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ABSTRACT. In this note we give an elementary proof of the Fritz-John and Karush-Kuhn-Tucker

conditions for nonlinear finite dimensional programming problems with equality and/or inequality con-

straints. The proof avoids the implicit function theorem usually applied when dealing with equality

constraints and uses a generalization of Farkas lemma and the Bolzano-Weierstrass property for com-

pact sets.
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1 Introduction

Let A be anm×n matrix with rowsa>k , 1 ≤ k ≤ m, b ∈ Rm anm-dimensional vector, andfi : Rn → R,

0 ≤ i ≤ q some non-affine, continuously differentiable functions. We consider the optimization problem

min{f0(x) : x ∈ FP }, FP := {x ∈ Rn : a>k x ≤ bk, 1 ≤ k ≤ m, fi(x) ≤ 0, 1 ≤ i ≤ q}, (P)

and the program including equalities

min{f0(x) : x ∈ FQ}, FQ := FP ∩ {x ∈ Rn : hj(x) = 0, 1 ≤ j ≤ r}, (Q)

where the functionshj : Rn → R, 1 ≤ j ≤ r, are non-affine and continuously differentiable.

∗Corresponding author.
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2. The FJ and KKT conditions for problems (P) and (Q)

Two basic results covered in every course on nonlinear programming are the Fritz-John (FJ) and

Karush-Kuhn-Tucker (KKT) necessary conditions for the local minimizers of optimization problems (P)

and (Q) [7–9]. Denoting the nonnegative orthant ofRl by Rl
+, the FJ necessary conditions for problem

(P) are given by the following: IfxP is a local minimizer of problem (P), then there exist (see for example

[2, 5]) vectors0 6= λ ∈ Rq+1
+ andν ∈ Rm

+ satisfying∑q
i=0 λi∇fi(xP ) +

∑m
k=1 νkak = 0,

λifi(xP ) = 0, 1 ≤ i ≤ q and νk(a>k xP − bk) = 0, 1 ≤ k ≤ m.

(FJP)

For optimization problem (Q) the resulting FJ conditions are as follows: IfxQ is a local minimizer of

problem (Q), then there exist (see for example [2, 5]) vectors(λ, ν) ∈ Rq+1+m
+ , µ ∈ Rr with (λ, µ) 6= 0

satisfying ∑q
i=0 λi∇fi(xQ) +

∑r
j=1 µj∇hj(xQ) +

∑m
k=1 νkak = 0,

λifi(xQ) = 0, 1 ≤ i ≤ q and νk(a>k xQ − bk) = 0, 1 ≤ k ≤ m.

(FJQ)

If λ0 given in conditions (FJP) and (FJQ) can be chosen positive, then the resulting necessary conditions

are called the KKT conditions for problems (P) and (Q), respectively. A sufficient condition forλ0 to

be positive is given by a so-called first-order constraint qualification. In the next section we firstly give

an elementary proof of the FJ and KKT conditions for problem (P). Then the same proof is given for

optimization problem (Q) by using a perturbation argument but avoiding the implicit function theorem.

2 The FJ and KKT conditions for problems (P) and (Q)

For δ > 0 andx̄ ∈ Rn, letN (x̄, δ) denote aδ-neighborhood of̄x given by

N (x̄, δ) := {x ∈ Rn : ‖x− x̄‖ ≤ δ}.

A vectorxP is called a local minimizer of optimization problem (P) (respectively, for optimization prob-

lem (Q) if xP ∈ FP (respectively,xP ∈ FQ) and there exists someδ > 0 such thatf0(xP ) ≤ f0(x) for

everyx ∈ FP ∩N (xP , δ) (respectively,x ∈ FQ ∩N (xP , δ)).

We introduce the active index setsI(x) := {1 ≤ i ≤ q : fi(x) = 0} andK(x) = {1 ≤ k ≤ m :
a>k x = bk}, and denote byB(x), the matrix consisting of the corresponding active rowsa>k , k ∈ K(x).

Lemma 2.1 If xP is a local minimizer of problem (P), thenmax{∇fi(xP )>d : i ∈ I(xP ) ∪ {0}} ≥ 0
for everyd such thatB(xP )d ≤ 0.

Proof. Suppose by contradiction there exists somed0 satisfyingB(xP )d0 ≤ 0 and

0 > ∇fi(xP )>d0 = limt↓0
fi(xP + td0)− fi(xP )

t

for everyi ∈ I(xP ) ∪ {0}. By the finiteness of the sets{0, ..., q} and{1, ...,m} and the continuity offi

this implies the existence of somet0 > 0 satisfying

fi(xP + td0) < 0, i /∈ I(xP ), fi(xP + td0) < fi(xP ), i ∈ I(xP ) ∪ {0}, A(xP + td0) ≤ b

for every0 < t ≤ t0. Hence the vectorxP + td0 belongs toFP and satisfiesf0(xP + td0) < f0(xP )
for every0 < t ≤ t0. This contradicts thatxP is a local minimum. �

2 October 12, 2005



2. The FJ and KKT conditions for problems (P) and (Q)

Remark 2.1 If the functionf0 is pseudo-convex and the functionsfi, 1 ≤ i ≤ q are strictly pseudo-

convex, then for a feasiblexP the reverse implication in Lemma 2.1 also holds and in this result local

minimizer is replaced by global minimizer. A proof of this will be given at the end of this section. More-

over, if maxBd≤0,‖d‖=1{∇fi(xP )>d : i ∈ I(xP ) ∪ {0}} > 0 and xP feasible, then one can show

that xP is a local minimum of order one ([5]),i.e., there exists someδ > 0 and c > 0 such that

f0(x)− f0(xP ) ≥ c‖x− xP ‖ for everyx ∈ FP ∩N (xP , δ) .

The proof of theFJ conditions for problem (P) will be based on the following generalization of Farkas

lemma ([6]). For completeness, a short proof, using the strong duality result for linear programming, will

be given in the appendix.

Lemma 2.2 Let ∆s ⊆ Rs
+ be the unit simplex. IfB is a p × n matrix andci ∈ Rn, 1 ≤ i ≤ s, some

given vectors, then the following conditions are equivalent:

1. For everyd ∈ Rn satisfyingBd ≤ 0 it holds thatmax1≤i≤s c>i d ≥ 0.

2. There exists someλ ∈ ∆s andµ ∈ Rp
+ satisfying

∑s
i=1 λici + B>µ = 0.

Proof. (FJ conditions for problem (P)) By combining Lemma 2.1 and Lemma 2.2, the FJ conditions

follow. �

It is well-known that the KKT conditions follow from the FJ conditions under some constraint qualifi-

cation. We say that theMangasarian-Fromovitz(MF) constraint qualification for problem (P) holds at a

feasible pointx if there exists somed0 satisfying

B(x)d0 ≤ 0 and maxi∈I(x){∇fi(x)>d0} < 0

We now show that at a local minimizerxP of problem (P) satisfying the MF constraint qualification, the

KKT conditions must hold.

Proof. (KKT conditions for problem (P)). Assume thatλ0 = 0 in the FJ conditions. Applying Lemma

2.2 to the FJ conditions withλ0 = 0 we obtain thatmaxi∈I(xP )∇fi(xP )>d ≥ 0 for everyB(xP )d ≤ 0.

This contradicts the MF constraint qualification. �

To prove the FJ and KKT conditions for problem (Q) without using the implicit function theorem

we consider for a local minimizerxQ of problem (Q) andδ > 0 appropriately chosen andε > 0, the

perturbed feasible region

Fδ(ε) := FP ∩N (xQ, δ) ∩ {x ∈ Rn : hj(x) ≤ ε,−hj(x) ≤ ε, 1 ≤ j ≤ r},

and the associated optimization problem

min{f0(x) + ‖x− xQ‖2 : x ∈ Fδ(ε)}. (Qδ(ε))

Since the feasible region is compact a global minimizerxQ(ε) exists for problem(Qδ(ε)). For these

global minimizers one can show the following result.

Lemma 2.3 For any sequenceεl ↓ 0 it follows thatlim
l↑∞ xQ(εl) = xQ.
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2. The FJ and KKT conditions for problems (P) and (Q)

Proof. Let us assume to the contrary that there exists a sequencexQ(εl), l ∈ N which does not converge

to xQ. By ‖xQ(εl)− xQ‖ ≤ δ and the Bolzano-Weierstrass property for compact sets there exists some

subsequencexQ(εl), l ∈ L ⊆ N satisfying

liml↑∞, l∈L xQ(εl) = x 6= xQ. (2.1)

By continuityx must be feasible for problem (Q). SincexQ is feasible for(Qδ(εl)), l ∈ L it follows that

f0(xQ(εl)) + ‖xQ(εl)− xQ‖2 ≤ f0(xQ) (2.2)

for everyl ∈ L. Taking now the limit in relation (2.2) we find by relation (2.1) that

f0(x) + ‖x− xQ‖2 ≤ f0(xQ)

and this contradicts the local optimality ofxQ for problem (Q). �

If xQ is a strict local minimizer, i.ef0(xQ) < f0(x) for everyx ∈ FQ ∩N (xQ, δ), we do not need in

the above proof the penalty term‖x−xQ‖2. Using Lemma 2.3 one can now give an elementary proof of

the FJ and KKT conditions for a local minimizerxQ of problem (Q).

Proof. (FJ conditions for problem (Q)) Let εl be a strictly decreasing sequence and consider the associ-

ated optimal solutionsxQ(εl) of (Qδ(εl)). For notational convenience we denotexQ(εl) by x(l) and by

Lemma 2.3 there exists somel ≥ l0 such that‖x(l) − xQ‖ < δ for everyl ≥ l0. Introduce now the set

Jl := {1 ≤ j ≤ r : hj(x(l)) = εl or hj(x(l)) = −εl}.

The set of all subsets of the finite set{1, ..., r} is finite and so the sequenceJl, l ∈ N contains some subset

J ⊆ {1, ..., r} such thatL := {l ∈ N : Jl = J} is infinite. Applying now for everyl ≥ l0 andl ∈ L

the FJ conditions to problem(Qδ(εl)) we obtain that there exist vectorsλl ∈ Rq+1
+ , µl ∈ R|J|, νl ∈ Rm

+ ,

0 6= (λl, µl), satisfying

−λ0lg(x(l))−
∑q

i=1 λil∇fi(x(l))−
∑

j∈J µjl∇hj(x(l)) =
∑m

k=1 νklak

νkl(a>k x(l) − bk) = 0, 1 ≤ k ≤ m, and λilfi(x(l)) = 0, 1 ≤ i ≤ q.
(2.3)

with g(x) := ∇f0(x)+2(x−xQ). By relation (2.3) and Caratheodory’s lemma (see Appendix) one can

find for everyl ∈ L some subsetKl ⊆ {1, ...,m} and a vectorν∗l ∈ R|Kl|
+ satisfying

−λ0lg(x(l))−
∑q

i=1
λil∇fi(x(l))−

∑
j∈J

µjl∇hj(x(l)) =
∑

k∈Kl

ν∗klak (2.4)

and the vectorsak, k ∈ Kl are linearly independent. Since0 6= (λl, µl) we may assume in relation (2.4)

that the vector(λl, µl, ν
∗
l ) has Euclidean norm1. Again by selecting an infinite subsequenceL0 ⊆ L

if necessary we can assumeKl = K (the same) for alll ∈ L0. By the Bolzano-Weierstrass theorem

the sequence of vectors(λl, µl, ν
∗
l ), l ∈ L0 has a converging subsequence, i.e, there exists an infinite set

L1 ⊆ L0 with liml∈L1,l↑∞(λl, µl, ν
∗
l ) = (λ, µ, ν) and(λ, µ, ν) having Euclidean norm1. Moreover, it

follows by Lemma 2.3 and the continuity ofhj thatJ ⊆ {1 ≤ j ≤ r : hj(xQ) = 0}. Applying again

Lemma 2.3 and the continuity of the gradients the desired result follows from relation (2.4) by letting

l ∈ L1 converge to infinity leading to the FJ condition:∑q

i=0
λi∇fi(xQ) +

∑
j∈J

µj∇hj(xQ) +
∑

k∈K
νkak = 0.

By construction the vectorsak, k ∈ K, are linearly independent. Since(λ, µ, ν) has Euclidean norm1
andak, k ∈ K, are linearly independent this implies(λ, µ) 6= 0. �

For problem (Q) we introduce the following constraint qualification: The MF constraint qualification

for problem (Q) is said to hold at a feasible pointx if
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3. Conclusion.

MF1. ∇hj(x), 1 ≤ j ≤ r are linearly independent.

MF2. lin{∇hj(x), 1 ≤ j ≤ r} ∩ lin{ak, k ∈ K(x)} = {0}.

MF3. There exists somed0 satisfying

B(x)d0 ≤ 0,∇hj(x)>d0 = 0, 0 ≤ j ≤ r, and maxi∈I(x){∇fi(x)>d0} < 0.

This is a natural condition. Without condition (MF2) a FJ point need not be a KKT point as shown by

the 2-dimensional optimization problem (with minimizer and FJ pointxQ = 0)

min{x1 : x2 ≤ 0,−x2 ≤ 0, x2 − x2
1 = 0}.

Proof. (KKT conditions for problem (Q)) To show that at a minimizerxQ of problem (Q) satisfying

the MF constraint qualification the KKT condition must hold we assume to the contrary that in the FJ

condition for problem (Q) we haveλ0 = 0. By (MF3) it must follow thatλ = 0 and using(λ, µ) 6= 0
it follows thatµ 6= 0. Applying now (MF2) and (MF3) to the FJ conditions withλ = 0 andµ 6= 0 we

obtain a contradiction. �

As observed in Remark 2.1 we will now show forf0 pseudo-convex andfi, 1 ≤ i ≤ q strictly pseudo-

convex onRn, that forxP ∈ FP the conditionmax{∇fi(xP )>d : i ∈ I(xP ) ∪ {0}} ≥ 0 for every

d such thatB(xP )d ≤ 0 implies thatxP is an global minimizer of problem (P). Recall that a function

φ : Rn 7→ R is called pseudo-convex onRnif φ is differentiable onRn and∇φ(x)>d ≥ 0 implies

φ(x+d) ≥ φ(x) for everyx,d ∈ Rn. It is called strictly pseudo-convex onRn if φ is differentiable and

∇φ(x)>d ≥ 0 impliesφ(x + d) > φ(x) for everyx ∈ Rn and0 6= d ∈ Rn [1].

Proof. (Converse of Lemma2.1 for f0 pseudo-convex andfi, 1 ≤ i ≤ q strictly pseudo-convex)
To prove the converse of Lemma 2.1 let us assume by contradiction that the feasiblexP is not an global

minimizer of problem (P). Hence there exists somex0 ∈ FP satisfyingf0(x0) < f0(xP ). By the pseudo-

convexity off0 this implies that∇f0(xP )>(x0 − xP ) < 0. Also by strict pseudo-convexity offi, 1 ≤
i ≤ q usingfi(x0) ≤ 0 = fi(xP ), i ∈ I(xP ) andx0 6= xP we obtain that∇fi(xP )>(x0 − xP ) < 0
for everyi ∈ I(xP ). Finally it holds thatB(xP )(x0 − xP ) ≤ 0 and we arrive at a contradiction to our

initial assumption. �

Combining Lemma 2.1 and 2.2 we immediately obtain the following result ([2]).

Lemma 2.4 Let f0 be pseudo-convex andfi, 1 ≤ i ≤ q strictly pseudo-convex. Then it follows that

xP ∈ FP is a global minimizer of (P) if and only ifxP satisfies the FJ conditions.

3 Conclusion.

In this note we have shown that the basic results in nonlinear programming are a natural and direct

consequence of basic results in linear programming and analysis. In our proof we could avoid the implicit

function theorem usually applied in the proof of the FJ conditions for problem (Q) (see for example

[2, 5]). The proof of the implicit function theorem ([11]) and its understanding is in general difficult

for undergraduate/graduate students in the applied computational sciences. This concern was also the

main objective for constructing an alternative elementary proof by McShane ([10]) for the FJ and KKT

conditions for problem (Q). By not regarding separately linear and nonlinear inequalities the result in
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4. Appendix.

[10] is weaker than ours (also the linear independence constraint qualification for (Q) is used) and his

proof uses the penalty approach of nonlinear programming (see also [3] for a similar proof). As such this

technique and the technique used in this paper have their pros and cons. An advantage of the presented

approach for problem (P) is the fact that it can easily identify the class of functions for which the FJ

conditions for problem (P) are not only necessary but also sufficient. This seems to be difficult to show

by means of the penalty approach of McShane. However, to our belief the main advantage of our proof

technique is its display of a natural connection between linear and nonlinear programming.

4 Appendix.

In this appendix we give a short proof of Lemma 2.2 by means of the strong duality theorem for linear

programming.

Proof. To verify 1 ⇒ 2 we observe that

0 = minBd≤0 max1≤i≤s c>i d =minBd≤0, c>i d−z≤ 0 , 1≤i≤s z. (4.1)

This is a linear programming problem and by the strong duality theorem of linear programming (cf.[4])

we obtain

minBd≤0, c>i d−z≤0, 1≤i≤s z = max{0>
(

λ

µ

)
:
∑s

i=1
λici + B>µ = 0, λ ∈ ∆s, µ ∈ Rp

+}. (4.2)

Applying now relations (4.1) and (4.2) we know that the feasible region of the dual problem is not empty

and so there exist someλ ∈ ∆p andµ ∈ Rp
+ satisfying

∑s
i=1 λic>i d + B>µ = 0. To show the reverse

implication it follows that there exists someλ ∈ ∆s andµ ∈ Rp
+ satisfying

∑s
i=1 λic>i d = −µ>Bd for

everyd ∈ Rn. Hence forBd ≤ 0 and usingµ ∈ Rp
+ we obtainmax1≤i≤s c>i d ≥

∑s
i=1 λic>i d ≥ 0. �

In our analysis we also use the following result known as Caratheodory’s lemma.

Lemma 4.1 Letv ∈ Rm be represented as cone combinationv =
∑m

k=1 νkak, νk ≥ 0. Then there is a

representationv =
∑

k∈K νkak, νk > 0, k ∈ K such thatak, k ∈ K are linearly independent.

Proof. We can assume

v =
∑m

k=1
νkak, with νk > 0, (4.3)

and suppose that the vectorsak, k = 1, . . . ,m are linearly dependent. So there is a non-trivial combina-

tion 0 =
∑m

k=1 τkak. By multiplying this relation by a factorρ and adding to (4.3) we find

v =
∑m

k=1
(νk + ρτk)ak

and see that we can chooseρ ∈ R in such a way that (at least) one of the coefficients(νk + ρτk) is zero

and the others≥ 0. This can be done untill the desired representation is attained. �
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[4] Chvátal, V. Linear Programming. W.H Freeman and Company, New York, 1999.

[5] Faigle, U., Kern, K. and G. Still.Algorithmic Principles to Mathematical Programming). Kluwer

Academic publishers, Dordrecht, 2002.

[6] Farkas, J. Theorie der einfachen Ungleichungen.Journal f̈ur die reine und angewandte Mathematic,

124:1–27, 1902.

[7] John, F. Extremum problems with inequalities as side conditions. In Friedrichs, K.O, Neuge-

bauer, O.E and J.J. Stoker, editor,Studies and Essays, Courant Anniversary Volume. Wiley-

Interscience, 1948.

[8] Karush, W. Minima of functions of several variables with inequalities as side conditions. Master’s

thesis, Department of Mathematics, University of Chicago, 1939.

[9] Kuhn, H.W and A.W. Tucker. Nonlinear programming. In Neyman, J, editor,Proc. 2nd Berkeley

Symposium on Mathematical Statistics and Probability. University of California Press, 1951.

[10] McShane, E.J. The Lagrange multiplier rule.The American Mathematical Monthly, 80(8):922–925,

1973.

[11] Rudin, W.Principles of Mathematical Analysis (third edition). Mc-Graw Hill, New York, 1976.

7 October 12, 2005


