

Global Optimization Strategies for Two-Mode Clustering*

Joost van Rosmalen[†] Patrick J.F. Groenen[†]
Javier Trejos[‡] William Castillo[‡]

October 2005

Econometric Institute Report EI 2005-33

Abstract

Two-mode clustering is a relatively new form of clustering that clusters both rows and columns of a data matrix. To do so, a criterion similar to k -means is optimized. However, it is still unclear which optimization method should be used to perform two-mode clustering, as various methods may lead to non-global optima. This paper reviews and compares several optimization methods for two-mode clustering. Several known algorithms are discussed and a new, fuzzy algorithm is introduced. The meta-heuristics Multistart, Simulated Annealing, and Tabu Search are used in combination with these algorithms. The new, fuzzy algorithm is based on the fuzzy c -means algorithm of Bezdek (1981) and the Fuzzy Steps approach to avoid local minima of Heiser and Groenen (1997) and Groenen and Jajuga (2001). The performance of all methods is compared in a large simulation study. It is found that using a Multistart meta-heuristic in combination with a two-mode k -means algorithm or the fuzzy algorithm often gives the best results. Finally, an empirical data set is used to give a practical example of two-mode clustering.

Key words: Two-mode clustering, algorithms, fuzzy clustering, simulation, simulated annealing, tabu search, multistart.

*We would like to thank Peter Verhoef for kindly providing the data used in this paper.

[†]Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands, e-mail: vanrosmalen@few.eur.nl

[‡]CIMPA, Escuela de Matemática, Universidad de Costa Rica, San José, Costa Rica

1 Introduction

Clustering can be seen as one of the cornerstones of classification. In this paper, we limit ourselves to clustering into partitions of objects. Consider a typical two-way two-mode data set of respondents by variables. Often, clustering algorithms are applied to just one mode of the data matrix, which can be done in a hierarchical or non-hierarchical way. Among the non-hierarchical methods, k -means clustering (Hartigan, 1975) is one of the most popular non-hierarchical methods. Moreover, it has the advantage of a loss function being optimized.

A relatively new form of clustering is two-mode clustering. In two-mode clustering, both rows and columns of a two-mode data matrix are assigned to clusters. Each row of a two-mode data matrix is assigned to a row cluster, and each column to a column cluster. Elements of the data matrix which are both in the same row cluster and in the same column cluster should be close. DeSarbo (1982) described such a two-mode clustering method, called the GENNCLUS model. Another form of two-mode clustering is blockmodeling, which is often used in social network analysis (see, for example, Noma and Smith, 1985). An extensive overview of two-mode clustering methods can be found in Van Mechelen, Bock, and De Boeck (2004).

In this article, we focus on partitioning the sets of rows and columns using a least-squares criterion that models the elements of the data matrix belonging to the same row and column cluster by their average. Several optimization methods for finding the optimal partitioning for two-mode clustering are known from the literature. However, these methods are not guaranteed to find the global optimum and often get stuck in local minima. Therefore, we study the local minimum problem of two-mode clustering. In addition, a new optimization method for two-mode clustering is introduced, based on the fuzzy c -means algorithm of Bezdek (1981). Here, we review and compare these optimization methods. By a simulation study, we identify the methods that perform well under most circumstances, within a reasonable computational effort. All methods are based on *meta-heuristics* that aim to find globally optimal solutions in an acceptable amount of CPU time. In our comparisons we use both simulated and empirical data.

The remainder of this article is organized as follows. In Section 2, we introduce the notation and give an overview of the optimization problem, including two local search algorithms. Section 3 describes the implementation of three *meta-heuristics* for two-mode clustering, which also uses the two local search algorithms. In Section 4, we introduce the fuzzy two-mode clustering method and give some theoretical background behind this method. In Section 5, we compare the performance of the methods using an extensive simulation

study. Section 6 uses an empirical data set to compare the methods and to give a practical example of two-mode clustering. Finally, we draw conclusions and give recommendations for further research.

2 Overview of Optimization Problem

To define the two-mode clustering problem, consider the following notation:

$\mathbf{X}_{n \times m} = (x_{ij})_{n \times m}$	Two-mode data matrix of n rows and m columns.
$\mathbf{P}_{n \times K} = (p_{ik})_{n \times K}$	Cluster membership matrix of the rows with K the number of row clusters, and $p_{ik} = 1$ if row i belongs to row cluster k , and $p_{ik} = 0$ otherwise.
$\mathbf{Q}_{m \times L} = (q_{jl})_{m \times L}$	Cluster membership matrix of the columns with L the number of column clusters, and $q_{jl} = 1$ if column j belongs to column cluster l , and $q_{jl} = 0$ otherwise.
$\mathbf{V}_{K \times L} = (v_{kl})_{K \times L}$	Matrix with cluster centers for row cluster k and column cluster l .
$\mathbf{E}_{n \times m} = (e_{ij})_{n \times m}$	Matrix with errors from cluster centers.

Usually, the rows (the first mode) of \mathbf{X} correspond to objects, and the columns (the second mode) of \mathbf{X} refer to variables. The elements of \mathbf{X} can be associations, confusions, fluctuations, etc., between row and column objects. It only makes sense to apply to two-mode clustering if the values in the data matrix can be compared amongst each other. Therefore, if one of the modes refers to variables, the values among the variables must be comparable, standardized, or measured on the same scale. In the remainder of this paper, we assume that this condition is satisfied by the data.

Two-mode clustering assigns each element of \mathbf{X} to a row cluster and a column cluster. If L equals m , every column can be placed in a cluster by itself, so that two-mode clustering reduces to one-mode k -means clustering, and the same is true if $K = n$. The matrix \mathbf{V} can be interpreted as the combined cluster means. The cluster memberships are given by the matrices \mathbf{P} and \mathbf{Q} . Together, these three matrices \mathbf{P} , \mathbf{Q} , and \mathbf{V} approximate the information in \mathbf{X} by \mathbf{PVQ}' . To make this approximation as close to \mathbf{X} as possible, we use the additive model

$$\mathbf{X} = \mathbf{PVQ}' + \mathbf{E}, \quad (1)$$

where \mathbf{E} is the error of the model.

Two-mode clustering searches for the optimal partition \mathbf{P} , \mathbf{Q} and cluster centers \mathbf{V} that minimize the sums of squares of \mathbf{E} . This objective amounts to minimizing the squared Euclidean distance of the data points to their

respective clusters centers in \mathbf{V} . Therefore, the criterion to be minimized can be expressed as

$$f(\mathbf{P}, \mathbf{Q}, \mathbf{V}) = \|\mathbf{X} - \mathbf{PVQ}'\|^2 = \sum_{k=1}^K \sum_{l=1}^L \sum_{i=1}^n \sum_{j=1}^m p_{ik} q_{jl} (x_{ij} - v_{kl})^2. \quad (2)$$

It is not required to use the Euclidean metric; other metrics have been used as well, especially in one-mode clustering (see, for example, Bock, 1974). However, in this study, we restrict ourselves to the Euclidean metric. The optimal cluster membership matrices must satisfy the following constraints.

1. The cluster memberships of each row and column object must sum to one, so that $\sum_{k=1}^K p_{ik} = 1$ and $\sum_{l=1}^L q_{jl} = 1$.
2. All cluster membership values must be either zero or one, thus $p_{ik} \in \{0, 1\}$ and $q_{jl} \in \{0, 1\}$.
3. None of the row or column clusters is empty, that is $\sum_{i=1}^n p_{ik} > 0$ and $\sum_{j=1}^m q_{jl} > 0$.

The first two constraints require that each row of \mathbf{P} and \mathbf{Q} contains exactly one element with the value 1. Hence, each row and column object is assigned to exactly one cluster. These two constraints are necessary and sufficient for the second equality in (2) to hold. A partition that violates the third constraint cannot be optimal according to (2), so, in principle, the third constraint is not required during the estimation. However, some algorithms may lead to a partition with empty clusters. Therefore, we adapt these algorithms to correct for potential empty clusters or prevent them from happening.

No polynomial time algorithm is known for the global minimization of $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$. Even for small n and m , the number of possible partitions can become extremely large and a complete enumeration of the possible solutions is almost always computationally infeasible. However, when two of the three matrices \mathbf{P} , \mathbf{Q} , and \mathbf{V} are known, the optimal value of the third matrix can be computed quite easily. When both \mathbf{P} and \mathbf{Q} are known, the optimal cluster centers \mathbf{V} can be computed as

$$v_{kl} = \frac{\sum_{i=1}^n \sum_{j=1}^m p_{ik} q_{jl} x_{ij}}{\sum_{i=1}^n \sum_{j=1}^m p_{ik} q_{jl}}, \quad (3)$$

which is simply the average of the elements of \mathbf{X} belonging to row cluster k and column cluster l . When \mathbf{V} and either \mathbf{P} or \mathbf{Q} are known, the problem

of minimizing $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$ becomes a linear program. As this linear program is particularly simple, its solution can be given in a closed form expression. When \mathbf{V} and \mathbf{Q} are known, the optimal value of \mathbf{P} can be computed as follows. Let $c_{ik} = \sum_{j=1}^m \sum_{l=1}^L q_{jl}(x_{ij} - v_{kl})^2$. Then,

$$p_{ik} = \begin{cases} 1 & \text{if } c_{ik} = \min_{1 \leq r \leq K} c_{ir}, \\ 0 & \text{otherwise.} \end{cases} \quad (4)$$

When \mathbf{P} and \mathbf{V} are known, the optimal matrix \mathbf{Q} can be computed in a similar fashion.

A number of algorithms for finding an optimal two-mode partition have been proposed in the literature. Two of these algorithms are discussed in the remainder of this section. Both algorithms are deterministic and perform a local search of the solution space. In the next section, we will discuss methods that adapt these local search algorithms to perform global optimization.

2.1 Alternating Exchanges

The Alternating Exchanges algorithm was introduced by Gaul and Schader (1996). It tries to improve an initial partition by making a transfer of either a row or a column object and immediately recalculating \mathbf{V} . The advantage of this approach is that updates can be obtained relatively fast. It performs the following steps:

1. Choose initial \mathbf{P} and \mathbf{Q} , and calculate \mathbf{V} according to (3).
2. Repeat the following, until there is no improvement of $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$ in either step.
 - (a) For each i, k , transfer row object i to row class k and re-calculate \mathbf{V} according to (3). Accept the transfer if it has improved $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$, otherwise return to the old \mathbf{P} and \mathbf{V} .
 - (b) For each j, l , transfer column object j to column class l and re-calculate \mathbf{V} according to (3). Accept the transfer if it has improved $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$, otherwise return to the old \mathbf{Q} and \mathbf{V} .

The Alternating Exchanges algorithm always converges to a local minimum, as it decreases the value of $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$ in every iteration, it is defined on a finite set, and $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$ is bounded from below by 0.

2.2 Two-mode k -Means

The k -means algorithm (Hartigan, 1975) is used frequently in one-mode clustering. It is one of the simplest and fastest ways to obtain a good partition, which accounts for its popularity in one-mode clustering. In addition, it can easily be extended to handle two-mode clustering. The so-called two-mode k -means algorithm tries to improve an initial partition using (3) and (4). It consists of the following steps.

1. Choose initial \mathbf{P} and \mathbf{Q} .
2. Repeat the following, until there is no improvement of $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$ in any step.
 - (a) Update \mathbf{V} according to (3).
 - (b) Let $c_{ik} = \sum_{j=1}^m \sum_{l=1}^L q_{jl}(x_{ij} - v_{kl})^2$. Then update \mathbf{P} according to

$$p_{ik} = \begin{cases} 1 & \text{if } c_{ik} = \min_{1 \leq r \leq K} c_{ir}, \\ 0 & \text{otherwise.} \end{cases} \quad (5)$$
 - (c) Update \mathbf{V} according to (3).
 - (d) Let $d_{jl} = \sum_{i=1}^n \sum_{k=1}^K p_{ik}(x_{ij} - v_{kl})^2$. Then update \mathbf{Q} according to

$$q_{jl} = \begin{cases} 1 & \text{if } d_{jl} = \min_{1 \leq r \leq L} d_{jr}, \\ 0 & \text{otherwise.} \end{cases} \quad (6)$$

The two-mode k -means algorithm will always converge to a local optimum, as the value of the criterion $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$ cannot increase in any step. However, it can happen that one or more clusters become empty after Step 2b or 2d. This situation is immediately corrected by transferring the row or column object with the highest value of $\sum_{k=1}^K p_{ik}c_{ik}$ or $\sum_{l=1}^L q_{jl}d_{jl}$ to the empty cluster. As this transfer always improves the value of the criterion, the algorithm will still converge.

3 Meta-Heuristics for Global Optimization

The two algorithms introduced in the previous section only attempt to find locally optimal partitions. As no known polynomial time algorithm is capable of finding the global optimum in every instance, we revert to *meta-heuristics* instead. These methods indeed aim for global optima but are not guaranteed to find them. In this section, we discuss the use of the three meta-heuristics

Multistart, Simulated Annealing, and Tabu Search. By combining these with the two local search algorithms (Alternating Exchanges and two-mode k -means), we obtain four stochastic global optimization methods. The Fuzzy Steps method, which uses the Multistart heuristic, is introduced in the next section. Other algorithms and meta-heuristics have also been used for two-mode clustering. Hansohm (2001) used the genetic algorithm, but found it does not perform as well in two-mode clustering as it does in one-mode clustering. Gaul and Schader (1996) implemented a penalty algorithm, but concluded that it does not compare favorably with the Alternating Exchanges algorithm.

3.1 Multistart

The most simple heuristic is Multistart, which performs a given number of repetitions of a certain algorithm with random starting values in every repetition. The best result out of all repetitions is the final result of the Multistart heuristic. This method prevents the algorithm from incidentally reaching very bad solutions. Also, the Multistart heuristic will always find the global optimum if the number of repetitions is large enough. However, it depends on the function and the data how large the number of repetitions needs to be. In our case, the number of repetitions becomes prohibitively large to be able to guarantee a global minimum. However, even with a reasonable number of repetitions, Multistart often performs well.

We apply the Multistart heuristic to the Alternating Exchanges and the two-mode k -means algorithms described in the previous section. The initial partitions of the resulting optimization methods were chosen by randomly assigning each row and column object to a cluster, with uniform probability.

3.2 Simulated Annealing

Simulated Annealing is a meta-heuristic that simulates the slow cooling of a physical system. Similar to Alternating Exchanges, Simulated Annealing also performs a local search. However, to avoid getting stuck in local minima, Simulated Annealing also accepts, with a positive probability, transitions that increase $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$; see Laarhoven and Aarts (1987) for more details on the Simulated Annealing meta-heuristic. Trejos and Castillo (2000) also applied Simulated Annealing in two-mode clustering.

The Simulated Annealing method uses as parameters a cooling rate $\gamma < 1$ and the number of iterations r in which the temperature remains constant. It also chooses an initial value of the temperature T , and a maximum number of iterations without accepted transitions, denoted by t_{max} . Simulated

Annealing consists of the following steps.

1. Choose initial \mathbf{P} and \mathbf{Q} and calculate \mathbf{V} according to (3).
2. Choose the parameters r , γ , and a large, initial value of T .
3. Repeat the following until there is no change in \mathbf{P} and \mathbf{Q} for the last t_{max} values of T .
 - (a) Do the following r times:
 - i. Choose one of the two modes with equal probability.
 - ii. Choose one of the objects of this mode with uniform probability and transfer it to another cluster, also chosen with uniform probability.
 - iii. Update \mathbf{V} according to (3) and calculate Δf as the change in $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$ achieved by the transfer and the subsequent updating of \mathbf{V} .
 - iv. Always accept the transfer if $\Delta f < 0$, otherwise accept it with probability $\exp(-\Delta f/T)$.
 - (b) Set $T = \gamma T$.

The partition with the lowest value of $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$ found during estimation is retained as the final solution.

3.3 Tabu Search

The Tabu Search meta-heuristic was introduced by Glover (1986). Tabu Search also performs a local search, but tries to move away from local optima by maintaining a tabu list. The tabu list is a list of partitions that are temporarily not accepted. Here, we use the following method for Tabu Search in two-mode clustering, which is based on the Alternating Exchanges algorithm. Note that many other versions of Tabu Search are possible. We refer to Castillo and Trejos (2002) for a more detailed description of this method.

Define $Z(\mathbf{P}, \mathbf{Q}) = \min_{\mathbf{V}} f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$. The algorithm performs the following steps.

1. Start with an initial partition (\mathbf{P}, \mathbf{Q}) and an empty tabu list.
2. Choose the number of iterations t_{max} and a maximum length of the tabu list.

3. Perform the following steps t_{max} times.
 - (a) Generate a neighborhood of partitions N , consisting of the partitions that can be constructed by transferring one row or column object from (\mathbf{P}, \mathbf{Q}) to another cluster.
 - (b) Choose the partition $(\mathbf{P}, \mathbf{Q})_{cand}$ as the partition in N with the lowest value of $Z(\mathbf{P}, \mathbf{Q})$ that is not on the tabu list.
 - (c) Set $(\mathbf{P}, \mathbf{Q}) = (\mathbf{P}, \mathbf{Q})_{cand}$. If $Z((\mathbf{P}, \mathbf{Q})_{cand}) < Z((\mathbf{P}, \mathbf{Q})_{opt})$, then $(\mathbf{P}, \mathbf{Q})_{opt} = (\mathbf{P}, \mathbf{Q})_{cand}$.
 - (d) Add (\mathbf{P}, \mathbf{Q}) to the tabu list. Remove the oldest item from the tabu list, if the list exceeds its maximum length.

The final solution of the algorithm is given by $(\mathbf{P}, \mathbf{Q})_{opt}$.

4 Fuzzy Two-Mode Clustering

Fuzzy methods relax the requirement that an object belongs to a single cluster, so that the cluster membership can be distributed over the clusters. For single mode clustering, the best known method is fuzzy c -means (Bezdek, 1981; for adaptations of this method see Groenen and Jajuga, 2001, and Tsao, Bezdek, and Pal, 1994). These methods try to make the optimization task easier by allowing for cluster membership values between 0 and 1. Here, we extend single mode fuzzy algorithms to the two-mode case. Below, we introduce a fuzzy two-mode clustering criterion. Section 4.1 gives an algorithm for finding an optimal fuzzy partition, based on Bezdek (1981). Section 4.2 describes the Fuzzy Steps method, that reduces the fuzziness of the solution in steps until a crisp partition is found.

Simply relaxing the constraint that cluster membership values must be 0 or 1 by allowing for values between 0 and 1 does not lead to an optimal partitioning that is fuzzy. A crisp partition will still minimize $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$ in that case, though a fuzzy partition might be equally good. Fuzzy optimal partitions can be obtained if the criterion $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$ is altered by raising the cluster membership values to a power s , with $s \geq 1$. Then, the fuzzy two-mode clustering criterion is defined as

$$f_s(\mathbf{P}, \mathbf{Q}, \mathbf{V}) = \sum_{k=1}^K \sum_{l=1}^L \sum_{i=1}^n \sum_{j=1}^m p_{ik}^s q_{jl}^s (x_{ij} - v_{kl})^2. \quad (7)$$

This criterion can have fuzzy optimal partitions and the fuzziness parameter s determines how fuzzy the optimal partition is. For $s = 1$, the fuzzy criterion coincides with the crisp criterion.

4.1 The Two-Mode Fuzzy c -Means Algorithm

The algorithm for the optimization of $f_s(\mathbf{P}, \mathbf{Q}, \mathbf{V})$ is based on iteratively updating each set of parameters while keeping the other two sets fixed. Given optimal \mathbf{Q} and \mathbf{V} , one can find the optimal \mathbf{P} using the Lagrange method for each row i of \mathbf{P} . The Lagrangian is given by

$$L_i(\mathbf{P}, \mathbf{Q}, \mathbf{V}) = \sum_{k=1}^K p_{ik}^s \left(\sum_{l=1}^L \sum_{j=1}^m q_{jl}^s (x_{ij} - v_{kl})^2 \right) - \lambda \left(\sum_{k=1}^K p_{ik} - 1 \right). \quad (8)$$

Defining $c_{ik} = \sum_{l=1}^L \sum_{j=1}^m q_{jl}^s (x_{ij} - v_{kl})^2$ and taking partial derivatives of L_i gives

$$\frac{\partial L_i}{\partial p_{ik}} = s p_{ik}^{s-1} c_{ik} - \lambda \quad \text{and} \quad \frac{\partial L_i}{\partial \lambda} = \sum_{k=1}^K p_{ik} - 1.$$

Now, setting these derivatives to zero and solving for p_{ik} yields

$$p_{ik} = \frac{c_{ik}^{1/(1-s)}}{\sum_{k=1}^K c_{ik}^{1/(1-s)}}. \quad (9)$$

However, (9) does not apply if one or more of the c_{ik} are zero for a certain row i . In that case, any partition with $p_{ik} = 0$ whenever $c_{ik} > 0$ and $\sum_{k=1}^K p_{ik} = 1$ is optimal. Finding the optimal \mathbf{Q} given \mathbf{P} and \mathbf{V} can be done in a similar fashion. When s is large enough, the optimal values of the cluster memberships become $p_{ik} \approx 1/K$ and $q_{jl} \approx 1/L$, which can easily be derived from (9). In practice, the cluster membership values approach these values quite rapidly for reasonably large s . For $s = 3$, the cluster membership values often differ only slightly and for $s > 10$ they are usually equal to each other within the numerical accuracy of current computers. As s approaches 1, $1/(1-s)$ approaches minus infinity and the fuzzy optimization formula (9) becomes its crisp counterpart (4). In that case, the optimal partition of (7) also approaches the optimal crisp partition. Hence, higher values of s correspond to fuzzier optimal partitions, and s close to 1 to crisp partitions.

The optimal \mathbf{V} can be obtained by setting the derivative of (7) to zero and solving for v_{kl} , which gives

$$v_{kl} = \frac{\sum_{i=1}^n \sum_{j=1}^m p_{ik}^s q_{jl}^s x_{ij}}{\sum_{i=1}^n \sum_{j=1}^m p_{ik}^s q_{jl}^s}. \quad (10)$$

Now, for a given value of s , the *two-mode fuzzy c-means algorithm* can be constructed as follows.

1. Choose initial \mathbf{P} and \mathbf{Q} , which can be either crisp or fuzzy and calculate \mathbf{V} according to (10).
2. Repeat the following, until the decrease in $f_s(\mathbf{P}, \mathbf{Q}, \mathbf{V})$ is small.
 - (a) Define $c_{ik} = \sum_{l=1}^L \sum_{j=1}^m q_{jl}^s (x_{ij} - v_{kl})^2$ and update \mathbf{P} as $p_{ik} = c_{ik}^{1/(1-s)} / \sum_{k=1}^K c_{ik}^{1/(1-s)}$.
 - (b) Define $d_{jl} = \sum_{k=1}^K \sum_{i=1}^n p_{ik}^s (x_{ij} - v_{kl})^2$ and update \mathbf{Q} as $q_{ik} = d_{jl}^{1/(1-s)} / \sum_{k=1}^K d_{jl}^{1/(1-s)}$.
 - (c) Update \mathbf{V} according to (10).

The algorithm lowers the value of $f_s(\mathbf{P}, \mathbf{Q}, \mathbf{V})$ in every iteration, until convergence has been achieved. Hence, this algorithm will always converge to a local minimum or a saddle point.

4.2 Fuzzy Steps

The two-mode fuzzy c -means algorithm generally converges to a fuzzy partition. To ensure that the two-mode fuzzy optimization method converges to a crisp partition, we adopt the Fuzzy Steps approach by Heiser and Groenen (1997). Our Fuzzy Steps algorithm starts with an initial value of s that is greater than 1. It uses the two-mode fuzzy c -means algorithm to minimize $f_s(\mathbf{P}, \mathbf{Q}, \mathbf{V})$ for a given value of s . It gradually lowers s to avoid local minima and obtain a good crisp partition. The Fuzzy Steps algorithm performs the following steps.

1. Choose an initial value of s , a fuzzy step size $\gamma < 1$ and a threshold value s_{min} .
2. Choose initial \mathbf{P}_0 and \mathbf{Q}_0 , and calculate \mathbf{V}_0 according to (10). The initial \mathbf{P}_0 and \mathbf{Q}_0 can be either crisp or fuzzy.
3. Repeat the following while $s > s_{min}$.
 - (a) Perform the two-mode fuzzy c -means algorithm starting with \mathbf{P}_0 , \mathbf{Q}_0 , and \mathbf{V}_0 . The results are in \mathbf{P}_1 , \mathbf{Q}_1 , and \mathbf{V}_1 .
 - (b) Set $s = 1 + \gamma(s - 1)$, and set $\mathbf{P}_0 = \mathbf{P}_1$, $\mathbf{Q}_0 = \mathbf{Q}_1$, and $\mathbf{V}_0 = \mathbf{V}_1$.
4. Apply the two-mode k -means algorithm starting from \mathbf{P}_0 , \mathbf{Q}_0 , and \mathbf{V}_0 .

The formula in Step 4 for decreasing s gives an exponential decay of $(s - 1)$, as shown in Figure 1. The value of s_{min} should generally be set to

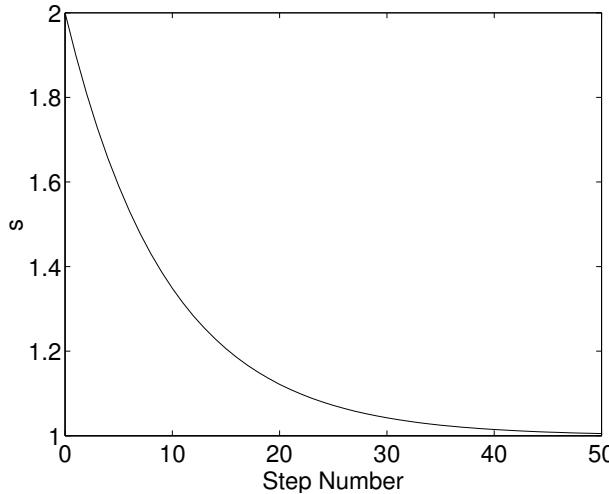


Figure 1: The decrease of the value of s in the Fuzzy Steps approach, using $\gamma = 0.9$

a value slightly higher than 1, for example, 1.001. The two-mode k -means algorithm is performed at the end of the Fuzzy Steps method, to ensure that a crisp solution is obtained. Although the two-mode k -means algorithm was defined as a crisp algorithm in Section 2.2, it can also be used in combination with fuzzy initial partitions

It is possible that the optimization algorithm gets stuck in a saddle point. This happens if two or more row or column clusters become equal. In that case, these clusters and their corresponding cluster membership values will remain equal for any value of s . Preliminary tests with the algorithm suggest that it often reaches a saddle point, if the starting value of s is too high. Therefore, it is important not to set the starting value of s too high, for example, $s \leq 1.2$.

5 Simulation Study

To compare the performance of the algorithms described in the previous sections, we use a large-scale simulation study. The simulation study aims to determine which of the algorithms perform well under most circumstances and to compare the algorithms thoroughly under varying circumstances. The simulation study also determines how well the algorithms can retrieve a clustering structure. First, we describe the setup of the simulation study and how the results are represented. We then give the results of the simulation

study and interpret them.

5.1 Setup of the Simulation Study

Many papers discussing two-mode clustering algorithms often only perform a small simulation study. However, the performance of the optimization methods may depend strongly on the features of the data set. Therefore, we will perform a larger simulation study to compare the methods.

We generate the data matrix \mathbf{X} in every problem instance by simulating \mathbf{P} , \mathbf{Q} , \mathbf{V} , and \mathbf{E} , and then using (1) to construct \mathbf{X} . Generating simulated data this way comes natural and has the advantage that some clustering structure exists in the data. Also, the \mathbf{P} , \mathbf{Q} , and \mathbf{V} used in generating \mathbf{X} can give a useful upper bound on the optimal value of $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$.

A large number of factors can be varied in a simulation study for two-mode clustering, such as the values of n , m , K , and L , the size and the distribution of the errors, the number of elements in the clusters, and the locations of the cluster centers. Using a full factorial design with seven or more factors and multiple levels per factor, would require a prohibitively large number of simulations. Therefore, the number of factors and the number of levels for each factor are limited as follows.

The simulation study is set up using a three-factor design, and is loosely based on the approach of Milligan (1980). The first factor is the size of the data matrix \mathbf{X} and the number of clusters. The three levels of this factor are as follows.

- First level: $n = 60$, $m = 60$, and $K = L = 6$.
- Second level: $n = 150$, $m = 20$, and $K = L = 5$.
- Third level: $n = m = 100$, and $K = L = 3$.

The second factor is the size of the error perturbations. All elements of \mathbf{E} are normally distributed with mean 0 and standard deviation equal to 0.5, 1, or 2 for the three levels of this factor. Standard deviations of 0.5 and 1 give a reasonable amount of noise in the simulated data, whereas a standard deviation of 2 can make clustering difficult. The third factor is the distribution of the objects over the clusters. For the first level of this factor all objects are divided over the clusters with equal probability. For the second and third levels, one cluster contains exactly 10% respectively 60% of the objects. The remaining objects are then divided over the remaining clusters with uniform probability. Constructing one cluster with 10% of the objects represents a small deviation from a uniform distribution, whereas a cluster with 60% constitutes a large deviation.

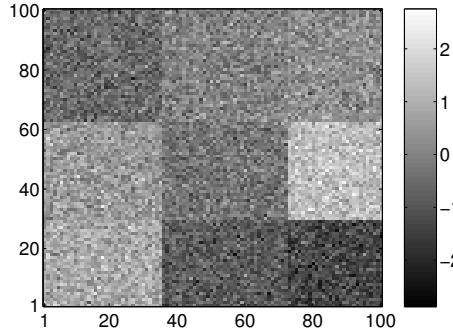


Figure 2: Graphical representation of simulated data set with sizes $n = m = 100$, $K = L = 3$, error standard deviation 0.5, and a uniform distribution of the objects over the clusters.

Empty clusters are not allowed in the generated data sets. If a simulated data set contains an empty cluster, it is discarded and another data set is simulated. Finally, the locations of the cluster centers v_{kl} are chosen by randomly assigning the numbers $\Phi(\frac{i}{K \times L + 1})$, $i = 1, \dots, K \times L$ to the elements of \mathbf{V} , where $\Phi(\cdot)$ is the inverse standard normal cumulative distribution function. As a result, the elements of \mathbf{V} appear standard normally distributed, and a fixed minimum distance between the cluster centers is assured. Note that this setup of the simulation study does not account for certain features of empirical data sets, such as heteroscedasticity and non-normality.

We visualize the effects of some of these choices in Figures 2-4. These figures give a visual representation of the simulated \mathbf{X} for various levels of the factors. In these figures, the rows and columns are ordered according to their cluster. The values of the elements of \mathbf{X} are represented by colors, and similar colors correspond to similar numerical values for the elements of \mathbf{X} . The color bars at the right-hand side show what values the colors represent. Figure 2 gives an example of a data set, where the choices for the levels of the factors ensure that the original clusters can easily be recognized. In Figure 3, the original clusters are more difficult to recognize, and in Figure 4, this is almost impossible. The optimal clustering should generally be easier to find, when the number of clusters is low, the error standard deviation is small and the objects are evenly divided over the clusters.

These three factors give a total of $3 \times 3 \times 3 = 27$ possible combinations. To avoid drawing spurious conclusions based on a single data set, we simulate 50 data sets for each combination and all five methods are performed for each data set. In total, 6750 clustering methods are performed.

All algorithms require an initial choice for \mathbf{P} and \mathbf{Q} . One can choose \mathbf{P}

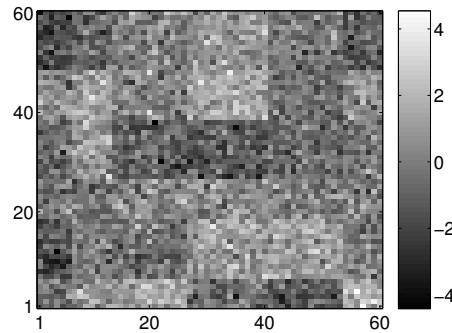


Figure 3: Graphical representation of simulated data set with sizes $n = m = 60$, $K = L = 6$, error standard deviation 1 and 10% of the objects in one cluster.

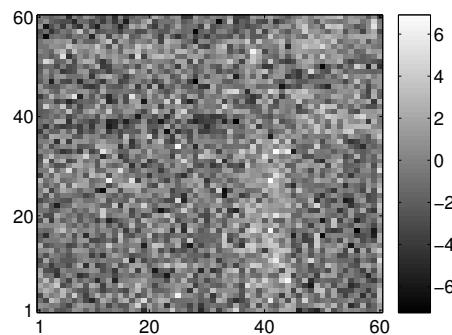


Figure 4: Graphical representation of simulated data set with sizes $n = m = 60$, $K = L = 6$, error standard deviation 2 and 60% of the objects in one cluster.

and \mathbf{Q} random by simply assigning each row and column object to one of the clusters with equal probability. This choice is used for the Multistart AE and Multistart k -means methods. However, many other optimization methods perform better when the initial partitions are relatively good. Therefore, the initial partitions of the Simulated Annealing, Tabu Search, and Fuzzy Steps methods are chosen by applying the two-mode k -means algorithm to a randomly chosen partition.

Some algorithms also require choosing additional parameters. The parameters of these algorithms are chosen as follows:

- Multistart Alternating Exchanges: The Multistart Alternating Exchanges method performs the Alternating Exchanges algorithm 10 times.
- Multistart k -means: The Multistart k -means method performs the k -means algorithm 500 times.
- Simulated Annealing: Initial temperature $T=10$, $r = 2(nL + mK)$, $\gamma = 0.85$, and $t_{max} = 10$.
- Tabu Search: The length of the tabu list is $2\sqrt{n(K-1) + m(L-1)}$ and the number of iterations $t_{max} = 6\sqrt{n(K-1) + m(L-1)}$.
- Multistart Fuzzy Steps: The initial value of s is 1.05, the fuzzy step size γ is 0.9, and the threshold value s_{min} is 1.001. The Fuzzy Steps algorithm is repeated 10 times for every simulated data set.

The values of these parameters have been chosen after some experimentation, and should give an adequate performance and a comparable computation time for the five methods.

We use multiple criteria to evaluate the results of the simulation study. First, we do not use the value of $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$, but the Variance Accounted For (VAF) criterion. The VAF criterion is defined as

$$\text{VAF} = 1 - \frac{\sum_{k=1}^K \sum_{l=1}^L \sum_{i=1}^n \sum_{j=1}^m p_{ik} q_{jl} (x_{ij} - v_{kl})^2}{\sum_{i=1}^n \sum_{j=1}^m (x_{ij} - \bar{x})^2}, \quad (11)$$

where $\bar{x} = (NM)^{-1} \sum_{i=1}^n \sum_{j=1}^m x_{ij}$. It can be derived that maximizing VAF corresponds to minimizing $f(\mathbf{P}, \mathbf{Q}, \mathbf{V})$. The optimal value of VAF ranges from 0 to 1 and is equivalent to the R^2 -measure used in regression analysis. We report the average VAF value for all algorithms and the average VAF of the \mathbf{P} and \mathbf{Q} used to generate the data.

Second, we report the average Adjusted Rand Index (ARI), which was introduced by Hubert and Arabie (1985). This metric is used to show how well the clustering found by the algorithms approximates the original clustering. It is invariant with respect to the ordering of the clusters, which is arbitrary in two-mode clustering. ARI is based on the original Rand Index, which is defined as the fraction of the pairs of elements on which the two clusterings agree. The original Rand index can only take values from 0 to 1. If random partitions are selected, the expected value of the Rand index lies between 0 and 1, and depends on the parameters of clustering problem. To ensure a constant expectation, the ARI is a linear function of the Rand index, so that its expectation is always 0 and its maximum value is 1. It is defined as

$$\text{ARI} = \frac{\sum_{i=1}^P \sum_{j=1}^P \binom{a_{ij}}{2} - \sum_{i=1}^P \binom{a_{i\cdot}}{2} \sum_{j=1}^P \binom{a_{\cdot j}}{2} / \binom{a}{2}}{\frac{1}{2} [\sum_{i=1}^P \binom{a_{i\cdot}}{2} + \sum_{j=1}^P \binom{a_{\cdot j}}{2}] - \sum_{i=1}^P \binom{a_{i\cdot}}{2} \sum_{j=1}^P \binom{a_{\cdot j}}{2} / \binom{a}{2}}, \quad (12)$$

where a_{ij} is the number of elements of \mathbf{X} that are simultaneously part of cluster i of the original clustering and cluster j of the retrieved clustering, $a_{i\cdot} = \sum_j a_{ij}$, $a_{\cdot j} = \sum_i a_{ij}$, and $a = \sum_i \sum_j a_{ij}$. Here we consider a pair of elements to be in the same cluster only if they are both part of the same column cluster and of the same row cluster.

The final criterion used to compare the algorithms is the average CPU time required by the algorithms, which is of great practical interest. All algorithms are written in the matrix programming language Matlab 7, and are executed on a Pentium IV 2.8 GHz computer.

Dolan and Moré (2002) discuss a convenient tool, called *performance profiles*, for graphically representing the distribution of the results of a simulation study. Performances profiles are especially useful when trying to determine which algorithms perform reasonably well almost every time the algorithm is run. They can be constructed as follows. First, one has to identify a performance measure. We will use the VAF criterion for this and define $\text{VAF}^{(p,s)}$ as the VAF achieved by algorithm s in problem instance p . Then, the *performance ratio* $\rho^{(p,s)}$ is defined as

$$\rho^{(p,s)} = \frac{\max_s \text{VAF}^{(p,s)}}{\text{VAF}^{(p,s)}}. \quad (13)$$

Finally, the cumulative distribution function of the performance ratio can be computed as

$$\Phi^{(s)}(\tau) = \frac{1}{50} \#\{\rho^{(p,s)} \leq \tau; p = 1, \dots, 50\}. \quad (14)$$

By drawing $\Phi^{(s)}(\tau)$ in one figure for all algorithms, the performance of the algorithms can be compared quite easily.

Table 1: Average VAF for data sets with $n = m = 60$, $K = L = 6$.

object distribution error st. dev.	uniform distribution			10%-cluster			60%-cluster		
	.5	1	2	.5	1	2	.5	1	2
Multistart AE	.7672	.4604	.1886	.7602	.4608	.1918	.7209	.4167	.1838
Multistart k -means	<i>.7693</i>	<i>.4616</i>	.1883	<i>.7667</i>	<i>.4610</i>	.1912	<i>.7379</i>	<i>.4229</i>	.1834
Simulated Annealing	.7553	.4554	.1890	.7442	.4498	.1913	.7068	.4110	.1864
Tabu Search	.7036	.4360	.1673	.7066	.4356	.1728	.7010	.3968	.1678
Multistart Fuzzy Steps	.7637	.4607	<i>.1897</i>	.7617	.4604	<i>.1925</i>	.7247	.4179	<i>.1871</i>
Original partition	.7693	.4613	.1799	.7667	.4605	.1810	.7413	.4215	.1568

Table 2: Average VAF for data sets with $n = 150, m = 20$, $K = L = 5$.

object distribution error st. dev.	uniform distribution			10%-cluster			60%-cluster		
	.5	1	2	.5	1	2	.5	1	2
Multistart AE	.7601	.4424	.2060	.7491	.4493	.2083	.7145	.4223	.2104
Multistart k -means	<i>.7616</i>	<i>.4425</i>	.2070	<i>.7530</i>	<i>.4512</i>	.2089	<i>.7323</i>	<i>.4271</i>	.2121
Simulated Annealing	.7564	.4407	.2083	.7398	.4450	<i>.2103</i>	.7003	.4161	.2138
Tabu Search	.7232	.4294	.1756	.7155	.4299	.1802	.6909	.4043	.1870
Multistart Fuzzy Steps	<i>.7616</i>	<i>.4425</i>	<i>.2089</i>	.7521	.4510	.2102	.7285	.4249	.2131
Original partition	.7615	.4378	.1742	.7529	.4458	.1727	.7321	.4157	.1607

5.2 Simulation Results

We will now give the results of the simulation study. Tables 1-3 show the average VAF values of all algorithms for each combination of the factors. The results of the best performing algorithms are shown in italics, for each combination of the factors. The average VAF value of the original partition is also shown.

From these tables, it is clear that the optimization methods with a Multistart heuristic perform very well, in particular the Multistart k -means methods. It always has the best average performance when the error standard deviation is 0.5 or 1. The results are somewhat different in data sets with an error standard deviation of 2. The best performance is then often achieved by the Multistart Fuzzy Steps method. The Multistart AE and the Simulated Annealing methods often also have a good performance. The Tabu Search method does not perform as well as the other algorithms in the simulated data sets.

Tables 4-6 give the average values of the Adjusted Rand Index, based on the original \mathbf{P} and \mathbf{Q} . The best results in these tables are again given

Table 3: Average VAF for data sets with $n = m = 100$, $K = L = 3$.

object distribution error st. dev.	uniform distribution			10%-cluster			60%-cluster		
	.5	1	2	.5	1	2	.5	1	2
Multistart AE	.7032	.3692	.1317	.6884	.3524	.1225	.6749	.3392	.1228
Multistart k -means	.7032	.3692	.1317	.6884	.3527	.1226	.6768	.3392	.1233
Simulated Annealing	.7032	.3692	.1317	.6840	.3511	.1221	.6663	.3337	.1208
Tabu Search	.6772	.3533	.1287	.6656	.3444	.1195	.6530	.3311	.1192
Multistart Fuzzy Steps	.7032	.3692	.1317	.6856	.3527	.1218	.6762	.3392	.1219
Original partition	.7032	.3690	.1302	.6884	.3525	.1198	.6768	.3392	.1211

 Table 4: Average Adjusted Rand Index in data sets with $n = m = 60$, $K = L = 6$.

object distribution error st. dev.	uniform distr.			10%-cluster			60%-cluster		
	.5	1	2	.5	1	2	.5	1	2
Multistart AE	.985	.969	.531	.961	.966	.500	.588	.353	.124
Multistart k -means	1.000	.980	.557	1.000	.972	.502	.888	.485	.133
Simulated Annealing	.913	.912	.524	.873	.861	.480	.587	.318	.130
Tabu Search	.788	.797	.314	.783	.796	.324	.674	.313	.106
Multistart Fuzzy Steps	.966	.966	.564	.980	.960	.516	.698	.370	.132

in italics. These tables are especially useful for determining the absolute performance of the algorithms. It is clear that a high value of the ARI almost always corresponds to a high value of VAF. In addition, the original partition is often exactly retrieved when the error standard deviation is small and all clusters have approximately the same numbers of objects.

The best performing algorithm usually has an average Adjusted Rand Index above 90% or even 99% if the conditions of the simulated data sets are favorable. This fraction rapidly decreases however, when the problem instances become harder. The original partitions are especially hard to retrieve, if the error standard deviation is 2 or if 60% of the objects are located in one cluster. The Adjusted Rand Index never becomes negative or very close to 0, which indicates that it always is possible to retrieve some of the structure in the data set.

Another important conclusion is that the differences in the average Adjusted Rand Indices between the methods can be large. The difference can sometimes be as large as 30%, whereas the differences in VAF are just a few percentage points. Therefore, the choice of the optimization method can be quite important, if one wants to find the ‘true’ clustering.

Table 5: Average Adjusted Rand Index in data sets with $n = 150$, $m = 20$, $K = L = 5$.

object distribution error st. dev.	uniform distr.			10%-cluster			60%-cluster		
	.5	1	2	.5	1	2	.5	1	2
Multistart AE	.990	.880	.340	.975	.850	.337	.680	.428	.159
Multistart k -means	.994	.882	.364	.994	.869	.345	.957	.595	.173
Simulated Annealing	.960	.854	.381	.923	.796	.348	.635	.367	.171
Tabu Search	.855	.773	.187	.864	.704	.185	.654	.349	.113
Multistart Fuzzy Steps	.994	.883	.378	.988	.865	.351	.854	.491	.167

Table 6: Average Adjusted Rand Index in data sets with $n = m = 100$, $K = L = 3$.

object distribution error st. dev.	uniform distr.			10%-cluster			60%-cluster		
	.5	1	2	.5	1	2	.5	1	2
Multistart AE	1.000	.992	.858	1.000	.978	.749	.984	.990	.749
Multistart k -means	1.000	.992	.858	1.000	.984	.752	1.000	.990	.786
Simulated Annealing	1.000	.992	.859	.976	.962	.721	.937	.931	.641
Tabu Search	.878	.884	.802	.911	.898	.642	.906	.915	.611
Multistart Fuzzy Steps	1.000	.992	.860	.977	.984	.721	.992	.990	.704

Table 7: Average CPU time of all algorithms in seconds.

size of data sets error st. dev.	$n = m = 60$			$n = 150, m = 20$			$n = m = 100$		
	.5	1	2	.5	1	2	.5	1	2
Multistart AE	7.5	9.1	13.4	12.0	14.6	17.5	8.3	9.4	14.5
Multistart k -means	12.4	16.1	19.1	12.0	16.6	18.2	8.4	10.3	15.2
Simulated Annealing	22.8	23.0	24.1	28.9	30.9	28.9	27.0	29.8	35.4
Tabu Search	24.8	25.3	25.4	33.2	30.0	29.3	25.0	25.2	25.0
Multistart Fuzzy Steps	7.5	10.5	20.9	7.1	10.9	19.4	4.1	6.8	15.7

Finally, we give the average CPU time in seconds used by all methods in Table 7, for each problem size and value of the error standard deviation. Note that the CPU times strongly depend on the type of computer used and how the methods have been implemented. They should only serve as a general indication of the amount of computation that optimization methods require. The impact of the distribution of the objects over the clusters on the computation time is small and is not shown here. The size of the error standard deviation has a clear positive effect on the computation time, especially for the Multistart Fuzzy Steps method. A higher error standard deviation also leads to longer computation times for the Alternating Exchanges and the two-mode k -means algorithms.

The most important determinants of the CPU times of the methods are the size of the data set and the number of clusters. The computation time does not increase with m , n , K , and L for all algorithms in the same manner. Therefore, the choice of the method should depend on the size of these factors. The computational load of the Simulated Annealing and Tabu Search methods is somewhat greater than for the other optimization methods, though the computation times of the methods are still roughly comparable.

The average VAF values in Tables 1-3 do not show the distribution of the VAF values. For example, it is possible that a method usually performs well, but occasionally gives very poor results. We will show performance profiles of the VAF values for all methods. As drawing these profiles for each of the 27 combinations of the factors requires too much space, we will give three examples. These examples are shown in Figures 5-7.

Figure 5 gives a performance profile of 50 data sets with a low error standard deviation. The value of the graph at the y -axis gives the fraction of times that a method achieved the best VAF value of all method. The Multistart k -means method found the best partition in every problem instance and the Multistart AE method also performed well. Most methods, except Tabu Search, retrieved the initial partition in more than 50% of the problem

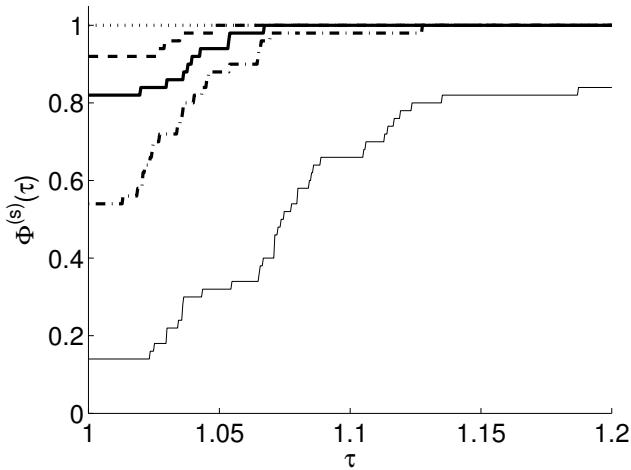


Figure 5: Performance profile of data sets with sizes $n = m = 60$, $K = L = 6$, error standard deviation 0.5, and a uniform distribution of the objects. The lines represent the methods Multistart AE (dashed line), Multistart k -means (dotted line), Simulated Annealing (dash-dot line), Tabu Search (thin, solid line), and Multistart Fuzzy Steps (thick, solid line).

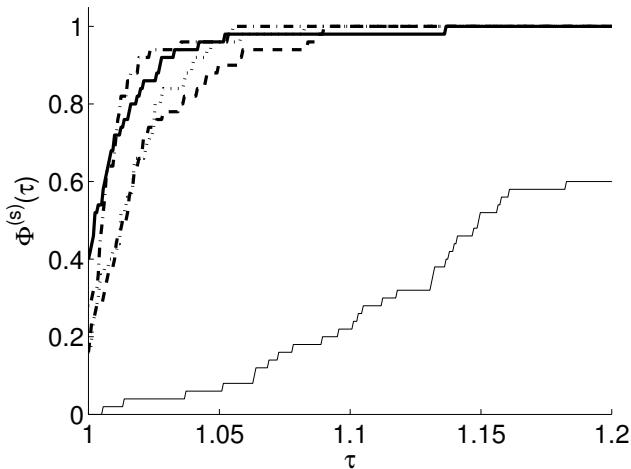


Figure 6: Performance profile of data sets with sizes $n = 150$, $m = 20$, $K = L = 5$, error standard deviation 2, and one cluster containing 10% of the objects. The lines represent the methods Multistart AE (dashed line), Multistart k -means (dotted line), Simulated Annealing (dash-dot line), Tabu Search (thin, solid line), and Multistart Fuzzy Steps (thick, solid line).

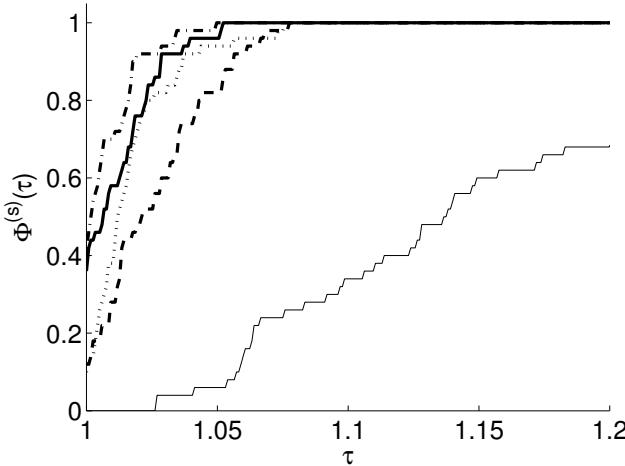


Figure 7: Performance profile of data sets with sizes $n = 150$, $m = 20$, $K = L = 5$, error standard deviation 2, and one cluster containing 60% of the objects. The lines represent the methods Multistart AE (dashed line), Multistart k -means (dotted line), Simulated Annealing (dash-dot line), Tabu Search (thin, solid line), and Multistart Fuzzy Steps (thick, solid line).

instances.

Figures 6 and 7 show performance profiles of data sets with a large error standard deviation, where the optimal partition was hard to find. In these cases, no algorithm performed at least as good as all others in every problem instance. The Simulated Annealing and Multistart Fuzzy Steps methods often performed well. The performance of the Multistart AE, and Multistart k -means was somewhat worse. The Tabu Search method is clearly outperformed by other methods. In both figures, the best average VAF value was achieved by the Simulated Annealing method.

The conclusions of the simulation study can be summarized as follows.

- The Multistart k -means method has the best average performance in most situations with a small amount of error.
- The Multistart Fuzzy Steps method often is the best performing method if the amount of error is high, although its overall performance is slightly worse than that of the Multistart k -means method.
- The Multistart AE and Simulated Annealing methods have a good overall performance, but usually not as good as the Multistart k -means

and Multistart Fuzzy Steps methods. The performance of the Tabu Search method seems to be inferior for the simulated data sets.

- The average Adjusted Rand Index ranges from 14% to 100% in the simulated data sets, and is significantly influenced by the choice of the algorithm and by varying the factors of the simulation study
- Performance profiles show that the performance of each algorithm varies greatly when the algorithm is performed multiple times. Therefore, the Multistart heuristic of algorithms seems to be a very useful strategy.

6 Empirical Data

Here, we present an empirical data set to illustrate two-mode clustering. As marketing is an important area of application for clustering methods, we will use a data set from this area. The data set is used to compare the algorithms and to determine whether the conclusions of the simulation study are valid in a practical data set.

The data set is based on a questionnaire about the Internet. It consists of evaluations of 22 statements about the Internet by 194 respondents. The statements were evaluated using a seven-point Likert scale, ranging from 1 - completely disagree to 7 - completely agree. The average scores in the data set can differ significantly per individual and per statement. A sample run of the two-mode clustering methods shows that, if the raw data set is used, the individuals and the statements will mostly be clustered based on their average scores. We correct for this problem by double centering \mathbf{X} , that is, by replacing each x_{ij} with \tilde{x}_{ij} , where

$$\tilde{x}_{ij} = x_{ij} - \frac{1}{n} \sum_{i'=1}^n x_{i'j} - \frac{1}{m} \sum_{j'=1}^m x_{ij'} + \frac{1}{nm} \sum_{i'=1}^n \sum_{j'=1}^m x_{i'j'}, \quad (15)$$

so that the column and row averages of $\tilde{\mathbf{X}}$ are zero.

As it is not clear what numbers of clusters should be chosen, we use the following procedure for choosing K and L . First, we perform the clustering methods on $\tilde{\mathbf{X}}$, for all K and L such that $K+L = i$, for $i = 4 \dots 16$. For each value i we use the optimization method and values of K and L that yield the best VAF. For each value of i and for each method, the best resulting VAF value is shown in Figure 8. The algorithms use the same parameters as in the simulation study.

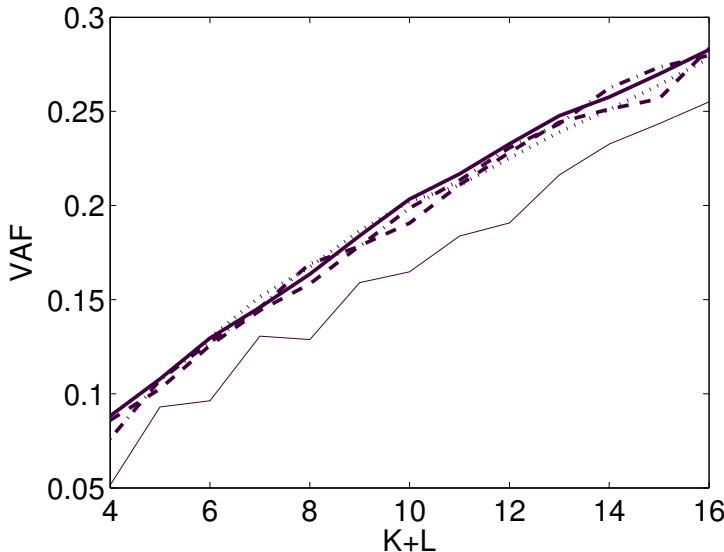


Figure 8: Best VAF values found in Internet data set, for $K + L = 4 \dots 16$. The lines represent the methods Multistart AE (dashed line), Multistart k -means (dotted line), Simulated Annealing (dash-dot line), Tabu Search (thin, solid line), and Multistart Fuzzy Steps (thick, solid line).

The Multistart k -means, Simulated Annealing, and the Multistart Fuzzy Steps methods all had good performances. The Multistart Alternating Exchanges method performed slightly worse, and the Tabu Search method performed rather poorly. These results support the conclusions of the simulation study.

The maximum VAF value shown in Figure 8 increases smoothly with the number of clusters and so it is not entirely clear which values of K and L should be chosen. We decide to use $K = L = 5$ for further interpretations, which gives a best VAF value of 20.3%. The differences between the cluster centers are shown in Table 8 in combination with the sizes (number of elements) of the clusters. The differences between the cluster centers are reasonably large. One of the statement clusters (columns) consists of a single statement, suggesting that this statement might be an outlier.

The statements in each statement cluster are shown in Table 9. These statement clusters have quite clear interpretations. Whereas the first cluster only consists of one statement, the second cluster mainly consists of statements that consider using the Internet expensive. The statements in the third cluster generally apply to experienced Internet users. The statements in the

Table 8: Average evaluations per cluster, cluster sizes, and interpretations.

respondent clusters	statement clusters					size	interpretation
	1	2	3	4	5		
1	-1.53	0.72	-0.19	-0.34	0.74	34	price-conscious
2	1.69	0.00	-0.32	0.44	-0.60	55	safety-conscious
3	-1.51	-1.25	0.91	-0.19	0.12	26	experts
4	-2.07	0.11	0.36	0.31	-1.05	38	enthusiasts
5	1.88	0.09	-0.33	-0.48	1.09	41	skeptics
size	1	4	8	6	3		
interpret.	regulation	expensive	experience	enthusiastic	unreliable		

fourth cluster are associated with people who are enthusiastic about the Internet. The statements in the fifth cluster consider the Internet unreliable. It is also possible to interpret the respondent clusters, by using the interpretations of the statement clusters and the values of the cluster centers in Table 8. The respondents in the first cluster mainly think that using the Internet is expensive, but they still like it. The second cluster consists of people, who mainly want more regulation on the content of web sites. Parents of young children could be in this cluster. The third cluster of respondents consists of experienced Internet users. Even though they find using the Internet quite cheap, they seem to have lost some of their enthusiasm about it. The fourth cluster is a group of ordinary Internet users, who think positively about the Internet. The respondents in the final cluster seem to dislike using the Internet and think it is unreliable. All these interpretations are summarized in Table 8.

The clustered data set is graphically represented in Figure 9, as was done before with simulated data sets in Figures 2-4. The bar at the right-hand side of the figure shows to what values the colors refer. The clusters of the data matrix can easily be recognized, though they can account for only 20.3% of the total variance.

The Internet data set gives a useful example of how two-mode clustering can summarize the information in a data set. The interpretations of both row and column clusters seem quite natural. Two-mode clustering not only divides the respondents and the statements into clusters, but also shows what the opinions of the people in each cluster are.

Table 9: Statement clusters in Internet data set, with interpretations of the clusters between brackets.

Cluster 1 (regulation):
The content of web sites should be regulated
Cluster 2 (expensive):
Internet offers many possibilities for abuse
Internet phone costs are high
The costs of surfing are high
The prices of Internet subscriptions are high
Cluster 3 (experience):
Paying using the Internet is safe
I always attempt new things on the Internet first
I know much about the Internet
I like surfing
I like to be informed of important new things
I often speak with friends about the Internet
I regularly visit web sites recommended by others
Internet is addictive
Cluster 4 (enthusiastic):
Internet is fast
Internet is easy to use
Internet is the future's means of communication
Internet is user-friendly
Internet offers unbounded opportunities
Surfing the Internet is easy
Cluster 5 (unreliable):
Internet is unreliable
Transmitting personal data using the Internet is unsafe
Internet is slow

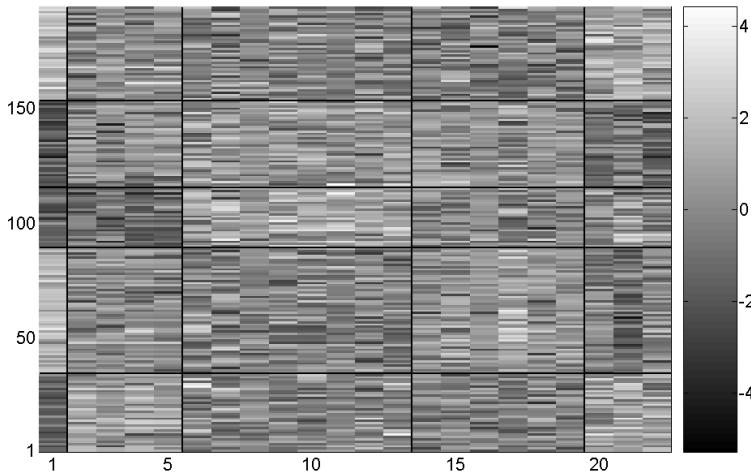


Figure 9: Graphical representation of the Internet data set, ordered by clusters using $K = L = 5$.

7 Conclusions

Two-mode clustering seems a powerful statistical technique. However, various algorithms exist but no algorithm is guaranteed to find the optimal clustering. Therefore, it is still unclear which algorithm should be used in practice. We have tried to alleviate these problems, by giving an overview of existing algorithms and introducing several new methods. Five methods have been compared. All methods use one of the heuristics Multistart, Tabu Search, and Simulated Annealing.

A simulation study has been performed to compare these methods and to determine how effective they are at finding the optimal clustering. A full-factorial design was used to assess the effects of characteristics of the clustering problem on the performance of the methods. The sizes of the data matrix, the number of clusters, the size of the errors and the distribution of the objects over the clusters were varied in the simulation design. The optimal clustering is often much easier to find if the number of clusters and the size of the errors is small, and if all clusters have approximately the same size. It turns out that the application of the Multistart heuristic in combination with the k -means algorithm usually has the best average performance, especially if the problem is easy. As it requires relatively little CPU time and is easy to implement without supervision, we recommend using

this algorithm for most instances. When optimal clustering is hard to find, the Simulated Annealing and Multistart Fuzzy Steps methods often perform best. As the optimal clustering is probably hard to find in empirical data sets of reasonably large size, these algorithms can be useful in these cases. Using Multistart in combination with the Alternating Exchanges algorithm often also performs well. The performance of the Tabu Search method generally is inferior; we do not recommend using this algorithm in conditions similar to this simulation study.

The results of the methods on an empirical data set did not deviate from what we found in the simulation study. The empirical data set also gives a useful example of the potential applications of two-mode clustering. The clusters found in this data set are meaningful and provide additional insight.

Research in the area of two-mode clustering algorithms is still ongoing and far from complete. For example, we cannot exclude the possibility that some algorithms can be improved by choosing their parameters differently. Besides further theoretical research, further practical experience also is required. Practice can show the real merits and drawbacks of using two-mode clustering.

References

BEZDEK, J. C. (1981), *Pattern recognition with fuzzy objective function algorithms*, New York: Plenum Press.

BOCK, H. H. (1974), *Automatische klassifikation*, Göttingen: Vandenhoeck & Ruprecht.

CASTILLO, W., and TREJOS, J. (2002), “Two-mode partitioning: Review of methods and application of tabu search,” in *Classification, clustering and data analysis*, Eds., K. Jajuga, A. Sololowksi, and H. Bock, Berlin: Springer, 43-51.

DESARBO, W. S. (1982), “Gennclus: New models for general nonhierarchical clustering analysis,” *Psychometrika*, 47(4), 449-475.

DOLAN, E. D., and MORÉ, J. J. (2002), “Benchmarking optimization software with performance profiles,” *Mathematical Programming*, 91, 201-213.

GAUL, W., and SCHADER, M. (1996), “A new algorithm for two-mode clustering,” in *Data analysis and information systems*, Eds., H. Bock and W. Polasek, Heidelberg: Springer, 15-23.

GLOVER, F. (1986), "Future paths for integer programming and links to artificial intelligence," *Computers and Operations Research*, 13, 533-549.

GROENEN, P. J. F., and JAJUGA, K. (2001), "Fuzzy clustering with squared Minkowski distances," *Fuzzy Sets and Systems*, 120, 227-237.

HANSOHM, J. (2001), "Two-mode clustering with genetic algorithms," in *Classification, automation, and new media*, Berlin: Springer, 87-93.

HARTIGAN, J. A. (1975), *Clustering algorithms*, New York: John Wiley and Sons.

HEISER, W. J., and GROENEN, J. (1997), "Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima," *Psychometrika*, 62(1), 63-83.

HUBERT, L., and ARABIE, P. (1985), "Comparing partitions," *Journal of Classification*, 2, 193-218.

VAN LAARHOVEN, P. J. M., and AARTS, E. H. L. (1987), *Simulated annealing: Theory and applications*, Eindhoven: Kluwer Academic Publishers.

MILLIGAN, G. W. (1980), "An examination of the effect of six types of error perturbation on fifteen clustering algorithms," *Psychometrika*, 45(3), 325-342.

NOMA, E., and SMITH, D. R. (1985), "Benchmark for the blocking of sociometric data," *Psychological Bulletin*, 97(3), 583-591.

TREJOS, J., and CASTILLO, W. (2000), "Simulated annealing optimization for two-mode partitioning," in *Classification and information at the turn of the millennium*, Eds., W. Gaul and R. Decker, Heidelberg: Springer, 135-142.

TSAO, E. C. K., BEZDEK, J. C., and PAL, N. R. (1994), "Fuzzy Kohonen clustering networks," *Pattern recognition*, 27(5), 757-764.

VAN MECHELEN, I., BOCK, H. H., and DE BOECK, P. (2004), "Two-mode clustering methods: A structured overview," *Statistical Methods in Medical Research*, 13, 363-394.