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Abstract

In this paper, we develop various calculus rules for general smooth matrix-valued functions and for
the class of matrix convex (or concave) functions first introduced by Léwner and Kraus in 1930s.
Then we use these calculus rules and the matrix convex function — log X to study a new notion of
weighted centers for semidefinite programming (SDP) and show that, with this definition, some
known properties of weighted centers for linear programming can be extended to SDP. We also
show how the calculus rules for matrix convex functions can be used in the implementation of

barrier methods for optimization problems involving nonlinear matrix functions.

*Econometric Institute, Erasmus University.

tDepartment of Electrical and Computer Engineering, University of Minnesota. Research supported by National
Science Foundation, grant No. DMS-0312416.

tDepartment of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin,
Hong Kong. Research supported by Hong Kong RGC Earmarked Grant CUHK4174/03E.



Keywords: matrix monotonicity, matrix convexity, semidefinite programming.

AMS subject classification: 15A42, 90C22.



1 Introduction

For any real-valued function f, one can define a corresponding matrix-valued function f(X) on the
space of real symmetric matrices by applying f to the eigenvalues in the spectral decomposition of X.
Matrix functions have played an important role in scientific computing and engineering. Well-known
examples of matrix function include v/ X (the square root function of a positive semidefinite matrix),
and eX (the exponential function of a square matrix). In this paper, we study calculus rules for
general differentiable matrix valued functions and for a special class of matrix functions called matriz
convex functions. Historically, Lowner [13] first introduced the notion of matriz monotone functions
in 1934. Two years later, Lowner’s student Kraus extended his work to matrix convex functions;
see [11]. The standard matrix analysis books of Bhatia [1] and Horn and Johnson [10] contain more

historical notes and related literature on this class of matrix functions.

Our interest in matrix convex functions is motivated by the study of weighted central paths for
semidefinite programming (SDP). It is well known that many properties of interior point methods
for linear programming (LP) readily extend to SDP. However, there are also exceptions, one of these
being the notion of weighted centers. The latter is essential in the V-space interior-point algorithms

for linear programming. Recall that, given any positive weight vector w > 0 and a LP
min (c,z), s.t. Ar=0b, x >0,
we can define the w-weighted primal center as the optimal solution of the following convex program:

min (¢, z) — (w,logz), s.t. Az =05, x>0,

where logz := (---,logx;,---)T.! The dual weighted center can be defined similarly. For LP, it
is well known that 1) each choice of weights uniquely determines a pair of primal-dual weighted
centers, and 2) the set of all primal-dual weighted centers completely fills up the relative interior of
the primal-dual feasible region. How can we extend the notion of weighted center and the associated
properties to SDP? A natural approach would be to define a weighted barrier function similar to
the function —(w,logx) for the LP case. However, given a symmetric positive definite weight matrix
W = 0, there is no obvious way to place the weights on the eigenvalues of the matrix variable X in
the standard barrier function —logdet X. This difficulty has led researchers [6,18] to define weighted
centers for SDP using the weighted center equations rather than through an auxiliary SDP with an
appropriately weighted objective (as is the case of LP). However, these existing approaches [6,18] not
only lack an optimization interpretation but also can lead to complications of non-uniqueness of the
primal-dual pair of weighted centers. In this paper, we propose to use —(W,log X) as the weighted

barrier function to define a W-weighted center for SDP. It is easy to verify that when W and X are

!Throughout this paper, log will represent the natural logarithm.



both diagonal and positive, then — (W, log X') simply reduces to the usual barrier function —(w, log x)
for linear programming. To ensure the convexity and develop derivative formulas for the proposed
barrier function — (W, log X), we are led to study the calculus rules for the matrix function — log X,

which, by the theory of Lowner and Kraus, is matrix convex.

It turns out that the calculus rules for matrix-valued functions can be developed in two different
ways by either using an integral representation or using eigenvalues of the matrix variable. The
integral approach relies on a basic characterization result of Lowner and Kraus to develop the desired
derivative formulas for matrix monotone functions, while the eigenvalue approach is based on the use
of divided differences and is applicable to more general smooth matrix-valued functions; see Section 3.
As an application of these calculus rules, we define the weighted center of an SDP using the barrier
function —(W, log X'), and study various properties of the resulting notion of weighted center for SDP
(Section 4). In particular, we show that for any W > 0 the W-center exists uniquely. However, the
set of all weighted centers (as W varies in the set of positive definite matrices) do not fill up the
primal-dual feasible set. Moreover, we will show how the calculus rules can be applied to matrix

convex programming problems (Section 5).

Prior to our study, there has been extensive work on the analytic properties and calculus rules
of a matrix-valued function. In the work of [4], it is shown that the matrix function f(X) inherits
from f the properties of continuity, (local) Lipschitz continuity, directional differentiability, Fréchet
differentiability, continuous differentiability, as well as semismoothness. In contrast to our work, the
focus of [4] and the related work [12,19] is on the first order (directional) derivatives by using the
nonsmooth analysis of matrix functions. The main applications of the resulting first order differential
formula are in the smoothing/semismooth Newton methods for solving various complementarity
problems. In addition, we remark that matrix functions have also played a significant role in quantum
physics [8], quantum information theory [16] and in signal processing [7]. Analysis of smooth convex

functions associated with the second-order cone can be found in [6] and [3].

Our notations are fairly standard. We will use H", ‘H'}, and H"} , to denote the set of n x n Her-
mitian matrices, Hermitian positive semidefinite matrices, and Hermitian positive definite matrices
respectively. Similarly, §", S%, and S%, will signify real symmetric n X n matrices, symmetric pos-
itive semidefinite matrices, and symmetric positive definite matrices respectively. For generality, we
shall first use the Hermitian terms, and later for notational convenience restrict to the real case when
we discuss the calculus rules. In addition, we use the notation X =Y (X >~ Y') to mean X —Y € H’}
(X =Y € H%,). For any interval J C R, we let H"(J) denote the space of all Hermitian n x n
matrices whose eigenvalues all fall within J. Clearly, H"((—o0,400)) = H", H"([0, +00)) = H’}, and
H (0, +00)) = H1 .



2 Matrix functions

Consider a real function f : J — R. Now we will define the primary matrix function of f. For a given
Z € H"(J), let its diagonal decomposition be Z = QEDQ where Q'Q = I and D is a real-valued
diagonal matrix. Since Dj; € J, j =1,...,n, let f(D) = diag (f(D11), ..., f(Dnn). Then, the matrix
function f(Z) is defined as

f(2) = Q" f(D)Q. (1)
Although the matrix decomposition of Z may not be unique, the above matrix function is uniquely
defined, i.e., it does not depend on the particular decomposition matrices  and D. Clearly, f(Z) €
H" for any Z € H"(J). The following definitions follow naturally.

Definition 2.1 A function f: J +— R is said to be a matriz monotone function on Hy(J) if

f(X) = f(Y) whenever X,Y € H,(J) and X =Y.
Note that for n = 1 this corresponds to the usual concept monotonically non-decreasing function.

Definition 2.2 A function f: J +— R is said to be a matrix convex function on H,(J) if
(1= a)f(X) +af(Y) = f((1 - )X + aY))

for all X,Y € H,(J) and all « € [0, 1].

Definition 2.3 A function f: J +— R is said to be a strictly matrix convex function on H,(J) if
(1 =) f(X) +af(Y) = f(1 - a)X +aY))

for all X,Y € H,(J) with X — Y nonsingular, and all « € (0,1).

A function f is said to be (strictly) matriz concave whenever — f is a (strictly) matriz convex function.
The following fundamental characterization of matrix monotone functions is due to Lowner [13].

Chapter 6 of reference [10] contains more detailed discussions on this and other related results.

Theorem 2.4 Let J be an open (finite or infinite) interval in R, and f : J — R. The primary
matriz function of f on the set of Hermitian matrices with spectrum in J is monotone for eachn > 1
if and only if f can be continued to an analytic function on the upper half of the complex plane
that maps the upper half of the complex plane into itself. Moreover, these are precisely the functions
[ J— R that can be described explicitly in the following form:

1 U
u—z u?+1

f@)=as+ o+ [ | dpi(u), (2)
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for all x € J, where a, 3 € R with a > 0, and du is a positive Borel measure on R that has no mass

fiis

in the interval J and for which the integral

1s finite.

Note that the requirement that du(u) has no mass in the interval J is natural, in view of the
denominator u — . For practical purposes, it is convenient to consider measures of the form du(u) =
m(t)dt where m(t) > 0 for all £ € R and m(¢t) = 0 for all ¢ € J. For instance, if J = (0,00) and we
choose m(t) =1 for all t <0 and m(t) = 0 for ¢ > 0, then f(z) = ax + 8+ logz; if J = (0,00) and
we choose m(t) = /—t/x for all t < 0 and m(t) = 0 for t > 0, then f(z) = ax + 3+ /z —1/v/2. This
in turn shows that both log z and /x are matrix monotone functions. Similarly, one can show that
x® with 0 < o < 1 is matrix monotone in general. In fact, we shall see below that these functions are
also matrix concave. In contrast to the ordinary functions, the monotonicity and the concavity for
the matrix functions are closely related. Moreover, in his original paper [13], Lowner also established
the connection between the monotonicity and the differentiability. Below is a direct proof of the

matrix monotonicity and the matrix concavity of the functions —1/x on (0, c0).

Lemma 2.5 The real valued function on (0,00) defined as x — —x~' is both a matriz monotone

function and a strictly matrixz concave function.

Proof. The monotonicity follows immediately from the following identity, which holds for positive

definite n X n matrices X and Y:
x-1_y-1_ Y—1/2(Y1/2X—1Y1/2)1/2y—1/2(y _ X)Y_1/2(Y1/2X_1Y1/2)1/2Y_1/2.
The matrix (strict) concavity follows from the following identity, which holds for n x n positive
definite matrices X and Y with 0 < a < 1:

aX T+ (l-a)Y 1 —[aX+(1-a)Y]!
= al-)X (Y -X)Y HaY '+ (1 -a)x 'Y 1y - X)X 1.

Q.E.D.

Lemma 2.6 For allu <0, the function f,(x) =1/(u—x) is a monotone and strictly concave matrix

function.



Proof. This follows immediately from Lemma 2.5 by a change of variable: f,(x) = —2~! if we put
T=T—u. Q.E.D.

Therefore we can prove the following result:

Theorem 2.7 If a function f : (0,00) — R is a monotone matriz function on H' for alln > 1, then
it is also a matriz concave function for all n > 1. Moreover, f is a strictly matriz concave function

on ‘H'} for all n > 1 provided the Borel measure du has positive mass.

Proof. Thisis a consequence of Theorem 2.4, using Lemma 2.6 and noting that the matrix concavity

is preserved under summation and multiplication of a nonnegative number. Q.E.D.

In particular, since

logx:/o { ! Y ]du, (3)

o lu—z  u2+1
where z > 0, it follows from Theorem 2.7 that the lg function is matrix monotone and strictly matrix

concave. Moreover, we have the following explicit expression:

u
w2 +1

log X = /Ooo {(u[ - X))t - I] du.

3 Calculating the derivatives of matrix monotone functions

In this section we discuss how to calculate the derivatives of the log matrix function. It turns out that
there are two different ways to accomplish this goal: either using an integral representation (Subsec-
tion 3.1) or using a finite difference representation (Subsection 3.2). Although the two approaches
are theoretically equivalent, they lead to distinct expressions which are useful in different application

contexts.

3.1 An integral representation

We first introduce the following definition.

Definition 3.1 Let J be an open real interval and let f : J — R be a three times continuously
differentiable function; i.e., f € C3(J). Then the first three derivatives are defined implicitly by the

following Taylor expansion

FOX 4+ H) = f(X) + fOOOH] + fP(X)[H, H] + fO(X)[H, H, H] +o(| H|]?),



for each X € H"(J) and all H € H", where f(M)(X), f?(X), and f®)(X) are Hermitian symmetric

multi-linear mappings on the space H".

We remark here that the kth derivative in the above definition differs from the conventional one
by a factor of 1/k! (k = 2,3), mainly for notational simplicity. The first simple observation is that
the calculation of derivatives of matrix functions can be reduced to the case of diagonal matrices.

This is summarized below.

Proposition 3.2 Let J be an open real interval and let f € C3(J). Let X € H™(J). Choose a
diagonal decomposition X = QUDQ. Then the following formulas hold true for all H € 8™ (with

K=QHQ"Y):
FfOe0OH = QUUM(D)K)Q,
fOXHH] = QUIP(D)K, K)Q,
fOXH,HH = Q"(fP(D)K, K, K])Q.
Proof. The proposition follows immediately from the identity

f(X +H) - f(X)=Q"(f(D+K) - f(D)Q

and from the implicit definition of the derivatives of f at X and at D. Q.E.D.

In the remainder of the paper, we shall focus on the real case. Suppose that W € 8%, . Let
b(X) = —(W,log X) (4)

for X € ST,

Theorem 3.3 The following formulas hold true:

O] = — [ Wt X H - X)
V(X)[H,H] = /0 (W, (ul — X) " H(ul — X)""H(ul — X)™Ndu,
V(X)[H,H H = — /O (W, (ul — X)) H(ul — X) ' H(ul — X)"'H(ul — X) Ydu,

for all H € S™.

Before we prove Theorem 3.3, we comment that the expression for the first order derivative
b (X)[H] is well-known in various fields: for example, it has been used in signal processing [7], in
the physics literature [8] and in quantum information theory [16]. To prove Theorem 3.3, let us first

introduce two lemmas.



Lemma 3.4 The first three derivatives of the matriz function f : (0,+00) +— R defined by f(z) = 21

are given by the following formulas

fUXHE] = —XTTHXT
FOX)H,H = X 'HX'HX™,
fO(X)[H,H,H = —-X'HX 'HX'HX,

for all H € S™.

Proof. We have, by definition,
(X +H)" =X+ fOO0OH] + fO(X)[H, H) + fO(X)[H, H, H] + o(| H|]*).

Multiplying both sides from the right with (X + H), expanding brackets, and equating linear,

quadratic and cubic functions of H respectively, gives the following three equations:

X'H + fO(X)[H]X =0,

FOCOMHIH + [P (X)[H, H|X =0,

SO H, HIH + fO(X)[H, H,H]X = 0.
These equations can be solved successively, starting with the first one, to give desired formulas.
Q.E.D.

By shifting the variable, we obtain the derivative formulas for the function f,(z) = (v — z)~*

fUXOH]) = (ul = X) " Hul - X)™,
FOX)H,H) = —(ul —X)'H(ul — X)) " H(ul — X)7!, (5)
X)) H H H = (ul —X)"H(ul — X) " H(ul — X)) "H(ul — X)™!,

for all H € S™.

Proof of Theorem 3.3: We start with the identity (3). This gives the following formula for the

barrier:

b(X) = — /OOO <W, [(u[ X)L u2u+1[} > du = /Ooo <W {(u[ + X)) - u2u+1[] > du.

Differentiating inside the integral and using (5) gives the required formulas for the first three deriva-
tives of b. Q.E.D.

The ranges for the integrations can also be changed to R for convenience, as we shall do in the

next section; that is,

WX [H] = — /O Wl + X)) H(ul + X)du, (6)

9



bV (X)H,H = - /OOO<W, (ul + X) P H(ul + X)) YH(ul + X) Y du, (7)
b (X)[H, H, H] = — /OOO<W, (ul + X) " H(ul + X) " H(ul + X) " H(ul + X) Ndu.  (8)

One immediate consequence of Theorem 3.3 is that b(X) is indeed a matrix concave function. This
is because formula (7) implies that for any X € S}, W € S} and H € S" we always have
b2 (X)[H,H] < 0.

By a similar argument and using Lowner’s theorem (Theorem 2.7), we can extend the derivative

formulas for b(X) to the general matrix monotone functions.

Theorem 3.5 Let f : (0,00) — R be a matriz monotone function, i.e., there is a Borel measure
du(u) on R_ such that

0 1
f@ =avt o+ [ |- St )
where the integral .
d
[
Then, for X € S, and H € 8", there holds
) = [l X @ — X) daw),
FACOULH] =~ [t~ X) " H(ul  X) " H T~ X) da(w),
fO(X)[H,H, H] = /0 (ul — X) " H(ul — X)""H(ul — X) " H(ul — X)) "du(u).

3.2 An eigenvalue representation

In this subsection we use an alternative way to compute the derivatives of the barrier function
b(X) = —(W,log X). We do so by means of divided differences. Let J be a real interval and let
f:J — R be a k-times continuously differentiable function, that is, f € C¥(J). We define the
divided differences fll : Ji — R, 0 < i < k, of f to be the continuous functions defined recursively

as follows:

o=
, B, s M) = FEIOG, N1, Ai)
[i+1] ‘ _ PO A A 1oy Nie 1, Ai1

fori=0,...,k—1,if A\q,..., A1 are distinct.

10



For other values of A1, ..., A\ix1, fit is defined by continuity. For example,

_1dif
_Ed:c"( )

AN = P00, PN = 500, 0,

These functions are symmetric, i.e., the value of the function is invariant with respect to the permu-

tation of its entries.

For any 1 < i < n, we write E;; for the diagonal n x n-matrix which has 1 on the (4, 7)-place and

zero everywhere else. Below is our main result.

Theorem 3.6 Let J be a real interval and let f: J+— R be a function. Consider a diagonal matriz

X = Diag(\1, ..., \n) whose spectrum is contained in J.

1. For any H € 8" and f € C*(J),

2. For any H € 8™ and f € C*(J),

FOXHH = > PN N, \e)Ei i HE) jHEy .
i,j,k=1

3. For any H € 8™ and f € C3(J),

fOX)[H, H, H] = > FBONG N, Ak N)Ei i HE; jH Ey y HE; .
i jdd=1

Notice that the formula for the first derivative can be simplified using the Hadamard product of
two matrices: writing fI(X) for the n x n-symmetric matrix whose (i, j)-entry is fl()\;, \;), we
obtain

FIEOH] = fM(X) o H. (9)

To illustrate Theorem 3.6 let us take a few steps. First we introduce the following result.
Lemma 3.7 If f(z) = 2", then

1. f[l](Fg7 A) = Z Hk)\l, whenever r > 1.

k+l=r—1
k,1 > 0,integers

11



2 f[2](,€’ A ) = Z KX ™, whenever r > 2.
k+l+m=r—2
k,l,m > 0, integers
3. f[3](,€’ A\ g, v) = Z KFALMUP | whenever r > 3.
k+l4+m+p=r—3

k,l,m,p > 0, integers

Proof. The first formula follows from the definition

] _ KT — AT
f (K‘/7 A) K — )\ b

for k # A, which, by the formula for geometric progression, equals 3, kFA\! where the summation

is over nonnegative integers k,! with sum r — 1. The second formula is due to

(s, A) = M (s, 1)

2]
Ky A
FE (R, A ) -
Z (Kk)\l _ ’iklul)
k+l=r—1
k,l > 0, integers
= -
SR SR VR
k+l=r—-1 p+g=1—-1
k,l > 0, integers p,q > 0, integers
= Z EALm
k+l+m=r—2
k,l,m > 0, integers
The last formula can be established in a similar way. Q.E.D.

Lemma 3.8 Theorem 3.6 holds true for power functions f(x) = x", with r a nonnegative integer.

Proof. Notice that

FX+H) —f(X)=(X+H)" —X"= > XX+ o(|H||).
k+l=r—1
k,l > 0, integers

n
Writing the diagonal matrix X as X = Z AiE; ;i in the above expression and expanding the products
i=1

yields

n
FX+H) - f(X) = > > NN B HEj ' + of || HI|)
b=l ppr=r—1
k,l > 0,integers

12



n
= ) > NN EiiHEjj + o(||H )

b=l ppl=r—1

k,l > 0, integers

S MG\ EHE; ; + o(||H]),

i?j
where first step is due to E;;E;; = 0 whenever ¢ # j, the second step follows from EZ]“‘Z = Fi,,
Ejlj = Fj;, and the last step is due to Lemma 3.7. This proves the first formula. The other two

formulas can be established in a similar manner. Q.E.D.

Lemma 3.8 shows that Theorem 3.6 holds for power functions. Taking linear combinations, we
see immediately that the theorem holds for polynomials. This further suggests that the theorem
holds for general functions with sufficient smoothness. A rigorous proof of Theorem 3.6 requires a
careful analysis of the local behavior of f(X + H) using the Lipschitzian continuity of the eigen-
decomposition of X + H. Our proof is an extension of the first order differentiability argument used

in [4]. Since the complete proof is tedious, we relegate it to an appendix at the end of the paper.

We emphasize that Theorem 3.6 is applicable to general (smooth) functions. In this sense, it
is much more general than the corresponding expressions in Theorem 3.5 which are valid only for

matrix monotone functions. Now we apply Theorem 3.6 to the barrier function b(X) = —(W,log X).

Theorem 3.9 For any H € S™, the following formulas hold true for the barrier function b(X) =
—(W,log X) at a positive definite diagonal matrizx X = Diag(A1, ..., \n):

1. 0W(X)[H] = = Y logM(xi, ) (W, Ei HE; )
ig=1
2. VO (X)H, H = - Y logP(\i, \j, \e)(W, Ei i HE; jHE}, 1) ;
i,j,k=1
3. 0O (X)[H, H, H) = — >~ 10gPl (N, Aj, A, M) (W, By i HEj jHE  HEyy).
ig k=1

By combining Theorem 3.9 and Proposition 3.2, we can derive similar derivative formulas for
general matrices admitting a diagonal decomposition. Notice that the derivative formulas above
require the divided differences of log x. Unfortunately, this is not so easy to compute in a direct way.
However, it is possible to do this indirectly by computing the divided differences first for the function
x — 271, and then for the functions = — f,(z) = (u — 2)~', and finally using relation (3). This
leads to the same formula as in the previous section. We will only display here the formulas for the

derivatives of the primary matrix functions of the function x — —z .

13



Proposition 3.10 Let f(x) = —a~! for x € (0,00). The following formulas hold true for the
first three derivatives of the primary matriz function f(X) at any positive diagonal matric X =
Diag(A1,...,\n):

1 fOX)H = Y NN B HE,
k=1

2. fO(X)[H, H] = Z A,;l)\l_l)\alEk,kHEl,lHEm,m;
k,l,m=1

8. fOXH,H H = Y N'N'NNEypHE HE  ;nHE,

k,l,mmn=1

for all H € S™.

Proof. We only need to compute the divided differences for the function f(z) = —z~!. We claim

L. f[l](/iv A) = (/{)\)71’
2. fPl(k, X ) = (RAR) Y,

3. S8k, A\ v) = (kApv) 1,

for all x, A\, u,v > 0. To see the first formula, we note fm(l-i, A) = % = (kA)7Y, for k # ), as

desired. Continuing in the same way we can verify the remaining two formulas. Q.E.D.

As a remark, we notice that the formula for the first derivative can also be rewritten as
FOX)H] = fM(X) o H.

while the second derivative can be written alternatively as

FEOXHH = > NN N i
k,l,m=1

Finally, we can use Theorem 3.9 to derive some simple properties for matrix convex functions.

Proposition 3.11 For any matriz convex function f(X) and any 1 < j < n, there holds

My = (FB0u2500)) =0

nxn

for all X € S8, and H € S".

14



Proof. In light of Proposition 3.2, we only need to consider the case where X = diag (A1, Az, ..., Ap)

is a positive diagonal matrix. Then, Theorem 3.6 asserts that

f(2)( (Zf )\1,)\]7)% hl]hjk>

nxn

Take any x,y € R" with y; #0,i=1,....,n. Let w =20y~ ! and H = yy”. We have

n T T
wl fO(X)[H, Hlw = Z > f[Z](/\m)\ja)\k);?/iyjyjyky*:

— Z Z f[2]()\ia>\ja)‘k)$i‘rk> y]2

J:

> 0,

where the last step follows from matrix convexity which implies f)(X)[H, H] = 0. This shows that
M; =0forall j=1,..,n. Q.E.D.

Let us now specialize Theorem 3.6 to the matrix exponential function eX (which is known not to

be matrix convex so Theorem 3.5 does not apply).

Proposition 3.12 For any symmetric X and H, there holds
1
O[] = / 10X e gy, (10)
OO, H] = / / w)etX Her1=0X [ro0=0)1=0X g g, (11)
Proof. We only need to prove the proposition for diagonal matrix X = Diag(A1, Ag, -+, \p). As-

sume that \;’s are all distinct. In light of (9), we can compute the (i, j)-th entry (i # j) of the matrix
differential (X)) [H]:

() VH]; = [@)oH]
i N
TN Hig

1
= / etiteI=1A; H; jdu
0

1
= {/ X He=WX gy |,
0

1,3
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where the third equality follows from the identity

6)\2‘ _ e)\j 1 A
— it (1=w)Aj 40, 12
Ai = Aj /o o B (12)

This proves (10) for the case of i # j. The case of i = j can be considered in a similar fashion.

Now we prove the second order differential formula (11). Consider the (i,j)-th entry (i # j) of
the second order matrix differential (eX)®[H, H]; ;:

€DH,Hi; = Y ()N, A, \j) Hi o Hy

k
= Z( )H()‘zuAk;A ) zka]
k
ik eimeld
pvs VIR Vi
= H;Hy,
zk: N\ 7
fl Aiu 1u)\kdu_f6)\u(1 WA du
= Z N — Ay H; Hy,;
— e(l_u))‘j
= Z/ Ak — )\ Hi’kaJ'du.

Now we use the identity (12) to obtain

1 1
()P H, H|;; = E / (1 —u)e’\i“/ e“(l_“)k’“e(l_”)(l_“)kjHi7ka7jdvdu
0 0

1,1
_ / / (1—u) [euXHev(l—u)XHe(l—v)(l—u)X}‘ dvdu,
0

17]

which establishes (11). Q.E.D.

Notice that the first order derivative formula (10) for the matrix exponential function eX has

been used extensively in the physics literature [8] and in applied mathematics [15].

4 Weighted centers for semidefinite programming

Consider the following standard semidefinite programming (SDP) problem

(P) minimize (C,X)
subject to (A4;, X) =b;,i=1,....m
X =0,
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and its dual
(D) maximize by

subject to ZyiA,- +7Z=C
i=1
Z = 0.

The study of various aspects of SDP can be found in [20]. It is well known that many properties
of the interior point methods for linear programming (LP) readily extend to SDP. However, one
exception is the notion of weighted centers. Sturm and Zhang [18] proposed to define the weighted
centers of the SDP problems (P) and (D) based on the eigenvalues of the product of a pair of primal-
dual feasible solutions X Z. However, such pair may not be unique. Chua [6] proposed the weighted
centers based on a diagonal and positive weight matrix W. Since the log X is a matrix function, it
is now natural to define the weighted centers by means of the barrier function b(X) = —(W,log X).

To be specific, given any weight matrix W = 0, let us consider

(Py) minimize (C,X) — (W,log X)
subject to  (A;, X) =b;, i =1,...,m.

We shall first establish the existence of a primal weighted center based on (P,). Note the following

lemmas.
Lemma 4.1 For any X > 0 and t > 0 it holds that b(tX) = b(X) + (logt) tr W.

Proof. Let the orthonormal decomposition of X be X = PTDP where P is an orthonormal matrix

and D is positive diagonal. Then
log(tX) = PT (log(tD)) P = P* (log D + (logt) I) P = X + (logt) I,

and so

b(tX) = (W,log(tX)) = b(X) + (logt) tr W.
Q.E.D.

Lemma 4.2 Let K C R" be a closed convex cone, K* be its dual cone, and L C R"™ be a subspace.
Let ¢ € R" be a given vector. Suppose that int K* N (¢ + L) # 0. In that case, if there is any
0# x € KN L then it must follow that ¢’z > 0.

This result is also known as the extended Farkas lemma,; see e.g. [17] for discussions.

Theorem 4.3 Suppose that both (P) and (D) satisfy the Slater condition. Then for any symmetric

W = 0 there ezists a unique optimal solution for (Py).

17



Proof. Let X* be a sequence of feasible solutions for (P,) such that (C, X*)—(W,log X*) converges

to the optimal value of (P,). First we see that || X*|| must be bounded, for otherwise we may assume

without loss of generality that limg_,. || X*|| = oo and
D G
lim —— = X.
Koo | XH]

In that case, since by Lemma 4.2 we know that (C, X) > 0, and also using Lemma 4.1 it follows that

k k k X" X" k
(€.x5) = (Wilog X*) = XM (€. iy ) = { Wiog gy ) = log XM — o,

which is impossible. This shows that (P, ) must indeed have attainable optimal solution. Due to the

strict convexity of the objective function, such optimal solution is unique. Q.E.D.

Let X? be the optimal solution for (P,). Using Theorem 3.3 we obtain the following Karush-
Kuhn-Tucker optimality condition for X?: 3 y? € R™ such that

C — f:lyfAi - /[)m(uI+X5)1W(uI+X5)1du =0. (13)
Let us define a matrix mapping Fy : 8¢ — S¥:
Fy(X) := /Ooo(ul + X)W (ul + X) du.
Obviously, (13) induces a dual solution
zZF :C’—iyf/li = Fw(XP). (14)
i=1
For the same weight matrix W > 0, we can also consider the barrier problem for the dual:
(D,) maximize bTy+ <VV, log (C’ — iy1A2>> .
i=1

Similar to Theorem 4.3, we can show (D,,) has a unique optimal solution, which we denote by y?.
Again, by Theorem 3.3, the KKT optimality condition for (D,,) reduces to

b; — <A¢,/ (v[—{— C - Zyszl> w (U[ +C - Zy;iAZ> dv> =0,i=1,2,...,m. (15)
0 i=1 i=1
The condition (15) induces a primal solution
00 m -1 m -1 m
x4 :/ (vI—FC—nyAi) w (v[—l—C—nyAi) dv = Fyy (C’—nyAi>. (16)
0 i=1 i=1 i=1
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It is well known that, for linear programming, the weighted center pairs {X2, ZP}, {X2 74}
coincide; furthermore, both pairs of centers are diagonal and therefore they commute and satisfy
Xpzp = X374 = W. Interestingly, in the SDP case, the two pairs of centers {XP, ZP}, {X4 7}
do not coincide and the commutability fails to hold in general. This can be seen from the following
simple 2 X 2 example: let

1
A = §E1,1, Ay =Fop, A3=F13, bi=by=0b3=1, C=FE; 1+ Eso+FE1p, W=C+ Eyj,
where E; ; denotes the symmetric matrix with all entries zero except at (i, j)- and (j,)-th entries
which equal 1. In this case, there is a unique primal feasible matrix which is also equal to the

W-center: XP = Diag{2,1}. The corresponding dual center is

ZP = Fyr(XP) = log(2,1) o W = [ 1 log2 1 .

log 2 1

Clearly, the matrices X? and ZP do not commute. Moreover, we can directly compute the dual
weighted center pair {X%, Z2} to verify that X? = XP = Diag{2,1}, and Z% # ZP. Alternatively,
we can prove the latter inequality by contradiction. In particular, suppose Zg = ZP_  Then the
condition (15) would imply X? = Fy(ZP). Notice that

1 +log2 0
0 1—log?2

5 1

7P =
@ 11

w

]QT, Q’WQ=H ] where Q =

S‘H
[\)
L—|
_ =
—_
| IS

-1
Using the definition of Fy and simplifying the integral yields
xr - / (ul + Z2) "W (ul + Z2)~\du
0
= Q (/ (ul + Diag{1 +1log2,1 —log2}) 'Q'WQ(ul 4 Diag{1 + log2,1 — log 2})_1du) Q
0

= Q(log"(1 +1log2,1~log2) 0 (QWQ)) '

5 log(1+4log 2)—log(1—log 2)
= Q 2(1+log 2) 4log 2 Q/
- log(1+4log2)—log(1—log2) 1
4log?2 2(1+log2)

2.1690 —0.0765
—0.0765  0.9370

contradicting the condition XP = Diag{2,1}. Therefore, we have established ZP # Z2.

The lack of commutability between X? and ZP (and similarly X¢, Z%) further implies that the
property XPZP = X279 = W cannot hold in the SDP case. Interestingly, a related property does

hold as shown in the next result.

Theorem 4.4 Given any W = 0, let {XP,2ZP}, {X2,Z%} be defined by (13)-(14) and (15)-(16)
respectively. Then, there holds
tr XPZP = tr X479 = tr W,
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Proof. Since X2 and (ul + XP)~! commute for any u > 0, it follows that

tr XP 70

o0
tr/ XP (ul + X2)"YW (ul + XP)~'du
0
(o)
— tr/ (ul + X2) " LXEW (ul + X2)"'du
0

= tr/ XPW (ul + XP)2du
0

= tr XPW (XP) !

= trW,

where the third and the last steps are due to the identity tr AB = tr BA for any matrices A and B.
Similarly, we can show that tr X¢Z¢ = tr W. Q.E.D.

Another property of weighted centers for linear programming is the fact that they fill up the
entire primal and dual feasible region. Interestingly, this property no longer holds in the SDP case

as is illustrated in the following example. Consider the primal SDP (P) with m = 2n and

1—c¢

C = Blockdiag
1—ce¢ 1

] aInZ,nZ} , Ai=Ep, by =01+ 011,

forl =1,2and £k =1,2,...,n,or k = 1,2 and | = 1,2,...,n, where Ej, denotes the n x n matrix
whose entries are all zero except the (I, k)- and (k,[)-th entries which are 1; ¢ > 0 is a constant to be
chosen later; d; ;, denotes the usual Kronecker function. In this case, the primal feasible set consists

of all matrices of the form

1—¢

X = Blockdiag
1—e€ 1

‘| ,Mngmg} s with M t 0. (17)
We claim that there cannot be any weight matrix W > 0 and any primal feasible matrix X which
together with the dual feasible matrix Z = C forms a pair of W-centers for this SDP (P), provided
€ is small. Specifically, suppose there holds

1—c¢

C = Blockdiag
1—¢€ 1

] , Ing,nz} = / (wl + X)W (ul + X)) Ldu
0

for some primal feasible matrix X of the form (17) and some symmetric weight matrix W = [w;;] > 0.
Since X has a block diagonal structure, the first principal 2 x 2 submatrix of the above right-hand-side

integral can be easily calculated to be

%’Ujll w19 log 2
w12 log 2 w9 .
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Equating this submatrix with that of C' yields

9 1 1—c¢
Wy = Wog = Wy = ——.
11 ) 22 ) 12 log 2
This implies
2 _y (1=9° for sufficientl 11
W1lWe2 — Wiy = 2 — log2 5 < 0, for sufficiently small e.

This contradicts the positive definiteness of W matrix. This shows that C cannot be a dual center

ZP for any choice of W > 0 and any primal feasible X7 .

5 Matrix convex programming

It is elementary to see that if f is matrix concave and ¢ is matrix monotone, then the composite
function g o f is matrix concave. Also, the direct sum of matrix concave functions remain matrix

concave.

Let us now consider the following matrix convex programming problem

(MCP) minimize (C,X)
subject to  f;(X) = Bj, j=1,..,m,
X e§",

where f; is matrix concave, j = 1,...,m. This problem can be regarded as a kind of ‘nonlinear’ (but
still convex) SDP. A different type of ‘nonlinear’ SDP model was studied in [21], with a provable
polynomial-time computational complexity bound. The above model (MCP) is useful. For example,
in many signal processing applications [14], we have f;(X) = C]-TX + X C; — X? for some matrix Cj.
A standard approach to handle the concave quadratic matrix inequality f;(X) > B, is to convert it to
an equivalent linear matrix inequality by using Schur complement. However, such a conversion, while
resulting in a polynomial time algorithm, will increase the problem dimension substantially, often
leading to numerical difficulties in the solution of the resulting large scale SDP. A numerically more
appealing approach is to treat the quadratic matrix inequality f;(X) > Bj; directly using a standard
logarithmic barrier —tr log(f;(X) — B;). In this way, there is no increase in problem dimension nor

the need to manage the sparse problem structure of an otherwise large SDP.

Let us consider a standard logarithmic barrier method for solving (MCP). Suppose that the
Slater condition holds for (M CP), and then we introduce a barrier function for (M CP) as

g(X) = —tr 3 log(£,(X) — By).
j=1
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The key step now is the ability to compute the Newton direction for the function
(C, X) + pg(X),

at a given iterative point. Denote g;(X) := —log(f;(X) — Bj), j = 1,...,m, which are all matrix
concave functions.
Consider an iterative point X* € S™ with fj(Xk) = Bj,j=1,...,m. Let X+ = QD*QT be an
orthonormal decomposition of X*, and C* := QT CQ. Proposition 3.2 suggests that
gV (xMH] = Q (g (DMIQTHQ)) Q"
o (XMHH] = Q (g (DMIQTHQ,QTHQ)) Q"

for j = 1,...,m. Hence, by letting H = QT HQ, and using Theorem 3.6 we have

Jj=1p=1
) - N~ 12
g@(XM[H,H] = Ztrgj (DM)[H Z Z (dy, dy, dp)lip-
s ==

Therefore, the Newton direction is given by H = QHQT, where H = (hpg)nxn € S™ is the

minimizer of the following separable convex quadratic function

RE hpq+uZZgj” dk, db) hpp+uz Z g2 (dl, dk, by,

p,g=1 j=1p=1 j=1p,g=1

In particular, we have

k
——m % , for p# g
2] k gk gk 21k gk gk
NZ[ dpadqad)+ (d dpvdq)}
J=1
hpg = +u2g] dk dk
for p =gq.
2Zg] (dy, d, d’“

As a conclusion, we see that the total number of basic operations required to assemble such a

Newton direction is O(mn?).
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A Appendix: Proof of Theorem 3.6

Part 1 of Theorem 3.6 was established in [4]. We will only show part 2 here. The proof of part 3 is
similar and therefore omitted. To establish the second order derivative formula, we consider a diagonal
matrix X = Diag{Ai,..., \,} and suppose f : J — R is differentiable at Ay, ..., \,. We can without
loss of generality assume that the diagonal entries of X are distinct and ordered: Ay < --+ < A,.
[The case of equal diagonal entries can be handled using a simple continuity argument.] By Lemma
3 in reference [5], there exist scalars n > 0 and € > 0 such that for any H € 8" with ||H|| < e, there

exists an orthnormal matrix P with the property that

This implies that the off-diagonal entries of P are of order O(||H]||). Moreover, according to a

perturbation result of Weyl for eigenvalues of symmetric matrices (see [1, p. 63]),
INi — | < || H|, Vi=1,..,n. (19)

Notice that the orthonormality of P together with (18) imply

1 = P+ P =PF;+O(|H|), (20)
ki
0 = PP+ PjPj+ Z Py Pyj = Py Py + PPy + O(||H|?), i#j. (21)
kg

We will show that, for any H € 8™ with ||H|| < ¢, such that
F(X +H) = f(X) = fOX)H] - fP(X)[H, H] = o | H]), (22)

where the constants in o(-) depend on f and X only, and f)(X)[H], f*(X)[H, H] are given by

fOeoE = Y MG EGHE;
i,7=1
fOXHH = Y PN ) E HE; jHEy .
i7j7k:1

This would show that f(X) is twice differentiable at the diagonal matrix X with the first and second
order directional derivatives given by f()(X)[H] and f®)(X)[H, H] respectively. Substituting the
definitions of £ (X)[H] and ) (X)[H, H] into the left side of (22) yields

FX + H) = f(X) = fOX)H] - fO(X)[H, H]

= P™Diag{f(m), .., f(1n)}P — Diag{A1, ..., A}

= OGN EGHE j — > PN A \) B HE yHE ;. (23)
,j=1 i, k=1
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We need to show that each entry of the above matrix equation is o(||H||*). We separate two cases:

diagonal entries and off-diagonal entries.
Let us first consider the (,7)-th diagonal entry of the above matrix equation (23). Notice that
from the relation X + H = PTDiag{p1, ..., tn} P (cf. (18)) we have

N+ H; = Z Plgi:“k' (24)
k=1

Substituting this relation into the (i,7)-th entry of (23) and simplifying yields

the (i,4)-th entry = ZP,W i) — F(A) — F/(N)His — pr (Ais Mos M) HE,

k=1

= flpa) = FOG) = F/ ) (i = M) 4+ D (F ) — fpa) = F' ) (e — ) P
ki

—Zf[ (Ais A M) HZ,. (25)

We need to bound the last term of (25) which can be written as
° 1
Z )\17)\]67 Hk;7, 2 +Zf )\Za)\ka Hk:z: (26)
k=1 k#i
where we have used the fact f12(\;, Ai, A;) = 3 f”(\;). Therefore, we need to bound the two terms of

the above expression separately. The first term can be estimated as follows:

n 2
ooz @ oy (Ai—zpzmk)

k=1

n 2
= () (Az’ — i+ Y Pripi — Mk))

k=1
00 = ) 207 00) O — ) S PR (s — i) + O(IHY)
k#i
D) i — )2 + O HIP), (27)

where (a) follows from (24), (b) is due to Py; = O(||H]J|) for k # i (cf. (18)), and (c) follows from
(19). Next we estimate the second term of (26). Since X + H = PTDiag{u1,...uun } P, it follows that
Hyi =32, PjiPjkp; for i # k. Thus, we have

2
n
Hp = (ZPjinkﬂj)

j=1

2
= (Pmpzk:,ul + PriPorpe + Y P k#;)
J#ik
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2
)
= (Pkipkk(,uk — i)+ Y PjiPi(p; — Hi))
J#ik

= PALPL(uk — m)* + O(|H|?)

= Pa(w = X)* +O(IH|?)
where step (i) follows from the orthonormality condition }-; Pj; Pjx = 0 when i # k, step (ii) is due
to the fact all the off-diagonal entries of P are of order O(||H||), and step (iii) follows from the fact
P2 =1+ O(||H||?) (see (20)) and the fact [N\ — Ai| = |ux — pi| + O(||H||) (see (19)). The above
estimate implies

Zf )‘17)%’7 Hk;z = Zf[ A’L’)‘ka sz()\ )‘Z)2+O(HHH3)

k#i k#i

= ST (FOw) = F%) — F1 () (M — N)) PE+O(|H|PP),
ki

where the last step follows from the definition of f[J(\;, Ax, \;). Combining this with (25), (26) and
(27), we obtain

the (i,i)-th entry = f(u) — F(Ni) = F' M) (i — Xa) + > (F () = Fa) = F' () (e — 1)) Py

o
- Z F O, Ay XV HE,

= fw) = FO%) = ') (i = Xi) + g (fCr) = f i) = ' i) (e = i) Py
—%f”(&-)(&' — i) = ,; (FOw) = FO0) = ') = X)) P+ O(| HP)

S ) = FOD) = PO (i = Ai) %f”(&-)(& — i)+ O(|H|?)

—
=
=

=

o |11,

where step (i) follows from Py; = O(||H||) and |A\; — p;| < ||H|| for all i, and step (ii) is due to the
second order differentiability of f at A;.

It remains to show that the off-diagonal entries of (23) are of order o(||H||?). To this end, consider
the (7, j)-th entry of (23), i # j:

the (i,5)-th entry = > PyPu;f(ur) — fH (N A H, Zf21 Ay Ay Aj) Hir, Hyj
k=1 k=1

= N PuiPii f () — fU OGN Hig — D0 2O, Ay Aj) Hi Hig
k=1 k#i,j

term I term 11
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(f[z]()\m /\’La Aj ) i T f (/\ia )‘ja )‘j)Hjj)Hz’j . (28)
term III

Since
H = PTDiag{1, ..., pin }P — X = P Diag{u1, ..., un } P — Diag{ 1, ..., \n},

it follows that

n
> PuPempis — e, i £=m
Hf,m = kﬁl

> ProPimt, else.
k=1

Substituting this into term I and using (18)—(21), we can obtain the following alternative expression

for term I:
term I = PiiPi(f(r) = f(ua) = SO0 A (g = pa)) + (PaPig + PjaPyg) (f (i) = FU O, A pa)
+ 3 PP (f () — F (N ) ). (29)
ki,
To estimate term II, we first notice that for k # i:

n

m=1

= PiPupi + PuiPa + O(|H|?)
= PurPri(pn — 1) + (PiPig + PriPr)pi + O(|| H|?)
= PurPri(p — i) + O(|| H[?)
= Pl — i) + O(|HIPP), (30)
where the second, fourth and fifth steps follow from (18) and (21). Similarly, we have
Hyj = Pyj(pk — pg) + O(| HIP). (31)

Since, for k # 14, j, both Py; and Py; are of order O(||H||), we can use (30) and (31) to estimate term

IT as follows:

term II = Z f )\z;>\k; ) zka]
k#i,j
= > PO M A (e — 1) (k= 15) Pri Py + O(| HIPP)
k#i,j
= > G A M) Ok = X)) Ak — ) PriPrj + O(|H ),
k#i,j

where the last step is due to (19). Since
FEG M A7) O = X) O = A7) = (FOw) = LU0 X)) — (F ) = T (A, Ap)h)
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and
> PuPy; = —(PiPij + PjiPj),

k1,5
it follows that
term IT = > PuPei(FOk) — FH O M)A = (FO) = FE G A )N Y- PPy + O(1H®)
k#i,5 k#i,5
= 3 PuPri(fn) — IO A)A) + (PaPij + PiaPiy) (f(N) — fM (0 A)A) + O HP).

k#i,j

By (19), we have |u; — A\i| < ||H||, we further obtain

term 1T =Y PP (f k) — F i, M)A+ (Pii P+ P3Py ) (f (1) — I (i, A ) +O (| H P (32)
ki,

To estimate term III, we first notice that

Hii = =i+ ) Pip = Pipi — N + O(|H|IP) = pi — X + O(| HP)
k=1

and similarly
Hj; = pj — Aj + O(| H|P).

Since H;; = O(||H||), it follows that

term III = (f[2 (Ais Ais Aj)His + f ()\h Aj» Aj)Hjj) Hij
= (PO N A (i = Xa) + PP, Agy M) (= X)) Hij + O(| HIPP)

By an argument similar to (30), we have
Hij = Pj; Pji(nj — i) + O(|H|1?).
Thus, we have
term TTT = Py P /P (i, Xy Ag) (i = Xa) + FPH O Mg A) (g = M) (g — i) + O HP), (33)

where we have used the fact that |p; — A\;| < ||H|| and |pu; — \j| < |[[H||. It can be checked from the
definition of second order divided difference f[2 that
(As = A PO Xy A (s = o) + PP Mgy A (5 = A)
= OGN (g — 1) + (FO6) + (i — M) F () — (FOG) + (5 — X0 F (A7)
= UG X)) (g — ) + F(ps) = F(pg) + o HID,
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where the last step is due to the second order differentiability of f at \; and A;. Substituting this
bound into (33) and noting Pj; = O(||H]|), we obtain

term I = Py P00y = )+ £ ) = ) G2+ o)

= PP f(u) = flua) = FI OGN (g — i) + oI H ), (34)

where the last step follows from the fact (cf. (19))

(Mj“l%)
R | HI|).
T~ LoD

Combining the estimates (29), (32), (34) with (28), we immediately obtain

the (i, j)-th entry = o( | H|?),

as desired. This completes the proof of part 2 of Theorem 3.6.
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