
ZOR - Mathematical Methods of Operations Research (1994) 39:305-319 F ~ . I] 1 4

On Non-Permutation Solutions to Some Two Machine
Flow Shop Scheduling Problems

VITALY A. STRUSEVICH

Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam,
The Netherlands

CARIN M. ZWANEVELD

Tinbergen Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam,
The Netherlands

Abstract: In this paper, we study two versions of the two machine flow shop scheduling problem,
where schedule length is to be minimized. First, we consider the two machine flow shop with setup,
processing, and removal times separated. It is shown that an optimal solution need not be a
permutation schedule, and that the problem is NP-hard in the strong sense, which contradicts some
known results. The tight worst-case bound for an optimal permutation solution in proportion to a
global optimal solution is shown to be 3/2. An O(n) approximation algorithm with this bound is
presented. Secondly, we consider the two machine flow shop with finite storage capacity. Again, it
is shown that there may not exist an optimal solution that is a permutation schedule, and that the
problem is NP-hard in the strong sense.

Key Words: flow shop, permutation schedules, complexity, approximation

1 Introduction

In this paper, we consider two versions of the two machine flow shop scheduling
problem to minimize the schedule length. First, we consider the two machine
flow shop with setup, processing, and removal times separated. Secondly, we
consider the two machine flow shop with finite storage capacity. In both cases it
is shown that, in contrary to what was believed before, there may not exist an
optimal solution among permutation schedules, i.e., schedules with the same
ordering of jobs on all machines.

The two machine flow shop problem with setup, processing, and removal times
separated can be described as follows. Each job Jj, j = 1, 2 n, consists of a
chain of operations (01.j, O2,i), which are to be performed in that order on the
machines M1 and M2, respectively. Each operation O~,j, i = 1, 2;j = 1, 2 n,
consists of three stages: a setup, a processing, and a removal stage. The setup
stage precedes the processing stage, and the removal stage follows the processing

0340- 9422/94/39:3/305 - 319 $2.50 �9 1994 Physica-Verlag, Heidelberg

306 v.A. Strusevich and C. M. Zwaneveld

stage. The setup of an operation can only start after the removal stage of its
predecessor on that machine has been completed. Once the setup has started,
the processing and the removal stages of that operation must follow without
being interrupted by other operations. The setup, the processing, and the re-
moval stages of an operation Oi, j, i = 1, 2, take si,j, p~,j, and r~,j time units,
respectively. A machine can perform only one operation, and one stage, at a
time. Any stage of 02,j can be performed during the removal stage of O1,j.
Similarly, the setup stage of 02,j can be performed during any stage of 01,j. The
flow shop assumption can be formulated here as that the processing stage of O2.j
must start not before the processing stage of 01. i has been completed, for all J~.

We now turn to the description of the two machine flow shop problem with
finite storage capacity. The formulation for the classical flow shop problem is
applied here. An operation consists of processing only, a machine can perform
only one operation at a time, and the flow shop assumption here implies that
02,i must start not before Oa,j has been completed, for all Jj.

Furthermore, some extra restrictions arise from the finite storage capacity.
During the processing of O~,j on Mx, a half-product is generated. Further
processing of this half-product has to be done on M2; this defines O2,j. After
completion of 01,j, the half-product must be stored in the buffer until O2,j may
start on M2. If the buffer is full, then the half-product must wait on M~, and this
prevents this machine from performing the next operation. In the classical flow
shop, there is no restriction on the storage capacity between the two machines,
i.e., it is assumed that the buffer capacity is sufficiently large. We define the buffer
capacity b as the number of half-products generated on M~ that the buffer can
contain. If 1 _< b _< n - 2 then the buffer capacity may be a restriction. This case
is referred to as finite buffer capacity.

For both versions of the two machine flow shop we assume the following. All
J~ have zero release times, i.e., they may start at time zero. Without loss of
generality, we assume that all values are integral. No preemption is allowed, i.e.,
once started, a stage of an operation cannot be interrupted before completion.

The criterion for optimality is the makespan C,,a~, i.e., it is required to mini-
mize the time that both machines have completed all n jobs.

We adopt the notation F21 I Cma~ for the classical two machine flow shop, as
used by Lawler, Lenstra, Rinnooy Kan and Shmoys (1993). The version of that
problem with setup, processing, and removal times separated is denoted by
F2 Isgj, r~jl C,,a~. The flow shop problem with finite buffer capacity is denoted by
F2 Ibl Cr, a~, and the buffer capacity may be specified, for example, to be equal to
I by F2tb = llCmax.

The problem F21@, rolC,,~ was considered by Sule (1982) and Sule and
Huang (1983), who claimed that an optimal solution could be found in polyno-
mial time by using the Johnson algorithm for an artificial F21 I Cm~ problem
with specially defined processing times of the operations O~,j and 02,j. They
followed the way of reasoning of Yoshida and Hitomi (1979) who derived a
similar result for the flow shop with setup times separated only. Sule and
Huang came to their conclusion, because they took for granted that, for

On Non-Permutation Solutions to Some Two Machine Flow Shop Scheduling Problems 307

F2 Is~j, r~jl Cm.~, there would always exist an optimal solution that was a permu-
tation schedule, which is not true in general, as we show below. We consider the
problem F2 Is~j, rijl Cma~ in Section 2.

In Section 3, we consider the problem F2lbl Cma~, 1 < b < n - 2. This prob-
lem was studied by Papadimitriou and Kanellakis (1980), although they re-
stricted themselves to a first-in, first-out (FIFO) buffer policy, i.e., they assumed
that a job does not leave the buffer before its predecessors left it. Thus, only
permutation schedules were considered. They proved this problem to be NP-
hard in the strong sense, and presented an approximation algorithm with a tight
worst-case ratio bound of (2b + 1)/(b + 1). We show that under arbitrary buffer
policy, F2 I bl C,.~x may have only non-permutation optimal solutions, and the
problem remains NP-hard in the strong sense. The Papadimitriou-Kanellakis
approximation algorithm is still applicable to the latter problem, and the worst-
case bound does not change.

2 The Problem F2lso, ro[C,.ax

For the classical flow shop with two or three machines, F21 I Cmax and
F3[I C,,ax, there always exists an optimal permutation schedule (see Conway,
Maxwell and Miller (1967)). For the flow shop with setup times separated, the
same property holds for two machines only as proved by Yoshida and Hitomi
(1979).

The problem F2[[C,,a~ is solvable in O(n log n) time due to Johnson (1954),
while F31 I Cma~ is NP-hard in the strong sense (see Garey, Johnson and Sethi
(1976)). The problem F2lsolCma x is solvable in O(nlog n) time by using the
Johnson algorithm for the classical two machine flow shop problem, where
the processing times of the operations O1,~ and O2,j of job "/i are equal to
Sl,~ + Pl,~ - s2,j and P2,~, respectively (see Yoshida and Hitomi (1979)).

As mentioned before, F2ls o, r~jI Cmax was considered by Sule (1982) and by
Sule and Huang (1983), who claimed that the optimal solution could be found
in O(n log n) time by using the Johnson algorithm for the classical two machine
flow shop problem where the processing times of the operations 01j and O2j
are equal to sLj + Pl , j - S2 , j and P2,j-I-r2, j - - r l , j , respectively. However, as
proved, this result is only correct for F2ls o, rij [Cm, ~ restricted to permutation
solutions.

Define

Gi,j = Si , j -[- Pi,j -b ri, j , i = 1, 2 .

For a schedule S, let CI,j(S), j = 1, 2 n, denote the completion time of
operation O1, fi C2,j(S) is defined analogously.

308 v.A. Strusevich and C. M. Zwaneveld

Let S be a schedule associated with a permutation n. Without loss of general-
ity, assume that zr = (1, 2 , . . . , n). As shown by Sule (1982), Sule and Huang
(1983),

C2,.(S) = max max ~ (SI , j At- P l , j - Sz , j) - j=~l (PE,j -}- r 2 , j - rl,j) , 0
~.1 <u<n j = l

+ ~ G2,j �9
j = l

For each job Jj, j = 1, 2 , n, denote

aj = Sl, j + P l , j - s2, j ; bj = P2, j -]- r2,j - r l , j �9 (2.1)

Since Cm,~(S)= max{Cl,,(S), C2,,(S)}, and C I , n (S) = ~ GI,j, the following
j = l

statement holds.

Lemma 2.1: For F2 [si i, rij[Cm~ restricted to permutation solutions, the makespan
of a schedule S associated with a permutation of jobs n = { j, J 2, . . . , Jn } is specified
by

C2, . (S)=max ~, GI,j~,~. G2,jk, max ~ aj -- bj k + ~ G2,~k �9
k=l k= l 1 _<u_<n k=l = k=l

(2.2)

It follows directly from Lemma 2.1, due to similarities in the expressions for
Cmax, that the Johnson algorithm for F21]Cma~ can be used to find the best
permutation solution for F2 Is~j, rijl Cmdr.

We now show that, for F2ls o, rij[Cmax, the search for an optimal solution
should not be restricted to considering only permutation schedules.

Lemma 2.2: For F2[slj, rijlCma~, there may not be an optimal solution that is a
permutation schedule.

Proof: We present an example where the unique optimal solution is not a
permutation schedule. There are two jobs J1 and J2 such that

On Non-Permutation Solutions to Some Two Machine Flow Shop Scheduling Problems

st, 1 = 0, Pi , i = 1, rl, 1 ~--- 0, $2, 1 = 0, P2,1 = 1, r2, 1 = 0 ;

$1, 2 -~ O, Pl,2 = 1, rl. 2 = 4, $2, 2 = 3, P2,2 = 2, r2, 2 = 0 .

309

Consider the schedule shown in Fig. 2.1. I t is easy to check that this schedute
with the j ob order (J1,-/2) on M1, and the order (J2, J~) on M 2, is the unique
opt imal solution. I I

We now turn to determining the complexi ty of F2 Isis, fish C,,,~ not restricted to
pe rmuta t ion solutions. To show this p rob lem to be N P - h a r d in the s t rong sense
we reduce the wel l -known 3 - P A R T I T I O N prob lem which is NP-comple t e in the
strong sense to the decision counte rpar t of the p rob lem under consideration.

Define the decision version of F2 [sij , rij] Cma x as follows:

Given an instance o f F 2 Isis, ris] Cm,~ and a positive integer y, does there exist
a schedule S with Cm,x(S) < y?

Presenting 3 - P A R T I T I O N , we follow Garey and Johnson (1979):

Given a set T = {1, 2, . . . , 3t} with an integer size ei for each i e T, and
given a positive integer E, such that ~ ei = tE and E/4 < ei < E/2. Can

T be par t i t ioned into t disjoint sets T1, T2 Tt such that, for 1 < k < t,
ei = E? (Note that, if 3 - P A R T I T I O N has a solution, then I T~I = 3 for

i~ T k

all k = 1, 2 t).

Theorem 2.1." The problem F2 [s 0, ro[Cm.x not restricted to permutation solutions is
NP-hard in the strong sense.

Proof. We reduce 3 - P A R T I T I O N prob lem to the decision version of
F2 Isis, rol Cm,~ and show that 3 - P A R T I T I O N has a solut ion if and only if this
decision p rob lem has a solution.

P l l P 1 2 r 1 2

I I I
s 2 2 P 2 2 P 2 1

I I I
I I I I I I

0 1 2 3 4 5 6

Fig. 2.1

t

310 V.A. Strusevich and C. M. Zwanevr

The following instance for the decision version ofF2 Is~j, r0[Cmax is used. There
are n = 4t jobs. We divide the jobs into two groups: U-jobs denoted by U~, i =
l, 2 3t, and V-jobs denoted by Vj, j = 1, 2, . . . , t. Their setup, processing, and
removal times are given below:

S 1 , u = r l , u = O , p a , v = e i , i = 1 , 2 ,3t ;

S2,ui -~- r2 ,u i = O, P2, U, = e~(E + 2) , i = 1, 2 , . . . , 3t ;

S~,vj=O, p l , v j=E , r l , v j = E (E + 3) , j = l , 2 , t ;

S2,vj=2E, P2,vj=E, r2,vs=O, j = l , 2 t .

The integer y is set to be tE(E + 5). Without loss of generality we may assume
that E _> 3. Suppose that 3-PARTITION has a solution, and 7"1, T2, . . . , Tt are
found subsets of set T. Let zv(Tk) denote an arbitrary permutation of the U-jobs
with i r Tk. Consider a schedule S shown in Fig. 2.2.

In this schedule, there is no idle time on each machine, and the jobs are
ordered on ml according to (nv(T1), I"1, nu(T2), V2, . . . , %(Tt), Vt), while on M2
according to (V1, nv(T1), V2, nv(T2) V~, nu(Tt)). It is easy to check that the
length of this schedule is tE(E + 5).

Now suppose that a schedule S exists with length Cr, a~(S) < tE(E + 5). We
prove that 3-PARTITION has a solution. Since the V-jobs are identical, we may
assume that they are scheduled on M2 in increasing order of their numbering.

Since performing all operations on each M1 and M2 takes tE(E + 5) time
units, we know that Cmax(S) = tE(E + 5), and that there is no idle time on either
machine.

It follows that I/1 must be placed first on M2, because S2.vj > 0 and s2,v, = 0
while all processing times are strictly positive.

Since s2, v, = 2E > E = p~, v,, we must consider the possibility that some jobs
precede V~ on M1. The total length of these jobs on M1 cannot be greater than

M1

M2

o

Fig. 2.2

~ (T1) Vl

I
V 1 r l , V 1

s 2 , V 1 P 2 , V 1 7ru(T1

I , . ,

I I - - -

E 2E 3E E (E + 5)

On Non-Permutation Solutions to Some Two Machine Flow Shop Scheduling Problems 311

E, because otherwise an idle time arises on M2 after the completion of the setup
of V 1 o n M 2. Thus, these jobs can only be U-jobs. We denote the set of indices
of the U-jobs preceding I/1 on Ma by T*, and the total length of the jobs U~,
i s T*, on M~ by E'. Note that E' <__ E.

Suppose that E ' < E. Since all values are integer, we have that 0 _< E'__<
E - 1, Since

=E' C~,v~(S) = E' + P~,vI + r~,v, + E(E + 4) > 3E = $2,v1 "]- P2,v~

= C2, v , (S) ,

we conclude that V 1 must be followed o n M 2 by the jobs U i, i s T*. However,
the last of those jobs finishes at 3E + E'(E + 2) which is still less than CI,vI(S).
To avoid an idle time o n M 2 we can only start the setup stage of job V2 o n m 2

immediately after the last of the jobs Ui, i ~ T*, has been completed. So, the setup
stage of 02, v2 finishes at 5E + E'(E + 2), and the processing stage of that opera-
tion must start exactly at this time. On the other hand, even if V 2 directly follows
V1 on M1, the processing stage of 01,v2 finishes at E' + Pl,v, + r~,v~ + Pl,V~ =
E' + E(E + 5). We have that 5E + E'(E + 2) < E' + E(E + 5) since this in-
equality is equivalent to E'(E + 1)< E 2, the latter one being true due to
E' < E - 1. Thus, if E' < E one cannot avoid an idle time on M2, and we
conclude that E' = E.

We have shown that the total length of the jobs Ui, i 6 T*, on M~ is equal to
E, and thus, there must be exactly three of them. We denote 7"1 = T* getting

e i = E .
i~T~

Extending arguments presented above, one can prove that in schedule S with
the length tE(E + 5) machine M~ processes exactly three U-jobs with the total
length E during each time interval [(k - 1)E(E + 5), kE(E + 5)], k = 1, 2 , . . . , t.
Denoting the set of indices of the U-jobs processed on M~ during interval
[(k - 1)E(E + 5), kE(E + 5)] by T k, k = 1, 2 , t, we obtain a solution of
3-PARTITION. �9

It is interesting to find out whether the best permutation solution can have
significantly greater schedule length than the length of a global optimal solution.

We denote the value of the makespan for a global optimal solution and for
the best permutation solution by C*,x and C~,,x , respectively. For a non-empty

set of jobs Q, we define GI(Q) to be ~ G1.j; G2(Q) is defined analogously. Let
Jj~Q

~(Q) denote an arbitrary permutation of the jobs of a set Q. If Q = ~ then
G I (Q) = G2(t2) = 0.

312

Theorem 2.2: For F2 [sii, rijl C , ~ , the fol lowin9 bound

rr ,
<_ 3/2

holds, and this bound is tioht.

V. A. Strusevich and C. M. Zwaneveld

(2.3)

Proof: The proof is based on the results obtained by Strusevich (1993) for the
two machine open shop scheduling problem with setup, processing, the removal
times separated.

Let N denote the set of all jobs Jj, j = 1, 2 n. For each job, find aj and bj
by formula (2.1), and divide N into two sets:

N" = {Jjlaj <_ bj} = {JjlGx,j <_ G2,j} ,

N b = {41aj > bj} = {41G, , j > 2,j} �9

If N" # ~ , then select a job Jk ~ N" such that bk = max{bjlJj ~ N"}, otherwise
assume {Jk} = ~ . If N b # ~ , then select a job J z e N b such that at =
max{ajlJj e Nb}, otherwise assume {Jr} = ~ .

For a schedule S, let R~(S) and C~(S) denote the starting and the completion
time of the processin O phase of operation Oij, i = 1, 2, Jj s N. Note that, in any
feasible schedule S, the inequality Cfj(S) < R~j(S) holds for each job Jj.

Suppose that IN"I = q and INbl = m. Determine permutations ~b(Na)=
(il, i2, ".., i~) = (4, 7 c (N a \ { J k })) and O(Nn) = (f l , f2 fro) = (x(Nb\{Jz}), Jl)"

Consider a schedule S a in which each machine processes the jobs of set N"
according to a sequence ~b(N"), provided that both machines do not stand idle
once started.

For schedule S", let R~ be the starting time of machine M2. It follows from
(2.2) that

R~ = max aq, 0, max % - = 2, 3 , . . . , q .
j = l ' =

However, due to the definitions of set N" and noticing that k = i 1, we obtain for
each u, 2 _< u _< q, that

f. ai s - bi~ <- a k �9
j = l "=

Thus, in this case, we have R 2 = max{ak, 0}. Schedule S a is shown in Fig. 2.3.

On Non-Permutation Solutions to Some Two Machine Flow Shop Scheduling Problems 313

Similarly, we construct a schedule S b where each machine processes the jobs
of set N b according to the sequence q~(NB) provided that both machines do not
stand idle once started.

For schedule S b, let R~ be the starting time of machine M 2. It follows from
(2.2) that

R~ = max ayl, O, max ass - - b f j l u = 2, 3 , . . . , m .
, =

However, due to the definitions of set N b and noticing that l = fro, we obtain for
each u, 2 < u < m - 1, that

j=l a f t - j~=l= byj > j=l a f j - .= bf~ .

In addition, it follows that at > ay, and, since

m-1 m-1

Y %-E bfj>_O,
j=l "=

we obtain

M2MlISlk
o
JI: s k

M1

M2

o

Fig. 2.3

Plk

1
S lk

Plk

I
S lk

r l k G l (N a \ { J k })

I I
Plk r l k G 2 (g a \ { J k })

I I I

r l k G l (N a \ { g k })

I I
Plk r l k G 2 (N a \ (J k })

I I I

(a)

(b)

314 V.A. Strusevich and C. M. Zwaneveld

j=l af, - .= bfj > all .

"; } Finally, we conclude that Rb2 = max alj -- by j, 0 . Schedule S b is shown
l j= l '=

in Fig. 2.4.

Now schedules S a and S b can be combined as shown in Fig. 2.5 to obtain a
schedule S associated with a permutation 7z = (Jk, rc(N"\{Jk}), n(Nb\{J~}), Jt).
Note that if either N a = ~ or N b = ~ , then rc = (z(Nb\{J~}) , Jl) or 7z =
(Jk, X(Na \ { Jk })), r e s p e c t i v e l y .

It follows that

Cm,,~(S) = max{Gl(N), G2(N), ak + G2(N), bl + GI(N)} �9 (2.4)

If Cm.x(S) = max{Gl(N), G2(N) } then S is a global optimal schedule, and (2.3)
holds.

We show that if C,,,.x(S) = max {ak + G2(N), bl + G1 (N)}, then C,,,.~(S)/C*a. <
3/2. Thus, since Cff~ax ~ Craax(S), we obtain bound (2.3).

Suppose that C,,,.~(S) = a k + G2(N). It is evident, that if a k < G2(N)/2, then
Cm.x(S) /< 3G2(N)/2. Since C*.x > G2(N), we have that Cr..x(S)/C*.~ < 3/2.

Suppose that ak > G2(N)/2. Then, we have that G2,k > bk > ak > G2(N)/2, and
it follows that C,..x(S) = ak + G2(N) < 2ak + G2,k.

'[GI(Nb\{JI })Sll
M1 I

I G2(Nb\{jl})
M2]

o

Pll rll
I I
S2l

g b GI(N \{Jl })Sll Pll

I Gl2(Nb\lJl}) s21
M2 I

o
Fig. 2.4

P21 r21

rll
I

P21 r2l

(a)

� 9

(b)

t

On Non-Permutation Solutions to Some Two Machine Flow Shop Scheduling Problems 31t5

T I Ipl I i M1 I J '
S2k P2k r2k G 2 (N a \ { j k }) G 2 (N b \ { J I })

M~ [t I I I I
0

Ma l~lk[plk

M2 I S2k

o

Slk Plk

,92k

r l /

s21 P21 r2l
I I

b

b
P2k r2k G2(Nak{Jk})]G21N \ { J I }) s21 P21 r21
I I 1 ' I I I I

rlk Gl(Na\{Jk}) Gl(Nb\{Jl}) Sll

P2k r2k G2(Na \ {Jk}) G 2 (N b \ { J l })
I i l

Pll r l l

a21 !P21 r 2 1

I I I

(a)

(b)

(c)

M1

M2

i Plk

S2k

0

r l k Gl(Na\{Jk}) GI(Nb\{JI}) Sll Plt r l /

I I t I
b ':

P2k r2k G2(Nak{Jk}) G2(N \ { J I }) s21i P21
r I I 1 t t

r21
(d)

Fig. 2.5

On the other hand,

C*ma x ~__ $1, k d- Pl ,k -~- P2,k d- r2, k = s1, k -~- Pl ,k d- (- -$2, k d- S2,k) d- P2,k "~- r2,k

= ak + G2,k �9

Thus, we have that

Cmax(S)/C*ax < (2a k + Gz,k)/(a k + GZ,k) = 1 + ak/(a k + G2,k) < 3/2 .

For Cmax(S) = b, + G I (N) the proof is similar.
We have proved that bound (2.3) holds. The following example shows that this

bound is tight. There are two jobs, J1 and J2, with the following setup, pro-
cessing, and removal times:

J l : P1 ,1 = P2,1 = 1, all other times are zero ;

J 2 : r x , 2 = S2,2 = 1, all other times are zero ,

It is easy to check that there is a unique optimal schedule with C*,x = 2 (see Fig.
2.6). In this schedule, the job order on M1 is (J1, J2), and on M 2 is (J2, J1). On
the other hand, each permutation schedule has length 3. []

316 V.A. Strusevich and C, M. Zwaneveld

M 1

M2

0

Fig. 2.6

P l l r 1 2

I
s 2 2 P 2 1

I

I
1

Note that in the proof of Theorem 2.2, we use heuristic schedule S which can
be found in O(n) time. This leads to a linear-time approximation algorithm for
F2 Isij, rijl C,.a~. Note that the best permutation schedule also can be treated as
an approximate solution of F2 Isij, rijl Cr.~, but this schedule can be found in
O(n log n) time while its worst-case ratio bound is the same as for schedule S.

3 The Problem F2lblCm.x

In this section, we examine F21blC,.,,:, with 1 < b < n - 2. Recall that if b >
n - 1 then F2 [bl C.,.~ is equivalent to F21 I C,..x, while F2 Ib = 0l C.,.~ is equiva-
lent to F21 [C,,,ax with the no-wait restriction. For both F21 I fma x and its
no-wait counterpart one may look for an optimal solution among permutation
schedules. A permutation version of F2lbl Cr..x was studied by Papadimitriou
and Kanellakis (1980) who restricted themselves to considering the FIFO buffer
policy. We show that if one accepts an arbitrary buffer policy then an optimal
solution need not be a permutation schedule.

Lemma 3.1: For F2 [bl Cmax, there may be no optimal solution that is a permutation
schedule.

Proof: For any b, 1 _< b _< n - 2, we present an instance of F2lblCm, x with a
unique optimal solution which is not a permutation schedule. Consider the input
data shown in Table 3.1.

We define

Job order on MI: type 1, b times type 2, type 3, (b + 2) times type 4 ;

Job order o n M2: type 1, b times type 2, 1 time type 4, type 3, (b + 1) times
type 4 ;

On Non-Permutation Solutions to Some Two Machine Flow Shop Scheduling Problems 317

Table 3.1

Type of jobs Pl,j P2,j

1 1 5b 2 + 2
2 2 3 b + 3
3 8b 2 (b § 1) 2
4 b + 2 1

Number of jobs
of this type

1
b
1

b + 2

and consider a schedule with each operation starting as early as possible. See
Fig. 3.1.

We show that this is the only optimal schedule. In the proof, we denote by
O~,2(Oi,4) an operation of any job of type 2 (of type 4, respectively) on Mi, i = 1, 2.

Note that the above schedule does not contain any idle time, except the
minimal release time for M2 and minimal idle on M I after all jobs have been
completed on that machine. Thus, the job of type 1 should be placed first on both
M1 and Mz, and one of the jobs of type 4 must be placed last on M2.

Scheduling 01,3 in the second position on M1 induces an idle time on M2 since
8b 2 > 5b z + 2. Thus, we have to fill up the time gap between 01,1 and O1,3.

There may be no more than b jobs between 01,1 and 01,3, otherwise it would
lead to an idle time on M 1 due to the buffer constraint.

Suppose that we fill up the gap between 01,1 and 01,3 on M1 with k times 01,2
and I times 01,4, l + k < b, and place the corresponding operations on M 2 after
02,1. Then O1,3 finishes at 1 + 2k + l(b + 2) + 8b 2. The last of inserted jobs
finishes on M 2 at 1 + (5b 2 + 2) + k(3b + 3) + I. We need the inequality

2k + l(b + 2) + 8b 2 < (5b 2 + 2) + k(3b + 3) + l

which is only valid if k = b a n d I = 0.

0 1 1
3/1

M2

o 1

Fig. 3.1

b ' 0 1 2 0 1 3 0 1 4 (b + l) " 0 1 4

I t l i

0 2 1 b ' 0 2 2 0 2 4 0 2 3 b ' 0 2 4 0 2 4

f II I II

2 2 2
5b +3 8b + b + 3 9b + 6 b + 5

318 V.A. Strusevich and C. M. Zwaneveld

Thus, all b jobs of type 2 must be placed on Mx before O~, 3, while all b + 2
jobs of type 4 are scheduled after that operation. Besides, all jobs of type 2 must
be processed on M 2 after 02,1. Note that the first of jobs of type 4 finishes on
M1 at the same time as the last of operations 02, 2 is completed since 2b + 8b 2 +
(b + 2) = (5b 2 + 2) + b(3b + 3).

We still need to specify the order of jobs on M2 after the last operation 02,2.
Suppose that 02, 3 is assigned right after that operation. Note that by the time
02,3 starts, the first of the operations 01,4 finishes and goes to the buffer.
Thus, while O2,3 is being processed no more than b - 1 operations 01,4 can be
processed on M 1 due to the buffer restriction. However, their total length is
(b - 1)(b + 2) < (b + 1) 2, and two remaining operations O1,4 can only start after
some idle time on M 1 .

It is obvious that there may be at most one operation 02,4 between the last of
the operations O2,2 and operation 02, 3 because processing a job of type 4 takes
more time on M1 than on M2.

Thus, we assign exactly one operation 02, 4 directly after b operations 02, 2.
The moment that 02, 3 starts processing on M2, the buffer becomes empty. The

remaining b + 1 operations 02,4 can be processed without any idle time, because
b(b + 2) < t + (b + 1) 2, and (b + 1)(b + 2) = 1 + (b + 1) 2 + b. �9

Papadimitriou and Kanellakis (1980) showed that F21bl C,,a~, restricted to
permutation schedules, in NP-hard in the strong sense, via a transformation
from Numerical (b + 2)-Dimensional Matching. Howevr, their restriction to
permutation schedules is not crucial, because the instance used has a unique
optimal solution that is a permutation schedule. These observations are suffi-
cient for deriving the following result.

Theorem 3.1: The problem F2]bl Craax is NP-hard in the stron# sense.

For F2[b[Cm,~, we denote the makespan for a global optimal solution and
for the best permutation solution by C*,~(b) and by C~a~(b), respectively.
Papadimitriou and Kanellakis showed that

C*.~(b = O)/C~.x(b) <_ (2b + 1)/(b + 1) , (3.1)

and this bound is tight. From (3.1), Papadimitriou and Kanellakis derived an
O(n log n) approximation algorithm for F2lbl C,,ax restricted to permutation
solutions: use the Gilmore-Gomory algorithm (see Gilmore and Gomory, 1964)
to solve F2Lb = O ICmax, and schedule the jobs according to the resulting permu-
tation, using the buffer of capacity b. This algorithm turns out to have the tight
worst-case bound (2b + 1)/(b + 1) as' well. Note that for F2ib = 01C,,,x only
permutation schedules are feasible.

On Non-Permutation Solutions to Some Two Machine Flow Shop Scheduling Problems 319

It easy to check that the part of the proof presented by Papadimitriou and
Kanellakis (1980) to show that (2b + 1)/(b + 1) is an upper bound on the ratio
C*max(b = O)/C~ax(b) can be applied to F2 [bl C,,ax in its general form, because no
one of the arguments used is restricted to permutation solutions. So, we even
have that

C*.~(b = O)/C*max(b) <~ (2b + 1)/(b + 1) . (3.2)

Note that the example given by Papadimitriou and Kanellakis shows that this
bound is tight. It follows from (3.2) that the heuristic solution based on the
Gilmore-Gomory algorithm is as good for F2 Ibl C,,~x in the general form as for
its permutation counterpart.

Acknowledgements: The authors want to thank Stan van Hoesel from Eindhoven University of
Technology, The Netherlands, for his help on the proof of Lemma 3.1. Comments from the anony-
mous referees have contributed to improving the presentation.

References

Conway RW, Maxwell WL, Miller LW (1967) Theory of scheduling. Addison-Wesley, Reading
Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of X~-complete-

ness, Freeman, San Francisco
Garey MR, Johnson DS, Sethi R (1976) The complexity of flow shop and job shop scheduling.

Mathematics of Operations Research 1 : 117-129
Gilmore PC, Gomory RE (1964) Sequencing a one-state variable machine: a solvable case of

the traveling salesman problem. Operations Research 12:665-679
Johnson SM (1954) Optimal two- and three-stage production schedules with setup times included.

Naval Research Logistics Quarterly 1:61-68
Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (1993) Sequencing and scheduling:

algorithms and complexity. In: Handbook in operations research and management Science, Vol.
4: Logistics of production and inventory (Graves SC et al. eds), North-Holland 445-522

Papadimitriou CH, Kanellakis PC (1980) Flowshop scheduling with limited temporary storage.
Journal of the Association for Computing Machinery 27:533-549

Strusevich VA (1993) Two machine open shop scheduling problem with setup, processing and
removal times separated. Computers and Operations Research 20:597-611

Sule DR (1982) Sequencing n jobs on two machines w~th setup, processing and removal times
separated. Naval Research Logistics Quarterly 29:517-519

Sule DR and Huang KY (1983) Sequencing on two and three machines with setup, processing and
removal times separated. International Journal of Production Research 21:723-732

Yoshida T and Hitomi K (1979) Optimal two-stage production scheduling with setup times sepa-
rated. AIIE Transactions 11 : 261-263

Received: November 1991
Revised version received: March 1993

