp2ij0=Exp

2
ij0-Exp

2
i,j−1,0=(Expi,j−1,0+Teni,j−1,T )

2-Exp2i,j−1,0
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Panel (A) presents unrestricted regression results for job stayers, cf. equa-
tion (14), for completed spells in column 1 and for incomplete spells in column
2, and for job movers, cf. equation (15), in column 3. The theoretically relevant
regressors, ∆E(Ωijt|T,L) and Ωi,j+1,0, have the right sign. The other variables
tend to have limited effect. However, the coefficient on ∆E(Ωijt|T,L) should
be the same in all three regressions, namely (1− γ)σ. Clearly, this prediction
is not confirmed by the data. Panel (B) therefore considers a slightly amended
version of the model. Consider Figures 2 to 5 on the trajectories of E(Ωijt|T )
for completed spells. These trajectories are falling in the period just before
separation. Suppose that there is downward rigidity that prevents wages from
actually falling. This is consistent, for example, with the study by Beaudry
and DiNardo (1991), who show that within a job spell wages go up when un-
employment falls, but do not go down when unemployment rises. We could
test this idea in a crude way by separating the initial part of the job spell for
which the surplus is increasing, ∆E(Ωijt|T ) > 0, and the final part for which the
surplus is decreasing, ∆E(Ωijt|T ) > 0, and enter both as separate regressors.
The estimation results for this model are presented in column 1. The results
strongly confirm our hypothesis: the upward part comes in with a coefficient
which is very similar in size with the coefficient for ∆E(Ωijt|T > L), from Panel
(A), column 2. Furthermore, if this downward rigidity model really applies,
one would expect that "missing wage declines" in the years before separation,
are actually compensated at the moment of separation, by an additional fall.
Hence, we include in the regression for job changers not the change in the sur-
plus during the year of separation, ∆E(Ωij,T−1), but the full decline, starting
from the maximum of E(Ωijt|T ) during the job spell, till its minimum value at
the moment of separation, E(ΩijT ) = 0. The results for this model are pre-
sented in column 3 of Panel B. The relevant coefficient comes down from 0.137
to 0.075, a number that is close to the coefficients found for the wage changes in
completed and incomplete spells. Both results provide support for our amended
model. Panel C combines the regressions for completed spells, incomplete spells
and job changers for this amended model, that is, column 2 of Panel A and
columns 1 and 3 of Panel B. We make one further amendment to the model,
by interacting union membership and education level with job change, so that
both variables affect only the wage change for job movers. We weight the three
samples by their respective standard errors of the regression (SER) obtained
in each of the three separate restricted regression models. The F (14, 12270)
statistic of the restriction that the coefficients of these 3 regressions are equal is
0.667, so that restrictions are accepted. Hence, the amended model provides a
good description of the data. The only exception are union members, who face
a 17 % additional wage loss upon separation. Furthermore, the positive effect
of education on the wage change of movers is not predicted by the model (note
that education enters the regression via its effect on Ωij0, see Table 5).
The estimation results from Panel C yield (1− γ)σ = 0.041 and σ = 0.332,

implying γ = 0.877. This is a remarkable result. Apparently, separation is
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not so much driven by shocks to the job’s productivity pt, as it is by shocks
to the worker’s reservation wage rt, which seems somewhat counter-intuitive.
Similarly, we can calculate the return to tenure, σπ = 0.332∗0.15 = 5% (taking
the estimated mean value of π). However, the high value of γ implies that most
of the return to tenure takes the form of the log reservation wage rt falling,
instead of the inside wage wt rising, cf. equation (13). Both estimates, that of
γ and of the tenure profile are fully driven by the estimate of σ, which itself is
driven by the variation in the surplus in the next job, Ωij0, and its effect on
the wage change for job movers, see equation (15). This might be a thin line
for identification, but it is hard to think of an alternative route to estimate this
parameter.
Equation (17) runs the test of comparing the concavity in the tenure profile

to the variance in wage changes. Panel D of Table 6 presents estimation results
for equation (16). We restrict the sample to jobs lasting more than 1 year, since
wage changes for jobs the last only one year are noisy anyway13. Column 1
reports the coefficients of the regression. Column 2 takes the squared residuals
from the first regression, and regresses them on elapsed tenure, T . The intercept
captures the excess variance for job movers, see Table 4, and the transitory
shocks in wages, ηijt, see equation (21). The coefficient for T is a consistent
estimator of 1TVar(w

∗
0 − w0). An estimator for σ2w is derived from the regression

for within-job wage changes in Table 4, see Section 3.2. Hence:

(1− γ)σ =
√
0.022− 0.019 = 0.054

which is very similar to the estimated value in Panel C, 0.041. Thus the amended
model provides a good description of the data. The concavity of the tenure
profile is fully captured by the term ∆E(Ωijt|T,L) and the size of its regression
coefficient is consistent with the variance of yearly wage innovations and the
variance of initial wages over job spells.

A final question we ask is to what extent the option to switch jobs limits the
growth of the variance in log wages over time. Without the option to switch job,
the variance of log wages would increase linearly over time, due to the fact that
zt and bt follow a random walk. However, the option to switch jobs allows the
worker to eliminate bad trajectories of bt, thereby compressing its variance. This
can be seen from the distribution of incomplete tenures, see Figure 6, showing
that a substantial fraction of the jobs has an incomplete tenure of less than 32
years. There are two mechanisms that lead to compression. First, many jobs
have an incomplete tenure of less than 32 years and hence a smaller variance,
since the variance increases proportional to incomplete tenure. Second, those
jobs that are still going on after some period are a selective sample of all the
trajectories that have started initially, namely those which never crossed the
separation threshold. This selection process compresses the variance. We use
the density of incomplete tenures after L years of experience, computed and
plotted for L = 32 in Figure 6, and the density of Ωt = bt/σ conditional on the

13Using the whole sample, the coefficient of T in the variance of wages regression is 0.010.
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incomplete tenure T , g (Ωt, t,Ω0) / [1− F (t,Ω0)], see equations (6) and (7). In
Figure 7, we plot the evolution of the variance of bt without the option to switch
jobs, the line σ2T , and the evolution of the variance with that option. The plots
reveal that the option to switch job compresses the variance of bt considerably:
by about 65% after 32 years of experience 14 .
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Figure 7: Compression Effect of the Exit Option on the Wage Variance

4 Concluding Remarks
Our simple model for the stochastic evolution of productivity explains the data
on the job tenure distribution and wages for the USA surprisingly well. This
model features frictionsless labor market at the moment of job start (which en-
ables workers to pick the best job alternative straightaway), specific investment
and hence lock in the current job subsequently, and efficient bargaining over the
match surplus. We have proven the remarkable result that in this model the
evolution of log wages in completed job spells does not provide any information
whatsoever on wage-tenure profiles, since this evolution is independent of the
drift in log wages. This puts into question a large literature on the estimation of

14We use σ = 0.041, our coefficient from Panel C. Hence, after L = 32 years of experience,
without the exit option the variance of bt would be about 0.054. With the option to exit the
wage variance is compressed after the same period to about 0.019.
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tenure profiles. Hence, the tenure profile can only be estimated from either the
distribution of tenure or log wages in incomplete job spells. We have verified
that the wage dynamics within jobs closely resembles a random walk; that the
predicted job hazard rate is humped shaped with the peak very early in time,
closely tracing the empirical evidence on job exits; and that the variance of
the within-job wages does not diminish with tenure or experience, a fact that
is less easily squared with the learning model. We have further shown that
the concavity in the observed tenure profile is easily explained by the selection
of the surviving employment matches, even if the underlying tenure profile is
linear. In general, the selection effect tends to be much more important than
the deterministic trend. Remarkably, job separation is driven more by the se-
lectivity in the reservation wage rt than by shocks to the productivity in the
job pt. However, identification of the part of the variance due to variation in
rt is fragile, since we observe rt only at the moment of job switching. We find
excess variance of wages at job transition, indicating that our assumption of
frictionless market for alternatives is incorrect. Apparently, there is a great deal
more randomness in the wage in a new job than is to be expected from a model
with frictionless market.
Our model implies that, on average, wages should be falling relative to the

wages in other jobs in the second half of a completed spell. The data do not
support this prediction. Apparently, there is some downward rigidity in wages.
This is in particular true for unionized jobs, suggesting that there is inefficient
separation in the unionized sector. Efficient bargaining over the match surplus
is clearly rejected for unionized jobs. A slightly adjusted model, allowing for
downward rigidity in wages, can explain the data very well:

Ψt = max (Ωt,Ψt−1)
wt = rt + σΨt

where job separation is still governed by the rule that a job ends at the first
moment in time that Ωt becomes negative. Ψt is the maximum of its value in
the previous period and the current value of Ωt. Then, we would observe more
wage rigidity in job spells that are expected to end shortly (since there Ωt is
declining), which explains that ∆Ωt does not affect ∆wt for ∆Ωt < 0. Hence,
the standard error of ∆wt should be smaller in the period just before separation.
This model needs to be analyzed more formally, but the analysis presented here
already suggests that it provides an excellent description of the data.
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A Computational Appendix

A.1 Completed job spells

The first factor in the numerator of (10) is given by the equation of the density
function in (8) substituting t by τ − t and Ω by ω:

f(τ − t, ω) =
ω

(τ − t)
√
τ − t

φ

µ
ω + (τ − t)π√

τ − t

¶
(27)

The second part of the numerator in (10) was given in (6).

Substitution of (27) and (6) in (10), and some simplification yields:

h(ω, t, τ) (28)

=
ωτ

Ω(τ − t)

r
τ

(τ − t)t

×
·
φ

µr
τ

(τ − t)t

µ
ω − τ − t

τ
Ω

¶¶
− φ

µr
τ

(τ − t)t

µ
ω +

τ − t

τ
Ω

¶¶¸
Interestingly, this probability density does not depend at all on the drift

π. The drift affects therefore the distribution of completed job tenures (see
expression 7 above), but not the distribution of Ωt conditional on the completed
tenure.
The expectation in (11) can now be calculated:

E(Ωt|0 < t < T ) =

Z ∞
0

ωh(ω, t, T )dω (29)

= 2

r
(T − t)t

T
φ

Ãr
T − t

T t
Ω

!

+

µ
t

Ω
+

T − t

T
Ω

¶"
2Φ

Ãr
T − t

T t
Ω

!
− 1
#

If we denote f (t) ≡ T−t
T in (29) above we obtain exactly (11).

We compute the first and second derivatives of (29) below:

dE(Ωt|0 < t < T )

dt
= −2

µ √
t√

T
√
T − t

¶
φ

µ√
T − tΩ√
t
√
T

¶
(30)

+

µ
1

Ω
− Ω

T

¶µ
2Φ

µ√
T − tΩ√
t
√
T

¶
− 1
¶

d2E(Ωt|0 < t < T )

dt2
= −

Ãs
T

(T − t)t

!3
φ

Ãr
T − t

T t
Ω

!
(31)
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A.2 Incomplete job spells

The first factor in the numerator of (12) is given by substituting t with L and
Ω with ω in (7):

1− F (L− t, ω) (32)

= Φ

µ
ω + π(L− t)√

L− t

¶
− e−2ωπΦ

µ−ω + π(L− t)√
L− t

¶
g (ω, t,Ω) was given in (6).

The complicated part in (12) resides in the integral from the denominator
of (12). The task would involve computing integrals of the form:Z ∞

0

φ(ax+ b)Φ (cx+ d) dx (33)

with a,b, c, d given. Since this form does not have an analytic solution, we
compute numerically E(Ωt|t < L < T ):

E(Ωt|t < L < T ) =

Z ∞
0

ωh∗(ω, t, L)dω =
A

B
(34)

where A and B are computed by numerical integration, as follows:

A ≡
Z ∞
0

ω√
t

·
φ

µ
ω − Ω− πt√

t

¶
− e−2Ωπφ

µ
ω +Ω− πt√

t

¶¸
(35)

×
·
Φ

µ
ω + π(L− t)√

L− t

¶
− e−2ωπΦ

µ−ω + π(L− t)√
L− t

¶¸
dω

and

B ≡
Z ∞
0

1√
t

·
φ

µ
ω − Ω− πt√

t

¶
− e−2Ωπφ

µ
ω +Ω− πt√

t

¶¸
(36)

×
·
Φ

µ
ω + π(L− t)√

L− t

¶
− e−2ωπΦ

µ−ω + π(L− t)√
L− t

¶¸
dω
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