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Abstract

Development of colorectal cancer (CRC) can occur both via gene mutations in tumor suppressor genes and
oncogenes, as well as via epigenetic changes, including DNA methylation. Site-specific methylation in CRC regulates
expression of tumor-associated genes. Right-sided colon tumors more frequently have BRAFp.V600E mutations and
have higher methylation grades when compared to left-sided malignancies. The aim of this study was to identify DNA
methylation changes associated with BRAFp.V600E mutation status. We performed methylation profiling of colon tumor
DNA, isolated from frozen sections enriched for epithelial cells by macro-dissection, and from paired healthy tissue.
Single gene analyses comparing BRAFp.V600E with BRAF wild type revealed MEIS1 as the most significant
differentially methylated gene (log2 fold change: 0.89, false discovery rate-adjusted P-value 2.8*10-9). This finding
was validated by methylation-specific PCR that was concordant with the microarray data. Additionally, validation in
an independent cohort (n=228) showed a significant association between BRAFp.V600E and MEIS1 methylation (OR:
13.0, 95% CI: 5.2 - 33.0, P<0.0001). MEIS1 methylation was associated with decreased MEIS1 gene expression in
both patient samples and CRC cell lines. The same was true for gene expression of a truncated form of MEIS1,
MEIS1D27, which misses exon 8 and has a proposed tumor suppression function. To trace the origin of MEIS1
promoter methylation, 14 colorectal tumors were flow-sorted. Four out of eight BRAFp.V600E tumor epithelial fractions
(50%) showed MEIS1 promoter methylation, as well as three out of eight BRAFp.V600E stromal fractions (38%). Only
one out of six BRAF wild type showed MEIS1 promoter methylation in both the epithelial tumor and stromal fractions
(17%). In conclusion, BRAFp.V600E colon tumors showed significant MEIS1 promoter methylation, which was
associated with decreased MEIS1 gene expression.
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Introduction

Colorectal cancer (CRC) is a frequently occurring
malignancy in the Western world with a 5% life-time risk [1] and
a high worldwide annual incidence (n = 1,200,000) and
mortality (n = 608,000) [2]. CRC is caused by inactivating
mutations in tumor suppressor genes and/or activating
mutations in proto-oncogenes. Such mutated oncogenes
include KRAS and BRAF that are mutually exclusive in colon
tumors [3] and are both part of the Mitogen Activated Protein
Kinase (MAPK) pathway. In this biological route, signals traffic
from growth factor receptors present on the cell membrane

towards the nucleus and finally cause cell proliferation [4]. The
BRAF gene encodes for the serine/threonine-protein kinase B-
Raf and the most commonly found BRAF mutation in CRC is
present in exon 15 (c.1799TA) [5]. This mutation leads to
substitution of valine by the negatively charged glutamic acid at
position 600 (BRAFp.V600E) and increased protein kinase activity
[6]. As a result, BRAFp.V600E leads to constitutive signaling of the
MAPK pathway, independent from upstream growth signals.
The BRAFp.V600E mutation frequency increases gradually from
the rectum to the right-sided colon rather than showing a left-
right dichotomy [7]. Additionally, the BRAFp.V600E mutation is an
adverse prognostic factor among patients with CRC [8–13] and
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is associated with both microsatellite instability (MSI-H) and
genome-wide DNA promoter methylation [3,14]. MSI-H is
caused by deficient mismatch repair as a result of MLH1
mutation or promoter methylation [15].

In contrast to DNA mutations, DNA methylation is a form of
epigenetic alteration in which the DNA sequence is retained.
Methylation occurs at the 5-position of the pyrimidine cytosine,
only when followed by the purine guanine. DNA promoter
methylation is an important epigenetic mechanism that causes
gene silencing and has been linked to colon cancer [16,17]. To
date, the role of the BRAFp.V600E mutation in DNA
hypermethylation as found in colon tumors remains unclear.

The aim of this study was to analyze our previous dataset of
BRAFp.V600E and BRAF wild type tumors [18] at the level of
single genes. The most significantly hypermethylated gene in
BRAFp.V600E colon tumors was the homeobox gene MEIS1. We
explored the relationship between MEIS1 promoter methylation
and the BRAFp.V600E mutation in additional cohorts. We show
that MEIS1 methylation occurred more frequently in BRAFp.V600E

mutated colon tumors, and that it corresponded with decreased
MEIS1 gene expression.

Materials and Methods

Ethics statement
Specific need for ethics committee’s approval was not

necessary for this study. All samples were handled according
to the medical ethical guidelines described in the Code Proper
Secondary Use of Human Tissue established by the Dutch
Federation of Medical Sciences (www.federa.org, accessed
October 27, 2010). According to these guidelines all human
material used in this study has been anonymized since clinical
data were not used. Because of this anonymization procedure
individual patients’ permission is not needed.

Inclusion of patients
The first set of snap-frozen colorectal tumors meant for

genome-wide differential methylation screening, originated
from 19 anonymized patients with sporadic right-sided colon
cancer were included who underwent surgery between
2002-2005 at the Leiden University Medical Center (Leiden,
The Netherlands) or at the Rijnland Hospital (Leiderdorp, The
Netherlands), as described previously [18]. Only patients of
whom both tumor and corresponding normal tissue was
available were further included.

A second, independent set of colorectal tumors was included
for replication of results found in the first data set and consisted
of 228 sporadic CRC patients who were operated between
1990 and 2005 at the Leiden University Medical Center. The
third independent set consisted of 14 stage III colorectal
tumors, of which aneuploid tumor cells and normal stromal
cells were flow-sorted [19].

Cell culture
Colon cancer cell lines (HCT15 [20], HT29, Caco-2 and

LS180 [21], LoVo [22], LS411N [23], RKO [24], SW48, SW480,
SW837 and SW1463 [25], Colo320DM [26] and T84 [27]) were

obtained from the cell line collection of the department of
Pathology at Leiden University Medical Center (Leiden, The
Netherlands). Mutation analysis and short tandem repeat
marker profiling confirmed their identity. Cell lines were
cultured at 37°C in T75 flasks (Costar, Cambridge, UK) with
RPMI-1640 medium supplemented with 10% Fetal Bovine
serum, 2 mM Glutamax-I, 50 U Penicillin/mL medium and 50
µg Streptomycin/mL medium (GIBCO, Invitrogen LTD, Paisley,
UK).

Sample preparation
For the first set of 19 colorectal tumors, fresh-frozen tumor

tissue was first macrodissected based on evaluation of
hematoxylin and eosin (HE) stained slides to remove non-
tumor tissue [18]. In the second set of 228 colorectal tumors,
formalin-fixed paraffin embedded (FFPE) colon tumor tissue
was collected as 0.6 mm-diameter punches with a tissue
microarrayer (Beecher Instruments, Inc., Sun Prairie, WI)
based on evaluation of HE-stained slides [28]. The third set of
14 colorectal tumors was obtained from a previous study [19].
For each case, three different fractions were available: (i) the
whole tumor sample; this fraction contained more than 50 to
70% of tumor cells obtained through HE-guided
macrodissection; (ii) the DNA aneuploid, keratin-positive
epithelial subpopulation; (iii) the vimentin-positive normal,
diploid subpopulation. To obtain flow-sorted fractions, cell
suspensions from each tumor were simultaneously stained for
the epithelial cell marker keratin, the stromal marker vimentin,
and for DNA content (propidium iodide). The samples were
subsequently flow-sorted, as previously described [29]. The
vimentin-positive fraction contained the normal stromal cells
and lymphocytes that were present in the tumor tissue. The
aneuploid keratin-positive fraction contained the epithelial
tumor cells and was devoid of lymphocytes. For one tumor, two
different keratin-positive tumor subpopulations were identified
(TS510t); these were studied separately.

DNA isolation and BRAF mutation analysis
For both the cell lines and the first set of 19 patients, DNA

was isolated based on phenol/chloroform extraction, followed
by ethanol precipitation. DNA from the 19 colorectal tumors
were hybridized on Agilent 244k human CpG island
microarrays (Agilent Technologies, Santa Clara, CA, U.S.A.),
as described previously [18]. For the replication set of 228
colorectal tumors and fractionation set of 14 colorectal tumors,
DNA was isolated using the NucleoSpin® Tissue kit (Machery-
Nagel, Germany). The BRAFp.V600E mutation was detected using
exon 15 based mutant-allele-specific PCR [30].

RNA extraction and RT-qPCR
Total RNA was isolated from human and cell line samples

with TRIzol (Invitrogen, Paisley, U.K.) according to the
manufacturer’s instructions. Subsequently, total RNA was
purified with RNeasy Midi columns (QIAGEN, Venlo, The
Netherlands), including a DNAse incubation step. RNA integrity
and quality were evaluated by gel electrophoresis and
spectrophotometric analysis on a Nanodrop® (Thermo
Scientific). For cDNA synthesis a mix of 1-2 µg of RNA, 1-2 U
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RNAsin/µL (RNasin® Ribonuclease Inhibitor, Promega, Leiden,
The Netherlands), 2.5 ng oligodT/µL, 0.08 µg Random
primers/µL, 1 mM dNTPs and 0.25 U AMV RT transcriptase/µL
was incubated for 1 hour at 42°C in a final volume of 20 µL.
Subsequently, 2 µL of 25x diluted cDNA originating from cell
lines or 125x diluted cDNA originating from human samples
was assayed with 1x SensiMixPlus Sybr mix (GCBiotech,
Augsburg, Germany) and 0.1 µM Forward and Reverse primer
in a final volume of 8 µL.

Primer sequences for both RT-qPCR and methylation
specific PCR (MSP), as well as the corresponding assays are
shown in the Table S1. MEIS1 primers were designed as intron
spanning primers across exon 5 and 6, to recognize the full
length gene. The primer set for MEIS1D27 only recognizes
truncated MEIS1, i.e. when exon 7 and 9 are fused after
skipping of exon 8 [31]. MEIS1 and MEIS1D27 gene expression
were corrected for the geometric mean of two housekeeping
genes, CPSF6 and HNRNPM [32]. The Ct-values for human
samples varied between 28 and 38, whereas Ct-values for
human cell lines varied between 25 and 37.

Methylation-specific PCR
Methylation-specific PCR (MSP) was performed for MEIS1

and MLH1 promoter regions. Following phenol/chloroform
based DNA extraction isolation from frozen tissue of both tumor
and paired normal tissues, 200 ng of DNA was bisulfite
converted using the EZ DNA Methylation-Gold™ Kit (Zymo
Research, Irvine, CA, U.S.A.), and eluted in 15 µL of M-Elution
Buffer. Subsequently, 1 µL out of 15 µL eluate was amplified
with 0.5 µM of each primer set that makes a distinction
between unmethylated (Um) and methylated (M) MEIS1 and
MLH1, in combination with 0.1 U/µL AmpliTaq Gold® DNA
Polymerase (Applied Biosystems) and 0.2 mM dNTP mix.
Details regarding the primer sets and corresponding assays
are shown in Table S1. For high-throughput analyses of MEIS1
promoter methylation status in the consecutive set of 228
patients, the above mentioned MEIS1-MSP protocol was
slightly modified by adding the DNA-binding dye SYTO9
(1:500), enabling a real-time PCR based analysis of MEIS1
methylation status.

Statistical analyses
Agilent microarray data of paired tumor and normal tissue

were processed in R2.10.0 (Bioconductor), as previously
described [18]. Briefly, within-array normalization was
performed with LOESS, followed by between-array
normalization using Limma v3.2 [33], resulting in log2 ratios of
tumor versus normal. Since the amplicon generation was
based on MseI digestion, array probes were mapped to MseI
fragments. For fragments with more than one mapped probe,
the probe with the median log2 ratio was chosen as
representative for the fragment. A linear model in Limma [34]
was used to select differential methylation between BRAF wild
type and mutant groups with a false discovery rate (FDR) ≤
0.001 [35]. DNA methylation array data were deposited in the
Gene Expression Omnibus (GEO) under accession number
GSE39334.

The association between BRAFp.V600E and MEIS1 promoter
methylation was tested in a consecutive set of 228 patients by
univariate logistic regression. The BRAFp.V600E associated
variables right-sided tumor location and MSI-H were also
tested for association with MEIS1 promoter methylation.
Additionally, MEIS1 promoter methylation as a function of the
interaction of these three variables was tested with multivariate
logistic regression, using R2.16. The odds ratios (OR) and 95%
confidence interval (CI) were reported.

Results

Patients
For this study, three independent sets of colorectal tumors

were employed. For single gene analyses of DNA methylation
profiling and validation, 19 paired tumor-normal samples were
selected on presence in the ascending colon, including 8
BRAFp.V600E (6 of which were MSI-H and 2 MSS) and 11 BRAF
wild types (9 of which were MSS and 2 MSI-H). Additional
tumor characteristics, including histology, mismatch repair
status, CpG island methylator phenotype (CIMP), KRAS and
p53 mutation status and MLH1 methylation status are shown in
Table S2 and were described previously [18].

Secondly, the association between MEIS1 promoter
methylation and BRAFp.V600E as initially found with CpG island
microarray analyses was studied in a consecutive series of 228
colorectal tumors consisting of 54% males and an average age
of 66 ± 12 years (mean ± SD). Tumors were tested for MEIS1
promoter methylation status (n = 228), MSI status (n = 213),
BRAF mutation status (n = 163) and tumor location (n = 168).
The overlap between these sub-divisions is shown in Figure
S1.

Thirdly, the MEIS1 promoter methylation status was
determined in flow-sorted epithelial and stromal fractions of 14
patient samples that were part of a previous study [19] and
shown in Table S3.

Differential methylation of BRAFp.V600E compared to
BRAF wild types

Tumor versus paired normal methylation ratios were
compared between BRAFp.V600E and BRAF wild types to identify
BRAFp.V600E specific DNA methylation. In total, 210 fragments
associated with 200 unique genes were differentially
methylated (FDR ≤ 0.001). The top 10 of most significantly
differentially methylated loci all showed high methylation ratios
in BRAFp.V600E colorectal tumors (Table 1). The highest
significance was found for MEIS1 (log2 fold change: 0.89, FDR:
2.8*10-9), showing a ± 700x higher significance than the second
differentially methylated gene. The top differentially methylated
region mapped to the MEIS1 promoter region, located 300 bp
upstream from the transcription start site. BRAFp.V600E tumors
unequivocally showed elevated MEIS1 methylation levels when
compared to BRAF wild types which showed an approximately
equal extent of methylation in both tumor and paired normal
colon tissue (Figure 1A).
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Validation of MEIS1 promoter methylation
MSP was employed to validate MEIS1 promoter methylation,

as found on the Agilent microarrays. An overview of the tested
MEIS1 region is given in Figure 1B. MSP performed on the
same array-hybridized samples confirmed that MEIS1
methylation was exclusively found in BRAFp.V600E tumors,
whereas BRAF wild type tumors were unmethylated (Figure
1C). Furthermore, the normal tissue associated with both
BRAFp.V600E and BRAF wild type tumors only showed
unmethylated MEIS1. As a positive control for DNA quality and
bisulfite conversion, we determined MLH1 methylation in the
same samples by MSP. The results were concordant with the
mismatch repair status of these sporadic tumors, and with the
DNA methylation array data for MLH1 (Figure S2 A-C),
suggesting high quality of bisulfite converted DNA. These data
confirm that the MEIS1 promoter is methylated in BRAFp.V600E

colon tumors, but unmethylated in both normal tissue and
BRAF wild type colon tumors.

Validation of MEIS1 promoter methylation in a
consecutive cohort

To exclude the possibility that the correlation between
BRAFp.V600E and MEIS1 promoter methylation is a cohort
specific effect, we analyzed an independent consecutive series
of 228 colorectal tumors. The MEIS1 promoter methylation
status was determined by MSP, and analyzed in relation to
BRAF mutation status, MSI status, and tumor location (Figure
S1). In total, 18% of samples carried BRAFp.V600E, 12% were
MSI-H and 33% were located in the proximal colon. In
BRAFp.V600E tumors 60% (18 out of 30) of the samples were
methylated for MEIS1, while BRAF wild type tumors showed
13% (17 out of 133) MEIS1 methylation. Univariate analysis,
which considers individual variables contributing to MEIS1
promoter methylation (BRAF mutation status, MSI status, and
tumor location), showed that BRAFp.V600E had the highest
association with MEIS1 promoter methylation (OR = 13.0, CI =
5.2 - 33.0, P = 0.0001; Table 2). Lower associations were
found between MSI-H and MEIS1 promoter methylation (OR =
6.9, CI = 2.4 - 19.7, P = 0.0003), and between tumor location

and MEIS1 promoter methylation (OR = 2.4, CI = 1.1 - 5.4, P =
0.028).

Since BRAFp.V600E correlates with MSI-H and right-sided
tumor location within the colon [3,14], multivariate logistic
regression was performed to unravel possible associations
between these three variables. BRAFp.V600E was the only
significant variable associated with MEIS1 promoter
methylation, after adjustment for tumor location and MSI status
(Adjusted OR = 10.2, CI = 3.7 - 27.7, P < 0.000001). For both
MSI status (Adjusted OR = 2.8, CI = 0.7 - 11.0, P = 0.7) and for
tumor location (Adjusted OR = 1.0, CI = 0.4 - 3.0, P = 0.5), no
association was found with MEIS1 methylation after adjustment
for the remaining two variables.

We conclude that the BRAFp.V600E mutation has the highest
association with MEIS1 promoter methylation. The frequency of
MEIS1 methylation among BRAF mutant tumors in the
consecutive cohort with 228 patients was lower than in the
discovery cohort with 19 patients, possibly due to the small size
and selection for proximal colon of the discovery samples.

MEIS1 promoter methylation is associated with
decreased MEIS1 gene expression
MEIS1 gene expression was studied by RT-qPCR in

samples from nine patients with available RNA out of the set of
19 patients that were analyzed by DNA methylation
microarrays. MEIS1 expression in both normal and colon tumor
samples was variable, possibly reflecting tissue heterogeneity
and inter-individual variation. MEIS1 promoter methylation was
accompanied by relatively lower levels of MEIS1 gene
expression in the five BRAFp.V600E colon tumors compared with
their corresponding normal paired tissue (ratios between 0.07
and 0.59, Figure 2A). In comparison, only one out of four
tumors without MEIS1 methylation had lower MEIS1
expression in the tumor relative to the paired normal tissue. To
exclude the effect of tissue heterogeneity, we also determined
MEIS1 methylation and expression in a panel of colorectal
cancer cell lines (Figure 2B). All MEIS1 methylated cell lines
were devoid of MEIS1 gene expression, whereas unmethylated
cell lines did show MEIS1 gene expression. Interestingly, low

Table 1. Top 10 of most significantly differentially methylated loci in a BRAFp.V600E vs. BRAF wild type comparison.

Gene Name Fragment Fragment start Fragment end Description Log2 Fold change FDR-adjusted P-Value
MEIS1 Chr2.441293 66,515,620 66,515,851 Promoter 0.89 2.79 * 10-9

POU6F2 Chr7.269627 39,420,336 39,420,779 Inside 0.67 1.92 * 10-6

NR4A3 Chr9.573325 101,627,226 101,627,606 Promoter 0.74 2.68 * 10-6

ISLR2 Chr15.339570 72,209,856 72,210,394 Promoter 0.59 5.03 * 10-6

GALR2 Chr17.364837 71,582,754 71,583,229 Inside 0.70 5.61 * 10-6

LYPD1 Chr2.842595 133,144,875 133,145,523 Promoter 0.45 5.61 * 10-6

COL4A2 Chr13.724520 109,758,900 109,759,172 Inside 0.37 9.38 * 10-6

SHC4 Chr15.179740 47,042,094 47,042,663 Inside 0.63 9.38 * 10-6

C1orf164 Chr1.183112 44,854,835 44,855,693 Inside 0.34 9.42 * 10-6

SYPL2 Chr1.665313 109,810,333 109,810,621 Promoter 0.63 1.00 * 10-5

Fragment start and end position were retrieved from to the human genome browser (UCSC assembly March 2006, hg18). Fragments with the Description “unknown” were
excluded from further analysis.
doi: 10.1371/journal.pone.0079898.t001
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Figure 1.  MEIS1 is methylated in BRAFp.V600E relative to BRAF wild type tumors.  (A) The MEIS1 promoter is hypermethylated
in colorectal tumors with a BRAFp.V600E mutation (black dots) when compared to wild type BRAF (white dots). The Y-axis represents
the tumor vs. normal log2 ratio for the median probe per CpG fragment. The horizontal dotted line at log2 ratio 0 indicates an equal
extent of MEIS1 methylation in tumor and normal samples. (B) Overview of the analyzed MEIS1 promoter, CpG islands within the
promoter and the locus analyzed by MSP primers. Locations were based on the human genome browser (UCSC assembly March
2006, hg18). (C) MEIS1-MSP data showing hypermethylation in BRAFp.V600E colorectal tumors when compared to BRAF wild types.
T: tumor; N: normal tissue; M: methylated MEIS1 promoter (168 bp); Um: Unmethylated MEIS1 promoter (176 bp).
doi: 10.1371/journal.pone.0079898.g001

Table 2. Associations between MEIS1 promoter methylation and BRAF mutation status, MSI and tumor location.

  M Um Total
BRAF p.V600E 18 12 30
 WT 17 116 133
 Total 35 128 163

MSI MSI-H 14 11 25
 MSS 31 157 188
 Total 45 168 213

Location Proximal 17 39 56
 Distal 17 95 112
 Total 34 134 168

Number of patients involved in the calculation of the Odds Ratio for association analysis between MEIS1 promoter methylation and BRAF, MSI and tumor location. WT: wild
type; M: Methylated; Um: Unmethylated; MSI-H: Microsatellite Instable High; MSS: Microsatellite Stable. Proximal: right-sided tumors; distal: left-sided tumors.
doi: 10.1371/journal.pone.0079898.t002
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levels of MEIS1 expression were detected in cell line LS411N,
which showed hemi-methylated MEIS1.

In a recent study, the truncated transcription variant of
MEIS1, MEIS1D27, showed decreased expression in the
proximal colon, suggesting a tumor suppressor function [36]. In
line with the decreased expression of full length MEIS1,
MEIS1D27 expression was unequivocally decreased in five
BRAFp.V600E patients with MEIS1 promoter methylation relative
to the paired normal tissue, and in one tumor with
unmethylated MEIS1 (Figure 2C). Also, the epithelial colorectal
cancer cell lines with MEIS1 methylation showed absence of
MEIS1D27 expression (Figure 2D). The RT-qPCR results both
in primary tissues and cell lines suggest that MEIS1 promoter
methylation leads to decreased MEIS1 gene expression.

MEIS1 methylation in tumor and stromal cells
To determine the origin of MEIS1 promoter methylation in

heterogeneous tissue, we studied flow-sorted epithelial tumor
cells and normal stromal fractions. After flow-sorting, keratin-
positive epithelial tumor fractions and vimentin-positive stromal
fractions of 14 colorectal tumors were successfully analyzed, of
which eight were BRAFp.V600E and six were BRAF wild type
(Table 3). Amongst the BRAFp.V600E tumors, three epithelial
fractions showed MEIS1 promoter methylation. Of these cases,
TS510t showed tumor heterogeneity, where two aneuploid
tumor fractions were isolated from the same tumor tissue. One
of the tumor fractions showed MEIS1 methylation, the other
fraction was unmethylated for MEIS1 and also the entire
normal stromal fraction showed MEIS1 promoter methylation.
For tumor TS234t, MEIS1 methylation in the tumor cells was
assumed since methylation was detected in the complete

Figure 2.  Gene expression of MEIS1 and MEIS1D27 expression in human colorectal samples and CRC cell lines.  MEIS1
gene expression as measured by RT-qPCR corrected for the geometric mean of the housekeeping genes CPSF6 and HNRNPM.
(A) BRAFp.V600E tumors (black bars) that were all MEIS1 methylated showed lower expression of the full length MEIS1 gene, when
compared to the paired normal tissues (white bars). (B) Colorectal cancer cell lines that were methylated for the MEIS1 gene
promoter were devoid of MEIS1 gene expression. HT29, LS411N and RKO colon cancer cell lines carried the BRAFp.V600E mutation,
whereas the remaining cell lines were wild type for BRAF. (C) Gene expression of the truncated MEIS1D27 transcript in BRAFp.V600E

tumors (black bars) was low to absent when compared to paired normal tissue (white bars). Primer sets used, uniquely detect the
truncated transcript. (D) MEIS1 methylated colon cancer cells were devoid of MEISD27 (i.e. exon 8 skipped MEIS1). Gene
expression was expressed relative to SW837.
doi: 10.1371/journal.pone.0079898.g002
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tumor only and not in the flow-sorted stromal fraction. In total,
four out of eight BRAFp.V600E tumor epithelial fractions (50%)
showed MEIS1 promoter methylation. Furthermore, three out of
eight BRAFp.V600E tumor stromal fractions showed MEIS1
promoter methylation (38%). Amongst the BRAF wild type
tumors, one out of six showed MEIS1 promoter methylation in
both the epithelial and stromal fractions (17%).

These data independently confirm that MEIS1 promoter
methylation has indeed occurred in the epithelial tumor cells of
colon tumors carrying the BRAFp.V600E mutation. In addition,
also the normal stromal cells from these tumors, which
consisted of tumor infiltrating lymphocytes and fibroblast-like
cells, showed MEIS1 promoter methylation.

Discussion

Colorectal cancer shows molecular heterogeneity and
accumulation of alterations at the level of both genetics and
epigenetics, including DNA methylation. BRAFp.V600E mutated
tumors are mainly located in the proximal colon, show MSI and
relatively high DNA methylation levels [3,14]. Using a discovery
cohort of 19 right-sided colon tumors and paired normal tissue,
we found MEIS1 as the most significantly hypermethylated
gene promoter associated with BRAFp.V600E mutation. The
association between BRAFp.V600E and MEIS1 promoter
methylation was validated in a larger, consecutive cohort and
both significant when considering BRAFp.V600E as a single factor
and after correction for MSI and right-sided tumor location. The
frequency of MEIS1 methylation in BRAFp.V600E mutated tumors
was 60% for the consecutive cohort and 50% for the epithelial
fractions of flow-sorted tumor samples. The lower frequency of
MEIS1 methylation in the validation cohorts compared with the
discovery cohort (100%) is possibly due to the small size and
selection for proximal colon of the discovery samples. In both

validation cohorts, the frequency of MEIS1 methylation in
BRAF wild type tumors was low (13-17%). Therefore, we
conclude that the association between BRAFp.V600E and MEIS1
methylation is consistent. Strikingly, MEIS1 is a highly
expressed oncogene in leukemia [37], and its downregulation
is a marker that indicates a good prognosis [38].
BRAFp.V600E-associated MEIS1 methylation was associated

with decreased gene expression of the full length MEIS1
transcript and a truncated isoform, MEIS1D27 in tumors and
colon cancer cell lines. In line with our data, a previous study
also showed decrease of MEIS1 expression in colorectal
adenomas [39]. The previously reported truncated MEIS1
isoform that lacks exon 8, which is part of the DNA binding
homeodomain, was shown to be expressed exclusively in the
cytoplasm of epithelial cells in the right-sided colon [36]. The
expression of this MEIS1D27 was decreased in colon tumors,
when compared to paired normal tissue [36]. Since the BRAF
mutation status of these colon tumors was not reported, it is not
possible to evaluate whether loss of MEIS1D27 was associated
with BRAFp.V600E.

Using flow-sorting, we detected MEIS1 promoter methylation
both in the epithelial tumor fractions as well as in the normal
stromal fractions. The presence of MEIS1 methylation in the
epithelial fractions in tumors of which the stromal cells were not
methylated, suggests a genuine role for MEIS1 methylation in
colorectal tumorigenesis. However, this finding is obscured by
the presence of MEIS1 methylation in the (normal) tumor
stroma. We hypothesize that MEIS1 methylation in the stroma
may originate from infiltrating T-lymphocytes, similar to the
methylation of CDH1 in breast cancer [40]. These immune cells
express vimentin [41] and were shown to acquire MEIS1
methylation early during hematopoietic differentiation [42].
Additionally, intra-tumor lymphocyte infiltrate in colon tumors is
associated with BRAFp.V600E [43] and MSI [44–47]. It should be

Table 3. MEIS1 promoter methylation status of colorectal tumors and associated fractions.

Sample BRAF Tumor Epithelial fraction Stromal fraction
TS234t p.V600E M M* Um
TS495t p.V600E M M Um
TS516t p.V600E M M M
TS510t p.V600E M Um/M** M
TS141t p.V600E - Um M
TS454t p.V600E Um Um Um
TS465t p.V600E Um Um Um
OX103t p.V600E Um Um Um
TS128t WT - M M
TS291t WT - Um Um
TS261t WT - Um Um
TS479t WT - Um Um
TS485t WT - Um Um
TS532t WT - Um Um

Overview of 14 stage III colorectal tumor samples that were flow-sorted and labeled as either epithelial (keratin-positive fraction) or stromal (vimentin-positive fraction) cells.
M: Methylated; Um: Unmethylated; WT: wild type.
* Not available, but most likely methylated taking into account that the complete tumor was methylated and stroma unmethylated.
** Two aneuploid epithelial fractions from the same tumor.
doi: 10.1371/journal.pone.0079898.t003
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noted that the CpG Island Methylator Phenotype (CIMP) is
associated with BRAFp.V600E [15], which might imply that the
CIMP status could be a confounder in the association between
the BRAF mutation status and MEIS1 methylation.

In conclusion, MEIS1 methylation is associated with
BRAFp.V600E in colon tumors and accompanied by a decrease of
MEIS1 gene expression. Further research is necessary to
study the biological role of MEIS1 in colon carcinogenesis,
especially with a BRAFp.V600E mutation.
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