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1. Introduction 

The multiknapsack (MK) problem is to select a collection of items that yields 

maximal profit subject to a number of capacity constraints. More precisely, let us 
suppose that item j ( j -  1 , . . . ,  n) requires a!i units of space in the ith knapsack 
(i - 1 , . . . ,  m) and yields CJ units of profit upon inclusion, and that the ith knapsack 
has capacity bi (i = 1 , . . . ,  m). Then the mult iknapsack problem can be written as: 

n 

(MK) max Z c)xj 
1 1 

n 

s.t .  ~ aiJxi<~bi ( i = l , 2 , . . . , m ) ,  
I 1 

Xjc {0, 1} ( j =  1 , 2 , . . . ,  n). 

This research was partially supported by NSF Grant ECS-83-16224, and MPI Project "Matemat ica  
computazionale".  



2 3 8  M. Meanti et al. / Multiknapsack value function 

MK has been used to model problems in the areas of scheduling and capital 

budgeting [9]. The problem is known to be NP-hard [6]; it is a generalization of 

the standard knapsack problem (m = 1). MK can be solved by a polynomial approxi- 

mation scheme [4], but a fully polynomial one cannot exist unless P = NP [5]. 

In this paper, we are interested in the behavior of the solution value of MK with 

respect to changing knapsack capacities. We shall show that if the coefficients cj 

and a U (j = 1, . . . ,  n, i = 1 , . . . ,  m) are generated by an appropriate random mecha- 
nism, then the sequence of optimal values, properly normalized, converges with 
probability one (w.p. 1) to a function of the b~'s, as n goes to infinity and m remains 

fixed. The function will be computed in closed form for some spec:,al cases. 

A number of probabilistic analyses of algorithms for the single knapsack problem 

(m = 1) has been carried out in the past [1, 2, 7, 10], but the solution value has not 

yet been asymptotically characterized in the above fashion. A similar comment 

applies to the probabilistic analysis in [4] for MK under a stochastic model less 
general than the one considered here. Random variables will be indicated by boldface 

characters. 

2. Upper and lower bounds 

Let us assume that the profit coefficients cl, c2, • • •, are nonnegative independent 
identically distributed (i.i.d.) random variables with common distribution function 

F and finite expectation E C  x . Let a; = (a~j, a2j,. • . ,  amj) f o r j  = 1, 2 , . . . .  We assume 

that a~,a2, . . . ,  are nonnegative i.i.d, random vectors. Moreover, the profit 

coefficients and the requirement coefficients with different indices are assumed to 

be independent of each other. 

We shall use the independent model approach for the sampling of a series of 

problem instances of growing size with the number m of restrictions held fixed. 
Thus, each successive problem instance is drawn independently from the other 

problem instances. This is in contrast with the incremental model, in which a problem 

instance of size n is built up from the coefficients of the problem instance of size 

n - 1 by adding an extra set of coefficients (c,, an) that is drawn independently from 

the previous ones. We refer to [12] for an overview of the relation between these 

models. In particular, it is shown that convergence results in the independent model 

imply convergence results in the incremental model, thus making the independent 
model the more general of the two. 

It is reasonable to assume that the capacities bi grow proportionally with the 

number of items. Specifically, let b;=n/3; ( i = 1 , 2 , . . . ,  m) for /3e V:= 

{/3]0 </3 < Eaa}. As remarked in [ 10], the ith constraint would tend to be redundant 

if/3; > Ea;~, in the sense that it would asymptotically be satisfied with probability 

1 even if all items were included. 

We define z~n to be the optimal solution value of MK and z~ P to be the value of 
the LP-relaxation MKLP. Let Cm,x = maxj_~ ...... {cj}. 
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Lemma 2.1. For every realization (Cl, al),  (e2, a2) , . . . ,  ( e , , a , )  of  (cl, al), 
(c2, a 2 ) , . . . ,  ( c,, a,), we have 

L P  1 L P  ~>z, - (2.1) Z n >>~ Z n m C m a x .  

Proof.  The first inequali ty is trivial. An opt imal  basic solution o f  M K L P  has at most  

m basic variables that are fractional. Round ing  down these values yields a feasible 
integer solut ion whose value is given by z LP decreased by at most  me~x.  [] 

Division o f  (2.1) by n yields 

zkP/n >i zI./n >- zLP/n -- mCmax/n. 

Since, Ec~ < oo, we have that l i m n ~  Cm,x/n = 0 w.p. 1. From these two observations 
asymptot ic  equivalence o f  z I j n  and zLP/n w.p. 1 follows easily. 

Lemma 2.2. 

11  LP 
lira . . . .  0 
n ~ l n  n I 

w.p. 1. [] 

3. Asymptotic character izat ion of  the solution value 

In order to derive a funct ion of  b, (i = 1, 2 , . . . ,  m) to which z~ P and hence zl, is 

asymptot ic  w.p. 1, we consider  the Lagrangean relaxation of  MKLP,  defined by 

w, , (A):=max Aib~+)2 c i -  ~ A~a!j x j l O < ~ x j < ~ l ( j = l , 2 , . . . , n  , 
i 1 j = l  i = l  

where A = ( A 1 , . . . ,  A,,). 

For every realization o f  the stochastic parameters,  the funct ion w,,(A) is convex 
over the region defined by A ~> O. Moreover,  

min w,,(A) = z~ p. (3.1) 

If  we define the r andom variables 

" 

x)(A ) := if Cj - ~ Aia!i > O, • j=l ( j  1, 2 , . . .  n) ,  

otherwise, 

then 

w,,(A) = Z Zibi+ E Ci- A,a!i xl/(A) - 
= i = 1  i =J  
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We also define Ln(A):= wn(A)/n, and for c ~ R, a ~ R"  the function f~ :~'~÷~ ~ R 
for any A c E ~, as 

fx(c, a) = AXfl + (C -- ATa)xL(A), 

with 

xL(A) = (10 if C> ATa' 
otherwise. 

Then L,(A) can be viewed as the mean value of the random variable fA(c, a) over 

n independent observations (Cl, al), (c2, a 2 ) , . . . ,  (c,, an). Because of the indepen- 
dence of (Cl, a~), (c2, a2), • • •, (cn, an), the random variables xlL(A ), xL(A ) , . . . ,  xL(A ) 

are also independent. Hence, the strong law of large numbers [8, 17.3] implies that, 
for every A 1> 0, Ln(A) converges with probabili ty 1 to the expectation 

Efx(c, a) = AXfl + EclxL(A) --I~TEalxL(/~). (3.2) 

Let us write L(A):= Eft(c, a) and let A* be a minimizer of L(A). 
Let A* be a vector of  multipliers minimizing w~(A). We shall now prove that 

Ln(a*)--> L(A*) with probabili ty 1 by first strengthening our previous result from 

pointwise to uniform convergence with probabili ty 1. Since the functions Ln(A) are 
convex for every realization of the stochastic parameters we may apply Theorem 
10.8 from [ l l ,  p. 90], which states that pointwise convergence of a sequence of 
convex functions on any compact  subset of  their domain implies uniform conver- 
gence on this subset to a function that is also convex. Hence, all we have to show 

is that a minimizing sequence {A*} (n = 1, 2 , . . . )  and A* are contained in a compact  
subset of  E~. 

Lemma 3.1. There exists a number n~ such that for all n >1 n~ , L~ (A) attains its minimum 
within the set 

S: = (A IA/>0, AT/3 ~< ECl+I  } 

with probability 1. L(A) also attains its minimum value within S. 

Proof. As a result of the strong law of large numbers we have that 

Pr{3n , :Vn>~n~ ,Ec ,+ l>~l  ~ c j=Ln(O)}=l .  
n j = l  

Since Ln(A) ~ Awfl, we have for any A ~ S, A t> 0, that Ln(A) > ECl + 1. This together 
with the above probability statement yields that for any A ~ S, 

Pr{3n~: Vn/> nl,  Ln(A)/> ECl + 1/> Ln (0)} -- 1. 

Thus, for all n ~> n~, A* c S with probability 1. For L(A) we have that L(A) ~> AT/3 > 
Ec~ = L(0) for A such that Avfl > Ecx + 1, so that A* ~ S as well. [] 
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Since we assumed that Ecl exists, S is indeed a compact set. We therefore have 
the following lemma. 

Lemma 3.2 [ 11, Theorem 10.8]. L~ (h) ~ L(A) w.p. 1 uniformly on S. [] 

We are now in a position to prove the required result. 

Theorem 3.1. Ln(A~)--> L(A*) w.p. 1. 

Proof. Uniform convergence w.p. 1 on S can be written as 

Pr{Ve >O 3n°: Vn>~ n° 'sup lL"(A ) - L ( A  ) ]<e}  = (3.3) 

If Ln(A*) > L(A*), then IL,(A*) - L(A*)] ~< L~(A*) - L(A*). A similar argument for 
the case that L , ( A * ) <  L(A*) leads to the conclusion that 

IL~(A~) L(A*)[~<supIL.(A)-L(A)I.  (3.4) 
A~,S 

Combination of  (3.3) and (3.4) yields 

Pr{Ve>O3no:Vn>~no , ]L , , (a~) -L(A*)]<e}  1. [] 

Together (3.1), Theorem 3.1 and Lemma 2.2 imply the following result. 

Theorem3.2. n ~z~,-~ L(A *) w.p. 1. [] 

This theorem gives the required asymptotic characterization of the solution value 
of MK. L(A*) is a function of the righthand sides bi (i = 1, 2 , . . . ,  m) and is defined 
implicitly by minimization of L(A ) over S. Its explicit computation will be considered 
in Section 5. We note that the only assumptions that we made hitherto were the 
i.i.d, property of the stochastic parameters and the finiteness of the first moment of 
the profit coefficients. Under these assumptions also the following stronger version 
of Theorem 3.1 can be proved, indicating regular asymptotic behavior of the sequence 
of optimal Lagrangean multipliers A~. 

Theorem 3.3. With probability 1, the accumulation points of  the series A*, A ~ , . . . ,  
are contained in the set of  values of A that minimize L(A). 

Proof. We consider the following inequality: 

]L(,/*) - L(A*)J ~< ]L(A~)-  L,, (A*)[ + ILn ( , / * ) -  L(A*)J. 

Lemma 3.2 and Theorem 3.1 applied to the right-hand side imply immediately that 
L(A~) ~ L(A*) w.p.I .  The proof can now be completed by application of Corollary 
27.2.1 in [ l l ,  p. 266]. [] 
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In case A* is the unique minimizer of L(A), we have that A * ~ A *  w.p. 1 (see [11, 

Corollary 27.2.2, p. 266]). 

4. Smoothness properties 

In this section we investigate some properties of  L(A) related to properties of the 
distributions of the stochastic parameters.  

Recall the formulation (3.2) of L(A) and rewrite it as 

L(A) -- AT/~ + E ( ( c  1 -  ATal)xL(A)). 

Let us assume that c and a are independent. Then integration of L(A) by parts yields 

i i L(A) = ATI3 + E  (c--ATa~) d F ( c ) = A T f l + E  ( 1 -  F(c))  dc. 
ATaI AToll 

We notice that, under our assumption that Ec~ <oo, L(A) is finite for each A ~>0. 

Additional assumptions with respect to the distribution of c and a allow us to 
establish other smoothness properties of L(A) as shown below. Throughout this 
section we will assume that c and a are independent and that Eal is finite. 

Lemma 4.1. I f  the distribution funct ion F o f  c is continuous, then L(A) is differentiable 

and its gradient is given by 

V L ( A )  - -  t~ - Ea~x[(A). 

Proof. Differentiability of  L(A) is ensured through Theorem 23.1 in [ 11, p. 213]. To 
compute OL/OAk (k  = 1 . . . .  , m)  suppose for the moment  that differentiation and 
integration may be interchanged. Then 

0L(A) ( 0ATal~ 
OAk = flk -- E (1 - F(ATal)) ~-~-k / =/3k - E(akl(1 - F(aVa , ) ) ,  

which, from the independence of c and a, is equal to 

aL(A) 
-- flk -- Eak,xL( A ). (4.1) 

OAk 

Under the assumption that Ea~ is finite the interchange of expectation and derivative 

can be justified by the Dominated Convergence Theorem as in Application 3 ° of 
[8, p. 126]. [] 

Since the constraints A ~> 0 satisfy the first-order constraint qualifications in A* 
[3], Kuhn-Tucker  conditions hold at A*. 

Lemma 4.2. A* satisfies the following conditions f o r  i = 1, 2 , . . . ,  m: 
(i) A*(/3,-  ga,~xL(A *)) = O, 

(ii) Eai~xL(A*)<~i  . [] 
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Let f be the density function of  c. 

Lemma 4.3. I f  F is continuous, f is bounded, and E ( a l a  T) < ca, then L(A) is twice 

differentiable. 

Proof. Differentiation o f  (4.1) with respect to a~ yields 

OL(A) 0 
E(ak,(1 - F (aZa , ) )  = E ( a k l a l , f ( A T a O ) ,  (4.2) 

OAkOat OAt 

since expectations and derivatives may be interchanged under  the assumptions o f  

the lemma, which cause the last term of  (4.2) to be bounded .  Again the interchange 

is justified by the Domina ted  Convergence  Theorem [8, p. 126]. []  

Lemma 4.4. Assume  that c has bounded density function f and that F is' continuous, 
has bounded non-singular support [Ix, u], and is strictly increasing over [Ix, v]. Further- 

more assume that the random vector a has a density funct ion with positive density over 
a convex and open set, and that E(a~a T) <ee.  Then L(A) has a unique minimum. 

Proof. From Lemma 3.1 we know that L(A) has a minimizer, which we denote by 

A*. Suppose for the moment  that there exists a vector a0 with positive density such 

that I x < a * ~ a o <  v. Then there is a ne ighbourhood  N,~ of  A* such that for any 
a e NA:: we have /~ < A  r a o <  u. Since the assumptions  of  Lemma 4.3 are satisfied, 

equat ion (4.2) holds. Moreover ,  since F is strictly increasing over [/x, u], f i s  positive 

almost  everywhere over [#,  u] so that for all a e NA~ the second order  derivative 

matrix of  L(A) is positive definite. Therefore A* is a unique local minimum and by 

the convexity o f  L(A) also the unique global minimum. 

We show that a vector ao exists for which # < a * j a o <  u. First suppose that no 

such vector exists, then either a*Xa > u for all a with positive density or a * l a  < Ix 
for  all a with positive density (since this set is open and convex).  In the former  

case L ( a ) = a v f l  for all a in some ne ighbourhood  of  a*. Since a * T a >  ~ implies 

that A* # 0 it is easy to see that by decreasing positive components  of  A* we obtain 
a function value of  L(A) smaller than L(A*). in the other case, a*Sa < #, we have 

that L ( a ) - a r f i + E c ~  aVEal for all A in some ne ighbourhood  of  a*. Since we 

assumed that fl < Ea~, L(A) can be decreased below L(A*) by increasing A*, again 

providing a contradict ion.  Thus, there exists a vector a[, with positive density such 
that  I x~A*Ta~ ,~u .  By the assumption that the set on which the density of  a is 

positive is open and convex there also exists a vector ao with positive density such 

that  # < A * T a  o % t~, which completes the proof.  [] 

5. Special cases: m = 1, m - 2  

In this section, we assume (as in [4, 7, 10]), that  the profit coefficients cj as well as 

the requirements % are independent  uniformly distributed over [0, 1 ], j = 1 , . . . ,  n, 

i = 1 , . . . ,  m, and carry out some actual computa t ions  on the solution value of  MK. 
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In the case that m = 1, straightforward calculations lead to the following formulae: 

l 1 [ ' 1  l 2 
EaxL(A)=~-~A, ifA~<l, EcxL(A)= {~-~A ifA~<l, 

[1/(6A 2) i f A > l ,  (1/(3A) i f A > l ,  

-~+sA)+½-gA ifA<~l, L(A) = a (/3 1 1 1 2 

A(/3- 1/(6A2))+ 1 / ( 3 A ) i f  A> l, 

A._=~(6/3) ,/2 i f O < / 3 < 1 ,  
[3-3/3 i f~</3<½,  

L(A,) = ,~ (2/3) '/2 i f 0 < / 3 < L  
[__~/32+~/3 +~ if ~ / 3  <½. 

The graph of L(a*) as a function of/3 is shown in Figure 1. Notice that in 
accordance with Lemmas 4.1 and 4.2, Eax'~(a*)-/3 = O. 

lim Ez~e /n 
1 

5- 

1 
3 

I I [ I 
1 1 
6 2 

Fig. 1. 

In the 
different 

case that m = 2, ECXlL(A), Ea,x~(A) and Ea2x~(A) take different forms over 
regions. If/3, ~/32, these are defined as follows: 

A := {(/3,,/32)[/3, ~>/32,/32 ~> 24/312}, 

< 2 8 t ~ 2  / 3 2 . ~ 1  ~ ~ . 1 ~  
/ ~  : =  { ( / 3 ,  , / 3 2 )  I /32  ~ 3ju  l , ~ 6 ,  t~'l - -  2 , ,  

C := {(/31, /32)1/32~4/31 __I /32> I,  /31 < I } ,  

P := {(/31 ,/32) ]/31 ~/32,/32 > 4/31 l -~,/3,+/32>,b, 

E := {(/3,,/39 ]/3, ~>/3~, s /3:> ~/3,,/3, +/3~ < ,~J. 

The regions are depicted in Figure 2. 
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B2 
1 

m 

2 

1 

-g 

/, 
J 

0 1 1 
6 4 

Fig. 2. 

The values of A* and L(A*) in the corresponding five regions where 111 <132 can 
be obtained by exchanging 11, with 112 and ,~, with a2 in the formulae given below. 

Region A: A~=(112/(2411~)) '/3, A* (113,/(24115)) '/3, 

L(A*) = 1(9/31/32),/3 

Region B: A*=O, a* = (1/(6112)) '/2, L(A*)=(~112)'/~; 

Region C: A*=0,  A2*" =23-3112, L()t*) ~112q_2112+8 ; 3  2 3 1 

Region D: i*=}(36112 4811,+6), a* }(3611, 48112+6), 

L(A*) = }( - 24112 + 36111112 + 6112 + ½). 

Region E: A closed form equation for the values a*, L(a*) with /3 lying in E is 
complicated, though not impossible, since it involves the solution of an equation 
of degree four. Numerical evaluation is easier through use of an appropriate 
non-linear programming routine. 

A picture of the surface L(a*),  defined over the (11,, 112) plane and evaluated 
either analytically or numerically, is presented in Figure 3. 

Calculation of 11~ Eai ,x}(a*)  (i = 1, 2) for the regions A, B, C and D yields the 
following result. In A and D both 11, - Eal~xL(a *) = 0 and 112- Em__ix~((A*) = 0, while 
in B and C only 112-Ea2txl((a*)=O and 11,-Ea,1xt f (A*)>O.  This says that in A 
and D the expected slack in both constraints tend to 0 in an optimal solution, while 
in B and C this is only true for the tighter constraint. This corresponds to intuition: 
when 112 is sufficiently small with respect to 11~, as in B and C, the first constraint 



246 M. Meanti et aL / Multiknapsack value function 

~2 / 

± ~ B1 

0 

Fig. 3. 

can be disregarded and MK is reduced to a single knapsack problem. To support 
this conclusion, observe that the values of  A* and L(A*) obtained for the regions 
B and C are identical to the corresponding ones derived for the case m = 1. 

Similar calculations can be carried out for m/> 3, even though in these cases only 
numerical approximation of A* and L(A*) is possible for many values of  ft. The 
computat ion of L(A) and ~'L(A) amounts to integrating the density function over 
regions defined by linear inequalities. In many situations, closed form expressions 
for these integrals can be derived in principle. 

The implication of the results presented for the analysis of certain generalized 

greedy solution methods for MK will form the subject of a future paper. 
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