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ABSTRACT. In this note we give an elementary proof of the Fritz-John and Karush-Kuhn-Tucker
conditions for nonlinear finite dimensional programming problems with equality and/or inequality con-
straints. The proof avoids the implicit function theorem usually applied when dealing with equality
constraints and uses a generalization of Farkas lemma and the Bolzano-Weierstrass property for com-
pact sets.
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1 Introduction

Let A be anm xn matrix with rowsa; , 1 < k < m, b € R™ anm-dimensional vector, anf} : R" — R,
0 < ¢ < g some non-affine, continuously differentiable functions. We consider the optimization problem

min{fo(x) :x € Fp}, Fp:={x€R":a,x<b,,1<k<m, fi(x)<0,1<i<q}, (P)
and the program including equalities
min{fo(x) :x € Fg}, Fo=FpN{xeR":hj(x)=0,1<j<r}, Q)

where the functiong; : R" — R, 1 < j < r, are non-affine and continuously differentiable.

*Corresponding author.
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2. The FJ and KKT conditions for problems (P) and (Q)

Two basic results covered in every course on nonlinear programming are the Fritz-John (FJ) and
Karush-Kuhn-Tucker (KKT) necessary conditions for the local minimizers of optimization problems (P)
and (Q) [7-9]. Denoting the nonnegative orthan®bfboy R’ , the FJ necessary conditions for problem
(P) are given by the following: Ik p is a local minimizer of problem (P), then there exist (see for example
[2, 5]) vectorsD # A € R4 andv € R satisfying

o NV fi(xp) + 3052, viag = 0, (FIP)
Aifi(xp)=0,1<i<q and I/k(a,l—Xp —br)=0,1<k<m.
For optimization problem (Q) the resulting FJ conditions are as followslis a local minimizer of
problem (Q), then there exist (see for example [2, 5]) vedtdrs) € RTH’”, w € R” with (A, ) #0
satisfying
0 AV fi(xQ) + X2y 15V hi(xq) + 331, vkar = 0, (FIQ)
Aifi(xg)=0,1<i<q and l/k(a];rXQ —bp)=0,1<k<m.

If Ao given in conditions (FJP) and (FJQ) can be chosen positive, then the resulting necessary conditions
are called the KKT conditions for problems (P) and (Q), respectively. A sufficient conditiok,ftw

be positive is given by a so-called first-order constraint qualification. In the next section we firstly give
an elementary proof of the FJ and KKT conditions for problem (P). Then the same proof is given for
optimization problem (Q) by using a perturbation argument but avoiding the implicit function theorem.

2 The FJ and KKT conditions for problems (P) and (Q)

Foré > 0 andx € R", let A/(%, §) denote aj-neighborhood ok given by
N(x,8) ={xeR": |x—x| <d}.

A vectorxp is called a local minimizer of optimization problem (P) (respectively, for optimization prob-
lem (Q) ifxp € Fp (respectivelyxp € Fg) and there exists some> 0 such thatfy(xp) < fo(x) for
everyx € Fp NN (xp,d) (respectivelyx € Fo NN (xp,9)).

We introduce the active index sefiéx) := {1 < i < ¢: fi(x) =0} andK(x) = {1 <k < m:
a] x = by}, and denote by3(x), the matrix consisting of the corresponding active raysk € K (x).

Lemma 2.1 If xp is a local minimizer of problem (P), thanax{V f;(xp)"d : i € I(xp) U{0}} >0
for everyd such thatB(xp)d < 0.

Proof. Suppose by contradiction there exists saipesatisfyingB(xp)dy < 0 and

filxp +tdo) — fi(xp)
t

0> Vf,‘(Xp)Td() = hmtlo

for everyi € I(xp) U {0}. By the finiteness of the se{9, ..., ¢} and{1, ..., m} and the continuity off;
this implies the existence of somg > 0 satisfying

filxp +tdo) < 0,i ¢ I(xp), fi(xp +tdo) < fi(xp),i € I(xp) U{0}, A(xp +tdo) < b

for every0 < ¢ < to. Hence the vectaxp + tdy belongs taFp and satisfiegy(xp + tdg) < fo(xp)
for every0 < t < ty. This contradicts that p is a local minimum. O
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2. The FJ and KKT conditions for problems (P) and (Q)

Remark 2.1 If the function f; is pseudo-convex and the functiofis1 < i < ¢ are strictly pseudo-
convex, then for a feasibler the reverse implication in Lemma 2.1 also holds and in this result local
minimizer is replaced by global minimizer. A proof of this will be given at the end of this section. More-
over, if maxpg<o,a=1{V/fi(xp)'d : i € I(xp) U{0}} > 0 andxp feasible, then one can show
that xp is a local minimum of order one ([5])i.e., there exists somé& > 0 andc¢ > 0 such that
fo(x) = fo(xp) > ¢||x — xp|| for everyx € Fp NN (xp,d) .

The proof of theF'.J conditions for problem (P) will be based on the following generalization of Farkas
lemma ([6]). For completeness, a short proof, using the strong duality result for linear programming, will
be given in the appendix.

Lemma 2.2 Let A, C R7 be the unit simplex. IB is ap x n matrix andc; € R",1 < i < s, some
given vectors, then the following conditions are equivalent:

1. For everyd € R™ satisfyingBd < 0 it holds thatmax;<;<s cde > 0.
2. There exists somee A, andu € RE satisfying)_;_, Aic; + BTu=0.

Proof. (FJ conditions for problem (P)) By combining Lemma 2.1 and Lemma 2.2, the FJ conditions
follow. |

It is well-known that the KKT conditions follow from the FJ conditions under some constraint qualifi-
cation. We say that th®langasarian-Fromovit{MF) constraint qualification for problem (P) holds at a
feasible point if there exists somd, satisfying

B(x)do < 0and max;c(x){Vfi(x) "do} <0

We now show that at a local minimizen- of problem (P) satisfying the MF constraint qualification, the
KKT conditions must hold.

Proof. (KKT conditions for problem (P)). Assume that\, = 0 in the FJ conditions. Applying Lemma
2.2 to the FJ conditions withy = 0 we obtain thatnax;c;(x,) V fi(xp) "d > 0 for everyB(xp)d < 0.
This contradicts the MF constraint qualification. O

To prove the FJ and KKT conditions for problem (Q) without using the implicit function theorem
we consider for a local minimizety of problem (Q) and > 0 appropriately chosen and> 0, the
perturbed feasible region

Fs(e) :=Fp NN (xq,0) N{x eR": hj(x) <e —hj(x)<e1<j<r}
and the associated optimization problem
min{fo(x) + x — xq[* : x € Fs(e)}- (Qs(€))

Since the feasible region is compact a global minimigg(e) exists for problemQs(¢)). For these
global minimizers one can show the following result.

Lemma 2.3 For any sequence, | 0 it follows thatlim,, _ xq () = xq.
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2. The FJ and KKT conditions for problems (P) and (Q)

Proof. Let us assume to the contrary that there exists a sequefee), ! € N which does not converge
toxq. By ||xo(€) — x¢l| < ¢ and the Bolzano-Weierstrass property for compact sets there exists some
subsequenceq(¢;),! € L C N satisfying

hmlToo, el XQ(Q) =X 7A XQ- (21)

By continuityx must be feasible for problem (Q). Singg is feasible for(Qs(e;)),! € L it follows that

fo(xq(a)) + lIxq(e) — xol* < fo(xq) 22

for everyl € L. Taking now the limit in relation (2.2) we find by relation (2.1) that

fo®) + X —xq|* < fo(xq)

and this contradicts the local optimality ®f, for problem (Q). O

If x¢ is a strict local minimizer, i.¢,(xq) < fo(x) for everyx € Fo NN (xq,d), we do not need in
the above proof the penalty terfix — x¢||>. Using Lemma 2.3 one can now give an elementary proof of
the FJ and KKT conditions for a local minimizeg, of problem (Q).

Proof. (FJ conditions for problem (Q)) Let ¢; be a strictly decreasing sequence and consider the associ-
ated optimal solutions (¢;) of (Qs(e;)). For notational convenience we denaig(c;) by x(©) and by
Lemma 2.3 there exists some> [, such that|x() — x¢|| < J for everyl > I,. Introduce now the set

Jo={1<j<r:hixV)=¢ or hj(xV) =—¢}.

The set of all subsets of the finite 4t ..., r } is finite and so the sequendg ! € N contains some subset
J C {1,...,7} such thatl := {I € N : J; = J} is infinite. Applying now for every > I, andl € L
the FJ conditions to probleii®)s(¢;)) we obtain that there exist vectoks € R‘fl, € RV y e R,

0 # (M, ), satisfying

“Aog(xP) = S XV fi(xW) = 35 1 Vhy (x1) = 30 vay,

(2.3)
Vkl(azx(l) — bk) = 0, 1 < k < m, and )\“f,(x(l)) = O7 1 < 7 < q.

with g(x) := V fo(x) +2(x — x¢). By relation (2.3) and Caratheodory’s lemma (see Appendix) one can
find for everyl € L some subsek; C {1,...,m} and a vector; € R‘f” satisfying

q
“dog(xV) =0 NaVEED) =30 np VR () =37

and the vectoray, k € K are linearly independent. Sin@e# (A;, 1;) we may assume in relation (2.4)
that the vector(\, 1, v;') has Euclidean norrd. Again by selecting an infinite subsequericg C L

if necessary we can assuni@ = K (the same) for all ¢ L,. By the Bolzano-Weierstrass theorem
the sequence of vecto(s,, i, v;),l € Ly has a converging subsequence, i.e, there exists an infinite set
Ly C Lo with limyer, 1100 (s, i) = (A, 1, 7) and (A, i, 7) having Euclidean norrid. Moreover, it
follows by Lemma 2.3 and the continuity éf thatJ C {1 < j < r: h;(xg) = 0}. Applying again
Lemma 2.3 and the continuity of the gradients the desired result follows from relation (2.4) by letting
l € L, converge to infinity leading to the FJ condition:

q 5y 77 —
Zi:o )\ini(XQ) + Zjej /,Lthj (XQ) + Zke? viag = 0.

By construction the vectorsy, k € K, are linearly independent. Sin¢#, 7z, 7) has Euclidean norm
anday, k € K, are linearly independent this impliés, i) # 0. a

ek, V;:lak (24)

For problem (Q) we introduce the following constraint qualification: The MF constraint qualification
for problem (Q) is said to hold at a feasible painif
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3. Conclusion.

MF1. Vh;(x),1 < j <r are linearly independent.
MF2. [in{Vh;(x),1 <j<r}nlin{as, k € K(x)} = {0}.
MF3. There exists somé, satisfying

B(X)do < O,th(X)Tdo =0,0<5<n, and maxiel(x){Vfi(x)Tdo} < 0.

This is a natural condition. Without condition (MF2) a FJ point need not be a KKT point as shown by
the 2-dimensional optimization problem (with minimizer and FJ pgint= 0)

min{z; : o < 0, —z9 < 0,29 — 25 = 0}.

Proof. (KKT conditions for problem (Q)) To show that at a minimizex of problem (Q) satisfying

the MF constraint qualification the KKT condition must hold we assume to the contrary that in the FJ
condition for problem (Q) we havg, = 0. By (MF3) it must follow that\ = 0 and using(\, i) # 0

it follows that . # 0. Applying now (MF2) and (MF3) to the FJ conditions with= 0 andy # 0 we
obtain a contradiction. O

As observed in Remark 2.1 we will now show ffyy pseudo-convex anfl, 1 < i < ¢ strictly pseudo-
convex onR", that forxp € Fp the conditionmax{V fi(xp)'d : i € I(xp) U{0}} > 0 for every
d such thatB(xp)d < 0 implies thatxp is an global minimizer of problem (P). Recall that a function
# : R — R is called pseudo-convex dR"if ¢ is differentiable onR™ andV¢(x)"d > 0 implies
p(x+d) > ¢(x) for everyx,d € R”". Itis called strictly pseudo-convex @&f* if ¢ is differentiable and
Vo(x)Td > 0impliesg(x + d) > ¢(x) for everyx € R™ and0 # d € R™ [1].

Proof. (Converse of Lemma2.1 for f, pseudo-convex andf;,1 < i < ¢ strictly pseudo-convey
To prove the converse of Lemma 2.1 let us assume by contradiction that the fegsiklaot an global
minimizer of problem (P). Hence there exists satgec Fp satisfyingfo(xo) < fo(xp). By the pseudo-
convexity of fy this implies thatV fo(xp) " (xo — xp) < 0. Also by strict pseudo-convexity of, 1 <

i < qusingfi(xo) <0 = fi(xp),i € I(xp) andxy # xp We obtain thatV f; (xp) " (xg — xp) < 0
for everyi € I(xp). Finally it holds thatB(xp)(xo — xp) < 0 and we arrive at a contradiction to our
initial assumption. O

Combining Lemma 2.1 and 2.2 we immediately obtain the following result ([2]).

Lemma 2.4 Let f, be pseudo-convex anfl,1 < i < q strictly pseudo-convex. Then it follows that
xp € Fp is a global minimizer of (P) if and only ¥ satisfies the FJ conditions.

3 Conclusion.

In this note we have shown that the basic results in nonlinear programming are a natural and direct
consequence of basic results in linear programming and analysis. In our proof we could avoid the implicit
function theorem usually applied in the proof of the FJ conditions for problem (Q) (see for example
[2, 5]). The proof of the implicit function theorem ([11]) and its understanding is in general difficult

for undergraduate/graduate students in the applied computational sciences. This concern was also the
main objective for constructing an alternative elementary proof by McShane ([10]) for the FJ and KKT
conditions for problem (Q). By not regarding separately linear and nonlinear inequalities the result in
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4. Appendix.

[10] is weaker than ours (also the linear independence constraint qualification for (Q) is used) and his
proof uses the penalty approach of nonlinear programming (see also [3] for a similar proof). As such this
technique and the technique used in this paper have their pros and cons. An advantage of the presented
approach for problem (P) is the fact that it can easily identify the class of functions for which the FJ
conditions for problem (P) are not only necessary but also sufficient. This seems to be difficult to show
by means of the penalty approach of McShane. However, to our belief the main advantage of our proof
technique is its display of a natural connection between linear and nonlinear programming.

4  Appendix.

In this appendix we give a short proof of Lemma 2.2 by means of the strong duality theorem for linear
programming.

Proof. To verify 1 = 2 we observe that
. T .
0 = minpa<o maxi<i<s ¢; d =miNpgg<p cTd—2<0, 1<i<s % (4.1)

This is a linear programming problem and by the strong duality theorem of linear programming (cf.[4])
we obtain

. A s
rIllIleSO7 C;rd—ZSO, 1<i<s z = maX{OT <M) : Zi:l >\LCZ + BTM = 07 A € AS’ H € Rﬁ-} (4‘2)

Applying now relations (4.1) and (4.2) we know that the feasible region of the dual problem is not empty
and so there exist somee A, andy € R’ satisfyingd";_; A\ic; d + BT = 0. To show the reverse
implication it follows that there exists somec A, andy € RY satisfyingd_;_; \ic/d = —n " Bd for
everyd € R™. Hence forBd < 0 and usingu € R%. we obtainmax;<;,<s¢;/d >Y7 ; \ie/d >0. O

In our analysis we also use the following result known as Caratheodory’s lemma.

Lemma 4.1 Letv € R™ be represented as cone combination= Z’,;"':l viayg, v, > 0. Then thereis a
representations = Zke? Tray, U > 0, k € K such thata,, k € K are linearly independent.

Proof. We can assume
v = Zk:l vpag, with v > 0, (4.3)

and suppose that the vecterg, & = 1,...,m are linearly dependent. So there is a non-trivial combina-
tion0 = )", , 7a;. By multiplying this relation by a factos and adding to (4.3) we find

m
v = Zk=1(uk + ka)ak

and see that we can chogse R in such a way that (at least) one of the coefficigims+ p7i) is zero
and the others 0. This can be done untill the desired representation is attained. O
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