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Abstract: In this paper, we study two versions of the two machine flow shop scheduling problem, 
where schedule length is to be minimized. First, we consider the two machine flow shop with setup, 
processing, and removal times separated. It is shown that an optimal solution need not be a 
permutation schedule, and that the problem is NP-hard in the strong sense, which contradicts some 
known results. The tight worst-case bound for an optimal permutation solution in proportion to a 
global optimal solution is shown to be 3/2. An O(n) approximation algorithm with this bound is 
presented. Secondly, we consider the two machine flow shop with finite storage capacity. Again, it 
is shown that there may not exist an optimal solution that is a permutation schedule, and that the 
problem is NP-hard in the strong sense. 
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1 Introduction 

In this paper, we consider two versions of the two machine flow shop scheduling 
problem to minimize the schedule length. First, we consider the two machine 
flow shop with setup, processing, and removal times separated. Secondly, we 
consider the two machine flow shop with finite storage capacity. In both cases it 
is shown that, in contrary to what was believed before, there may not exist an 
optimal solution among permutation schedules, i.e., schedules with the same 
ordering of jobs on all machines. 

The two machine flow shop problem with setup, processing, and removal times 
separated can be described as follows. Each job Jj, j = 1, 2 . . . . .  n, consists of a 
chain of operations (01.j, O2,i), which are to be performed in that order on the 
machines M1 and M2, respectively. Each operation O~,j, i = 1, 2;j  = 1, 2 . . . . .  n, 
consists of three stages: a setup, a processing, and a removal stage. The setup 
stage precedes the processing stage, and the removal stage follows the processing 
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stage. The setup of an operation can only start after the removal stage of its 
predecessor on that machine has been completed. Once the setup has started, 
the processing and the removal stages of that operation must follow without 
being interrupted by other operations. The setup, the processing, and the re- 
moval stages of an operation Oi, j, i = 1, 2, take si,j, p~,j, and r~,j time units, 
respectively. A machine can perform only one operation, and one stage, at a 
time. Any stage of 02,j can be performed during the removal stage of O1,j. 
Similarly, the setup stage of 02,j can be performed during any stage of 01,j. The 
flow shop assumption can be formulated here as that the processing stage of O2.j 
must start not before the processing stage of 01. i has been completed, for all J~. 

We now turn to the description of the two machine flow shop problem with 
finite storage capacity. The formulation for the classical flow shop problem is 
applied here. An operation consists of processing only, a machine can perform 
only one operation at a time, and the flow shop assumption here implies that 
02,i must start not before Oa,j has been completed, for all Jj. 

Furthermore, some extra restrictions arise from the finite storage capacity. 
During the processing of O~,j on Mx, a half-product is generated. Further 
processing of this half-product has to be done on M2; this defines O2,j. After 
completion of 01,j, the half-product must be stored in the buffer until O2,j may 
start on M2. If the buffer is full, then the half-product must wait on M~, and this 
prevents this machine from performing the next operation. In the classical flow 
shop, there is no restriction on the storage capacity between the two machines, 
i.e., it is assumed that the buffer capacity is sufficiently large. We define the buffer 
capacity b as the number of half-products generated on M~ that the buffer can 
contain. If 1 _< b _< n - 2 then the buffer capacity may be a restriction. This case 
is referred to as finite buffer capacity. 

For both versions of the two machine flow shop we assume the following. All 
J~ have zero release times, i.e., they may start at time zero. Without loss of 
generality, we assume that all values are integral. No preemption is allowed, i.e., 
once started, a stage of an operation cannot be interrupted before completion. 

The criterion for optimality is the makespan C,,a~, i.e., it is required to mini- 
mize the time that both machines have completed all n jobs. 

We adopt the notation F21 I Cma~ for the classical two machine flow shop, as 
used by Lawler, Lenstra, Rinnooy Kan and Shmoys (1993). The version of that 
problem with setup, processing, and removal times separated is denoted by 
F2 Isgj, r~jl C,,a~. The flow shop problem with finite buffer capacity is denoted by 
F2 Ibl Cr, a~, and the buffer capacity may be specified, for example, to be equal to 
I by F2tb = llCmax. 

The problem F21@, rolC,,~ was considered by Sule (1982) and Sule and 
Huang (1983), who claimed that an optimal solution could be found in polyno- 
mial time by using the Johnson algorithm for an artificial F21 I Cm~ problem 
with specially defined processing times of the operations O~,j and 02,j. They 
followed the way of reasoning of Yoshida and Hitomi (1979) who derived a 
similar result for the flow shop with setup times separated only. Sule and 
Huang came to their conclusion, because they took for granted that, for 
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F2 Is~j, r~jl Cm.~, there would always exist an optimal solution that was a permu- 
tation schedule, which is not true in general, as we show below. We consider the 
problem F2 Is~j, rijl Cma~ in Section 2. 

In Section 3, we consider the problem F2lbl Cma~, 1 < b < n - 2. This prob- 
lem was studied by Papadimitriou and Kanellakis (1980), although they re- 
stricted themselves to a first-in, first-out (FIFO) buffer policy, i.e., they assumed 
that a job does not leave the buffer before its predecessors left it. Thus, only 
permutation schedules were considered. They proved this problem to be NP-  
hard in the strong sense, and presented an approximation algorithm with a tight 
worst-case ratio bound of (2b + 1)/(b + 1). We show that under arbitrary buffer 
policy, F2 I bl C,.~x may have only non-permutation optimal solutions, and the 
problem remains NP-hard in the strong sense. The Papadimitriou-Kanellakis 
approximation algorithm is still applicable to the latter problem, and the worst- 
case bound does not change. 

2 The Problem F2lso, ro[ C,.ax 

For the classical flow shop with two or three machines, F21 I Cmax and 
F3[ I C,,ax, there always exists an optimal permutation schedule (see Conway, 
Maxwell and Miller (1967)). For the flow shop with setup times separated, the 
same property holds for two machines only as proved by Yoshida and Hitomi 
(1979). 

The problem F2[ [ C,,a~ is solvable in O(n log n) time due to Johnson (1954), 
while F31 I Cma~ is NP-hard in the strong sense (see Garey, Johnson and Sethi 
(1976)). The problem F2lsolCma x is solvable in O(nlog n) time by using the 
Johnson algorithm for the classical two machine flow shop problem, where 
the processing times of the operations O1,~ and O2,j of job "/i are equal to 
Sl,~ + Pl,~ - s2,j and P2,~, respectively (see Yoshida and Hitomi (1979)). 

As mentioned before, F2ls  o, r~jI Cmax was considered by Sule (1982) and by 
Sule and Huang (1983), who claimed that the optimal solution could be found 
in O(n log n) time by using the Johnson algorithm for the classical two machine 
flow shop problem where the processing times of the operations 01j and O2j 
are equal to sLj + Pl , j -  S2 , j  and P2,j-I-r2, j - - r l , j ,  respectively. However, as 
proved, this result is only correct for F2ls o, rij [ Cm, ~ restricted to permutation 
solutions. 

Define 

Gi,j = Si , j  -[- Pi,j -b ri, j , i = 1, 2 . 

For a schedule S, let CI,j(S), j = 1, 2 . . . . .  n, denote the completion time of 
operation O1, fi C2,j(S ) is defined analogously. 
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Let S be a schedule associated with a permutation n. Without loss of general- 
ity, assume that zr = (1, 2 , . . . ,  n). As shown by Sule (1982), Sule and Huang 
(1983), 

C2,.(S) = max max ~ (SI , j  At- P l , j  - Sz , j )  - j=~l (PE,j -}- r 2 , j -  rl,j) , 0 
~.1 <u<n j = l  

+ ~ G2,j �9 
j = l  

For each job Jj, j = 1, 2 . . . .  , n, denote 

aj = Sl,  j + P l , j  - s2, j  ; bj = P2, j  -]- r2,j  - r l , j  �9 (2.1) 

Since Cm,~(S)= max{Cl,,(S), C2,,(S)}, and C I , n ( S  ) = ~ GI,j, the following 
j = l  

statement holds. 

Lemma 2.1: For F2 [si i, rij[ Cm~ restricted to permutation solutions, the makespan 
of  a schedule S associated with a permutation of  jobs n = { j, J 2, . . . , Jn } is specified 
by 

C2, . (S)=max ~, GI,j~,~. G2,jk, max ~ aj -- bj k + ~ G2,~k �9 
k=l  k= l  1 _<u_<n k=l  = k=l  

(2.2) 

It follows directly from Lemma 2.1, due to similarities in the expressions for 
Cmax, that the Johnson algorithm for F21 ]Cma~ can be used to find the best 
permutation solution for F2 Is~j, rijl Cmdr. 

We now show that, for F2ls  o, rij[ Cmax, the search for an optimal solution 
should not be restricted to considering only permutation schedules. 

Lemma 2.2: For F2[slj, rijlCma~, there may not be an optimal solution that is a 
permutation schedule. 

Proof: We present an example where the unique optimal solution is not a 
permutation schedule. There are two jobs J1 and J2 such that 
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st, 1 = 0, Pi , i  = 1, rl, 1 ~--- 0,  $2, 1 = 0, P2,1 = 1, r2, 1 = 0 ; 

$1, 2 -~ O, Pl,2 = 1, rl. 2 = 4, $2, 2 = 3, P2,2 = 2, r2, 2 = 0 . 
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Consider  the schedule shown in Fig. 2.1. I t  is easy to check that  this schedute 
with the j ob  order  (J1,-/2) on M1, and the order  (J2, J~) on M 2, is the unique 
opt imal  solution. I I  

We now turn to determining the complexi ty  of F2 Isis, fish C,,,~ not  restricted to 
pe rmuta t ion  solutions. To  show this p rob lem to be N P - h a r d  in the s t rong sense 
we reduce the wel l -known 3 - P A R T I T I O N  prob lem which is NP-comple t e  in the 
strong sense to the decision counte rpar t  of the p rob lem under  consideration.  

Define the decision version of F2 [sij , rij ] Cma x as follows: 

Given an instance o f F 2  Isis, ris ] Cm,~ and a positive integer y, does there exist 
a schedule S with Cm,x(S ) < y? 

Presenting 3 - P A R T I T I O N ,  we follow Garey  and Johnson  (1979): 

Given  a set T = {1, 2, . . . ,  3t} with an integer size ei for each i e T, and 
given a positive integer E, such that  ~ ei = tE and E/4 < ei < E/2. Can 

T be par t i t ioned into t disjoint sets T1, T2 . . . . .  Tt such that, for 1 < k < t, 
ei = E? (Note  that, if 3 - P A R T I T I O N  has a solution, then I T~I = 3 for 

i~ T k 

all k = 1, 2 . . . . .  t). 

Theorem 2.1." The problem F2 [s 0, ro[ Cm.x not restricted to permutation solutions is 
NP-hard in the strong sense. 

Proof. We reduce 3 - P A R T I T I O N  prob lem to the decision version of 
F2 Isis, rol Cm,~ and show that  3 - P A R T I T I O N  has a solut ion if and only if this 
decision p rob lem has a solution. 

P l l  P 1 2  r 1 2  

I I I 
s 2 2  P 2 2  P 2 1  

I I I 
I I I I I I 

0 1 2 3 4 5 6 

Fig. 2.1 

t 
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The following instance for the decision version ofF2 Is~j, r0[ Cmax is used. There 
are n = 4t jobs. We divide the jobs into two groups: U-jobs denoted by U~, i = 
l, 2 . . . . .  3t, and V-jobs denoted by Vj, j = 1, 2, . . . ,  t. Their setup, processing, and 
removal times are given below: 

S 1 , u = r l , u = O ,  p a , v = e i  , i = 1 , 2  . . . .  ,3t  ; 

S2,ui  -~- r2 ,u i  = O, P2, U, = e~(E + 2) , i = 1, 2 , . . . ,  3t ; 

S~,vj=O, p l , v j=E ,  r l , v j = E ( E + 3 ) ,  j = l ,  2 . . . .  , t  ; 

S2,vj=2E, P2,vj=E, r2,vs=O, j = l ,  2 . . . . .  t .  

The integer y is set to be tE(E + 5). Without loss of generality we may assume 
that E _> 3. Suppose that 3-PARTITION has a solution, and 7"1, T2, . . . ,  Tt are 
found subsets of set T. Let zv(Tk) denote an arbitrary permutation of the U-jobs 
with i r Tk. Consider a schedule S shown in Fig. 2.2. 

In this schedule, there is no idle time on each machine, and the jobs are 
ordered on ml  according to (nv(T1), I"1, nu(T2), V2, . . . ,  %(Tt), Vt), while on M2 
according to (V1, nv(T1), V2, nv(T2) . . . . .  V~, nu(Tt)). It is easy to check that the 
length of this schedule is tE(E + 5). 

Now suppose that a schedule S exists with length Cr, a~(S) < tE(E + 5). We 
prove that 3-PARTITION has a solution. Since the V-jobs are identical, we may 
assume that they are scheduled on M2 in increasing order of their numbering. 

Since performing all operations on each M1 and M2 takes tE(E + 5) time 
units, we know that Cmax(S) = tE(E + 5), and that there is no idle time on either 
machine. 

It follows that I/1 must be placed first on M2, because S2.vj > 0 and s2,v, = 0 
while all processing times are strictly positive. 

Since s2, v, = 2E > E = p~, v,, we must consider the possibility that some jobs 
precede V~ on M1. The total length of these jobs on M1 cannot be greater than 

M1 

M2 

o 

Fig. 2.2 

~ (  T1) Vl 

I 
V 1 r l , V  1 

s 2 , V  1 P 2 , V  1 7ru(T1 

I , . ,  

I I - - -  

E 2E 3E E ( E + 5 )  



On Non-Permutation Solutions to Some Two Machine Flow Shop Scheduling Problems 311 

E, because otherwise an idle time arises on M2 after the completion of the setup 
of V 1 o n  M 2. Thus, these jobs can only be U-jobs. We denote the set of indices 
of the U-jobs preceding I/1 on Ma by T*, and the total length of the jobs U~, 
i s T*, on M~ by E'. Note that E' <__ E. 

Suppose that E ' <  E. Since all values are integer, we have that 0 _< E'__< 
E - 1, Since 

=E'  C~,v~(S) = E' + P~,vI + r~,v, + E(E + 4) > 3E = $2,v1 "]- P2,v~ 

= C2, v , ( S )  , 

we conclude that V 1 must be followed o n  M 2 by the jobs U i, i s T*. However, 
the last of those jobs finishes at 3E + E'(E + 2) which is still less than CI,vI(S). 
To avoid an idle time o n  M 2 we can only start the setup stage of job V2 o n  m 2 

immediately after the last of the jobs Ui, i ~ T*, has been completed. So, the setup 
stage of 02, v2 finishes at 5E + E'(E + 2), and the processing stage of that opera- 
tion must start exactly at this time. On the other hand, even if V 2 directly follows 
V1 on M1, the processing stage of 01,v2 finishes at E' + Pl,v, + r~,v~ + Pl,V~ = 
E' + E(E + 5). We have that 5E + E'(E + 2) < E' + E(E + 5) since this in- 
equality is equivalent to E'(E + 1)<  E 2, the latter one being true due to 
E' < E - 1. Thus, if E' < E one cannot avoid an idle time on M2, and we 
conclude that E' = E. 

We have shown that the total length of the jobs Ui, i 6 T*, on M~ is equal to 
E, and thus, there must be exactly three of them. We denote 7"1 = T* getting 

e i = E .  
i~T~ 

Extending arguments presented above, one can prove that in schedule S with 
the length tE(E + 5) machine M~ processes exactly three U-jobs with the total 
length E during each time interval [(k - 1)E(E + 5), kE(E + 5)], k = 1, 2 , . . . ,  t. 
Denoting the set of indices of the U-jobs processed on M~ during interval 
[(k - 1)E(E + 5), kE(E + 5)] by T k, k = 1, 2 . . . .  , t, we obtain a solution of 
3-PARTITION. �9 

It is interesting to find out whether the best permutation solution can have 
significantly greater schedule length than the length of a global optimal solution. 

We denote the value of the makespan for a global optimal solution and for 
the best permutation solution by C*,x and C~,,x , respectively. For  a non-empty 

set of jobs Q, we define GI(Q) to be ~ G1.j; G2(Q) is defined analogously. Let 
Jj~Q 

~(Q) denote an arbitrary permutation of the jobs of a set Q. If Q = ~ then 
G I ( Q )  = G2(t2)  = 0. 
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Theorem 2.2: For  F2 [sii, rijl C , ~ ,  the fol lowin9 bound 

rr , 
<_ 3/2 

holds, and this bound is tioht. 

V. A. Strusevich and C. M. Zwaneveld 

(2.3) 

Proof:  The proof is based on the results obtained by Strusevich (1993) for the 
two machine open shop scheduling problem with setup, processing, the removal 
times separated. 

Let N denote the set of all jobs Jj, j = 1, 2 . . . . .  n. For each job, find aj and bj 
by formula (2.1), and divide N into two sets: 

N" = {Jjlaj <_ bj} = {JjlGx,j <_ G2,j} , 

N b = {41aj  > bj} = {41G, , j  >  2,j} �9 

If N" # ~ ,  then select a job Jk ~ N"  such that bk = max{bjlJj ~ N"}, otherwise 
assume {Jk} = ~ .  If N b #  ~ ,  then select a job J z e N  b such that at = 
max{ajlJj e Nb}, otherwise assume {Jr} = ~ .  

For a schedule S, let R~(S) and C~(S) denote the starting and the completion 
time of the processin O phase of operation Oij, i = 1, 2, Jj s N. Note that, in any 
feasible schedule S, the inequality Cfj(S) < R~j(S) holds for each job Jj. 

Suppose that IN"I = q and INbl = m. Determine permutations ~b(Na)= 
(il, i2, ".., i~) = (4, 7 c ( N a \ { J k } ) )  and O(Nn) = ( f l ,  f2 . . . . .  fro) = (x(Nb\{Jz}), Jl)" 

Consider a schedule S a in which each machine processes the jobs of set N" 
according to a sequence ~b(N"), provided that both machines do not stand idle 
once started. 

For schedule S", let R~ be the starting time of machine M2. It follows from 
(2.2) that 

R~ = max aq, 0, max % - = 2, 3 , . . . ,  q . 
j = l  ' =  

However, due to the definitions of set N" and noticing that k = i 1, we obtain for 
each u, 2 _< u _< q, that 

f. ai s - bi~ <- a k  �9 
j = l  "= 

Thus, in this case, we have R 2 = max{ak, 0}. Schedule S a is shown in Fig. 2.3. 
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Similarly, we construct a schedule S b where each machine processes the jobs 
of set N b according to the sequence q~(NB) provided that both machines do not 
stand idle once started. 

For  schedule S b, let R~ be the starting time of machine M 2. It  follows from 
(2.2) that 

R~ = max ayl,  O, max ass - -  b f j l  u = 2, 3 , . . . ,  m . 
, =  

However, due to the definitions of set N b and noticing that l = fro, we obtain for 
each u, 2 < u < m - 1, that 

j=l a f t  - j~=l= byj > j=l a f j  - .= bf~ . 

In addition, it follows that at > ay, and, since 

m-1 m-1 

Y %-E bfj>_O, 
j=l  "= 

we obtain 

M2MlISlk 
o 
JI: s k 

M1 

M2 

o 

Fig. 2.3 

Plk  

1 
S lk  

Plk  

I 
S lk  

r l k  G l ( N a \ { J k } )  

I I 
Plk  r l k  G 2 ( g a \ { J k } )  

I I I 

r l k  G l ( N a \ { g k } )  

I I 
Plk  r l k  G 2 ( N a \ ( J k } )  

I I I 

(a) 

(b) 
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j=l af, - .= bfj > all . 

"; } Finally, we conclude that Rb2 = max alj -- by j, 0 . Schedule S b is shown 
l j= l  '= 

in Fig. 2.4. 

Now schedules S a and S b can be combined as shown in Fig. 2.5 to obtain a 
schedule S associated with a permutation 7z = (Jk, rc(N"\{Jk}),  n(Nb\{J~}),  Jt). 
Note that if either N a =  ~ or N b =  ~ ,  then rc = (z(Nb\{J~}) ,  Jl) or 7z = 
( Jk, X( Na \ { Jk } )), r e s p e c t i v e l y .  

It follows that 

Cm,,~(S) = max{Gl(N), G2(N), ak + G2(N), bl + GI(N)} �9 (2.4) 

If Cm.x(S) = max{Gl(N), G2(N) } then S is a global optimal schedule, and (2.3) 
holds. 

We show that if C,,,.x(S) = max {ak + G2(N), bl + G1 (N)}, then C,,,.~(S)/C*a. < 
3/2. Thus, since Cff~ax ~ Craax(S), we obtain bound (2.3). 

Suppose that C,,,.~(S) = a k + G2(N). It is evident, that if a k < G2(N)/2, then 
Cm.x(S) /< 3G2(N)/2. Since C*.x > G2(N), we have that Cr..x(S)/C*.~ < 3/2. 

Suppose that ak > G2(N)/2. Then, we have that G2,k > bk > ak > G2(N)/2, and 
it follows that C,..x(S) = ak + G2(N) < 2ak + G2,k. 

'[GI(Nb\{JI })Sll 
M1 I 

I G2(Nb\{jl}) 
M2 ] 

o 

Pll rll 
I I 
S2l 

g b GI(N \{Jl })Sll Pll 

I Gl2(Nb\lJl}) s21 
M2 I 

o 
Fig. 2.4 

P21 r21 

rll 
I 

P21 r2l 

(a) 

� 9  

(b) 

t 
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T I Ipl  I i M1 I J ' 
S2k P2k r2k G 2 ( N a \ { j k } )  G 2 ( N b \ { J I } )  

M~ [ t I I I I 
0 

Ma l~lk[ plk 

M2 I S2k 

o 

Slk Plk 

,92k 

r l /  

s21 P21 r2l 
I I 

b 

b 
P2k r2k G2(Nak{Jk})  ]G21N \ { J I } )  s21 P21 r21 
I I 1 ' I I I  I 

rlk Gl(Na\{Jk}) Gl(Nb\{Jl}) Sll 

P2k r2k G2(Na \ {Jk} )  G 2 ( N b \ { J l } )  
I i l 

Pll r l l  

a21 !P21 r 2 1  

I I I  

(a) 

(b) 

(c) 

M1 

M2 

i Plk 

S2k 

0 

r l k  Gl(Na\{Jk}) GI(Nb\{JI}) Sll Plt r l /  

I I t I 
b ': 

P2k r2k G2(Nak{Jk})  G2(N \ { J I } )  s21i P21 
r I I 1 t t 

r21 
(d) 

Fig. 2.5 

On the other hand, 

C*ma x ~__ $1, k d- Pl ,k  -~- P2,k d- r2, k = s1, k -~- Pl ,k  d- ( - -$2,  k d- S2,k) d- P2,k "~- r2,k 

= ak + G2,k �9 

Thus, we have that 

Cmax(S)/C*ax < (2a k + Gz,k)/(a k + GZ,k) = 1 + ak/(a k + G2,k) < 3/2 . 

For Cmax(S) = b, + G I ( N  ) the proof is similar. 
We have proved that bound (2.3) holds. The following example shows that this 

bound is tight. There are two jobs, J1 and J2, with the following setup, pro- 
cessing, and removal times: 

J l :  P1 ,1  = P2,1  = 1, all other times are zero ; 

J 2 : r x , 2  = S2,2 = 1, all other times are zero , 

It is easy to check that there is a unique optimal schedule with C*,x = 2 (see Fig. 
2.6). In this schedule, the job order on M1 is (J1, J2), and on M 2 is (J2, J1). On 
the other hand, each permutation schedule has length 3. [] 
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M 1 

M2 

0 

Fig. 2.6 

P l l  r 1 2  

I 
s 2 2  P 2 1  

I 

I 
1 

Note that in the proof of Theorem 2.2, we use heuristic schedule S which can 
be found in O(n) time. This leads to a linear-time approximation algorithm for 
F2 Isij, rijl C,.a~. Note that the best permutation schedule also can be treated as 
an approximate solution of F2 Isij, rijl Cr.~, but this schedule can be found in 
O(n log n) time while its worst-case ratio bound is the same as for schedule S. 

3 The Problem F2lblCm.x 

In this section, we examine F21blC,.,,:, with 1 < b < n - 2. Recall that if b > 
n - 1 then F2 [bl C.,.~ is equivalent to F21 I C,..x, while F2 Ib = 0l C.,.~ is equiva- 
lent to F21 [C,,,ax with the no-wait restriction. For  both F21 I fma x and its 
no-wait counterpart one may look for an optimal solution among permutation 
schedules. A permutation version of F2lbl Cr..x was studied by Papadimitriou 
and Kanellakis (1980) who restricted themselves to considering the FIFO buffer 
policy. We show that if one accepts an arbitrary buffer policy then an optimal 
solution need not be a permutation schedule. 

Lemma 3.1: For F2 [bl Cmax, there may be no optimal solution that is a permutation 
schedule. 

Proof: For  any b, 1 _< b _< n - 2, we present an instance of F2lblCm, x with a 
unique optimal solution which is not a permutation schedule. Consider the input 
data shown in Table 3.1. 

We define 

Job order on MI: type 1, b times type 2, type 3, (b + 2) times type 4 ; 

Job order o n  M2:  type 1, b times type 2, 1 time type 4, type 3, (b + 1) times 
type 4 ; 
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Table 3.1 

Type of jobs Pl,j P2,j 

1 1 5b 2 + 2 
2 2 3 b + 3  
3 8b 2 (b § 1) 2 
4 b + 2  1 

Number of jobs 
of this type 

1 
b 
1 

b + 2  

and consider a schedule with each operation starting as early as possible. See 
Fig. 3.1. 

We show that this is the only optimal schedule. In the proof, we denote by 
O~,2(Oi,4) an operation of any job of type 2 (of type 4, respectively) on Mi, i = 1, 2. 

Note that the above schedule does not contain any idle time, except the 
minimal release time for M2 and minimal idle on M I after all jobs have been 
completed on that machine. Thus, the job of type 1 should be placed first on both 
M1 and Mz, and one of the jobs of type 4 must be placed last on M2. 

Scheduling 01,3 in the second position on M1 induces an idle time on M2 since 
8b 2 > 5b z + 2. Thus, we have to fill up the time gap between 01,1 and O1,3. 

There may be no more than b jobs between 01,1 and 01,3, otherwise it would 
lead to an idle time on M 1 due to the buffer constraint. 

Suppose that we fill up the gap between 01,1 and 01,3 on M1 with k times 01,2 
and I times 01,4, l + k < b, and place the corresponding operations on M 2 after 
02,1. Then O1,3 finishes at 1 + 2k + l(b + 2) + 8b 2. The last of inserted jobs 
finishes on M 2 at 1 + (5b 2 + 2) + k(3b + 3) + I. We need the inequality 

2k + l(b + 2) + 8b 2 < (5b 2 + 2) + k(3b + 3) + l 

which is only valid if k = b a n d  I = 0. 

0 1 1  
3/1 

M2 

o 1 

Fig. 3.1 

b ' 0 1 2  0 1 3  0 1 4  ( b + l )  " 0 1 4  

I t l  i 

0 2 1  b ' 0 2 2  0 2 4  0 2 3  b ' 0 2 4  0 2 4  

f II  I II 

2 2 2 
5b  +3 8b  + b + 3  9b + 6 b + 5  
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Thus, all b jobs of type 2 must be placed on Mx before O~, 3, while all b + 2 
jobs of type 4 are scheduled after that operation. Besides, all jobs of type 2 must 
be processed on M 2 after 02,1. Note that the first of jobs of type 4 finishes on 
M1 at the same time as the last of operations 02, 2 is completed since 2b + 8b 2 + 
(b + 2) = (5b 2 + 2) + b(3b + 3). 

We still need to specify the order of jobs on M2 after the last operation 02,2. 
Suppose that 02, 3 is assigned right after that operation. Note that by the time 
02,3 starts, the first of the operations 01,4 finishes and goes to the buffer. 
Thus, while O2,3 is being processed no more than b - 1 operations 01,4 can be 
processed on M 1 due to the buffer restriction. However, their total length is 
(b - 1)(b + 2) < (b + 1) 2, and two remaining operations O1,4 can only start after 
some idle time on M 1 . 

It is obvious that there may be at most one operation 02,4 between the last of 
the operations O2,2 and operation 02, 3 because processing a job of type 4 takes 
more time on M1 than on M2. 

Thus, we assign exactly one operation 02, 4 directly after b operations 02, 2. 
The moment that 02, 3 starts processing on M2, the buffer becomes empty. The 

remaining b + 1 operations 02,4 can be processed without any idle time, because 
b(b + 2) < t + (b + 1) 2, and (b + 1)(b + 2) = 1 + (b + 1) 2 + b. �9 

Papadimitriou and Kanellakis (1980) showed that F21bl C,,a~, restricted to 
permutation schedules, in NP-hard in the strong sense, via a transformation 
from Numerical (b + 2)-Dimensional Matching. Howevr, their restriction to 
permutation schedules is not crucial, because the instance used has a unique 
optimal solution that is a permutation schedule. These observations are suffi- 
cient for deriving the following result. 

Theorem 3.1: The problem F2 ]bl Craax is NP-hard in the stron# sense. 

For F2[b[ Cm,~, we denote the makespan for a global optimal solution and 
for the best permutation solution by C*,~(b) and by C~a~(b), respectively. 
Papadimitriou and Kanellakis showed that 

C*.~(b = O)/C~.x(b) <_ (2b + 1)/(b + 1) , (3.1) 

and this bound is tight. From (3.1), Papadimitriou and Kanellakis derived an 
O(n log n) approximation algorithm for F2lbl C,,ax restricted to permutation 
solutions: use the Gilmore-Gomory algorithm (see Gilmore and Gomory, 1964) 
to solve F2Lb = O ICmax, and schedule the jobs according to the resulting permu- 
tation, using the buffer of capacity b. This algorithm turns out to have the tight 
worst-case bound (2b + 1)/(b + 1) as' well. Note that for F2ib = 01C,,,x only 
permutation schedules are feasible. 
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It easy to check that the part of the proof presented by Papadimitriou and 
Kanellakis (1980) to show that (2b + 1)/(b + 1) is an upper bound on the ratio 
C*max(b = O)/C~ax(b) can be applied to F2 [bl C,,ax in its general form, because no 
one of the arguments used is restricted to permutation solutions. So, we even 
have that 

C*.~(b = O)/C*max(b ) <~ (2b + 1)/(b + 1) . (3.2) 

Note that the example given by Papadimitriou and Kanellakis shows that this 
bound is tight. It follows from (3.2) that the heuristic solution based on the 
Gilmore-Gomory algorithm is as good for F2 Ibl C,,~x in the general form as for 
its permutation counterpart. 
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