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Abstract

Hedonic pricing models attempt to model a relationship between object attributes and
the object’s price. Traditional hedonic pricing models are often parametric models that suffer
from misspecification. In this paper we create these models by means of boosted CART
models. The method is explained in detail and applied to various datasets. Empirically,
we find substantial reduction of errors on out-of-sample data for two out of three datasets
compared with a stepwise linear regression model. We interpret the boosted models by partial
dependence plots and relative importance plots. This reveals some interesting nonlinearities
and differences in attribute importance across the model types.

Keywords: Conjoint Analysis, Data Mining, Gradient Boosting, Ensemble Learning,
Hedonic Pricing, Marketing, Pricing.

1 Introduction

Hedonic pricing hypothesizes that each good is can be looked upon as a bundle of attributes x
and that a functional relationship p = F*(x) exists between these attributes and the price p of
a good. Hedonic pricing models are useful to assess the market value of goods before they are
traded or prices of goods that are not explicitly traded. (An example of the latter: Property tax is
often based upon the estimated market value of a property.) The development of hedonic pricing
theory is generally attributed to Lancaster (1966), Griliches (1971b) (1971a) and Rosen (1974).

In practice the hedonic price function F*(x) is estimated by a model F(x) based on a set
{(xi,pi)},i = 1,... N of historical data observations of attribute vectors and prices. Traditional
hedonic pricing models are typically linear or box-cox type models. These parametric models
have the appealing properties that their parameters are well-interpretable and easy to estimate.
Unfortunately, these models often suffer from misspecification: They impose a functional form
on the hedonic model that does not allow a good fit to the data. Several authors, e.g., Anglin
and Gengay (1996) Pace (1998) Gengay and Yang (1996) Bin (2004), have compared parametric
hedonic price models with more flexible semi- and non-parametric hedonic price models, usually
with substantial improvement in out-of-sample prediction performance.

In this paper we use a relatively new non-parametric technique, gradient boosting in combi-
nation with regression trees (Friedman 2001), for the hedonic pricing problem. The performance
of the boosted tree models is compared with the performance of traditional parametric models
using three benchmark datasets. Special attention is paid to interpretation of the non-parametric
models by means of partial dependence and relative importance plots.

An advantage of (boosted) regression trees (and many other non-parametric model classes) over
parametric models is that they allow for arbitrary interactions between product attributes, whereas
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the parametric models allow no interactions at all, or limited interactions that are explicitly input
to the model in the best case. An example of such an interaction effect is the following. Suppose
we model car prices, and two of the attributes are body shape and color. For a sports car, a red
color may add to its value and be preferred over green, whereas, for an off-road vehicle, green will
probably give a higher market value than red. Thus, there is an interaction between body shape
and color. Interactions between more than two attributes are also possible. Decision trees are
good at discovering interactions and utilizing them for predictions.

Another advantage of boosted regression trees is their ability to model nonlinearities in the
data. (Of course, interactions effects are non-linear as well.) An example of a nonlinearity in the
case of car prices may be the dependence of price on the trunk size. For small trunks, an increase
in trunk size may yield a lot of utility, but for large trunks a saturation effect occurs.

Many applications of hedonic pricing models have been in the realm of real estate appraisal
(Harrison and Rubinfeld 1978; Gilley and Pace 1995; Gengay and Yang 1996; Anglin and Gengay
1996; Pace 1998; Bin 2004), but the method has also been applied to a number of other product
categories, e.g., ball-points (Tomkovick and Dobie 1995) and digital cameras (Miyamoto and
Tsubaki 2002).

Hedonic pricing models can also be put to fruitful use in conjoint analysis, one of the most
widely applied quantitative marketing methods (see e.g., Lilien and Rangaswamy 2002; Green,
Krieger, and Wind 2001). The aim of conjoint analysis is to predict the utility of a new product.
Similar to hedonic pricing, a product is viewed as a bundle of attributes and a mapping between
these attributes and the utility represented by the product is constructed. This mapping is called
the part-worth function in conjoint analysis. The main difference between conjoint analysis and
traditional hedonic pricing is that in conjoint analysis the analyst decides what products (i.e.,
which combinations of attribute values) to include in the study and these products are not actually
traded, but respondents are asked to give their utilities. In summary, a part-worth function is
constructed on specially collected respondent data, whereas a hedonic price model is constructed
on data obtained from a real market, but both mappings can be used to obtain an estimate of a
product that is not explicitly traded or rated. There have been sporadic applications of hedonic
pricing in new product development, an example is described in Tomkovick and Dobie (1995).
Another related article in the marketing area is given by Ofek and Srinivasan (2002).

The remainder of this paper is structured as follows. The next section (Section 2) describes
the model types we use in this paper: stepwise linear regression, regression trees and boosted
regression trees. Section 3 describes the datasets we used. Experiments and results are described
in Section 4. Section 5 shows how to interpret boosted decision trees and gives the most striking
insight that result from this interpretation. Finally, Section 6 gives a summary, some conclusions
and an outlook.

2 Models

This section describes the model types we use in this paper. The first model is stepwise linear
regression, which is included as a benchmark model.

2.1 Stepwise linear regression

Linear regression is a frequently used model in statistics. SLR is an extension of ordinary linear
regression where attributes are added to the model in a greedy fashion — The model starts with one
variable and after each step the algorithm selects from the remaining attributes the one which yields
the largest reduction in the residual variance of the dependent variable, unless its contribution to
the total error reduction is smaller than a specified threshold. Similarly, the algorithm evaluates
after each step whether the contribution of any variable already included falls below a specified
threshold, in which case it is dropped from the regression. SLR has the advantage that it is less
prone to over-fitting than ordinary LR in data-sparse situations because fewer predictor variables
are used.
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Figure 1: A regression tree (1), and a partitioning of the feature space. F(x) is modeled by a
different constant in each region Ry, ..., Rs. For instance, F(x|x € Ry) = 0.1, F(x|x € Ry) = 0.4,
and so on.

2.2 Regression trees

A regression tree partitions the attribute space into a number of non-overlapping rectangles, and
then fits a constant to each of them. For instance, if we have two attributes z; and x,, the tree
of Figure 1 splits the attribute space into five non-overlapping rectangular regions Ry,..., Rs.
Here, a binary split of the form x; < ¢ splits a region into two subregions, one with z; < ¢ (go
left in the tree) and one with x; > ¢ ( go right in the tree). Thus, a regression tree 6 splits
the attribute space recursively by binary splits into a number of rectangular regions Ry,..., Ry,.
Well-known algorithms for generating decision trees on the basis of a data set are C4.5 (Quinlan
1993) and CART (Breiman, Friedman, Olshen, and Stone 1984). Both algorithms can also be
used for classification, where a categorical variable is modeled. In this paper we use the regression
version of CART in our experiments.

Decision trees are usually built in two phases. The first phase is a growing phase, the second
phase is a pruning phase. In the growing phase, the tree is grown until error reduction on the
training set is no longer possible or a predetermined threshold has been reached. The resulting
model usually overfits the data, and this is countered in a pruning phase, where the tree is shrunk
until the error on a hold-out sample, the pruning set, is minimal.

As stated in the introduction, decision trees are well suited for modeling interactions and non-
linearities. A drawback of decision trees is their instability — The implemented model depends
heavily on the dataset used for model creation, and a small change in the data may have large
consequences for the model. Ensemble methods, such as bagging (Breiman 1996) and boosting,
have a stabilizing effect by averaging over a number of decision trees. We consider boosting below.

2.3 Boosting & Boosted regression trees

Boosting (Freund and Schapire 1996) is a relatively new ‘learning method’, which has received
great praise in the machine learning, computer science and statistics communities. The method
was referred to as ‘one of the most powerful learning methods introduced in the last ten years’
in Hastie, Tibshirani, and Friedman (2001). Boosting is sometimes called arcing in the literature
(Breiman 1998). Boosting has shown to work well on a plethora of test problems and is often
seemingly resistant to over-fitting.

The general idea of boosting is to create a sequence of models, where each model focuses on
the patterns for which a large error was made by its predecessor(s). The predictions of these
models are subsequently combined to form the final predictions, either by weighted (as in (Freund



and Schapire 1996)) or unweighted (as in Breiman (1998)) combination. In the case of regression
problems this combination takes place by simple averaging, in the case of classification problems
it is often done by ‘voting’.

The original boosting algorithm, AdaBoost, is limited to data modeling problems with a cate-
gorical target (classification problems) and zero-one loss — an example is either modeled correctly
or not. Various authors have suggested extensions to other loss functions. One of these exten-
sions is the ‘LS_Boost’ algorithm due to Friedman (2001), a boosting algorithm for regressors with
squared error loss, which we use in this paper. LS_Boost is an instantiation of Gradient_Boost,
a boosting algorithm for general loss functions. We briefly describe LS Boost below. For a more
elaborate description of LS_Boost and Gradient_Boost the reader is referred to Friedman’s paper
(Friedman 2001).

Traditional (parametric) statistical models F(x|0) for relating a target y to inputs x are fit by
minimizing an objective function as a function of model parameters 6:

Fbest (X) = F(X| ebest)v abest = arg mein Ex,y[L(F(XW)? y)]

The appropriate loss criterion L is determined by the data modeling problem — It is often the
negative logarithm of a likelihood function. The best parameter vector is often found in a number
of steps using an optimization algorithm.

Boosting also finds an approximation of the target function in a number of steps, not by
improving model parameters, but by adding a new model to the existing model in each step.
Starting of with initial guess Fp, the estimated function is refined in the course of M steps by
adding functions si, ..., Sm:

Foest(x) = Fo(x) + Y sm(x).

m=1

Of course, we want to end up with F' such that
Fiest = axgmin By [L(F(), ). M)

Gradient_Boost finds this minimum by taking M steps along the negative gradient direction of the
objective function Ex ,[L(F(x),y)]. A large enough number of such steps would certainly take us
to a local minimum. At the m-th step the gradient at x is given by

_ [0B,[L(F(x),y)|x] . [OL(F(x),y)
gm (%) = [ OF(x) }F_le = Ey [ OF(x) |X] F=F,_, )

where F,,_1(x) = Fo(x) + Z:’;l s;(x). In practice when computing this gradient at data point
(xi,y;) the expectation over y is dropped:

_ [OL(F(xi), i)
gm(xi) = [W|XZ:| F=Fp,_1 .

Ideally, we would like to take steps —ag,, (x) along the negative direction of this gradient, where
« is a step size parameter. However, when using a finite dataset this gradient is only defined at the
data points. Therefore Gradient_Boost approximates the gradient step as well as possible using
a certain model class f. That is, the gradient is approximated using the closest possible model
fm(x) = f(x|a;,) from a given family (e.g., trees, neural networks) with parameters a (e.g., split
points, weights):

N
g = argmin > {gm(x:) — fxifa)}, 3)

i=1

and this approximation is used in the m-th step of the algorithm:

Sm(Xx) = —afm(x).



The models f are often called the ‘base learners’ in the machine learning literature. In principle,
the gradient boosting algorithm can be used with any differentiable loss function L and any base
learner f for which least squares minimization is possible. A linear base model is useless however,
because a linear combination of linear models is still a linear model. In this paper we use CART
as the base learner and squared error as the loss function.

LS_Boost starts by initializing Fy(x) = g. Subsequently the algorithm performs M steps in
each of which a new base learner, in our case a CART model, is fitted. In each iteration Equation
(2) is used to to find ‘targets’ or ‘working responses’ §; = g, (%;) for minimization problem (3).
Since the loss function is quadratic

_ A(yi — Frn—1(x:))*/2)

. OFm—1(%;) =Y =~ P (xa).

Next, a new model f,, is fitted and the combined model F,,,_; is updated with s,,. The algorithm
is summarized in Algorithm 1.

Input : Dataset with instances {x;;y; }3
Number of cycles M
Step size parameter o
Output: Model F(x)
Fo(x) =y
for m=1to M do
gi = yi _Fm—l(xi)ai = 1,...,N
train f,, using {x;;7; }
F(x) = Fp-1(x) + afm(x)
end

Algorithm 1: LS Boost

3 Data

We used three datasets in our experiments: Automobile, BostonHousing and WindsorEssexHous-
ing. The first two datasets are donwloadable from the UCI Machine Learning Repository (Hettich
2004), the third one was also used in the paper by Anglin and Gengay (1996) and can be ob-
tained from the ftp-archive of the Journal of Applied Econometrics (http://qed.econ.queensu.
ca/jae/). Below, we briefly describe these datasets:

Automobile: The automobile dataset describes 205 cars models imported into the U.S. in 1985.
The cars are described in terms of specifications of various characteristics, summarized in
Table 1, and, of course the aim of our analysis is to find a relationship between the target
attribute, Price and these characteristics. Instances with a missing target attribute were
removed from the dataset, leading to a data set size of 201.

We made some minor modifications to the original dataset: two attributes related to in-
surance insurance risk (i.e. Symbolizing and Normalized-Losses) were removed from the
dataset, and Make was replaced by a categorical value indicating the country of origin. This
operation maps the 22 original values of Make onto 7 countries of origin, preventing the
models from using Make as an important indicator.

BostonHousing: The Boston housing dataset was created in 1978 by Harrison to study the effects
of air pollution on housing prices (Harrison and Rubinfeld 1978), and has become a well-
known dataset in the data analysis community. The 506 examples in the dataset describe
suburbs of Boston, the target attribute is the median value of owner-occupied houses in the
suburb. The attributes in the dataset are described in Table 2.



Categorical

Name Levels
Country  France (13) Germany (40) Italy (3) Japan (99) USA (20) UK (3) Sweden (17)
FuelType diesel (20) gas (185)
Aspiration  standard (168) turbo (37)
BodyStyle convertible (6) hardtop (8) hatchback (70) sedan (96) wagon (25)
Drive-wheels  4wd (9) fwd (120) rwd (76)
EngineLocation front (202) rear (3)
EngineType dohc (12) dohcv (1) 1 (12) ohc (148) ohcf (15) ohev (13) rotor (4)
FuelSystem  1bbl (11) 2bbl (66) 4bbl (3) idi (20) mfi (1) mpfi (94) spdi (9) spfi (1)
Numerical
Name Avg Stdv Min Max (Missing)
Bore 3.33 0.27 2.54 3.94 (4)
Stroke  3.26 0.32 2.07 4.17 (4)
NumOfCylinders 4.36 1.06 2 12
EngineSize 126.88 41.55 61 326
Lenght 174.2 12.32 141.1 208.1
Width  65.89 2.1 60.3 72
Height 53.77 2.45 47.8 59.8
CurbWeight  2555.67 517.3 1488 4066
WheelBase 98.8 6.07 86.6 120.9
NumOfDoors  3.14 0.99 2 4 (2)
CompressionRatio 10.16 4 7 23
Horsepower  103.4 37.55 48 262 (2)
Peak-rpm  5117.59 480.52 4150 6600 (2)
City-mpg  25.18 6.42 13 49
Highway-mpg ~ 30.69 6.82 16 54
Price (target) 13207.13 7947.07 5118 45400 (4)

Table 1: Attributes in the Automobile dataset

WindsorEssexHousing: The third dataset, WindsorEssexHousing, also concerns real-estate
price estimation. It contains the characteristics of 546 houses in the Windsor and Essex
area in Canada, sold in the period July-September 1987. The target attribute is the sale
price. The attributes are described in Table 3.

For all three dataset we applied the LS _Boost algorithm with three different versions of CART
as ‘base learners’. Besides the regular CART models, we also used two extreme variants of CART,
i.e., unpruned CART and decision stumps in combination with LS_Boost. In unpruned CART, no
pruning takes place, only tree growing. This leads to a large tree which is prone to over-fitting.
On the other extreme are decision stumps, which are small trees consisting of only one interior
node (the root) and two leafs. Decision stumps are extremely easy and fast to create: Only one
split and no pruning is required. Individual decision stumps are weak learners with a high error
rate, but when combined in an ensemble they are much more powerful.

As benchmark models we used stepwise linear regression and CART without boosting. For
each model/dataset combination we ran 100 experiments. In each experiment, the total dataset
was randomly divided into a training set containing 90% of the total set, and a test set. (The
i-th training set was equal for each model.) In each experiment, the training set was used to fit
the model with, and the test set was used to obtain an estimate of the model’s prediction error.
Our primary evaluation criterion was the mean squared error on the test set. Below, we briefly
describe the models as they were used in the experiments.



Name Description Avg Stdv Min Max
CHAS Boolean indicating if tract bounds river 0.070.250 1
CRIM  Per capita crime rate by town 3.61 8.6 0.01 88.98
ZN  Proportion of residential land zoned for lots over 25,000 sq.ft. 11.36 23.32 0 100
INDUS Proportion of non-retail business acres per town 11.14 6.86 0.46 27.74
NOX Nitric oxides concentration (parts per 10 million) 0.55 0.12 0.39 0.87
RM  Average number of rooms per dwelling 6.28 0.7 3.56 8.78
AGE Proportion of owner-occupied units built prior to 1940 68.57 28.15 2.9 100
DIS  Weighted distances to five Boston employment centres 3.8 2.11 1.13 12.13
RAD Index of accessibility to radial highways 9.558.71124
TAX  Full-value property-tax rate per $10,000 408.24 168.54 187 711
PTRATIO Pupil-teacher ratio by town 18.46 2.16 12.6 22
B 1000(Bk — 0.63)> where Bk is the proportion of afro- 356.67 91.29 0.32 396.9
americans by town
LSTAT Percentage lower status of the population 12.65 7.14 1.73 37.97
MEDV (target) Median value of owner-occupied homes in $1000’s 22.53 9.2 5 50

Table 2: Attributes in the Boston Housing dataset

Name Description Avg Stdv Min Max
LOT Lot size in square ft. 5150 2169 1650 16200
BDMS  Number of bedrooms 2.9650.737 1 6
REC 1 If house has recreational room 0.178 0.838 0 1
STY  Number of stories 1.808 0.868 1 4
FFIN 1 If house has full basement 0.350 0.4770 1
GHW 1 If house uses gas for hot water heating 0.046 0.209 0 1
CA 1 If house has central air conditioning 0.317 0.466 0 1
GAR Number of garage places 0.629 0.861 0 3
DRV 1 If house has a driveway 0.859 0.348 0 1
REG 1 If house is in popular neighborhood 0.234 0.4240 1
FB Number of full bathrooms (incl. toilet, sink, bath tub) 1.286 0.502 1 4
P (target) Sale price 6812 26703 25000 190000

Table 3: Attributes in the Windsor Essex Housing dataset



MSE (x10°)
Model | Mean Sd Min Max Improvement
SLR | 9.9294 5.7549 2.22300 32.4510 0%
CART | 8.6494 4.0573 2.26310 23.3230 12.9 %
LS_Boost CART | 5.5086 3.2658  1.3968 17.072 44.5 %
LS_Boost Unpruned CART | 6.5590 3.2210 1.8461  17.0650 33.0 %
LS_Boost Decision Stumps | 4.4159 2.0413  0.6457  10.597 55.5 %

Table 4: Results for Automobile. The column ‘Mean’ displays the MSE on out of sample data over
all 100 runs with bootstrapped datasets. ‘Sd’ gives the standard deviation of these MSE values
over the 100 runs, Min and Max give the smallest and largest MSE values encountered during the
bootstrapped runs.

Model p-value Improvement,—o.o5
abs. rel.
CART 0.09539 —0.184 —1.08%

LS_Boost CART | 3.052 x 1013 2.86 28.83%
LS_Boost Unpruned CART | 1.688 x 10~° 2.14 21.64%
LS_Boost Decision Stumps | < 2.2 x 1076 3.91 39.45%

Table 5: Wilcoxon signed rank test outcomes for Automobile. The column p-value in the row
for model X gives the p-value for the Wilcoxon signed rank test of the hypothesis mean of MSE
improvement model X = 0 versus the alternative hypothesis mean of MSE improvement model X
> 0. The column Improvement, = 0.05 gives the improvement (absolute and relative) for which
the Wilcoxon test would yield a p-value of 0.05. This means that according to the Wilcoxon test,
the true improvement is greater than the number given with a probability of 95%.

4 Experiments and Results

Since stepwise linear regression is unable to cope directly with categorical data, it could not be
applied to the Automobile dataset. Therefore, we transformed each categorical value in this dataset
into an indicator vector where each position represents a level of the categorical variable. This
vector has a 1 on the appropriate position, 0 in the other positions. SLR is the only model using
these dummy variables, the other models use the categorical values.

Our CART benchmark model uses 20% of the training set as a pruning set (see Section 2.2).
The remaining patterns in the training-set are used for the the tree growing phase.

The step size parameter « in the LS_Boost algorithm was set to 0.1.v,, in iteration m, where
Vp, is the optimal « for iteration m found by line search. The number of iterations was set to 40
for each dataset. The members in the ensemble of CART models that is created in LS Boost all
use the same pruning set, consisting of 20% of the training set.

Below we present the results of the analyses we performed per dataset. We only pay attention
to model performance — Model interpretation is deferred to Section 5.

Table 4 shows out-of-sample errors obtained for all models on the Automobile dataset. Note
that the boosted models clearly outperform the benchmark models in terms of out-of-sample MSE.
The largest improvement with respect to SLR is obtained by boosted decision stumps: 55%. This
is more or less surprising because decision stumps nor combinations of decision stumps as created
in boosting are able to model interactions between attributes. The latter are, however, able to
model complex nonlinearities in one variable. The fact that boosted stumps outperform boosted
trees indicates the absence of interaction effects.

We performed the Wilcoxon signed rank test for paired data to test whether obtained improve-
ments were statistically significant. The results of these tests are shown in Table 5. From this
table we conclude that the improvements are significant.



MSE
Model | Mean Sd Min Max Improvement
SLR | 23.56 8.84 1042 48.4 0%
CART | 19.06 10.56 5.03  62.8 19.1 %
LS Boost CART | 11.77 6.23  4.27 49.21 50.0 %
LS_Boost Unpruned CART | 15.91 10.23 5.26 60.75 325 %
LS_Boost Decision Stumps | 14.51  6.52 5.28  41.8 38.4 %

Table 6: Results for BostonHousing. See the caption of Table 4 for an explanation.

Model p-value Improvement,—o.o5
abs. rel.
CART | 7.104 x 1075  2.285 9.67%
LS Boost CART | < 2.2 x 1076 10.061  42.69%
LS_Boost Unpruned CART | 1.768 x 10710  6.624 28.09%
LS_Boost Decision Stumps | < 2.2 x 10716 8.152 34.59%

Table 7: Wilcoxon signed rank test outcomes for BostonHousing. Please refer to the caption of
Table 5 for an explanation.

The results of the experiments on the BostonHousing dataset are reported in Table 6. A
similarity with the previous dataset is that the boosted regression trees clearly outperform the
benchmark models. In this case, the highest improvement is 50%. The outcomes of the Wilcoxon
signed rank tests are shown in Table 7.

The results for the WindsorEssexHousing, shown in Table 8, are not as favorable as for the
other two datasets. Here, SLR is the best model closely followed by boosted decision stumps. This
may indicate the absence of interaction effects. Anglin and Gengay (1996) found no interaction
effects either using this dataset and a semi-parametric model with a linear and a nonlinear part
that is additive in the original attributes. They do obtain some improvement over a log-linear
model w.r.t. out of sample performance. We were unable to perform the Wilcoxon tests for this
dataset because we only saved the aggregated results. However, nobody will dispute that boosting
does not lead to a significant performance improvement.

5 Interpretation

Parametric techniques often have the advantage that a useful interpretation can be given to the
model parameters, e.g., in SLR the model parameters can be interpreted as price elasticities.
Although not parametric, regression trees are also highly interpretable and can be written as an
equivalent set of if-then rules. Boosted trees lack both these appealing properties. Not all is lost,
however, because two useful tools exist that can be used for the interpretation of these ensemble

MSE (x10%)
Model | Mean Sd  Min Max Improvement
SLR | 253 0.66 1.09 4.96 0%
CART | 417 111 219 7.64 -64.8 %
LS Boost CART | 3.25 0.96 154 6.70 -28.5 %
LS_Boost Unpruned CART | 3.70 091 1.63 6.58 -46.2 %
LS_Boost Decision Stumps | 2.62 0.71 1.17 4.94 -3.6 %

Table 8: Results for WindsorEssexHousing. See the caption of Table 4 for an explanation.



models:

Relative importance plots, that visualize how important the various independent variables are
relative to one another in predicting the dependent variable. In regression trees, the relative
importance of a variable is measured examining the effect of each split on that variable
on the model outcome. Roughly speaking, this effect is high if the split results in a large
difference in model outcome for the right and the left subtree and/or the split is likely to
occur. (The probability that a split occurs is indicated by the number of patterns that travel
through the corresponding node relative to the number of patterns in the dataset. Generally
this probability is higher for nodes close to the root.) In an ensemble of regression trees
such as built by boosting, the relative importances are simply averaged over all trees in the
ensemble.

Partial dependence plots, that visualize the partial dependence of the implemented function
on a subset of the independent variables. For a grid of values for this variable subset, the
‘expected’ output of the model at that point is computed. Ideally, this expectation at a grid
point should be computed with respect to the conditional distribution (given the grid point)
of the variables not in the subset. In practice it is obtained by averaging the model outputs
over all instances in the dataset, keeping the values in the selected variable subset fixed to
the grid point, thus using the dataset to approximate the distribution.

In terms of prediction performance, LS_Boost with regression trees seems superior to the
benchmark models for hedonic pricing problems for two out of the three datasets. However, inter-
pretability is also a very important evaluation criterion for model quality. This is especially true
within the hedonic pricing context, where the data analyst may be more interested in answering
the questions which product features have the most profound influence on product price and what
the form is this influence is, than obtaining a somewhat more accurate price estimate. Below, we
will compare the various models in terms of attribute importance and functional form of the at-
tribute influence per dataset. We will highlight the most important points of disagreement among
the models.

Automobile

The SLR model for the Automobile dataset is shown in Table 9. The CART model is shown in
Figure 2. The boosted models are interpreted by means of relative importance plots and partial
dependence plots — these are given in Figures 3 and 4. For sake of comparison, these figures also
show the plots for SLR and CART.

As can be seen from Figure 3, all models designate EngineSize and CurbWeight (weight of the
empty vehicle) as the most important attributes influencing the price. However, the 3-rd, 4-th
and 5-th most important attributes differ across the models. Most notably, SLR thinks that the
fact that a car is built in Germany is important (3-rd position) whereas CountryOfOrigin hardly
has any influence in the (boosted) tree models. The (boosted) tree models place (HorsePower,
Width and Length on positions 3 to 5 respectively, while these are absent in the SLR model.

Partial depence plots for the three most important variables according to boosted stumps
(EngSz, CurbW, HP) are shown in Figure 4 together with cumulative histograms of these variables.
These graphs show the partial dependencies for boosted stumps, CART and SLR. There are several
things noticeable about these graphs. First of all the tree based models found clear nonlinearities
for all three variables. For EngSz, the range 180 — 200 seems to be critical for price-effects. This
is not surprising, as this area is occupied by models of brands of increasing exclusivity: Nissan,
Mercedes-Benz and Porsche. The area above 200 is the domain of exclusive car models, the area
below 180 contains primarily all-day car models. For CurbW there is also a clear nonlinearity —
the most important price effect of this attribute is between 2250 and 2750. The last attribute, HP,
also has a nonlinear influence. These nonlinearities may be the cause for the difference in relative
importance found between the SLR and tree-based models.

Further note that the graphs produced by the boosted stumps are somewhat smoother than
the graphs produced by the single trees. This can be attributed to the fact that boosting averages

10
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Attribute Coefficient  Std. Error P-value
Intercept -4820.3 4831.4337 0.319763
Germany (Country) 5095.5 507.8983 < 2x 10716
Sweden (Country) 2206.5 689.2607 0.001617
Aspiration 1742.5 523.1255 0.001050
Wagon (BodyStyle) -1297.1 579.1481 0.026331
Rwd (Drive-wheels) 1418.2 515.9862 0.006596
EngineLocation 7051.9 1604.5853  1.89x107°
CurbWeight 4.8092 0.9845 2.28x1076
Ohcv (EngineType) 3397.8 952.6319 0.000463
EngineSize 126.7 121772 <2 x 10716
1bbl (FuelSystem) 2192.2 871.8692 0.012801
2bbl (FuelSystem) 1683.7 536.1671 0.001974
Bore -2610.1 939.8130 0.006062
Stroke  -2877.6 649.8477  1.65x107°
Peak-Rpm 1.0144 0.4292 0.019182

Table 9: Stepwise LR Model Automobile
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Figure 4: Partial dependence plots (top) and cumulative histograms Automobile dataset
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Attribute Coefficient Std. Error P-value
Intercept 36.341145  5.067492  2.73 x 10~ 2
CRIM -0.108413  0.032779 0.001010

ZN  0.045845 0.013523 0.000754
CHAS  2.718716 0.854240 0.001551
NOX -17.376023  3.535243 1.21 x 10~
RM  3.801579 0.406316 < 2 x 10716
DIS -1.492711  0.185731 6.84 x 10~1°
RAD  0.299608 0.063402  3.00 x 1076
TAX -0.011778  0.003372 0.000521
PTRATIO -0.946525  0.129066  9.24 x 1013
B 0.009291 0.002674 0.000557
LSTAT -0.522553  0.047424 < 2x 10716

Table 10: Stepwise LR model BostonHousing dataset

over a large number of trees, whereas a single CART model contains a very limited number of
splits on a certain variable (especially when using limited data) and this results in a ‘step function’
like approximation with large discontinuities. In a boosted model these large discontinuities are
replaced by a large number of smaller discontinuities, yielding a ‘smoother’ function.

Boston Housing

The obtained parameters for the SLR model and the CART model obtained are shown in Table
10 and Figure 5. Both models displayed here were fitted on the whole dataset.

The relative importance plots for SLR, CART and boosted CART are shown in Figure 6. The
partial dependence plots of the most important attributes are shown in Figure 7, together with
their cumulative histograms.

Considering the relative importance plots, it is clear that there is a large difference in attribute
preference across the models. The most striking differences concern the variables RAD and CRIM.
RAD, the accesibility of highways, the 4-th most important attribute according to SLR, but in
the boosted CART model it occurs on the 11-th position with hardly any influence. Furthermore,
boosted CART assigns a much greater weight to the attribute CRIM, the criminality ratio, than
SLR. This attribute takes the 3-rd place in boosted CART and the 9-th place in SLR. The tree
based models seem to rely on fewer variables than the SLR model. CART uses only 4 attributes
in its model and these are also the most important ones in boosted CART. In contrast, SLR uses
11 attributes, with 7 significant ones.

The partial dependence plots in Figure 7 clearly show that CART and boosted CART find
nonlinearities in the data: the most important price effect of the number of rooms is between 7
and 8 rooms, and there seems to be a saturation effect in the negative price effect of LSTAT and
CRIM.

Windsor Essex Housing

SLR model and CART model for this dataset are shown in Table 11 and Figure 8. Relative
importance plots and partial dependence plots for this dataset are shown in Figures 9 and 10.
For the WindsorEssexHousing dataset all models assign the highest relative importance to
LOT, the lot size, and FB, the number of bathrooms. The SLR models assigns the 3-rd rank to
STY, the number of stories. This attribute plays no role in the CART model and a limited role
in the boosted stumps model. The 3-rd place in these model is taken by CA, a boolean indicating
the presence of air conditioning. This attribute comes 4-th in the SLR model. Strikingly, the
number of bedrooms plays no role in SLR and CART, and a very limited role in boosted CART.
This contradicts the results on the BostonHousing dataset, where RM was unanimously found to
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Figure 5: Regression tree BostonHousing dataset
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Attribute  Coefficient Std. Error P-value
Intercept  -497.3484  2749.2067 0.856510
LOT 3.5959 0.3498 <2x1016
FB 14924.1569 1454.2442 <2 x 10716
STY 7128.7990  867.3174 1.55 x 10~1°
DRV  6259.6177  2034.4638 0.002200
REC  4440.4102  1903.1824 0.020010
FFIN  5846.5080  1574.9946 0.000227
GHW  12949.4428 3223.0822 6.72 x 107°
CA 12605.9217 1557.9379 3.98 x 1015
GAR  4355.3216  839.7822  3.05x 1077
REG 9431.7782  1671.9235 2.74 x 10~8

Table 11: Stepwise LR model WindsorFEssexHousing

LOT<5980

LOT<4020

GAR<15
\orms |

| 85982 |

A
| 61626 | | 65126 | FFIN<0.5

A 4
48904

| 89232 | | 95151 | CA<05 \

81891 103786 |
112288

be the most important indicator. The most probable explanation for this observation is that both
datasets come from a different domain where different preferences may govern the influence on
price.

Considering the partial dependence plots, we see that the amount of nonlinearity if much
lower than for the previous datasets. E.g., the partial dependency plot boosted decision stumps
for attribute LOT fluctuates around the line found by SLR. It is a well-known property of tree-
based models that they are not well able to approximate linear (non-constant) relationships — This
requires a large number of splits. The linearity assumption may be appropriate for this dataset
and this may explain the degraded performance of the tree-based models as opposed to the SLR
model.

A 4

61090

LOT<7310 /I

150188

Figure 8: CART model WindsorEssezHousing

6 Summary, discussion and conclusions

We studied the application of boosted regression trees to three hedonic pricing problems. Three
variants of regression trees were used as a base model: normal CART, CART without pruning
and decision stumps consisting of one node. The out of sample performance of these models was
compared with reference models CART and stepwise linear regression.

For two out of the three datasets, Automobile and BostonHousing, the boosted tree models
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substantially improved the SLR reference models. For the third dataset, WindsorEssezHousing,
the results were less encouraging. The best performing base learner for the BostonHousing dataset
was a normal, pruned CART model. For the Automobile dataset decision stumps were more
successful. The most likely explanation is the absence of interaction effects in this latter dataset.

We used two methods, partial dependence plots and relative importance plots, for interpre-
tation of the boosted models. Differences in attribute importance among the models were high-
lighted. Several clear examples of nonlinearities were found. Moreover it turned out that the
various model types assigned very different probabilities to some of the attributes.

There are several ways in which this research can be extended. First of all, we intend to use
different base learners in combination with LS_Boost. Other base learners than CART, e.g., neural
networks or multivariate regression splines, have the advantage that they yield smoother mappings
than boosted decision trees and have no problems approximating linear relationships. This may
lead to better quality predictions. Another extension could be the application of monotone decision
trees (Potharst and Bioch 2000) as base learners. These models guarantee a monotone relationship
between the input attributes and the price, which is often realistic in hedonic pricing problems,
but they retain a large part of the flexibility of normal decision trees.
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