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LOGARITHMIC RESIDUT_S IN BANACH ALGEBRAS 

H, Bart, T. Ehrhardt and B. Silbermann 

Let f be an analytic Banach algebra valued function and suppose that the 
contour integral of the logarithmic derivative f ' f q  around a Cauchy domain D 
vanishes. Does it follow that f takes invertible values on all of D? For important 
classes of Banach algebras~ the answer is positive. In general, however~ it is 
negative. The counterexample showing this involves a (nontrivial) zero sum of 
logarithmic residues {that are in fact idempotents). The analysis of such zero sums 
leads to results about the convex cone generated by the logarithmic residues. 

1. INTRODUCTION 

Let D be a bounded Cauchy domain in the complex plane C (cf. [TL]), and let 

f he a complex-valued function with the following properties: f is defined and 

analytic in an open neighbourhood of D and f does not vanish on OD, the (positively 

oriented) boundary of D. It is known from complex function theory that the 

logarithmic residue 

1 f f ' ( ~ )  d~ 
2~ri 

0D 

is equal to the number of zeros of f in D (counted according to multiplicity), In 

particular, the identity 

1 [ f'(~') dA = o 
2~i , ,  

OD 

implies that f does not vanish in D. 

The issue in this paper is the extension of the latter result to the more 

general setting where f takes its values in a (compIex) Banach algebra rather than in 

C. Of course~ the desired conclusion then takes the form: f()~) is invertible for all 

A~D. Several instances are known where such a generalization is valid indeed. 

The most notable among these comes from spectral theory: If T is a bounded 

linear operator on a Banach space X and D is a bounded Cauchy domain such that aD is 
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contained in the resolvent set p(T) of T, then the identity 

(1.1) 27ril f ()~Ix-T)-ldA = 0 
OD 

implies that D is contained in p(T), i.e., AIx-T is invertible for all AeD. The 

left hand side of (1.1) is the spectral or Riesz projection associated with T and D. 

Another generalization involves the case when f takes its values in a 

commutative Banach algebra. This situation has been discussed in [B1]. The argument 

presented there is based on a simple application of standard Gelfand Theory. By the 

way, the result discussed in the previous paragraph fits into this framework. To see 

this, consider the closed subalgebra generated by T and the identity operator I x. 
Finally, we mention that a positive result exists for Fredholm operator 

valued functions. This follows from the material on multiplicities of operator valued 

functions developed by I.C. Gohberg and E.I. Sigal [GS]. In the present paper 

(Section 3) we shall give a new proof of this result using the systems theoretical 

methods from [BGK1]. 

How about the general case? As it turns out~ the picture is mixed. On the 

one hand, using material from [BES1], we present a (nonexotic) counterexample showing 

that the desired generalization does not always hold true (Section 4). On the other 

hand~ we demonstrate that the generalization is valid for a variety of important 

Banach algebras (also Section 4). For instance, a positive result is obtained for 

polynomial-identi ty Banach algebras. Another interesting example is the Banach 

subalgebra of s generated by all compact operators on L2([), all operators on 

L2($) of multiplication by piecewise-continuous functions, and the operator S of 

singular integration along ] .  Here ] is the unit circle in C. 

It is worthwhile to say something about the nature of the counterexample 

mentioned in the preceeding paragraph. Banach algebras for which the generalization 

that we are looking for is valid have the following property: A finite sum of 

idempotents can only vanish if all terms in the sum vanish individually. Now there do 

exist Banach algebras lacking this property. This has been established in [BES1], 

where the theme of zero sums of idempotents is taken up as a separate topic (see 

Section 6 for a brief summary). An example is provided by the Banach algebra of all 

bounded operators on infinite dimensional Hilbert space. 

In the present paper, we pay attention to the more general phenomenon of 

zero sums of logarithmic residues (Section 5). The discussion leads to results on the 

convex cone generated by the logarithmic residues. One of these results (Theorem 5.2) 
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can be viewed as a comment on an open problem stated by N. Krupnik ([K], Section 29, 

Problem 12). 

Acknowledgement: The foundation for this paper was laid when the first and 

last author were at the 20th Functional Analysis Seminar organized by V. Pts and 

P. Vrbobs in Liptovsky Jan, Czechoslovakia, May-June 1989. The authors are grateful 

to T.J. Laffey for bringing to their attention the references [Be] and [Ma]. 

2. PRELIMINARIES ON LOGARITHMIC RESIDUES 

Throughout this section, B will be a (complex) Banach algebra with unit 

element. In working with contour integrals, we shall employ bounded Cauchy domains 

(in C) and their (positively oriented) boundaries. For a discussion of these notions, 

see, for instance, [TL]. 

Let D be a bounded Cauchy domain. The (positively oriented) boundary of D 

will be denoted by OD. We write Ao(D;B ) for the set of all B-valued functions f with 

the following properties: [ is defined and analytic on an open neighbourhood of the 

closure D (=DuOD) of D and f takes invertible values on all of OD. For f eAo(D;B ) 

one can then define 

(2.1) LogRes(f;D) 1 =F~7 f f'('X)f('X)-~d'X 
OD 

where f '  stands for the derivative of f. 

The elements of the form LogRes(f;D) are the logarithmic residues in B. 

More specifically we call LogRes(f;D) the logarithmic residue of [ with respect to D. 

Since B is not assumed to be commutative, a remark is in order here. The 

expression (2.1) involves the left logarithmic derivative ['(,k)f(,k)-lof f. It is just 

as well possible to work with the right logarithmic derivative f()~)-lf'(,k) or even 

with logarithmic derivatives of mixed type: f(A)-kf'(A)f(A) k-l, where k is an 

arbitrary (but fixed) integer. Such an alternative approach leads to analogous 

results. 

It is illuminating to give some examples. The first and third formalize 

things already outlined in the introduction. Along the way we shall fix additional 

notation and terminology. 

EXAMPLE 2.1 Suppose B = C ,  so we are dealing with scalar analytic functions. 

Then LogRes(f;D), provided it is well-defined, is equal to the number of zeros of [ 

in D counted according to multiplicity. In particular, LogRes(f ;D)=0 if and only if f 

does not vanish in D. [] 

EXAMPLE 2.2 Let B be the Banach algebra of all upper triangular complex n• 
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matrices. It is easy to see tha t  in this case too, LogRes(f;D)=O if and only if f 

takes invertible values on D. 

To describe the logarithmic residues in B, we introduce some notat ion.  By 

we denote the set of all (upper triangular) complex n• matrices R with the following 

property: There exists j e{1 , . . . , n}  such that  

1) the first j - 1  eolums of R are zero, 

2) the last n - j  rows of R are zero, 

3) the ( j , j ) - t h  entry of R (so the j - t h  diagonal entry of R) is a 

nonnegat ive integer larger than or equal to the rank of R. 

Also, let R' be defined in the same way as R with the understanding that  3) is 

replaced by 

3') the ( j , j ) - t h  entry of R and the rank of R are both equal to 1. 

Note tha t  R' consists of the nxn matrices of the form 

J 
~c%c~tes eT 

s=l t=j  

where el,...,e n is the s tandard basis in C n, (xl~...,(x . are complex numbers,  (x j=l ,  and 

the superscript T signals the operation of taking the transpose. The integer j is 

allowed to range from 1 to n. 

The logarithmic residues in B are precisely the finite sums of elements in 

~. Clearly ~ '  is a subset of ~ and it can be shown that  each element of ~ is a finite 

sum of elements of ~'.  So the logarithmic residues in B can also be characterized as 

the finite sums of elements in ~',  where, of course, the zero matr ix  corresponds to 

the empty sum. It is easy to see tha t  ~' is the set of all idempotent  upper 

t r iangular  rank one n• matrices. Below we shall prove that  each sum of idempotents 

is a logarithmic residue (Example 2.4 and Proposition 2.5). Thus the logarithmic 

residues in B are just the finite sums of idempotent  upper t r iangular  n• matrices 

(of rank at most  one). 

Specializing to n = 2 ,  we have that  the logarithmic residues in the Banach 

algebra of all upper t r iangular  complex 2• matrices are the matrices of the form 

where m and k are nonnegat ive integers, c~ is a complex number  and c~ is zero whenever 

both m and k vanish. This is easy to prove. In the general case of arbi t rary n, the 

verification of the facts presented above is somewhat more complicated. For details, 

see [BES2]. [] 
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If Y is a (complex) Banach space, then s stands for the Banach algebra 

of all bounded linear operators on Y. The unit  element in E(Y) is the identi ty 

operator  I r  on Y. The spectrum of an element T e E ( Y )  will be denoted by a(T),  the 

resolvent set by p(T). 

EXAMPLE 2.3 Suppose B=s  where Y is a complex Banach space. Let 

T e E ( Y ) ,  and write FT(A)=AIy-T .  If D is a bounded Cauchy domain,  then LogRes(FT;D ) 

is defined if and only if a(T)nOD=O, and in tha t  case LogRes(FT;D)=P(T;D), where 

P(T;D) 1 =-ff~ f (AI r -T)  -ida 

01) 
is the Riesz projection associated with T and D. From spectral theory we know tha t  

P(T;D)2=P(T;D), so P(T;D) is an idempotent  in s Another impor tant  fact is tha t  

P(T;D)=O if and only if D c p ( T ) ,  i.e., FT(A)=AIr-T  is invertible for all A~D. For 

a general izat ion to the case where A I r - T  is replaced by the more general pencil AS-T,  

see [St] and [GGK]. 

EXAMPLE 2.4 Returning to an arbitrary Banach algebra B with unit  element e, 

we note tha t  each idempotent  in B is a logarithmic residue in B. To see this, let p 

be an idempotent  in B, write f (A )=e-p+Ap ,  and note tha t  f'(A)f(A)-I=A-Xp, 

A-~O. [] 

In Example 2.4, the inverse [(A) -1 has a simple pole at  the origin. In 

fact, a logarithmic residue corresponding to a simple pole of the inverse of an 

analytic function is always an idempotent.  To see this, consider Laurent expansions 

and use the relations between their coefficients. A rather  complicated and 

restrictive sufficient condition on f under which LogRes(/;D) is an idempotent  has 

been given in [Mt]. 

We conclude this section with two simple observations. 

PROPOSITION 2.5 A (finite) sum of logarithmic residues in a Banach algebra 

B is again a logarithmic residue in B. 

PROOF It is sufficient to prove that  the sum of two logarithmic residues in 

B is again a logarithmic residue in B. Let b 1 and b 2 be logarithmic residues in B. 

Write bl=LogRes(fl;D1) and b2=LogRes(f2;D2) with appropriately chosen fl,D1 and 

f2,D2. We may assume that  Dln  D2=O (apply a simple translation).  Put D=D1uD2, and 

let f be a function coinciding with f l  on an open neighbourhood of D 1 and with f2 on 

an open neighbourhood of D 2. Then bl+b2=LogRes(f;D ). [] 

PROPOSITION 2.6 Let b be a logarithmic residue in a Banach algebra B, and 

let s be an invertible element in B. Then s-lbs is again a logarithmic residue in B. 

PROOF Write b=LogRes( / ;D)  and put g(A)=s- l f (A)s .  Then g ' (A)g(A)-I  = 

s -  i f ,  (A)f(A)- is,  and hence s- lbs = LogRes(g;D). [] 
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3. LOGARITHMIC RESIDUES OF FREDHOLM OPERATOR VALUED FUNCTIONS 

As we shall see in subsequent sections, logarithmic residues of matr ix  

valued or, more generally, Fredholm operator valued functions are of special 

interest. For tha t  reason this section is devoted to them. We begin by establishing 

some nota t ion and terminology. 

Let Y be a (complex) Banach space, and let T e E ( Y ) .  The null space of T 

will be denoted by KerT, its image by ImT. The operator T is called a Fredholm 

operator if KerT is f ini te-dimensional  and I mT has finite codimension in Y. The 

latter condition implies tha t  I m T  is closed (cf. [GGK], Chapter XI). 

Now let D be a bounded Cauchy domain, let F e A o ( D ; E ( Y ) )  , and assume that  

F(A) is a Fredholm operator for all AeD. Write F for the set of all # in D for 

which F(/~) is not invertible. From the li terature on analytic Fredholm operator  

valued functions (see [GGK], and the references given there),  it is known that  F is a 

finite set and that  the function F(A) -1 is finite meromorphic on D. The lat ter  means 

that  F(A) -1 is meromorphic on D and that  the principal parts of the Laurent 

expansions around the points of D have finite rank coefficients only. These facts 

imply that  

L~ f F'(A)F(A) -ida 

OD 

is a finite sum of finite rank operators (one for each point of F), and hence a 

finite rank operator  itself. 

THEOREM 3.1 Let F e A o ( D ; E ( Y ) )  , where Y is a Banach space and D is a 

bounded Cauchy domain. Assume F(A) is a Fredholm operator for each A eD.  Then 

LogRes(F;D) is a finite rank operator whose trace is a nonnegative integer. Further, 

the following statements are equivalent: 

(i) LogRes(F;D) = 0, 

(ii) trace [LogRes(F;D)] = O, 

(iii) F takes invertible values on all of D. 

A quick proof of the theorem can be obtained by using the mater ia l  on 

multiplicities of analytic Fredholm operator valued functions developed by I.C. 

Gohberg and E.I. Sigal [GS]. The key point in this approach is tha t  
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trace [LogRes(F; D) ] = #~FM(F;  #) 

where F is as above and M(F;#) is the algebraic multiplicity of F at # (see also 

[GGK], and the references given there). We prefer, however, to give a proof based on 

the ideas involving systems theoretical concepts developed in [BGK1]. This new proof 

is another application of the so cMled State Space Method in analysis (cf. [BGK4] 

and [B2]). 
PROOF Let F be defined and analytic on the open neighbourhood 12 of D. Since 

D is bounded we may assume that 12 is bounded too. But then F admits a realization on 

12. This means that there exist a Banach space X and bounded linear operators A:X-->X, 

B: Y --> X and C: X --> Y such that 

(3.1) F(A) = Iy+C(AIx-A)-IB, Ae12cp(A) 

where p(A) stands for the resolvent set of A. The space X and the operators A,B and C 

can be constructed explicity (cf. [Mg], [BGK1], and the references given there). 

Consider the right hand side of the realization (3.1) which is well-defined 

for all A E p(A). Invertibility aspects of this right hand side can be described in 

terms of the operator A• This fact is well-known and has been used many times 

before (cf., e.g., [BGK1] and [B2]). Restricting ourselves to values of A in the 

subset 12 of p(A), we have: F(A) is invertible if and only if A ep(A• and in that 

c a s e  

(3.2) F(A) -1 = Iy -  C(AIx- A• 

(3.3) (Mx-A• -1 = (Mx-A) -1- (Mx-A)-IB F(A) -1C(AIx-A) -1. 

Verification can be carried out by direct computation taking into account the 

identity BC= (AIx-A • (AIx-A) which gives rise to the necessary cancellations. 

It follows that ODcp(A x) and F=a(A~)nD, where F is the set of all # in 

D such that F(#) is not invertible. In particular a(A x) n D is a finite set. From 

(3.3) it is also clear that (AIx-A• -1 is finite meromorphic on D. It is obvious now 

that the expressions 
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(3.4) 2~ril f-(AIx-A• -1 B C ( A I x - A )  -1 dA 

OD 

(3.5) 2nil f_C(AIx_A)-I (AIx_A• 

OD 

define finite rank operators on X and Y~ respectively. These operators have the same 

trace. This can be seen by using the commutativity property of the trace and 

comparing the Laurent expansions of the integrals around the points of l ' = a ( A •  

Note in this context that the integrand in (3.5) is obtained from the integrand in 

(3.4) by changing the order of the factors (AIx-A•  and C ( A I x - A )  -1. 

Now let us analyze (3.4). Replacing BC by ( A I x - A •  the expression 

(3.4) transforms into 

1 

OD 

Recall that ( A I x - A )  -1 is analytic on all of Ft. Thus (3.4) is equal to P• where 

p•215 1 =2~-( f (AIx-A•  -ida 

OD 

is the Riesz projection of A • corresponding to the bounded Cauchy domain D. Next we 

turn to (3.5). Combining (3.1) and (3.2), we see that for A eFt  c~ p(A • the following 

identities hold true: 

F'(A)F(A)-' = - C(AI X - A)-2B [Iw - C(AI x - A • )-'B] 

= - C(AI X-  A)-aB + C(AI X -  A)-2BC(AI x -  A • 

= _ C(AI X -  A)-I(AIx - A• 

The latter transition was again obtained by replacing BC by ( A I x - A •  It 

follows that (3.5) coincides with LogRes(F;D). 

Recall that (3.4) and (3.5) have the same trace. Also traceP •  P• 

since P• is a projection (idempotent operator). Hence 

(3.6) trace [LogRes(F;D)] = rank e• 

In particular the trace of LogRes(F;D) is a nonnegative integer. It is zero if and 

only if P• and this implies that F=cr(A •  Thus (ii) implies (iii). The 
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implications ( i )~(i i )  and ( i i i )~(i)  are obvious. [] 

There is one point in the above proof that deserves clarification: The 

realization (3.1) of F is not unique, and so, at first sight, the rank of P• might 

vary with the choice of (3.1). The identity (3.6), however, shows that it does not. 

This is a special case of a more general phenomenon involving "spectral 

characteristics" associated with realizations which has been made transparant in 

[BGK3]; see also [BGK2]. 

Finally, note that in the matrix case (Y=C n) things can be reduced to the 

scalar case (Example 2.1). For this, one employs the identity 

1 d 
trace F'(A)F(A) - 1 -  det  F(A) dA det F(A) 

(see, for instance, [It]). 

4. VANISHING LOGARITHMIC RESIDUES 

Formulated in the language of Section 1, the issue in this paper is the 

following: Does LogRes(F;D)=O imply that f takes invertible values on all o f  19?. We 

shall see that for a variety of important Banach algebras the answer is positive. In 

general, however, it is negative. An example will be given at the end of this 

section. 

As before, the setting is a Banach algebra B with unit element, here to be 

denoted by e. By r we mean the Banach algebra of all complex nxn matrices. The 

unit element in C n*n is the nxn identity matrix I n. A mapping ~:B-)C n• is called an 

nxn matrix  representation of B if it is linear, continuous (bounded) and 

multiplicative. So a lx l  matrix representation is just a multiplicative bounded 

linear functional on B. If ~ is an nxn matrix representation of B, then ~(e) is an 

idempotent nxn matrix. Hence ~(e) is invertible if and only if ~ ( e ) = I n ,  and in that 

case ~(b-1)=~(b)  -1 for each invertible b e B. We call ~b a matrix representation o f  B 

if there exists n such that ~b is an nxn matrix representation for B. A nonempty set M 

of matrix representations of B is said to be a suf f ic ient  fami ly  o f  matrix  

representations for B if for each b e B  the following holds: b is invertible if and 

only if det ~p(b)r for all ~beM. 

This terminology is inspired by N. Krupnik [K]. In Section 29 of [K],  the 

characterization of Banach algebras possessing a sufficient family of matrix 

representations is identified as an open problem. For our purposes here it is of 

interest to note that the class of Banach algebras possessing a sufficient family of 

matrix representations is large. It contains all matrix algebras C_ n• (take M={In})  
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and all commutative Banach algebras with unit element (Gelfand Theory). More 

generally, each polynomial-identi ty Banach algebra possesses a sufficient family of 

matrix representations (cf. [K]). Recall that B is called a polynomial-identity 

Banach algebra if there exist a positive integer k and a polynomial p(xl , . . . ,xk)  in 

k noncommuting variables x~,...,xk, pC:0, such that p(bl,.. . ,bk) =0  for arbitrary 

b l , . . . ,b~e  B. As an example of a polynomial-identity Banach algebra we mention 

C nxn. In that case one can take for p the so called standard polynomial involving 2n 

variables, i.e., the polynomial Ea(sgncr)xa(o...x~(2n), where a runs through the 

symmetric group $2, (cf.[AL]). For a proof of this result and more examples, see [K]. 

THEOREM 4.1 Suppose B is a Banach algebra possessing a sufficient family of 

matrix representations 3t, and let f eAo(D;B) ,  where D is a bounded Cauchy domain. 

The following statements are equivalent: 

(i) LogRes(f;D) = O, 

(ii) trace [~b (LogRes(f;D)) ] = 0 for all ~ �9 M, 

(iii) f takes invertible values on all of D. 

PROOF Obviously, (iii) implies (i) and (i) implies (ii). So it remains to 

prove that (ii) implies (iii). Take ~ �9 M. Then 

(4.1) r (LogRes(f ;D)) = LogRes(~of;D). 

Observe that ~,bof is a matrix (hence Fredholm operator) valued function. Combining 

(4.1) and (i), we see that trace[LogRes(~bof;D)] =0.  Now apply Theorem 3.1. This gives 

that ~(f(A)) is invertible for all A � 9  Since ~ was taken arbitrarily from the 

sufficient family of matrix representations 34, we may conclude that f takes 

invertible values on all of D. [] 

Our next result is about a type of Banach algebra that appears in the 

(numerical) work of S. Roch and B. Silbermann (cf. [Sm]). Banach algebras of this 

type need not possess a sufficient family of matrix representations (see Examples 4.4 

and 4.5 below). 

THEOREM 4.2 Let B be a Banach algebra with unit element e and let ~ be a 

nonempty (index) set. Assume that for each w e  J2 there exists a Banach space Xw, a 

continuous homomorphism Ww: B-->f~(Xw) and a twosided closed ideal Jw in B such that 

(i) Wv(e ) = Iv,  where I v is the identity operator on Xv, 

(ii) the restriction of W v to Jw defines an isomorphism between Jw and the 

ideal of compact operators on X w. 
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Suppose, in addition, that 

(iii) J~ t  c Ker W~2 for all wl,w z �9 ~2, wl~w 2. 

Write J for the smallest dosed ideal in B eontainin 9 all ideals dw and assume, 

finally, that the quotient space B]J possesses a sufficient family of matrix 

representations. Then, for each bounded Cauchy domain D and each f � 9  the 

identity 

1 
27r~ f f ' (A)f(A)-ldA=O 

OD 

implies that f takes invertible values on all of D. 

As will become clear in the proof, the condition on B/J can be relaxed to: 

for each bounded Cauchy domain D and each ~oeAo(D;B/J), the identity 

i f  (4.2) 2rri ~ '  (A)~~ = 0 

OD 

implies tha t  p takes invertible values on all of D. Note tha t  condition (iii) in 

Theorem 4.2 is redundant  when ft consists of just one element (of. Remark 4.3 below). 

PROOF Let D be a bounded Cauchy domain, let f � 9  and suppose 

LogRes(f ;D)=0.  Write ~ for the canonical homomorphism from B onto B/J, and put  ~ = ~ o f .  

Then p � 9  ) and (4.2) is satisfied. So our assumptions on B/J imply that  ~ 

takes invertible values on all of D. In other words x(f(A)) is invertible for all 

A e D .  

By [Sm], Theorem 2, this implies that  Ww(f(.\)) is Fredholm for all A e D  

and all w � 9  Take w e . Q  and write Fw(A)=Ww(f(A)). Then F~eAo(D;L(Xw) ) and Fw(A ) 

is a Fredholm operator  for all A �9 D. Since W w is a continuous homomorphism,  we have 

LogRes(Fw;D)=O. It follows from Theorem 3.1 that  Fw takes invertible values on all of 

D. In other words Ww(f(A)) is invertible for all A � 9  

From [Sm], Theorem 2, we know that  an element b e B  is invertible if and 

only if to(b) and all operators Ww(b ) are invertible. Take A � 9  We have seen tha t  

x(f(A)) is invertible and that  Ww(f(A)) is invertible for all w �9 12. Hence f(A) is 

invertible. [] 

There is a variety of operator algebras to which Theorem 4.2 applies. The 

following remark illustrates this fact. 

REMARK 4.3 Let Y be a complex Banach space and let K:(Y) stand for the set 

of all compact operators on Y. Then K:(Y) is a closed ideal in s Let 
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C(Y)=s be the Calkin algebra associated with Y, and let ~c denote the 

canonical homomorphism from s onto C(Y). Suppose now that  A is a closed subalgebra 

of C ( Y )  possessing a sufficient family of matr ix  representations. Then 

B=~c-I[A] = { T e s  is a closed subalgebra of s to which Theorem 4.2 applies. 

Indeed, take ~ = { 0 } ,  X0=Y,  J 0 = ~ ( Y )  and let W 0 be the embedding of B into 

L(Y). [] 

We shall now discuss two instances of Banach algebras of the type 

considered in Theorem 4.2 that  do not possess a sufficient family of matr ix  

representations. 

EXAMPLE 4.4 Consider the sequence space ~2, and let B be the Banach 

subalgebra of s consisting of all operators of the form cJ+T where c~e(:, I is the 

identi ty operator  on g2 and TeE(~2)  , i.e., T is a compact operator  on ~2- Then B is a 

Banach algebra of the type discussed in Remark 4.3. To see this, take Y=~2  and let A 

be the one-d imens ional  subalgebra of C(~2) generated by to(I). In particular, B meets 

the requirements of Theorem 4.2. However, B does not possess a sufficient family of 

matr ix  representations. This can be proved as follows. It is known that  E(g2) is the 

unique (nontrivial)  closed twosided ideal in B (cf. [K], Example 22.1). This implies 

tha t  B has essentially only one matr ix  representation, namely the one which sends 

( x I + T c B  into cceC. This matr ix  representation obviously does not determine the 

invertibil i ty of elements in B. [] 

EXAMPLE 4.5 Consider the space L2(I-), where T={zeC I Izl =1} is the unit 

circle, and let B be the Banach subalgebra of L(L2([)) generated by all compact 

operators on Lz(V), all operators on L2(1- ) of multiplication by piecewise-continuous 

functions, and the operator S of singular integration along 1-. This Banach algebra is 

studied extensively in [K], Chapter V. From the results obtained there, it can be 

deduced that  the image A=n[B] of B under the canonical homomorphism ~c from s 

onto the Calkin algebra C(L2(~)) possesses a sufficient family of matr ix  

representations. It follows that  B=tc-I[A] is a Banach algebra to which Theorem 4.2 

applies (cf. Remark 4.3). Again~ B does not possess a sufficient family of matr ix  

representations.  To see this, we argue as follows. Let B0 be the subalgebra of B 

consisting of all operators of the form ~I+T where c~eC, I is the identity operator  on 

L2(1- ) and T is compact. From Example 4.4 we know that  B 0 does not possess a 

sufficient family of matr ix  representations. But then the same is true for B. Note 

here tha t  the inverse of an operator in B0, provided it exists, belongs to B 0. Hence 

B 0 is inverse closed, i.e., an element of B 0 is invertible in B 0 if and only if it is 

invertible in B. [] 

In the preceding example, the unit circle 1- can be replaced by suitable 
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curves composed of Lyapunov arcs (cf. [GK1], [GKz] and [RS]). We now present an an 

example showing that ,  in general, the identity LogRes(f;D)=O does not imply tha t  f 

takes invertible values on all of D. 

EXAMPLE 4.6 Let H be an inf ini te-dimensional  (separable) Hilbert space. The 

idempotents  in s are just the bounded projections on H. In [BESI], Section 3 we 

established tha t  there exist five nonzero bounded projections on H such that  

P1 + P2 + P3 + P4 + P5 = 0. Introduce 

5 

j = l  

Then D is a bounded Cauchy domain. Define f eAo(D;s by stipulating that  

f(A)=IH-Pj+(A-j)Pj, IA-jl <-~; j = l , . . . , 5 .  

Then LogRes(f;D) = P1 +P2+P3  +P4 +Ps  = 0. However, the function values f(j) = I H- Pj are not 

invertible in s [] 

The function f appearing in the above example has a domain consisting of 

five components.  Can one do with less? Using the idempotents P1,...,P 5 appearing in 

[BES1], Example 3.1, we have been able to construct a counterexample involving a 

function defined on a domain consisting of three components. Of course, the ideal 

si tuation would be: just one component.  For this, we tried 

(4.3) g(A)=(I-PI+AP1)(I-P2+)~D2)(I-P3+AP3)(I-P4+AP4)(I-Ps+APs) 

where, again~ P1,..,Ps are as in [BES1], Example 3.1 and I is the appropriate 

identi ty operator.  Unfortunately,  the logarithmic residue of g (at  the origin) turns 

out to be different  from zero (see next  paragraph).  So this a t tempt  to find a 

counterexample with a one component  domain was unsuccessful. 

If g is given by (4.3)~ where P1,.,P5 are (noncommuting)  idempotents,  

then the logarithmic residue of g (at  the origin) can be expressed as a polynomial  in 

P1,...,Ps. This polynomial  consists of hundreds of monomials in P1,...,Ps. The fact 

tha t  the logari thmic residue does not vanish when P1,...,Ps are as in [BES1], Example 

3.1 (so, in particular,  PI+...+Ps=O)~ was verified by using a computer  package 

NCAlgebra developed by J.W. Helton and M. $tankus for simplifying algebraic 

expressions (noncommutat ive  case). The results were rechecked on another  computer 

package by J. Wavrik. NCAlgebra runs under Mathematica and is available from 

ncalg@osiris.ucsd.edu. The authors thank J.W. Helton and J.F. Kaashoek for their  help 

in the computer  aided analysis of the function g. 
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5. CONVEX CONES GENERATED BY LOGARITHMIC RESIDUES 

In Example 4.6, we encountered a nontrivial zero sum of idempotents. An 

idempotent (in a Banach algebra with unit element) is always a logarithmic residue 

(see Example 2.4). This leads us to considering vanishing linear combinations of 

logarithmic residues involving positive coefficients only. We begin with a simple 

proposition that may serve as a background for Example 4.6. 

PROPOSITION 5.1 Let B be a Banach algebra with unit element. Assume that 

for each bounded Cauehy domain D and each f ~ Ao(D;B), the identity 

1 
27ri f f'(,~)f(,~)-~d,~=o 

OD 

zmplies that f takes invertible values on all of D. Then a sum of logarithmic 

residues in B can vanish only if all terms in the sum vanish individually. In 

particular, a sum of idempotents in B can vanish only if these idempotents vanish 

individually. 

PROOF For j = l , . . . , n ,  let Dj be a bounded Cauchy domain and let 

f j  ~ Ao(D);B ). Assume 

n 

LogRes(fj;Dj) = O. 
3=1 

Applying appropriate translations~ we can reach the situation where Djn D k=O, 

j ,k= 1,...,n; jr The union D=D1u. . .uD n then is a bounded Cauchy domain. Let 

f eAo(D;B)  be a function which coincides with f j  on an open neighbourhood of Dj, 

j = 1,... ,n. Then 

n 

LogRes(f ;D) = ~ LogRes(fj ;Dj) 
j = l  

and hence LogRes(f;D)=0. It follows that f takes invertible values on all of D. Thus, 

for j= l , . . . , n ,  the function f j  takes inverCible values on Dj and LogRes(fj;D)=O. To 

get the statement about the zero sum of idempotents, note that each idempotent is a 

logarithmic residue (cf. Example 2.4). [] 

Consider the situation of Proposition 5.1. Let bl,...,b m be logarithmic 

residues in B, and suppose there exist positive rational numbers (Xl,...~(x m such that 

c~lbl+...+(xmbm=0. By multiplying with an appropriate positive integer, we may assume 

that c~l,...,c~ m are positive integers. But then Proposition 5.1 guarantees that 

bl . . . . .  bm= 0. 

For Banach algebras possessing a sufficient family of matrix 
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representat ions one can do a little better. In fact, one can drop the rat ional i ty  

condition appearing above. We shall formulate the result in terms of cones. A cone C 

is said to be pointed if C n ( - C ) = ( O ) .  

THEOREM 5.2 Suppose B is a Banach algebra possessing a sufficient family of 

matrix representations. Then the convex cone generated by the logarithmic residues in 

B is pointed. 

Recall tha t  the idempotents in B are logarithmic residues in B. So if the 

convex cone generated by the logarithmic residues in B is pointed, then so is the 

convex cone generated by the idempotents in B. Note tha t  in general the convex cone 

generated by the idempotents in a Banach algebra is not pointed (cf. Section 3 of 

[BES1] and Example 4.6). 

PROOF Let L be the convex cone generated by the logarithmic residues in B. 

By definition, L is the smallest convex cone in B that  contains all logarithmic 

residues. It is easy to see tha t  L consists of all finite l inear combinations 

cr m where bl,...,brn are logarithmic residues and ch,...,cx m are non-nega t ive  

real numbers.  So to prove the theorem, we need to establish the following result: 

Suppose bl,...,bm are logarithmic residues in B and c~17...,c~m are positive real 

numbers such that 

(5.1) ~1b1+ ... +c~mb m = O. 

Then b 1 . . . . .  bm= O. 

Let M be a sufficient family of matr ix  representations for B, and take 

e M. Applying ~ to both  sides of (5.1), we get the matr ix  identity 

(5.2) c~l~(bl) + . . .  + c~ra~b(bm) = 0. 

For j = l , . . . , m ,  the matr ix  ~(bj) is the logarithmic residue of a matr ix  valued 

function (cf. formula  (4.1)). Hence trace ~(b j )  >=0 by Theorem 3.1. But then it 

follows from (5.2) tha t  trace ~) (b j )=0 ,  j =  1, . . . ,m. The desired result is now clear 

f rom Theorem 4.1. [] 

Theorem 5.2 can be viewed as a comment on Problem 12 in [K], Section 29. 

However, it does not provide a full answer to the question posed there. This appears 

from the following remark (cf. Remark 4.3 and Examples 4.4 and 4.5). 

REMARK 5.3 The conclusion of Theorem 5.2 is also true when B is a Banach 

algebra of the type considered in Theorem 4.2. This can be seen as follows. Suppose 
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b l , . . . , b  m a r e  logarithmic residues in B such that  (5.1) is satisfied with c~l,...,c~r, 

positive real numbers. Write bj=LogRes(fj;Dj) and apply the canonical homomorphism 

from B onto B/J. This gives 

m 

o~jLogRes(tcof j;Dj) = ~ ~jtc(bj) = O. 
j =1 j = l  

By assumption B/J  possesses a sufficient family of matr ix  representations. So it 

follows from Theorems 5.2 and 4.1 that  aofj takes invertible values on all of 

Dj, j=l , . . . ,m.  Theorem 2 in [Sm] now guarantees tha t  the functions Wwofj are Fredholm 

valued. Clearly 

m 

c~jbogRes(W,,of j;Dj) = ~ o~jW,,(bfl = O. 
j = l  j = l  

Taking the trace and using that  ~l,...,CLm are positive, we get 

t race[Lognes(W,~ofj ;D~)] = o. 

Here j = l , . . , m ,  w~(2. Hence, by Theorem 3.1, the function W,~ofj takes iavertible values 

on all of Dj. We have already seen that  xofj takes invertible values on all of D) 

too. So [Sm], Theorem 2 guarantees that  /j(A) is invertible for all AeDj.  But then 

b I . . . . .  b m = O. [] 

6. ZERO SUMS OF IDEMPOTENTS 

At several points in this paper, we touched upon the issue of zero sums of 

idempotents.  This issue is taken up as a separate topic in [BES1]. The problem 

treated there is the following. Let Pl,...,Pk be idempotents in a Banach algebra B 1 

and assume that pL+...pk=O. Can one conclude that p~=O, j=l,...,k? 

The results of [BES1] can be summarized as follows. For important  classes 

of Banach algebras the answer turns out to be positive; in general, however, it is 

negative. A counterexample is given involving five nonzero bounded projections on 

inf ini te-dimensional  separable Hilbert space. The number  five is critical here: in 

Banach algebras nontrivial  zero sums of four idempotents are impossible. In a purely 

algebraic context (no norm),  the situation is different. There the critical number  is 

four. In a ra ther  abstract  setting, this was established in [Ma]; see also [Be]. In 

[BES1], an example is given involving a concrete algebra of linear operators. 
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