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Abstract

Scanner data for fast moving consumer goods typically amount to panels of time

series where both N and T are large. To reduce the number of parameters and to

shrink parameters towards plausible and interpretable values, multi-level models

turn out to be useful. Such models contain in the second level a stochastic model

to describe the parameters in the first level.

In this paper we propose such a model for weekly scanner data where we ex-

plicitly address (i) weekly seasonality in a limited number of yearly data and (ii)

non-linear price effects due to historic reference prices. We discuss representation

and inference and we propose an estimation method using Bayesian techniques. An

illustration to a market-response model for 96 brands for about 8 years of weekly

data shows the merits of our approach.
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1 Introduction

This paper deals with the econometric aspects of market-response models, when these are

calibrated for weekly scanner data, typically for fast moving consumer goods (FMCGs).

Market-response models usually seek to correlate sales or market shares with marketing-

mix instruments such as price, promotions like feature and display, and advertising, see

Hanssens et al. (2001) and Leeflang et al. (2000). Due to in-store scanner techniques, the

data that are typically available to estimate model parameters are weekly data for four

to eight years. The amount of years is due to the fact that the life cycle of products and,

sometimes also of brands, does not often extend beyond that time frame. The weekly data

are usually provided by a particular retail chain, and they concern the most important

brands in several categories across the outlets within that chain. It is common to stack the

information on brands across categories, and to consider models for, say, N brands, where

these brands thus cover a variety of FMCG categories like margarine, tissues, ketchup and

so on, see Pauwels and Srinivasan (2004), Nijs et al. (2001) and Fok et al. (2005). In sum,

the relevant market-response models are calibrated for panels of time series, where N

ranges from, say, 50 to 300, and where time T covers 52 weeks for 4 to 8 years.

Given the availability of large N and large T data, one could simply want to consider

N different models, or different models per product category. However, in marketing

research it is common practice to search for, so-called, empirical generalizations, that is

here, common features across the N models. In market-response models such common

features could concern the effects of price changes or of promotions. These effects could

partly be idiosyncratic, and partly be the same for similar brands in similar categories,

for example. This usually means that a useful market-response model has a second layer

in which the parameters in the N models are correlated with characteristics of brands

and categories which are constant over time, see Fok et al. (2005) among others. In the

present paper, we also propose such a two-level model and we use a Bayesian approach

to estimate the model parameters.

The first advantage of multiple-level models for panels of time series is that it often

amounts to a plausible reduction of the number of parameters. Hence there is an increase

in the degrees of freedom. This is particularly useful when the first-level parameters

are less easy to estimate due to a lack of degrees of freedom. For example, as we will

discuss below, the inclusion of 52 weekly dummies to capture seasonality in weekly market-

response models amounts to a serious loss of degrees of freedom, particularly when there
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would be only 4 years of data. Hence, a plausible strategy here is to introduce a second-

level model where seasonality is captured by a harmonic regressor and an error term.

The model that we will propose below further allows for the possibility that past prices

have an effect on the current short-run price elasticity. Such an effect is often documented

in the marketing literature, see Pauwels et al. (2005) and the references cited therein, and

it means that the difference between the current price and the previously observed price

has an impact on the current price effect. Such a non-linear effect can occur in many

N equations, but perhaps not in all. Hence, a second advantage of a two-level model is

that by including all N equations, the parameters in each of these get shrunk towards a

common value in the second level, see Blattberg and George (1991), while of course the

error term allows for brand-specific variation.

In sum, in this paper we put forward a two-level model for a panel of weekly time

series on sales and marketing-mix instruments, where we use the second level to effectively

reduce the number of parameters to capture seasonality and to shrink (potentially difficult

to estimate) non-linear effects towards interpretable parameters. In the second level, these

latter parameters are correlated with brand-specific and category-specific characteristics.

In Section 2, we describe the representation of the model. In Section 3 we propose a

Markov Chain Monte Carlo (MCMC) sampler to obtain posterior results. In Section 4, we

apply our model to data on 96 brands for close to 8 years of weekly data. We demonstrate

that the model yields plausible and reliable estimates. In Section 5 we conclude with the

potential limitations of our analysis and with a discussion of further research avenues.

2 Representation and interpretation

When modeling weekly sales of FMCGs, a typical model that relates log sales to log prices

and promotion variables, amongst other marketing instruments, is

ln Sit = µi + βi ln Pit + Promo′itψi + εit, (1)

where Sit denotes the sales of brand i for i = 1, 2, . . . , N at time t, for t = 1, 2, . . . , T , and

Pit denotes the price of brand i at time t, and where εit ∼ N(0, σ2
i ), see Wittink et al.

(1988) and many others. The vector Promoit captures promotion activities for brand i

at time t. In recent years it has been recognized that dynamics cannot be ignored when

modeling sales, and hence the specification in (1) can be replaced by, for example,

∆ ln Sit = µi + ρi ln Si,t−1 + βi∆ ln Pit + δi ln Pi,t−1 + Promo′itψi + εit, (2)
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where ∆ is the first-differencing operator.

Two assumptions in this model may not hold for actual scanner data. They are (i)

that expected (unconditional) sales are constant over time, here reflected by µi, and (ii)

that the short-run price elasticity, here βi, is constant. In this paper we propose a model

for which these assumptions are relaxed. First, we allow sales to show a weekly seasonal

pattern. Upon doing so, we need to prevent having to include 52 seasonal dummies to

retain degrees of freedom. Second, we allow the price elasticity to depend on the direction

and the magnitude of price changes, that is, the current price effect can be different for

cases where the past price was lower than when it was higher. The literature surveyed in

Pauwels et al. (2005) shows that consumers tend to show an asymmetry in the evaluation

of gains and losses. Following this literature the price elasticity must be different for a

price increase than for a price decrease. Additionally, it may be that consumers do not

notice small price changes, that is, small price changes may not lead to sales changes and

sales are only affected if the price change exceeds a certain threshold. In sum, we modify

(2) to include weekly seasonality and non-linear price effects. Below, we present these two

model extensions in detail.

2.1 Weekly seasonality

A standard approach to capturing seasonality in sales data (that usually do not show

seasonal unit roots) is to include seasonal dummies. Denote the number of observations

per year by S. Model (2) would then not include µi but
∑S

s=1 Dstµis, where the seasonal

dummy variable Dst = 1 if observation t corresponds to season s, and where Dst = 0

otherwise. Of course, in case of weekly data, the estimation of the parameters associated

with S = 52 dummy variables can be cumbersome, in particular when there are not many

years of data available. Note however that one may expect seasonality to show a regular

cyclical pattern. In this paper we propose to take advantage of such a possible pattern.

To keep things simple, we specify the season by a deterministic cycle with a period of 1

year with a stochastic factor which gives the deviation from this perfect cycle. In sum,

we propose to model µis by

µis = αi0 + αi1 cos(2π
s

S
− αi2) + ηis, (3)

where ηis ∼ N(0, σ2
ηi

). The parameter αi0 determines the conditional mean of the series,

αi1 gives the amplitude of the deterministic part of the cycle. The parameter αi2 (0 ≤
αi2 ≤ 2π) determines the phase of the cycle, see Jones and Brelsford (1967) for a similar
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approach in periodic models. For notational convenience we define αi = (αi0, αi1, α12).

The deterministic part of the seasonal pattern corresponds to a regular cycle, while the

stochastic part deals with recurring spikes or dips in the sales, which may be due to special

festivals as Christmas or Easter. Note that instead of including S parameters we now face

estimating only 4 parameters.

2.2 Non-linear price effects

To allow for non-linear price effects due to past prices, we propose to replace βi∆ ln Pit in

(2) by G(∆ ln Pit; βi, γ, τi), where G is a certain non-linear function to be discussed below.

For the immediate effect of price we want to allow for price thresholds and price gaps,

that is, there might be no price effect for some price changes. Furthermore, we want to

allow for asymmetric effects. For example, price increases relative to the previous price

may have a more prominent effect than price decreases have. Finally, small price changes

may have a different effect on sales than large price changes have.

To capture this range of possible non-linear effects, we introduce three regimes, that

is, (i) large price decreases, (ii) small price changes, and (iii) large price increases. These

regimes are bounded by two thresholds τi1 > 0 and τi2 > 0. If an increase in price is

larger than τi1, that is if ∆ ln Pit > τi1 we classify it as a large price increase. And, if the

price decrease is larger than τi2, it is a large price decrease (−∆ ln Pit > τi2). In the third

case, the price change is classified as being small. Note that the regime of a small price

change is not necessarily symmetric, that is, a price increase of 10% may still be classified

as small while a price decrease of 5% can be considered as large. Of course, the actual

boundaries of the regimes need to be estimated from the data, and they may differ across

brands.

As is common in the literature on threshold models, see Granger and Teräsvirta (1993)

and Franses and van Dijk (2000), we consider logistic functions to define the three regimes.

The logistic function is

F (z; γ, τ) =
1

1 + exp(−γ(z − τ))
. (4)

Assuming that γ, τ > 0, the switching function equals 1 for large positive values of the

indicator z. Note that, depending on the value of γ, this function allows for a smooth

transition from one regime to the other. Using (4), and taking aboard the arguments
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above, we can now specify the price-effect function as

G(∆ ln Pit; βi, γ, τi) = βi0∆ ln Pit + (βi1 − βi0)F (∆ ln Pit; γ, τi1)(∆ ln Pit − τi1)

+ (βi2 − βi0)F (−∆ ln Pit; γ, τi2)(∆ ln Pit + τi2), (5)

where τi = (τi1, τi2) and βi = (βi0, βi1, βi2). This expression can be interpreted as follows.

For large price increases the derivative of the function G with respect to ln Pit equals βi1,

for large price decreases it equals βi2, and for small price changes it equals βi0. Figure 1

graphically depicts the resulting sales response curve.

– Insert Figure 1 about here –

Close to the thresholds, the derivative equals a weighted combination of the two deriva-

tives in the adjacent regimes. A good approximation is obtained when the switching

function itself is used as the weight. More formally,

∂ ln Sit

∂ ln Pit

=
∂G(∆ ln Pit; βi, γ, τi)

∂ ln Pit

= βi0 + (βi1 − βi0)F (∆ ln Pit; γ, τi1) + (βi2 − βi0)F (−∆ ln Pit; γ, τi2)+

+ (βi1 − βi0)
∂F (∆ ln Pit; γ, τi1)

∂ ln Pit

(∆ ln Pit − τi1)+

+ (βi2 − βi0)
∂F (−∆ ln Pit; γ, τi2)

∂ ln Pit

(∆ ln Pit + τi2)

≈ βi0 + (βi1 − βi0)F (∆ ln Pit; γ, τi1) + (βi2 − βi0)F (−∆ ln Pit; γ, τi2),

(6)

where the last line follows from the fact that

∂F (z; γ, τ)

∂z
= γF (z; γ, τ)(1− F (z; γ, τ)) ≈ 0 (7)

for γ large, as either F (z; γ, τ) ≈ 0 or F (z; γ, τ) ≈ 1. In our application we will indeed fix

the value of γ at a relatively high number, and as a consequence, given τ the transition

from one regime to the other is immediate.

The expression in (6) and the line in Figure 1 can be interpreted as the short-run price

elasticity. The size of the price elasticity now depends on the size and the direction of

the price change, relative to the previous price. The usual definition of a price elasticity

only appears for very small price changes. Here we extend this definition by allowing for

different regimes. An interpretation is the following. Suppose that a manager is planning

a price change of ∆ ln Pit = −0.1 (approximately a price cut of 10%), then the derivative
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∂ ln Sit/∂ ln Pit evaluated at ln Pit = ln Pi,t−1−0.1 gives the (additional) percentage change

in sales in case the price would be decreased even further.

Our model with (5) is very flexible, as can be seen from Figure 2 where we present

four different possible patterns for the price elasticity. The graphs show that the model

allows for a variety of price elasticity functions. The top-left graph corresponds to a case

where the elasticity for a large price increase is larger in magnitude when compared with

a similar-sized decrease. The bottom-right graph shows the opposite case. In this case

the elasticity of a small price change is also relatively small. Also note that the thresholds

defining the regimes can of course take different values.

– Insert Figure 2 about here –

2.3 A second-level model

In the literature there is much evidence that the price elasticity differs across product

categories and even across brands within a product category, see, for example, Nijs et al.

(2001) and Fok et al. (2005) among many others. However, in these studies it is assumed

that for a brand the elasticity is independent of the price change itself. With our non-

linear model, we can see if this assumption holds. Furthermore, we will try to explain

possible differences in non-linearities using observable brand and category characteristics.

To this end we propose a second-level model, in which we relate the parameters in βi in

(5) to observable characteristics (Zi), that is,

βi0 = Z ′
iθ0 + ξi0

βi1 = Z ′
iθ1 + ξi1

βi2 = Z ′
iθ2 + ξi2,

(8)

where ξi = (ξi0, ξi1, ξi2)
′ ∼ N(0, Σ) and Zi is a k-dimensional vector of explanatory vari-

ables and θj is a k-dimensional vector of parameters for j = 0, 1, 2, see, for example,

Hendricks et al. (1979) for a similar approach. We define the matrix θ = (θ0, θ1, θ2). The

covariance matrix Σ is not restricted to be diagonal.
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3 Bayes analysis

The total model is given by

∆ ln Sit =
S∑

s=1

Dstµis +ρi ln Si,t−1 +G(∆ ln Pit; βi, γ, τi)+δi ln Pi,t−1 +Promo′itψi +εit, (9)

where µis is given in (3), G(∆ ln Pit; βi, γ, τi) is given in (5) together with (8) and εit ∼
N(0, σ2

i ) for i = 1, . . . , N and t = 1, . . . , T . The likelihood function belonging to this

model is

`(Data|ζ) =
N∏

i=1

∫

βi

( ∫

µi1

· · ·
∫

µiS

T∏
t=1

φ(εit; 0, σ
2
i )

S∏
s=1

φ(µis; αi0 + αi1 cos(2π
s

S
− αi2), σ

2
ηi

)dµi1 · · · dµiS

)
φ(βi; θ

′Zi, Σ)dβi, (10)

where φ(·; m, Ω) is the pdf of a normal distribution with mean m and covariance matrix

Ω and

εit = ∆ ln Sit−
S∑

s=1

Dstµis−ρi ln Si,t−1−G(∆ ln Pit; βi, γ, τi)−δi ln Pi,t−1−Promo′itψi. (11)

The model parameters are summarized by ζ = ({αi, ρi, δi, ψi, τi, σ
2
i , σ

2
ηi
}N

i=1, Σ, θ). To

estimate these parameters we opt for a Bayesian approach. Posterior results are obtained

using MCMC techniques (Tierney, 1994; Smith and Roberts, 1993), in particular the

Gibbs sampling technique of Geman and Geman (1984) with data augmentation (Tanner

and Wong, 1987). The latent variables {{µis}S
s=1, βi}N

i=1 are sampled alongside the model

parameters.

For the model parameters in the first layer of the model we impose an uninformative

prior, that is,

p(ρi, δi, ψi, σ
2
i ) ∝ σ−2

i (12)

for i = 1, . . . , N . To be able to compute Bayes factors for the absence of seasonal effects

in the sales series, see Section 3.1, we assume a normal prior for the αi1 parameters

αi1 ∼ N(0, σ2
α1

) (13)

for i = 1, . . . , N . For the remaining α parameters we take a flat prior, that is,

p(αi0) ∝ 1 and p(αi2) =
1

2π
× I[0, 2π] (14)
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for i = 1, . . . , N , where I[a, b] is an indicator function that equals 1 on the interval [a, b]

and 0 otherwise. For smoother convergence of the Gibbs sampler, we define proper but

relatively uninformative priors for the variances of the error terms in the two second layers

of the model, see Hobert and Casella (1996) for a discussion on this issue. For σ2
ηi

we take

an inverted Gamma-2 prior distribution with scale parameter v and degrees of freedom ν

σ2
ηi
∼ IG-2(v, ν) (15)

for i = 1, . . . , N and for Σ we take an inverted Wishart prior distribution with scale

parameter V and degrees of freedom λ,

Σ ∼ IW(V, λ). (16)

The prior for θ is uninformative and given by

p(θ) ∝ 1. (17)

Finally, to identify the price regimes we impose a prior on the τij parameters. The prior

is normal on the region [0, ub], that is,

τij ∼ N(µτ , σ
2
τ )× I[0, ub] (18)

for j = 1, 2 and i = 1, . . . , N .

As mentioned before, we fix γ at a rather high value. For such a value, the transition

function shows an abrupt change from one regime to the other. The reason for fixing

the value of γ is that in practice it turns out to be very difficult to conduct inference on

this parameter, see Bauwens et al. (1999) for a discussion in a Bayesian setting. Another

motivation follows from the fact that in our model the thresholds are stochastic. In fact,

uncertainty in the thresholds leads to a model in which the transition between regimes is

not immediate. So, even if we restrict γ to be large our model still allows for a smooth

transition between regimes. Note that this feature of the model complicates the practical

identification of γ even more.

The joint prior density for ζ denoted by p(ζ) is given by (12)–(18). The posterior

distribution is equal to p(ζ)`(Data|ζ). Below, we derive the steps of the MCMC sampler

to sample from this posterior distribution.

Sampling of βiβiβi, ρiρiρi, δiδiδi and ψiψiψi

For notational convenience, we rewrite the model in (9) as

Yit = X ′
it(β

′
i, ρi, δi, ψ

′
i)
′ + εit, (19)
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for t = 1, . . . , T , where Yit = ∆ ln Sit −
∑S

s=1 Dstµis and

Xit =




∆ ln Pit − F (∆ ln Pit; γ, τi1)(∆ ln Pit − τi1)− F (−∆ ln Pit; γ, τi2))(∆ ln Pit + τi2)

F (∆ ln Pit; γ, τi1)(∆ ln Pit − τi1)

F (−∆ ln Pit; γ, τi2))(∆ ln Pit + τi2)

ln Si,t−1

ln Pi,t−1

Promoit




.

(20)

If we stack the T equations we obtain

Yi = Xi(β
′
i, ρi, δi, ψ

′
i)
′ + εi, (21)

where Yi = (Yi1, . . . , YiT )′, Xi = (Xi1, . . . , XiT )′ and εi = (εi1, . . . , εiT )′. The second layer

of the model (8) we can write as

−Z ′
iθ = −β′i + ξ′i. (22)

If we collect and standardize the equations (19) and (22) we obtain

(
σ−1

i Yi

−Σ− 1
2 θ′Z ′

i

)
=

(
σ−1

i Xi

−Σ− 1
2 0 0 0

)



βi

ρi

δi

ψi




+

(
σ−1

i εi

Σ− 1
2 ξi

)
. (23)

We define this equation as Y ∗
i = X∗

i (βi, ρi, δi, ψ
′
i)
′+ ei, where ei has a multivariate normal

distribution with mean zero and an identity covariance matrix. From this final equation it

is clear that the full conditional posterior distribution of (β′i, ρi, δi, ψi)
′ is normal with mean

(X∗
i
′X∗

i )−1(X∗
i
′Y ∗

i ) and covariance matrix (X∗
i
′X∗

i )−1, see, for example, Zellner (1971,

Chapter III).

Sampling of µisµisµis

We use (20) to rewrite model (9) as

Yit =
S∑

s=1

Dstµis + εit (24)

where now Yit = ∆ ln Si,t − X ′
it(αi0, βi, ρi, δi, ψi)

′ for t = 1, . . . , T . If we stack the T

equations we obtain

Yi = Dµi + εi, (25)
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where Yi = (Yi1, . . . , YiT )′, D = (D1, . . . , DT )′ with Dt = (D1t, . . . , DSt)
′, µi = (µi1, . . . , µiS)′

and εi = (εi1, . . . , εiT )′. The stochastic seasonal model (3) can be written as

−αi0 − αi1 cos(2π
s

S
− αi2) = −µis + ηis. (26)

for s = 1, . . . , S. If we collect and standardize the equations we obtain



σ−1
i Yi

−σ−1
ηi

(αi0 + αi1 cos(2π 1
S
− αi2))

−σ−1
ηi

(αi0 + αi1 cos(2π 2
S
− αi2))

...

−σ−1
ηi

(αi0 + αi1 cos(2π S
S
− αi2))




=

(
σ−1

i D

−σ−1
ηi

IS

)
µi +

(
σ−1

i εi

σ−1
ηi

ηi

)
, (27)

where IS denotes an identity matrix of dimension S and where ηi = (ηi1, . . . , ηiS)′. This

equation can be written as Y ∗
i = X∗

i µi+ei, where ei has a multivariate normal distribution

with mean zero and an identity covariance matrix. Hence, the full conditional distribution

of µi is normal with mean (X∗
i
′X∗

i )−1(X∗
i
′Y ∗

i ) and covariance matrix (X∗
i
′X∗

i )−1.

Sampling of τiτiτi

The full conditional posterior distribution of τi for i = 1, . . . , N does not have a standard

form. We draw τi1 and τi2 separately using the Griddy Gibbs sampler of Ritter and Tanner

(1992). The full conditional posterior of τij is proportional to

φ(τij; µτ , σ
2
τ )× I[0, ub]

T∏
t=1

φ(εit; 0, σ
2
i ), (28)

where εit is given in (11). We choose a grid on the region [0, ub]. For each value of

τij on the grid we calculate the relative height of the full conditional posterior density

and construct an approximation of the cumulative distribution function (CDF) of the full

conditional posterior density function. Finally we sample a uniform random number and

use the inverse CDF technique to generate a draw of τij for j = 1, 2 and i = 1, . . . , N .

Sampling of σ2
iσ2
iσ2
i

Conditional on the other parameters, the posterior distribution of σ2
i is an inverted

Gamma-2 distribution with scale parameter
∑T

t=1 ε2
it and degrees of freedom T and hence

∑T
t=1 ε2

it

σ2
i

∼ χ2(T ), (29)

where εit is given in (11) for i = 1, . . . , N .
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Sampling of αiαiαi

If we condition on {µis}S
s=1, the only relevant part of the model for sampling αi is

µis = X ′
is

(
αi0

αi1

)
+ ηis. (30)

for s = 1, . . . , S where Xis = (1, cos(2π s
S
− αi2))

′ for i = 1, . . . , N . Hence, the full

conditional posterior distribution of (αi0, αi1) (conditional on αi2) is normal with mean

(
1

ση2
i

S∑
s=1

X ′
isXis +

(
σ−2

α0
0

0 0

))−1 (
1

σ2
ηi

S∑
s=1

X ′
isµis

)
(31)

and covariance matrix (
1

ση2
i

S∑
s=1

X ′
isXis +

(
σ−2

α0
0

0 0

))−1

(32)

for i = 1, . . . , S. In case one wants to impose a flat prior for αi1 one has to replace σ−2
α0

by 0.

The full conditional distribution of αi2 is not of a known form. To sample this pa-

rameter we again rely on the Griddy Gibbs sampler. The model restricts 0 < αi2 < 2π,

this interval serves as natural bounds for our grid. On this grid we evenly distribute 75

points. For each point we calculate the the relative height of the full conditional posterior

density as
S∏

s=1

φ(µis − αi0 − αi1 cos(2π
s

S
− αi2); 0, σ

2
ηi

). (33)

Next we again use the inverse CDF technique to transform a uniform random draw into

a draw from the full conditional distribution of αi2 for i = 1, . . . , N .

Sampling σ2
ηi

σ2
ηi

σ2
ηi

If we condition on {µis}S
s=1 and αi, the only part of the model which is relevant for

sampling σ2
ηi

is (30) together with the prior for σ2
ηi

(15). Hence, the full conditional

posterior distribution of σ2
ηi

is an inverted Gamma-2 with scale parameter
∑S

s=1(µis −
αi0 − αi1 cos(2π s

S
− αi2))

2 + v and S + ν degrees of freedom. We can use that

∑S
s=1(µis − αi0 − αi1 cos(2π s

S
− αi2))

2 + v

σ2
ηi

∼ χ2(S + ν). (34)
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Sampling of θθθ

If we condition on {βi}N
i=1 and Σ, the only part of the model which is relevant for sampling

θ is

β′i = Z ′
iθ + ξ′i (35)

for i = 1, . . . , N . Stacking these N equations we obtain

β = Zθ + ξ, (36)

where β = (β1, . . . , βN)′, Z = (Z1, . . . , ZN)′ and ξ = (ξ1, . . . , ξN)′ with vec(ξ) ∼ N(0, Σ⊗
Ik). Hence, the posterior distribution of vec(θ) is normal with mean vec((Z ′Z)−1Z ′β) and

variance Σ⊗ (Z ′Z)−1, see, for example, Zellner (1971, Chapter VIII).

Sampling of ΣΣΣ

If we condition on {βi}N
i=1 and θ the only part of the model which is relevant for sampling

Σ is given in (36). Hence, the covariance matrix Σ can straightforwardly be sampled from

an inverted Wishart distribution with scale parameter (β −Zθ)′(β −Zθ) + V and N + λ

degrees of freedom.

3.1 Testing for weekly seasonality

To test for the presence of weekly seasonality in the sales series we use Bayes factors.

We compare the model with weekly seasonality to a model where we restrict the regular

seasonal component of series i to be zero, that is, αi1 = 0. Hence, we analyze the absence

of the deterministic seasonal part.

The Bayes factor for αi1 = 0 is given by

BFi =

∫
p(ζ)`(Data|ζ)dζ∫

p0(ζ0)`0(Data|ζ0)dζ0

, (37)

where p0(ζ0) and `0(Data|ζ0) denote the prior density and the likelihood function for

αi1 = 0, respectively, and ζ0 summarizes the parameters in case αi1 = 0. The prior

density p(ζ0) follows from (12) and (14)–(18). To compute this Bayes factor we use the

Savage-Dickey density ratio of Dickey (1971), see also Verdinelli and Wasserman (1995).

The Bayes factor (37) is equal to

BFi =
p(αi1|Data)|αi1=0

p(αi1)|αi1=0

, (38)
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that is, the ratio of the height of the marginal posterior density of αi1 and the height of

the marginal prior density of αi1, both evaluated at αi1 = 0, see Koop and Potter (1999)

for a similar approach. The height of the marginal prior follows directly from (13). The

height of the marginal posterior density of αi1 can easily be computed using the draws

from the MCMC sampler, see Gelfand and Smith (1990).

Finally, note that also the irregular part ηis contributes to the seasonal pattern. To

analyze the influence of this component, we compare its variance σ2
ηi

with the variance of

the deseasonalized sales series σ2
i .

4 An illustration

To illustrate the usefulness of our model, we consider weekly sales volumes for 96 brands

of fast moving consumer goods in 24 distinct categories. These data are obtained from

the database of the US supermarket chain Dominick’s Finer Foods. The data cover the

period September 1989 to May 1997 in the Chicago area. The same data are used in

Srinivasan et al. (2004). We take the top four brands of each product category. Next

to the actual price Pit we include in Promoit the typical promotion variables display and

feature.

To explain the three price elasticities for each brand we collect and construct a range

of explanatory variables (Zi). Some of these variables correspond to the characteristics of

the product category, while other variables correspond to the characteristics of the brand

itself. Table 1 contains a list of the variables with their explanation. These variables were

also used in Fok et al. (2005), and details can be found in that paper.

– Insert Table 1 about here –

We now turn to the estimation results. We mainly impose weakly informative priors,

that is we set σ2
α1

= 1, v = 0.15, ν = 5, V = I3, and λ = 6. For the thresholds we set the

prior parameters such that the regimes correspond to small versus large price changes,

that is we set µτ = 0.1, σ2
τ = 0.025 and ub = 0.4. That is we expect the threshold between

small and large price changes to be around 10% and we restrict it not to be larger than

40%. Finally, we set γ = 50.

These results are based on 40,000 draws of our MCMC sampler, where the first 25,000

draws are discarded and of the remaining draws we only use each 5th draw to obtain a

14



reasonable random sample from the posterior distribution.

Weekly seasonality

First we comment on the seasonal component of our model. We use the Bayes Factor

to compare our model to a model where αi1 = 0, i = 1, . . . , 96, that is a model with no

seasonality. The Bayes factors are computed using the Savage-Dickey Density Ratio as

described in Section 3.1. Of these 96 Bayes Factors, 15 are smaller than 1, that is, for

15 brands we prefer the model with a clear sigmoidal seasonal pattern. These 15 brands

are in the product categories beer, oatmeal, crackers, canned soup, snacks, and frozen

dinners. Note that this does not automatically imply that the remaining brands do not

show any seasonal pattern. Indeed, the unexplained stochastic part of (3), that is ηis, also

contributes to the seasonal pattern. As mentioned, in contrast to the deterministic part,

this part of the description for seasonality is not smooth. By comparing the variance of

ηis to the variance of εit we can evaluate the relative importance of the irregular seasonal

pattern. Figure 3 shows a histogram of E[σ2
i |Data]/E[σ2

ηi
|Data]. Smaller values of this

fraction indicate stronger seasonal patterns. All values appear larger than 1 and this

indicates that for all brands the variance of the εit is larger than the variance of ηis. For

more than half of the brands the fraction is smaller than 5.

– Insert Figure 3 about here –

These results show that there are brands for which we do not find a deterministic

seasonal pattern, but for which the stochastic component of the seasonality is important.

In these cases the sales do not show a smooth seasonal pattern but rather a pattern of

(seasonally) recurring spikes and dips. These spikes or dips may correspond for example

to special holidays. In Figure 4 we show some examples of the seasonal patterns that we

find. It is clear that for some brands we find no seasonality at all, that for others we find

a relatively smooth cycle, while yet for other brands the seasonal patterns correspond to

just a few spikes in sales.

– Insert Figure 4 about here –
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Non-linear price elasticity

We now continue with the price elasticity. In Table 2 we present the estimation results

corresponding to (8). It is important to note that all explanatory variables are standard-

ized, that is, they are transformed to have mean 0 and variance 1. The intercepts in (8)

can therefore directly be interpreted as the posterior mean of βi. When we compare these

posterior means we see that, overall, the elasticity for small price changes is the largest,

followed by the elasticity of large price decreases. The elasticity of large increases is the

smallest. The marginal effect of a price change is smaller for large price changes relative

to small changes.

In Figure 5 we show the price effects for the four brands in a representative category

(softdrinks), and we take this case to show how estimation results can be interpreted. We

show sales-response graphs, similar to Figure 1, and graphs of the price elasticity, similar

to Figure 2. The domain of each graph corresponds to price changes actually observed

in the sample. For three of the four brands we find that the sales response curve flattens

for large price increases. This could imply that for these brands there is a large segment

of loyal consumers, who do not switch to another brand even if the price increases to a

large extent. Next, for large price increases the sales response curve is not as steep as for

small price changes. The threshold for large price decreases (τ2) is approximately .18, the

threshold for large price increases (τ1) is about .10.

– Insert Figure 5 about here –

Table 2 also shows the relevance of some of the brand and category characteristics for

explaining the non-linear price effects. We see that larger brands tend to have smaller

price elasticities for large price increases and large price decreases, while the elasticity for

small price changes seems to be unrelated to the brand size. The relative price promotion

frequency and the relative display frequency are only related to the elasticity of small

price changes. A high relative price promotion frequency corresponds to a small elasticity,

while a large relative display frequency corresponds to a large elasticity. Furthermore, in

categories with high price dispersion, the elasticity of a small price change is relatively

small. Finally, from the second panel we learn that brands, in a category with a high

feature activity or brands that have relatively deep price discounts, tend to have a smaller

elasticity of large price increases. For large price decreases we find that hedonic categories

show smaller elasticities than utilitarian categories.
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The covariance matrix of the random component (ξi) of the price effects is given

in bottom panel of Table 2. Compared to the mean effects and the size of the other

parameters, the magnitude of the random component is quite large. Hence, the price

effects differ widely across brands, and only a relatively small part of this variation can

be explained by our second-level model (8).

5 Conclusion

In this paper we have put forward a multi-level model for a panel of time series on

sales and marketing activities, where we allowed for weekly seasonality and for non-linear

asymmetric price effects. As sales data can be available at a weekly basis, the standard

dummy variable approach to model seasonality involves too many parameters. Instead,

we have proposed a combination of a deterministic cycle and of random effects to capture

seasonality. In the empirical section we showed that this specification can capture a wide

variety of seasonal patterns ranging from a smooth cycle to a pattern of recurring spikes

and dips.

We also introduced flexibility in the sales-price curve, which is usually assumed as

linear. Indeed, we allowed price increases to have a different effect than price decreases

and we also distinguished between large price changes and small changes. In the empirical

section we tried to explain possible differences in these price effects across brands.

We are tempted to conclude that our multi-level model, while summarizing thousands

of observations with varying features over time, over categories and over elasticities, kept

interpretability of the parameters. Further work could address the forecasting power of

models like ours as well as model selection issues.

17



−τ2

τ1

β1

β2

β0

∆ln Pt

∆
ln

 S
t

0

Large price increaseSmall price changeLarge price decrease

Figure 1: Example of a non-linear sales response curve

18



β0

β1

β2

τ1
−τ2 0 ∆ln Pt

∂ln St/∂ln Pt

∂ln St/∂ln Pt
∂ln St/∂ln Pt

β0=β1

β2

τ1
−τ2 0

∂ln St/∂ln Pt

β0

β1

β2

τ1−τ2 0

∆ln Pt

∆ln Pt

β0

β1

β2

τ1−τ2
0 ∆ln Pt

Figure 2: Four examples of the implied price elasticities.

19



0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

Figure 3: Histogram of posterior mean of σ2
i divided by posterior mean of σ2

ηi
.

20



0.0 0.5 1.0

0.0

0.5

0.0 0.5 1.0

0.0

0.5

0.0 0.5 1.0

0.00

0.25

0.0 0.5 1.0

0.0

0.5

0.0 0.5 1.0

0.0

0.5

0.0 0.5 1.0

0.0

0.5

0.0 0.5 1.0

0.00

0.25

0.0 0.5 1.0

−0.25
0.00
0.25

0.0 0.5 1.0

0.00

0.25

0.0 0.5 1.0

−0.25
0.00
0.25

0.0 0.5 1.0

0.00

0.25

0.0 0.5 1.0

0.0

0.0 0.5 1.0

0.0

0.5

0.0 0.5 1.0

0.0

0.5

0.0 0.5 1.0

0.0

0.5

0.0 0.5 1.0

−0.25

0.00

0.25

0.0 0.5 1.0

0.0

0.5

0.0 0.5 1.0

0.0

0.5

0.0 0.5 1.0

0.0

0.5

0.0 0.5 1.0

0.0

0.5

Figure 4: Some examples of the posterior mean of µis = αi1 cos(2π s
S
− αi2) + ηis, with

95% highest posterior density region. The horizontal axis corresponds to one year.
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Figure 5: Posterior mean of price effect for four brands in the softdrinks category (with

95% highest posterior density region).
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Table 1: Explanatory variables Z for the second-level model (8)

Variable Description

Category-level characteristics

Price dispersion Average distance between the highest and

the lowest regular price

Concentration index Measured through
∑

i Mi log Mi, where Mi

denotes the average market share of brand i

in a category

Price promotion frequency Frequency with which at least one brand in

the market has a price promotion

Depth of price promotion Average size of the price promotion

Display frequency Frequency of at least one product on display

in a category

Feature frequency Frequency of at least one featured product in

a category

Hedonic Dummy variable indicating if the product

has a hedonic nature

Brand-level characteristics

Price index Average price relative to the average price in

the category

Brand size Average market share of the brand

Relative price promotion frequency Frequency of price promotion divided by the

category price promotion frequency

Relative depth of price promotions Depth of price promotion divided by the

depth of price promotion for the category

Relative feature frequency Frequency of feature relative to the frequency

of at least one feature in the category

Relative display frequency Frequency of display relative to the frequency

of at least one feature in the category

Market leader Dummy variable for the brand with the high-

est average market share
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Table 2: Posterior mean of second-level parameters θ (Eq. (8)), with the posterior standard

deviation in parentheses

Zi

Small price changes Large price increase Large price decrease

θ0 θ1 θ2

Intercept -2.432*** (0.106) -1.380*** (0.117) -2.014*** (0.133)

Brand-level characteristics

Price index 0.161 (0.116) -0.103 (0.142) 0.096 (0.140)

Brand size 0.081 (0.174) 0.339** (0.178) 0.549*** (0.201)

Rel. price prom. freq. 0.319** (0.129) -0.046 (0.143) -0.148 (0.172)

Rel. depth price prom. 0.024 (0.109) 0.264*** (0.106) 0.150 (0.119)

Rel. feature freq. -0.152 (0.129) 0.108 (0.137) 0.183 (0.156)

Rel. display freq. -0.253** (0.110) 0.031 (0.124) 0.133 (0.141)

Market leader 0.018 (0.159) -0.171 (0.168) -0.038 (0.184)

Category-level characteristics

Price dispersion 0.252** (0.113) -0.145 (0.143) 0.220 (0.149)

Concentration index -0.022 (0.114) -0.151 (0.120) -0.227 (0.151)

Price prom. freq -0.238 (0.158) -0.252 (0.160) -0.206 (0.185)

Depth price prom. -0.079 (0.137) 0.150 (0.155) 0.029 (0.174)

Display freq. -0.124 (0.167) -0.039 (0.167) -0.021 (0.191)

Feature freq. -0.125 (0.149) 0.328** (0.139) 0.220 (0.158)

Hedonic -0.043 (0.126) 0.174 (0.139) 0.292* (0.160)

Covariance of random effects ξ

Σ =




0.7659 0.2307 0.0015

0.2307 0.6808 0.5496

0.0015 0.5496 0.8427




∗,∗∗,∗∗∗ Zero not contained in 90%, 95% or 99% highest posterior density region, respectively.
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