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Abstract

In this article we describe reinforcement learning, a machine learning technique for
solving sequential decision problems. We describe how reinforcement learning can
be combined with function approximation to get approximate solutions for problems
with very large state spaces.

One such problem is the board game Othello, with a state space size of ap-
proximately 10%®. We apply reinforcement learning to this problem via a computer
program that learns a strategy (or policy) for Othello by playing against itself. The
reinforcement learning policy is evaluated against two standard strategies taken
from the literature with favorable results.

We contrast reinforcement learning with standard methods for solving sequential
decision problems and give some examples of applications of reinforcement learning
in operations research and management science from the literature.

Key words: Artificial Intelligence, Reinforcement Learning, QQ-learning,
Multiagent Learning, Markov Decision Processes, Dynamic Programming, Neural
Networks, Game Playing, Gaming, Othello.

1 Introduction

Many decision problems that we face in real life are sequential in nature. In
these problems the payoff does not depend on an isolated decision but rather on
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a sequence of decisions. In order to maximize total payoff, the decision maker
may have to sacrifice immediate payoff in order to receive greater rewards later
on. Finding a policy for making good sequential decisions is an interesting
problem. Ideally, such a policy should indicate what the best decision is in
each possible situation (or state) the decision maker can encounter.

A well known class of sequential decision problems are the Markov decision
processes (MDPs), described in detail in Section 2. Their most important prop-
erty is that the optimal decision in a given situation is independent of earlier
situations the decision maker encountered. MDPs have found widespread ap-
plication in operations research and management science. For a review see,
e.g., [24].

For MDPs there exist a number of algorithms that find the optimal policy, col-
lectively known as dynamic programming methods. A problem with dynamic
programming methods is that they are unable to deal with problems in which
the number of possible states is extremely high. Another problem is that dy-
namic programming requires exact knowledge of the problem characteristics,
as will be explained in Section 2.

A relatively new class of algorithms, known as reinforcement learning algo-
rithms (see, e.g., [18,9]), may help to overcome some of the problems asso-
ciated with dynamic programming methods. Multiple scientific fields have
made contributions to reinforcement learning — machine learning, operations
research, control theory, psychology, and neuroscience, to name but a few.
Reinforcement learning has been applied successfully in a number of areas,
which has produced some successful practical applications. These applications
range from robotics and control to industrial manufacturing and combinato-
rial search problems such as computer game playing (see, e.g., [9]). One of the
most convincing applications is TD-gammon, a system that learns to play the
game of Backgammon by playing against itself and learning from the results,
described by Gerald Tesauro in [19,20]. TD-gammon reaches a level of play
that is superior to even the best human players.

Recently, there has been some interest in the application of reinforcement
learning algorithms to problems from the fields of management science and
operations research. An interesting paper, for example, is [8], where reinforce-
ment learning is applied to airline yield management and the aim is to find
an optimal policy for the denial/acceptance of booking requests for seats in
various fare classes. A second example is [5], where reinforcement learning is
used to find a (sub)optimal control policy for a group of elevators. In both the
above papers, the authors report that reinforcement learning based methods
outperform the best and often used standard algorithms. A marketing applica-
tion is described in [16], where a target selection decision in direct marketing
is seen as a sequential problem. Other examples from management science



literature are [6,7], which are more methodologically oriented.

The purpose of this paper is to introduce the reader to reinforcement learning.
We hope to convince the reader of the usefulness of the method. To achieve
this, we will perform some experiments in which reinforcement learning is
applied to a sequential decision problem with a huge state space: the board
game Othello. In the experiments different reinforcement learning agents will
learn to play the game of Othello without the use of any knowledge provided
by human experts.

The remainder of this paper is structured as follows. In Section 2 we give a
short introduction to reinforcement learning and sequential decision problems.
We describe a frequently used reinforcement learning algorithm, )-learning, in
detail. In Section 3 we explain the game of Othello. In Section 4 we discuss the
players used in our Othello experiments. Section 5 describes the experiments
that we performed and the results obtained, and finally, Section 6 gives a
summary, some conclusions, and an outlook.

2 Reinforcement Learning and Sequential Decision Problems

In this section we give a brief introduction to reinforcement learning and
sequential decision problems. The reader is referred to [18,9,13] for a more
extensive discussion of these subjects.

We describe reinforcement learning from the ‘intelligent agent’ perspective
[17]. An intelligent agent is an autonomous entity (usually a computer pro-
gram) that repeatedly senses inputs from its environment, processes these
inputs and takes actions upon its environment. Many learning problems can
conveniently be described using the agent perspective without altering the
problem in an essential way.

In reinforcement learning, the agent/environment setting is as follows. At each
moment, the environment is in a certain state. The agent observes this state,
and depending solely on that state, the agent takes an action. The environment
responds with a successor state and a reinforcement (also called a reward).
Figure 1 shows a schematic representation of this sense-act cycle.

The agent’s task is now to learn optimal actions, i.e., actions that maximize the
sum of immediate reward and (discounted) future rewards. This may involve
sacrificing immediate reward to obtain a greater cumulative reward in the long
term or just to obtain more information about the environment.

We now give a more formal description of the reinforcement learning problem.
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Figure 1. A reinforcement learning agent interacting with its environment.

At time t the agent observes state s, € S of its environment and performs
action a; € A, where S and A denote the sets of possible states and actions,
respectively. The environment provides feedback in the form of a reinforcement
(a reward) ry. Also, a state transition takes place in the environment, leading
to state syy1. So, an action puts the environment in a new state where the
agent selects a new action, and in this way the cycle continues. The task of
the learning agent is to learn a mapping 7 : S — A from states onto actions,
often called a policy or strategy !, that selects the best action in each state.

The expected value of the cumulative reward achieved by following an arbi-
trary policy 7 from an arbitrary initial state s; is given by

V™(s) = E [i 7i7"t+z‘] . (1)

where 7;; is the reward received by taking an action in state s;,; using policy
m, and v € [0,1) is the discount factor that determines the relative value of
delayed versus immediate rewards. The expectation is necessary because the
rewards may be nondeterministic. Rewards received ¢ time steps into the fu-
ture are discounted by a factor 4*. If v = 0, only the immediate rewards are
considered. As 7 is set closer to 1, future rewards are given greater emphasis
relative to immediate rewards. The function V™ is called the state-value func-
tion for policy 7. It is also referred to as the utility function in the literature.

Using the state-value function V7 (s) the learning task can be defined as fol-
lows. The agent must learn an optimal policy, i.e., a policy 7* which maximizes
V7 (s) for all states s

= argmax V7" (s), Vse€S. (2)

To simplify notation, we will denote the state-value function V™ (s) of such
an optimal policy by V*(s). V*(s) is called the optimal value function.

L We will use both terms in the remainder.



The learning task faced by a reinforcement learning agent is usually assumed
to be a Markov decision process (MDP). In an MDP both state transitions and
rewards depend solely on the current state and the current action. There is no
dependence on earlier states or actions. This is referred to as the Markov prop-
erty or independence of path property. Accordingly, the reward and the new
state are determined by r; = 7(sy, a;) and s;1 = (s, a;). The reward function
r(s¢, a;) and the state-transition function d(s;, a;) may be nondeterministic.

If the agent knew the optimal value function V*, the state-transition probabil-
ities, and the expected rewards, it could easily determine the optimal action
by applying the maximum expected value principal, i.e., by maximizing the
sum of the expected immediate reward and the (discounted) expected value
of the successor state, which captures the expected rewards from that point
onwards

T (s) = argg:axE [r(s,a) +YV*(d(s,a))] (3)
= argmax (E [r(s,a)] +~ Z:ST(S, a, s')V*(s’)) : (4)

where T'(s,a,s’) denotes the transition probability from state s to state s’
when action a is executed.

Notice that the values of a state and its successors are related as follows

Vi(s) = Elr(s,m"(s)) + 7V (0(s, 7" (s)))] ()
~ leea (E (s, @)l +7 /ZST(S; a, S'W*(S’)) : (6)

Equation (5) and Equation (6) are the well known Bellman equations [2].
Solving these equations (one for each state) gives a unique state-value for
each state. Unfortunately, these equations are nonlinear due to the presence
of the ‘max’ operator and therefore hard to solve. The usual way of solving
these equation is by means of dynamic programming techniques such as value
iteration and policy iteration (see, e.g., [18,17]).

Reinforcement learning and dynamic programming are closely related, since
both approaches are used to solve MDPs. The central idea of both reinforce-
ment learning and dynamic programming is to learn value functions, which in
turn can be used to identify the optimal policy. Despite this close relationship,
there is an important difference between them. In reinforcement learning an
agent does not necessarily know the reward function and the state-transition
function. Both the reward and the new state that result from an action are
determined by the environment, and the consequences of an action must be
observed by interacting with the environment. In other words, reinforcement



learning agents are not required to possess a model of their environment. This
aspect distinguishes reinforcement learning from dynamic programming, in
which perfect knowledge of the reward function and the state-transition func-
tion is required. To converge to an optimal policy, in dynamic programming
a number of computational iterations must be performed, rather than moving
in the real environment and observing the results.

Policy iteration and value iteration are two popular dynamic programming
algorithms. Either of these methods can be used to reliably compute opti-
mal policies and value functions for finite MDPs given complete knowledge
of the MDP [18]. In the next subsection we will discuss @-learning. This is a
reinforcement learning algorithm that does not need such a model to find an
optimal policy in an MDP.

2.1 @Q-Learning

Q-learning [22,23] is a reinforcement learning algorithm that learns the values
of a function Q(s,a) to find an optimal policy. The values of the function
Q(s,a) indicate how good it is to perform a certain action in a given state.
The function Q(s,a), also called Q-function, is defined as the reward received
immediately upon executing action a from state s, plus the discounted value
of the rewards obtained by following an optimal policy thereafter

Q(s,a) = E[r(s,a) + 7V (d(s,a))]. (7)

If the Q-function is known, an optimal policy 7* is given by

7(s) = argmax Q(s, a). (8)

a€A

This shows that an agent which knows the Q-function does not need to know
the reward function r(s,a) and the state-transition function d(s, a) to deter-
mine an optimal policy 7%, in contrast with policy iteration and value iteration.

Notice that V*(s) and Q(s,a) are related as follows
V*(s) = max Q(s,a). (9)

A recursive definition of the Q)-function can be defined by substituting Equa-
tion (9) into Equation (7)

Q(s,a) = B |r(s,a) + 7 max Q(8(s,a), ') (10)

The Q-learning algorithm is based on this definition of the Q-function. An
agent that uses the )-learning algorithm to learn the @Q-function, iteratively



For all states s € S and all actions a € A initialize Q(s, a) to an arbitrary value
Repeat (for each trial)
Initialize the current state s
Repeat (for each step of trial)
Observe the current state s
Select an action a using a policy 7
Execute action a
Receive an immediate reward r
Observe the resulting new state s’
Update Q(s,a) according to Equation (11)
s« s

Until s is a terminal state

Figure 2. The Q-learning algorithm [23].

approximates the @-function. In each iteration of the algorithm the agent
observes the current state s, chooses some action a, executes this action a,
then observes the resulting reward r = r(s,a) and the new state s’ = (s, a).
It then updates its estimate of the Q)-function, denoted by Q, according to the
training rule

~ ~

Qs.0) = (1= 0)Qs.0) +a (r+ymaxQs.a)). ()

where a € [0, 1) is the learning rate parameter. Figure 2 shows the complete
Q-learning algorithm. Watkins and Dayan [23] have proved that the agent’s
estimated @)-values will converge to the true @-values with probability one
under the assumptions that the environment is a stable MDP with bounded
rewards 7(s,a), the estimated @-values are stored in a lookup table and are
initialized to arbitrary finite values, each action is executed in each state an
infinite number of times on an infinite run, v € [0,1), « € [0,1), and « is
decreased to zero appropriately over time.

2.1.1 Learning the Q-Function by a Neural Network

The estimated @-values should be stored somewhere during the estimation
process and thereafter. The simplest storage form is a lookup table with a
separate entry for every state-action pair. The problem of this method is its
space complexity. Problems with a large state-action space lead to slow learn-
ing and to large tables with ()-values, which, in the worst case, cannot be
stored in a computer memory. In the case of Othello we would need approx-
imately 10%® entries [1,21], which is clearly beyond the memory capacity of
even the most powerful supercomputer.

To cope with the problem of large state-action spaces, a function approxi-
mation method, such as a neural network or a decision tree, can be used to



Initialize all neural network (NN) weights to small random numbers
Repeat (for each trial)
Initialize the current state s
Repeat (for each step of trial)
Observe the current state s
For all actions a in s use the NN to compute Q(s,a’)
Select an action a using a policy m
Qoutput - Q(& a)
Execute action a
Receive an immediate reward r
Observe the resulting new state s’
For all actions o’ in s’ use the NN to compute Q(s’,a’)
According to Equation (11) compute Q'8 « Q(s, a)
Adjust the NN by backpropagating the error (Q&t — Qoutrut)
s s

Until s is a terminal state

Figure 3. The Q-learning algorithm using a neural network function approximator.

‘store’ the )-values. In our experiments we use neural networks as a function
approximator, and therefore we consider this method in more detail. We as-
sume that the reader has basic knowledge about feedforward neural networks.
For an introduction to neural networks see, e.g., [13].

During the @Q-learning process, the neural network learns a mapping from
state descriptions onto @)-values. This is done by computing a ‘target’ Q-value
according to (11) and using the backpropagation algorithm to minimize the
discrepancy between the target ()-value and the estimated )-value computed
by the neural network. The complete algorithm is given in Figure 3.

It is important to note that, in problems with large state-action spaces, the
neural network is trained based on visits to only a tiny part of the state-action
space. The use of a neural network makes it possible to generalize over states
and actions. Based on experience with previously visited state-action pairs,
the neural network is able to give an estimate of the ()-value for an arbitrary
state-action pair.

How does a neural network pull this trick? It is likely that the internal layers
of the neural network learn to extract features that are useful in assessing
the @-values of state-action pairs. In Othello an example of such a feature
might be a numerical representation of the rule “When the opponent occupies
corner positions this is always bad for the value function”. Based on these self-
discovered features the final layer of the neural network will make estimates
of @-values. To facilitate the neural network’s task, one can offer additional
features on the input side besides the state description, which will probably
lead to a better policy being learned.
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Figure 4. A single multi-layer feed-forward neural network with a distinct output
for each action.

When learning the ()-function using a multi-layer feed-forward neural network,
it is possible to use a distinct network for each action, a single network with
a distinct output for each action, or a single network with both the state and
the action as input and the @-value as output [9]. Because we do not use this
last approach in our experiments, we only describe the first two approaches in
detail.

The input of a single network with a distinct output for each action consists
of one or more units to represent a state. The output of the network consists
of as many units as there are actions that can be chosen. Figure 4 illustrates
the layout of such a network. When a single network is used, generalization
over both states and actions is possible.

If there is a distinct network for each action, the input of each network consists
of one or more units to represent a state. Each network has only one output,
which is considered as the ()-value associated with the state that is given as
input to the network and with the action that is represented by the network.
Figure 5 illustrates the layout of multiple networks associated with the actions
ai, as, ..., a,. In this case, only generalization over the states is possible.

@-learning using neural networks to store the -values can solve larger prob-
lems than Q-learning using the lookup table method, but it is not guaranteed
to converge [23]. The problem associated with the use of neural networks in
Q-learning results from the fact that these networks perform non-local changes
to the @Q-function, while Q)-learning requires that updates to the Q-function
are local. When updating the value of a state-action pair, the network may
destroy the learned value of some other state-action pairs. This is one of the
reasons why the neural network method is not guaranteed to converge to the
actual Q)-values.

2.1.2 Action Selection

The algorithms in Figure 2 and in Figure 3 do not specify how actions are
selected by an agent. One of the challenges that arises here is the trade-off
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Figure 5. A distinct multi-layer feed-forward neural network for each action.

between exploration and exploitation. An agent is exploiting its current knowl-
edge of the @-function when it selects the action with the highest estimated
@-value. If instead the agent selects one of the other actions, it is exploring
because it improves the estimate of the action’s ()-value.

In methods for action selection a trade-off between exploration and exploita-
tion has to be made because an agent wants to exploit what he already knows
in order to obtain a reward, but it also wants to explore in order to make
better action selections in the future. It is not possible to explore and to ex-
ploit at the same time, hence a conflict will occur between exploration and
exploitation [18].

There are many methods for balancing exploration and exploitation. In our
experiments, we use the so-called softmax action selection method, where the
agents choose actions probabilistically based on their estimated ()-values using
a Boltzmann distribution. Given a state s, an agent tries out action a with

10



probability
exp (Q(s,a)/T)

A 3
Za’eA €xp (Q(Sv CL,)/T)
where T' is a positive parameter called the temperature that controls the
amount of exploration. A very low temperature tends to greedy action se-
lection, i.e. choosing the action for which the estimated @)-value is greatest. A
very high temperature results in nearly random action selection. The tempera-

ture is usually lowered gradually over time, which leads to a gradual transition
from exploration to exploitation.

P(a) =

(12)

2.1.8 Multiagent Environments

-learning is not guaranteed to converge in non-stationary environments.
There are various reasons why an environment may be non-stationary. One
possibility is that there are multiple agents active in the same environment. In
Section 5 we apply (Q-learning simultaneously to two Othello playing agents,
each agent being the opponent of the other. Each agent perceives the actions
of its opponent as part of the environment, so the agents are unaware who
they are playing against. Each agent learns and thus alters its policy. This is
perceived as non-stationarity of the environment by the opposing agent.

@-learning was developed for stationary environments. Due to non-stationarity,
convergence to an optimal policy cannot be guaranteed in multiagent settings.
Despite this fact we use this algorithm in our experiments in Section 5. An-
other approach in multiagent reinforcement learning is to use a reinforcement
learning algorithm that has been adapted for finding optimal policies in mul-
tiagent problems (see, e.g., [12,3]).

3 Othello

In this section we give an introduction to the game of Othello. We will describe
the game, and discuss some basic strategies.

3.1 Description of the Game

Othello is a two-player deterministic zero-sum game with perfect information.
Its state space size is approximately 10?® [1,21] and its length is 60 moves at
most. Othello is played by two players on an 8 x 8-board using 64 two-sided
discs that are black on one side and white on the other. One player places the

11
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Figure 6. Othello start position.

discs on the board with the black side up, the other places the discs on the
board with the white side up.

Initially the board is empty except for the central four squares, which have
black discs on the two squares on the main diagonal (at d5 and e4) and white
discs on the two squares on the other diagonal (at d4 and e5). Figure 6 shows
this starting position.

The players move in turn with black beginning. A legal move is made by
placing a disc on an empty square so that in at least one direction (horizontally,
vertically, or diagonally) from the square played on, there is a sequence of one
or more of the opponent’s discs followed by one’s own disc. The opponent’s
discs in such a sequence are turned over and become one’s own color.

For example we consider the position in Figure 7 with the black player to
move. Its legal moves, which are marked with a dot, are d2, d6, e2, {2, {6, and
f7. If it plays move d6, the white discs on d5 and e5 will be turned over and
become black. Figure 8 shows the board after this move.

If a player cannot make a legal move, it has to pass. If a player is able to
make a legal move, however, then passing is not allowed. The game ends when
neither player can make a legal move. Usually this occurs when all 64 squares
have been filled, but in some cases there are empty squares to which neither
player can legally play. When the game has ended, the discs are counted. The
winner is the player that has more discs than its opponent. If both players
have the same number of discs, the game has ended in a draw.

12
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Figure 7. Othello example: Black to move.
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Figure 8. Othello example: Position after move d6.

3.2 Strategies

A game of Othello can be split up into three phases: the begin game (which
ends after about 20 to 26 moves), the middle game, and the end game (which
starts somewhere between 16 to 10 moves before the end). The end game is
simply played by maximizing one’s own discs, while minimizing the opponent’s
discs. The goal of the middle game is to strategically position the discs on the
board so that they can be converted during the end of the game into a large
number of discs that cannot be flipped back by the opponent. Such discs are
called stable discs. There are two basic middle game strategies in Othello [14]:
the positional strategy, and the mobility strategy.

The positional strategy emphasizes the importance of specific disc positions
on the board. Positions such as corners and edges are valuable, whereas others
should be avoided. Corners are especially valuable because once taken, they

13



can never be flipped back by the opponent. Obtaining a corner disc in the
beginning of the game, or in the middle game, usually means that it will be
possible to use that corner disc to get many more stable discs. A player using
the positional strategy tries to maximize its valuable discs while minimizing
the opponent’s valuable discs.

The mobility strategy is based on the idea that the easiest way to capture a
corner is to force the opponent to make moves that deliver that corner. The
best way to force the opponent to make such bad moves is to limit the number
of moves available to the opponent, i.e., to minimize mobility. The number of
moves available to the opponent can be limited by minimizing and clustering
one’s own discs.

We will use agents playing these strategies as benchmark agents in our exper-
iments in Section 5. For a more extensive description of Othello strategies we
refer to [10].

4 The Othello Playing Agents

Our goal is to train different reinforcement learning agents to play the game
of Othello without the use of any knowledge on the values of board positions
provided by human experts. To reach this goal, in our experiments two rein-
forcement learning agents play the game of Othello against each other. Both
agents use the ()-learning algorithm to learn which move is best to play in
a given state of the game. As stated before, convergence is not guaranteed
because this is a multiagent setting. During learning, the @)-learning agents
are periodically evaluated against benchmark agents playing the positional
strategy and the mobility strategy.

In total, we use three types of players: the positional player, the mobility
player, and the @)-learning player. The different types of players play with dif-
ferent strategies, i.e. they use different evaluation functions. For every player
the evaluation function gives a numerical value of +1, —1, and 0 for the ter-
minal states that correspond to wins, losses, and draws, respectively. Until
the end of the game the different types of players use different evaluation
functions. Below, we give a more extensive description of the players.

4.1 Positional Player

A positional player does not learn. Until the end game, this player plays ac-
cording to the positional strategy as described in Section 3. The player’s ob-

14
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Figure 9. Othello position values.

jective during the begin game and the middle game is to maximize its own
valuable positions (such as corners and edges) while minimizing its opponent’s
valuable positions. To achieve this, until the end game the positional player
makes use of the following evaluation function

EVAL = w.1va1 + Waglas + ... + WagVa8 + . .. + WhgVUhs (13)

where w; is equal to +1, —1, or 0 if square ¢ is occupied by a player’s own disc,
is occupied by an opponent’s disc, or is unoccupied, respectively. v; is equal
to the value of square ¢ as shown in Figure 9.

The values of the corners are the highest (100 points) and the values of the so-
called X-squares (b2, b7, g2, and g7) are the lowest (-50 points), and thus they
are the best and worst positional moves to play in the game. The reason for the
-50 and -20 values for the X-squares and the C-squares (a2, a7, b1, b8, g1, g8,
h2, and h7) respectively, is that they potentially allow the opponent to obtain
the corner by flipping a disc placed there by the player. Also, these squares
make it impossible for the player to obtain the corner from that direction for
the rest of the game. The low values of the X-squares and C-squares force the
player to avoid playing there as much as possible.

The end game begins when at least 80% of the board squares are occupied, or
when all the corner squares are occupied. During the end game, the player’s
objective is to maximize the number of its own discs, while minimizing the
number of opponent’s discs. To achieve this, during the end game the posi-
tional player makes use of the following evaluation function in nonterminal
board states

EVAL = Nplayer — Mopponent <14>

where npjayer is the number of squares occupied by the player’s own discs and
Nopponent 18 the number of squares occupied by the opponent’s discs.
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4.2 Mobility Player

A mobility player does not learn. Until the end game, this player plays accord-
ing to the mobility strategy as described in Section 3. Just as in the positional
strategy, in this strategy the corner positions are of great importance. Fur-
thermore, in this strategy the concept of mobility is important. Mobility is
defined as the number of legal moves a player can make in a certain position.
The player’s objective for the begin and middle game is therefore to maximize
the number of corner squares occupied by its own discs while minimizing the
number of corner squares occupied by opponent’s discs, and to maximize its
own mobility while minimizing its opponent’s mobility. To achieve this, un-
til the end game the mobility player makes use of the following evaluation
function in nonterminal board states

Mp] —m t

player opponen
EVAL(S) = Wy (Cplayer - Copponent) + we (15)
Mplayer + Mopponent

where each w; is a weight, cplayer is the number of corner squares occupied
by the player’s discs, Copponent 1 the number of corner squares occupied by
the opponent’s discs, Mypayer is the mobility of the player, and mopponent is the
mobility of the opponent. The weights w; and ws are set to the values 10 and
1, respectively.

For the mobility player the end game begins at the same moment as for the
positional player. During the end game, the players objective is identical to the
one of the positional player. For this reason, during the end game the mobility
player makes also use of the evaluation function given by Equation (14).

4.8  Q-Learning Player

The -learning player is the only agent exhibiting learning behavior: it uses
the Q-learning algorithm (see Section 2.1) to learn which move is best to play
in a given state of the game. The current state of the board (the placements
of black and white discs on the board) is used as the state of the game. No
special board features selected by human experts (e.g. each player’s number
of discs, each player’s mobility) are used. Based on the state of the game the
agent decides which action to execute. This action is the move it is going to
play. The player’s reward is 0 until the end of the game. Upon completing the
game, its reward is +1 for a win, —1 for a loss, and 0 for a draw. The player
aims to choose optimal actions leading to maximal reward.

The values of all parameters of the Q-learning algorithm have been chosen
experimentally and may be suboptimal. The learning rate a of the @)-learning
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algorithm is set to 0.1 and the discount factor v is set to 1. The learning rate
does not change during learning. The discount factor is set to 1 because we only
care about winning and not about winning as fast as possible. A @)-learning
player uses the softmax action selection method as described in Section 2.1.2.
This selection method makes use of a temperature T" that controls the amount
of exploration. We take the temperature to be a decreasing function of the
number of games n played so far

ab™ if ab™ > ¢,
T = (16)
0 else,

for given values of a, b, and c. If T" = 0, no exploration takes place and the
action with the highest estimated Q)-value is always selected.

We implemented two different types of @)-learning players. Both of them use
neural networks to learn the @-function. We describe them in more detail
below.

The single-NN (@-learner uses a single multi-layer feed-forward neural net-
work with a distinct output for each action (see Section 2.1.1 for a descrip-
tion of this method and Figure 4 for the layout of such a neural network).
The network has 64 input units. Using these units the state of the environ-
ment is presented to the network. The units correspond with the 64 squares
of the board. The activation of an input unit is +1 for a player’s own disc,
—1 for a disc of the opponent, and 0 for an empty square. The network has
one hidden layer of 44 tanh units and an output layer of 64 tanh units. Each
output unit corresponds with an action (a square of the board). The value
of an output unit is between —1 and 1 and corresponds with the @)-value
of a move. Of course, when choosing an action, only the @)-values of legal
moves are considered. The learning rate of the neural network (which should
not be confused with the learning rate of the @-learning algorithm) is set
to 0.1 and no momentum is used. The weights of the network are initialized
to random values drawn from a uniform distribution between —0.1 and 0.1.
The constants (a, b, ¢) for the temperature annealing schedule are set to (1,
0.9999995, 0.002). Due to this schedule, there is a gradual transition from
exploration to exploitation. After 12,429,214 games, exploration stops and
the player always exploits its knowledge.

The multi-NN (@-learner uses a distinct multi-layer feed-forward neural
network for each action (see Section 2.1.1 for a description of this method
and Figure 5 for the layout of such a neural network). The number of neural
networks is equal to 64. Each network has 64 input units. In the same way
as for a single-NN (Q-learner these units are used to present the squares of
the board to the player. Each network has one hidden layer of 36 tanh units
and an output layer of 1 tanh unit. The value of an output unit is between
—1 and 1 and corresponds with the ()-value of a move. The learning rate of
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each neural network is set to 0.1 and no momentum is used. The weights of
each network are initialized to random values drawn from a uniform distri-
bution between —0.1 and 0.1. The temperature annealing schedule of this
player is the same as the one used for the single-NN @-learner. As a conse-
quence, the different neural network ()-learners only vary in the way they
‘store’ ()-values. In this way we can draw a good comparison between both
players.

Note that the total number of parameters used by the single-NN @-learner
and the multi-NN @-learner are 5,632 and 149, 760, respectively. A huge com-
pression compared to the 10°® parameters that would be needed when using
a lookup table.

During evaluation against benchmark players, both types of (Q-learning players
use an evaluation function that assigns a numerical value to a nonterminal
state

EVAL = max Q(s, a). (17)

During evaluation the )-learning agents do not use an exploration policy for
action selection, but, as indicated by Equation (17), they use an optimal policy
based on the estimated ()-values.

4.4 Java Applet

We implemented all agents described above in the programming language
Java. An applet containing them is available at http://www.few.eur.nl/
few/people/mvanwezel/othelloapplet.html. Figure 10 shows the applet,
which can also be used by a human player to play against one of the intelligent
agents.

5 Experiments and Results

We performed two experiments with agents using @-learning for Othello. In
the first experiment two single-NN @Q-learners played against each other, in the
second experiment two multi-NN ()-learners were used. In both experiments,
15,000,000 games were played for training. After every 1,500,000 training
games, learning was turned off and both ()-learners were evaluated by playing
100 games against two benchmark players: a positional player and a mobility
player.

Because during evaluation both the @)-learner and the benchmark player used
a deterministic policy, the evaluation games had to be started from different
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Figure 10. Screen-dump of the Othello applet.

positions. These different positions were generated by making four legal moves
at random from the initial position as shown in Figure 6. The number of dif-
ferent board states that may result from four random moves at the beginning
of an Othello game is 244. The same approach to evaluate an Othello player
was also used in [14] and [11]. As performance measure we used the percentage
of evaluation games that were not lost by the Q-learners.

During the evaluation phase in our experiments all agents made use of the
appropriate evaluation function mentioned in Section 4, i.e. the various agent
types used different evaluation functions. A four-ply look ahead search was
used to improve the move quality for all players during evaluation. The well
known minimax algorithm with alpha-beta pruning (see, e.g., [17]) was used
to determine the move that is optimal given the agent’s evaluation function
and a four-level deep search of the game tree. We found that a look ahead of
four moves is a good compromise between the strength of the players and the
computation time. It is important to note that during training the Q)-learning
players did not use the minimax algorithm.
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5.1 FExperiment 1: Learning to Play Othello with Single-NN Q) -Learners

Table 1 and Figure 11 show the results of the first Othello experiment. The
table shows the number of evaluation games won, lost, and drawn by the two
single-NN )-learners against positional and mobility players. The figure shows
the percentage of evaluation games lost by the single-NN ()-learners against
positional and mobility players. In the graphs the horizontal axis denotes the
number of training games and the vertical axis denotes the percentage of the
100 evaluation games that were lost. The solid and dashed lines correspond to
the @-learner playing with black discs and the @-learner playing with white
discs, respectively.

First of all it may be noticed from the results that the )-learners lost almost
all evaluation games when they had not yet learned anything (thus when no
training games had been played). Obviously, positional and mobility players
are rather strong players.

Against Positional Player Against Mobility Player
Iteration | @Q-learner Black | Q-learner White | Q-learner Black | Q-learner White
(x105) | Won Lost Draw|Won Lost Draw|Won Lost Draw |Won Lost Draw
0.0 3 96 1 7 88 5 2 97 1 1 99 0
1.5 73 26 1 72 28 0 44 53 3 56 40 4
3.0 58 40 2 87 11 2 47 53 0 64 35 1
45| 8 13 1 88 10 2 80 19 1 7723 0
6.0/ 80 14 6 97 2 1 62 32 6 7T 23 0
750 79 19 2 8 13 1 55 42 3 62 35 3
9.0/ 81 18 1 84 15 1 56 40 4 74 24 2
10.5| 75 20 5 91 9 0 67 32 1 79 21 0
12.0] 77 18 5 83 14 3 55 43 2 74 25 1
13.5] 77 23 0 9% 2 2 45 55 0 67 30 3
15.0| 84 11 5 86 13 1 70 28 2 7 24 1
Table 1

Evaluation results of the single-NN @-learner against benchmark players.

100

i " 100 , ;
Single-NN Q-learner 1 —— Single-NN Q-learner 1 ——
Single-NN Q-learner 2. - Single-NN Q-learner 2 ———

80 80 I

60 | | 60 |

% Lost
% Lost

40 t 40

20 20

0 5e+06 le+07 1.5e+07 0 5e+06 le+07 1.5e+07
Number of Training Games Number of Training Games

Figure 11. Evaluation results of the single-NN Q-learner against benchmark players.
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It may also be noticed that after about 15,000,000 training games the per-
centage lost by the @Q-learners had decreased to approximately 12% against
the positional benchmark player, and to approximately 26% against the mo-
bility benchmark player. This result indicates that the ()-learners were able
to learn to play the game of Othello. It is interesting to note that despite the
fact that the (Q-learners were not trained against the positional and mobility
players, they were able to beat them most of the time.

We note that on average the percentage lost by the ()-learners against the
mobility players was higher than against the positional players. This may
indicate that it is more difficult for Q)-learners to play against mobility players
than against positional players.

From these results we can conclude that single-NN ()-learners are able to
learn to play the game of Othello better than players that use a positional or
mobility strategy.

5.2 Experiment 2: Learning to Play Othello with Multi-NN Q) -Learners

The results of the second experiment are shown in Table 2 and Figure 12.
The results of this experiment look the same as the ones we saw in the first
experiment. A difference is the number of training games that the Q-learners
needed to achieve the same results against the benchmark players. It seems
that multi-NN @-learners learn slower than single-NN ()-learners. Generaliza-
tion over only states instead of generalization over both states and actions
may be an explanation for this difference.

After 15,000,000 training games, the multi-NN @)-learner lost approximately

Against Positional Player Against Mobility Player
Iteration | @Q-learner Black | Q)-learner White | Q-learner Black | Q-learner White
(x105)| Won Lost Draw|Won Lost Draw|Won Lost Draw |Won Lost Draw
0.0 5 95 0 9 88 3 2 96 2 8 92 0
1.5| 47 51 2 46 53 1 2T 73 0 39 61 0
3.0/ 33 65 2 46 52 2 19 77 4 48 51 1
4.5] 61 38 1 66 32 2 47 51 2 64 35 1
6.0 77 19 4 87 12 1 80 19 1 7327 0
75| 80 20 0 87 11 2 70 25 5 75 21 4
9.0 76 24 0 78 22 0 64 34 2 70 26 4
10.5| 79 17 4 82 18 0 71 25 4 73 26 1
12.0] 8 14 1 81 19 0 61 31 8 73 25 2
13.5] 88 11 1 87 12 1 7 22 3 81 18 1
15.0] 84 12 4 8 10 5 79 20 1 7426 0
Table 2

Evaluation results of the multi-NN @-learner against benchmark players.
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Figure 12. Evaluation results of the multi-NN Q-learner against benchmark players.

11% of the evaluation games against the positional benchmark player, and
approximately 23% against the mobility benchmark player.

Just as from the results of the previous experiment, from the results of this
experiment we can conclude that multi-NN @Q-learners are also able to learn to
play the game of Othello better than players that use a positional or mobility
strategy.

6 Summary, Conclusions and Outlook

In this paper we discussed reinforcement learning, a machine learning method
for sequential decision problems. Reinforcement learning is able to find approx-
imate solutions to large sequential decision problems by making use of func-
tion approximation. We described @)-learning, a frequently used reinforcement
learning algorithm.

As an example application, we applied @-learning to the game of Othello. We
aimed at studying the ability of different ()-learning agents to learn to play
the game of Othello without the use of any knowledge provided by human
experts. Othello has a huge state space (approximately 10%® possible states)
and is therefore not solvable by traditional dynamic programming techniques.

In the Othello experiments we investigated two different types of Q-learning
agents. We studied )-learners that use a single neural network with a distinct
output for each action and Q)-learners that use a distinct neural network for
each action. Q)-learners that use a lookup table were not studied because that
would have require too much memory. From the results of the experiments
we conclude that the two different types of ()-learners are both able to learn
to play the game of Othello better than players that use a straightforward
positional or mobility strategy. It seems that ()-learners that use a single
neural network learn to play Othello faster than ()-learners that use a distinct
neural network for each action.
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A first topic for future research is the use of an adapted version of the Q-
learning algorithm that is able to find optimal policies in multiagent settings,
as described by Littman in, e.g., [12]. His minimax Q-learning algorithm finds
optimal policies in two-player zero-sum games using the minimax criterion.
It may therefore be used to train Othello players. Another variation of rein-
forcement learning that may be of interest to us is the algorithm given in [15],
which is guaranteed to converge using any form of function approximator.

The effects of the presentation of special board features to the )-learning
agents in order to simplify learning may also be studied, although this violates
our goal of learning to play Othello without any knowledge provided by human
experts. Interesting board features in the game of Othello may be, for example,
patterns of squares comprising combinations of corners, diagonals, and rows.
These board features capture important Othello concepts such as stability.
Note that these features are easily recognized by human players due to their
visual system, but to a computer they are just as hard to recognize as arbitrary
board patterns, so offering them may help.

Furthermore, in future research it is interesting to investigate the performance
of the ()-learning agents against human players. The evaluation against hu-
mans may be performed by playing with with the best trained ()-learners
against human players in an Internet gaming zone (see, e.g., [4]).

Finally, we plan on studying potential applications of reinforcement learning in
operations research and management science. Some of these applications have
already been mentioned in the introduction. White [24] gives an overview of
general MDP-applications in operations research. It may be possible to re-
formulate some of these problems, so that advantage can be taken from rein-
forcement learning’s ability to generalize through function approximation. The
trade-off between inaccuracy af the problem formulation level and inaccuracy
at the solution level that arises in these cases is an interesting subject. The
first form of inaccuracy occurs when the decision problem is delibaretely kept
simple to keep the application of dynamic programming feasible. The second
form occurs when estimated value functions are inaccurate through the use of
function approximation as in reinforcement learning. For some problems, the
latter form of inaccuracy may give a better solution.
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