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Summary. The effects of epidermal growth factor (EGF) on 
basal 1,25-dihydroxyvitamin D 3 (1,25-(OH)2D3) receptor  
level and on parathyroid  hormone (PTH)-induced 1,25- 
(OH)2D3 receptor  up-regulation were studied in the pheno- 
typically osteoblastic cell line UMR 106. EGF in concentra- 
t ions  e x c e e d i n g  0.1 ng/ml  r e d u c e d  the n u m b e r  of  
1,25(OH)2D 3 binding sites without changing the binding af- 
finity. Maximal reduction was 30% at about 1 ng/ml. This 
reduction was independent of a change in cAMP content. 
E G F  d o s e - d e p e n d e n t l y  a t t enua ted  both PTH- induced  
1,25(OH)2D 3 receptor  up-regulation and PTH-stimulated 
cAMP production, without an effect on the EDso of the PTH 
effects. For  both PTH responses the IC5o and the maximal 
effective dose were similar, 0.1 ng/ml and 1 ng/ml EGF,  
respectively. Reduction was first seen at 0.01 ng/ml EGF. At 
this concentrat ion,  E G F  reduced PTH-st imulated 1,25- 
(OH)2D 3 receptor binding without an inhibition of the cAMP 
response. Time-course studies with 1 ng/ml EGF revealed 
that at 2 h preincubation EGF reduced the heterologous up- 
regulation by PTH, and maximal inhibition was seen after 4 
h. In contrast, PTH-stimulated cAMP production was just 
significantly inhibited only after 6 h, with 60% inhibition 
after 24 h preincubation. The effects of prostaglandin E 2 and 
forskolin on both 1,25(OH)eD3 binding and cAMP pro- 
duction were inhibited in a similar fashion. On the other 
hand, dibutyryl  cAMP- and 3-isobutyl-l-methylxanthine- 
stimulated 1,25(OH)2D3 binding were not affected by EGF. 
Taken together, our results demonstrate that EGF reduces 
both the basal number of 1,25(OH)2D3 binding sites and the 
heterologous up-regulation of the 1,25(OH)2D 3 receptor. The 
current data suggest that EGF reduces heterologous up- 
regulation of the 1,25(OH)2D3 receptor independent of as 
well as dependent on the cAMP messenger system. The 
EGF effect is not primarily located at the PTH receptor, at 
cAMP phosphodiesterase,  or at protein kinase A level. 

Key words: EGF-1,25(OH)zD 3 binding - PTH - Osteo- 
blast cell line. 

1,25-Dihydroxyvitamin D 3 (1,25(OH)2D3) and parathyroid 
hormone (PTH) play an important role in calcium homeosta- 
sis. One of the target tissues for 1,25(OH)2D3 and PTH is 
bone. For  both hormones the receptors in bone are located 
on the osteoblast  [1-4]. From in vitro as well as in vivo 
studies, evidence has been obtained indicating that 1,25 
(OH)2D 3 and PTH act in an interrelated fashion [5, 6]. Also 
at the l eve l  of  the  o s t e o b l a s t ,  i n t e rac t ions  b e t w e e n  
1,25(OH)2D 3 and PTH have been reported. For  instance, 
preincubation of  osteoblast-like cells with 1,25(OH)2D 3 at- 

tenuates the stimulation of cAMP production by PTH [7-10]. 
Furthermore, we have recently reported that PTH and PTH- 
related protein cause heterologous up-regulation of  the 
1,25(OH)2D3 receptor [11]. 

It has been shown that besides these two well-known 
calciotrophic hormones, growth factors and cytokines also 
affect bone cell metabol ism.  One of  these polypept ide  
growth factors is epidermal growth factor (EGF) which has 
been shown to stimulate bone resorption in vitro [12, 13]. As 
for 1,25(OH)2D 3 and PTH, the receptor for EGF in bone is 
located on the osteoblast  [14, 15]. EGF stimulates DNA and 
protein synthesis and prostaglandin production in osteo- 
blasts of various origin [16-18] whereas collagen synthesis, 
hydroxyproline content,  and alkaline phosphatase activity 
are reduced by EGF [16, 19]. Furthermore,  EGF may mod- 
ulate osteoblast responses to calciotrophic hormones. Re- 
cently, evidence has been obtained that EGF reduces the 
stimulation of cAMP production by PTH in the clonal osteo- 
blast-like cells UMR 106 [20]. Also in several other cell types 
E G F  has been found to modula te  hormone  responses  
[21-25]. 

To further understand the complex process of bone me- 
tabolism it is of considerable importance to study the inter- 
actions between the calciotrophic hormones and growth fac- 
tors. Furthermore,  imbalance of  these interactions may be 
related to clinical disorders,  e.g., humoral hypercalcemia of 
malignancy. In the present study we have examined the in- 
teractions between 1,25(OH)2D3, PTH, and EGF in the phe- 
notypically osteoblastic cell line UMR 106 [26]. First ,  we 
evaluated the effect of EGF on cellular 1,25(OH)2D3 recep- 
tor levels. Second, we assessed whether the inhibitory effect 
of EGF on PTH-stimulated cAMP production is paralleled 
by an inhibition of a biological response to PTH, i.e., the 
up-regulation of the 1,25(OH)2D 3 receptor.  

Materials and Methods 

EGF, bPTH(I-34), prostaglandin E2 (PGE2), and dibutyryl cAMP 
(Bt2cAMP) were obtained from Sigma, St. Louis, MO, USA. For- 
skolin was purchased from Calbiochem-Behring, USA, and 3- 
isobutyl-l-methylxanthine (IBMX) from Aldrich Chemie, Brussels, 
Belgium. [23,24-3H]I,25(OH)2D3 (90 Ci/mmol) was obtained from 
Amersham International, England, and nonradioactive 1,25(OH)2D 3 
was generously provided by LEO Pharmaceuticals, Denmark. Fetal 
calf serum (FCS), a-Minimal Essential Medium (a-MEM), penicil- 
lin, streptomycin, and glutamine were from Flow Laboratories (Irv- 
ine, Ayrshire, Scotland). All other reagents were of the best grade 
commercially available. 

Culture and Treatment of  the Cells 

UMR 106 cells were seeded at 60,000 ceUs/cm 2 and cultured for 24 
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Fig. 1. Inhibition of basal 1,25(OH)2D 3 binding by increasing 
concentrations of EGF. Twenty-four hours after plating, the 
culture medium was changed to ot-MEM with 2% charcoal- 
treated FCS and the cells were incubated for 24 h with or 
without EGF. Subsequently, the cells were incubated for an 
additional 4 h in serum-free ct-MEM after which 1,25(OH)zD 3 
binding was determined. *P < 0.001 vs. control 1,25(OH)2D3 
binding. 

h in c~-MEM supplemented with 2 mM glutamine, 100 U/ml penicil- 
lin, 100 txg/ml streptomycin, and 10% FCS. After 24 h, the medium 
was replaced by a-MEM with 2% charcoal-treated FCS and the cells 
were cultured for another 24 h period during which the cells reached 
confluence. The cells were treated with EGF during this second 24 
h culture period. Except for the time-course studies, the cells were 
preincubated for the entire 24 h with EGF. After this preincubation 
period with EGF, the medium was changed to serum-free a-MEM 
and the cells were incubated for an additional 4 h (1,25(OH)zD3 
receptor study) or 3 min (cAMP production study) with or without 
PTH, forskolin, PGE2, Bt2cAMP, or IBMX. Both 4 h and 3 min 
resulted in a maximal effect of the drugs tested on 1,25(OH)aD 3 
binding and cAMP production, respectively. In another experimen- 
tal set-up the cells were incubated at confluence for various periods 
with EGF after which 1,25(OH)2D3 binding was assayed. All cell 
culture and incubation procedures were carried out at 37~ under 
5% CO2 and 95% air. 

Preparation o f  Cell Extracts and 1,25(OH)2D 3 
Binding Assay 

For single point assays, conditions were used which were previously 
shown to provide valid estimates of total receptor content in cy- 
tosolic extracts [27]. The cell pellet was extracted on ice in a hy- 
pertonic buffer consisting of 300 mM KC1, 10 mM Tris-HCl (pH 
7.4), 1 mM EDTA, 5 mM dithiotreitol, 10 mM sodium molybdate, 
and 0.1% Triton X-100. High-speed supernatants were obtained and 
200 ~1 aliquots were incubated at 0~ overnight with 0.5 nM 
[3H]l,25(OH)zD3 in the absence or presence of a 200-fold molar 
excess of unlabeled hormone. Receptor bound 1,25(OH)2D 3 was 
separated from unbound sterol by charcoal adsorption [28]. The 
protein concentration was measured according to the method of 
Bradford [29]. Changes in DNA content were assessed by the fluo- 
rimetrical method of Johnson-Wint and Hollis [30]. 

Measurement o f  cAMP 

The incubation with the agents to be tested was stopped by remov- 
ing the incubation medium followed by extraction of cAMP from the 
cells with 1 m190% isopropanol, cAMP was measured by the protein 
binding assay of Brown et al. [31]. 

Data Analysis 

Data presented are means _+ SD of triplicate determinations of at 

least two different experiments, i.e., at least six replicates. Multiple 
comparisons were performed using the one-way analysis of vari- 
ance. Other statistical analyses were done by Student's t test. 

Results 

The effect of  E G F  on basal 1,25(OH)zD 3 binding is shown in 
Figure 1. Maximum inhibition o f  1,25(OH)zD 3 binding (ap- 
prox. 30%) was found at 1 ng/ml E G F .  Preincubat ion exper-  
iments revealed that 3 h pre incubat ion with 1 ng/ml E G F  is 
su f f i c ien t  to i n d u c e  d o w n - r e g u l a t i o n .  M a x i m a l  d o w n -  
regulation was reached after 4 h preincubat ion and remained 
constant  up to 24 h (data not  shown).  As stated in the Ma- 
terials and Methods ,  it is important  to notice that the prein- 
cubation with E G F  was fol lowed by an additional incubation 
for 4 h in serum-free medium in the absence or  presence  of  
PTH.  When incubation for 4 h with E G F  (0.01-10 ng/ml) was 
not followed by an additional incubation period, no decrease  
basal 1,25(OH)zD 3 binding was observed .  In this exper imen-  
tal set-up, however ,  longer incubat ion periods with E G F ,  
tested up to 48 h, did result  in a decrease  of  1,25(OH)zD3 
binding (data not  shown). These  data  suggest that E G F  can 
initiate cellular act ivi ty and then be r emoved  without  affect- 
ing the eventual  cellular response.  

Scatchard analysis showed that  E G F  induced a decrease  
in saturable 1,25(OH)2D3 binding sites without  a significant 
change in the apparent  dissociat ion constant  (15-20 pM) of  
1,25(OH)2D 3 binding (Fig. 2A and B). Preincubat ion for 24 h 
with E G F  did not significantly effect  e i ther  D N A  and protein 
content  (data not  shown). 

Recent ly ,  we have  shown that P T H  dose-dependent ly  
stimulates 1,25(OH)zD3 binding [11]. As  depicted in Figure 
3, 24 h preincubat ion with E G F  resul ted in a dose-dependent  
reduction of  the stimulation of  1,25(OH)2D 3 binding by PTH.  
Significant inhibition was already observed  at 0.01 ng/ml 
while a maximum inhibition of  30% was reached at 1 ng/ml 
E G F .  The ICso was about  0.1 ng/ml. Figure 4 shows the 
t ime-dependence  of  preincubat ion with 1 ng/ml EGF.  The 
minimal preincubat ion t ime before  significant inhibition of  
PTH-st imulated 1,25(OH)2D3 binding could be observed  was 
2 h. Preincubation for 2 h to at least  24 h resulted in maximal  
inhibition. When 1 ng/ml E G F  was added simultaneously 
with 10 nM P T H  at the start o f  the 4 h incubation period,  
E G F  was without  effect (data not  shown).  



J. P. T. M. van Leeuwen et al.: Effect of EGF on 1,25(OH)2D3 Receptor Binding 37 

20 

C3 
Z 

o 10 

A 

o 

f o EGF (Ing/ml) 

i F i i r r i i i 

0.1 0.2 

[3H]-1.25(OH)2D) (nM) 

B / F I " 5 - ~ "  N .  �9 c o n t r o l  B 

O EGF ( lng/ml) 

1 . 0  �9 

�9 �9 

0.5 
0 �9 �9 

i 
5 10 15 20 25 30 

[3H]-1.25(OH)zD3 bound (pM) 

]Fig. 2. (A) Saturation and (B) Scatchard analyses of 1,25(OH)2D 3 
binding after treatment with vehicle or 1 ng/ml EGF. Vehicle and 
EGF were added 24 h after plating and 24 h before 1,25(OH)2D3 
binding was determined. Receptor content in cell extracts was de- 
termined as described in the Materials and Methods. Data in A were 
used for Scatchard analysis in B. 

The st imulat ion of  1,25(OH)2D 3 binding by PTH is 
preceded by a stimulation of cAMP production [11]. As 
p r e s e n t e d  in F igure  3, inhib i t ion  of  P T H - s t i m u l a t e d  
1,25(OH)2D3 binding by E G F  is accompanied by an inhibi- 
tion of PTH-stimulated cAMP production. Both maximal in- 
hibitory EGF concentration (1 ng/ml) and IC5o (0.1 ng/ml) 
are similar for 1,25(OI--I)zD 3 binding and cAMP production. 
However ,  three differences between inhibit ion of 1,25 
(OH)zD 3 binding cAMP production were observed: (1) sig- 
nificant inhibition of 1,25(OH)zD 3 binding was already ob- 
served at 0.01 ng/ml EGF in contrast to 0.1 ng/ml for inhi- 
bition of  cAMP production; (2) maximal inhibition of cAMP 
production was 65% instead of 30% for the 1,25(OH)2D 3 
binding; and (3) time-course experiments revealed that sig- 
nificant inhibition of PTH-stimulated 1,25(OH)2D 3 receptor 
up-regulation was observed after 2 h preincubation whereas 
PTH-stimulated cAMP production was first significantly re- 
duced after 6 h preincubation with 1 ng/ml EGF (Figs. 4 and 
5). The present study did not show whether the effect on 
PTH-stimulated cAMP production after 24 h preincubation 
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Fig. 3. Inhibition of PTH-stimulated 1,25(OH)2D3 binding and 
cAMP production by increasing concentrations of EGF. Twenty- 
four hours after plating, the culture medium was changed to a-MEM 
with 2% charcoal-treated FCS and the cells were incubated for 24 h 
with or without EGF. Subsequently, the cells were incubated for an 
additional 4 h or 3 min in serum-free a-MEM with or without 10 nM 
PTH after which 1,25(OH)2D 3 binding and cAMP content, respec- 
tively, were determined as described in Materials and Methods. **P 
< 0.05, *P < 0.001 vs. effect of 10 nM PTH on 1,25(OH)zD 3 binding 
and cAMP content after preincubation with control medium. 

represents the maximal inhibition. Routinely the cAMP con- 
tent was measured after 3 min incubation with PTH, whereas 
the 1,25(OH)2D3 binding was assayed after 4 h incubation 
with PTH. We therefore measured the cAMP content after 4 
h treatment with PTH. These experiments showed that after 
4 h incubation with 10 nM PTH, the cAMP content is still 
lower in EGF-treated cells (data not shown). 

In order to examine whether EGF affects the EDso of the 
PTH effect on the number of  1,25(OH)2D3 binding a n d  
cAMP production,  we performed a PTH dose- response  
study. This study revealed that preincubation with E G F  did 
not result in a marked change of  the EDso for both PTH 
responses but did reduce the maxmal response (Figs. 6A and 
B). Moreover,  as can be seen in Figures 1, 3, and 6A, 1 ng/ml 
EGF but not 0.01 ng/ml decreased basal 1,25(OH)2D3 bind- 
ing whereas PTH-stimulated 1,25(OH)2D 3 binding is already 
reduced by 0.01 ng/ml EGF.  Furthermore,  comparison of 
Figures 6A and B shows once again that 0.01 ng/ml EGF did 
not inhibit the PTH-stimulated cAMP production. 

In contrast to the inhibition by EGF of PTH-stimulated 
1,25(OH)2D 3 binding, the inhibition of basal 1,25(OH)2D 3 
binding was not paralleled by a change in cAMP content. 
After 24 h preincubation, none of  the EGF concentrations 
tested (0.001-10 ng/ml) affected basal cAMP concentration 
(data not shown). Also, as shown in Figure 5, different pre- 
incubation periods with 1 ng/ml EGF did not result in a 
change of basal cAMP content. 

Next we studied whether the inhibitory effect of  EGF 
was specific for PTH. The effects of 24 h preincubation with 
1 ng/ml E G F  on 10 txM PGE2- and 10 txM forskol in-  
stimulated cAMP production and 1,25(OH)zD3 binding are 
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Fig. 4. Time-course of effects of preincubation with EGF on PTH- 
stimulated 1,25(OH)zD 3 binding. Twenty-four hours after plating, 
the culture medium was changed to c~-MEM with 2% charcoal- 
treated FCS and the cells were incubated for varying periods of time 
with I ng/ml EGF. The incubation with EGF was followed by an 
additional 4 h incubation with or without 10 nM PTH in serum-free 
c~-MEM. 1,25(OH)zD3 binding was assessed as described in Mate- 
rials and Methods. *P < 0.001 vs. 1,25(OH)zD3 binding after prein- 
cubation for the same period without EGF. 

shown in Figure 7A and B, respectively. Both PGE 2- and 
forskolin-stimulated cAMP production are dose-dependently 
inhibited by EGF with a similar maximally effective concen- 
tration (1 ng/ml and IC5o (0.1 ng/ml) as for the inhibition of 
PTH-stimulated cAMP production. Also, PGE2-stimulated 
1,25(OH)2D3 binding is affected with the same maximally 
e f fec t ive  c o n c e n t r a t i o n  and IC5o as P T H - s t i m u l a t e d  
1,25(OI-/)2D 3 binding (Fig. 7A). Forskolin (10 p~M)-stimu- 
lated 1,25(OH)2D 3 binding is also inhibited by EGF but the 
degree of inhibition by ! and 10 ng/ml EGF is less than that 
of PTH and PGE 2 (Fig. 7B). 

Stimulation of 1,25(OH)2D 3 binding by direct activation 
of protein kinase A with 1.5 mM Bt2cAMP was not reduced 
by 24 h preincubation with 1 ng/ml EGF (Fig. 8). Addition of 
the cAMP phosphodiesterase inhibitor IBMX resulted in a 
modest increase of 1,25(OH)2D3 binding and cAMP content. 
Both responses were not inhibited by preincubation with 
EGF (data not shown). 

1,25(OH)2D3 causes a homologous up-regulation of its 
binding without a change in cAMP concentration [27]. As 
depicted in Table 1, this homologous up-regulation is not 
affected by preincubation with various concentrations of 
EGF. 

Discussion 

The p resen t  s tudy  shows a d i rec t  effect  of  E G F  on 
1,25(OH)2D3 receptor level in the osteoblast-like cell line 
UMR 106. In other studies with various osteoblast-like ceils, 
EGF has been shown to decrease alkaline phosphatase ac- 
tivity, hydroxyproline content, and collagen synthesis [16, 
19]. Among the osteosarcoma cell lines, there is a close re- 
lation between, on the one hand, the presence of receptors 
for and biological responses to 1,25(OH)2D3 and on the other 

hand, osteoblastic properties such as elevated alkaline phos- 
phatase activity and bone formation in subcutaneous tumors 
[32]. Therefore, it is tempting to suggest that EGF shifts 
osteoblasts to cells with a less differentiated phenotype.  
EGF has a proliferative effect on osteoblasts,  as judged by 
an increase of DNA synthesis, [3H]-thymidine incorpora- 
tion, and cell number [16, 17, 19]. In the present study, no 
effect on DNA synthesis and protein content was observed 
after incubation with EGF.  This discrepancy could be due to 
the relative short incubation period (24 h) in our studies. 

In a human breast  epithelial cell, HBL 100, EGF de- 
creases glucocorticoid binding [24], and in Leydig tumor 
cells EGF decreases gonadotropin receptor  number [25]. De- 
spite several differences, a clear resemblance between the 
effects of EGF on the receptor binding of 1,25(OH)2D3 and 
these two hormones is that EGF does not change receptor  
affinity but only seems to cause a change in the number of 
binding sites (Figs. 2A and B). 

For  the decrease of glucocorticoid binding, a causal role 
for EGF-dependent  protein tyrosine kinase was proposed 
[24]. Indeed, recent evidence supports tyrosine phosphory- 
lation of human glucocorticoid receptor  by EGF [33]. In 
view of the fact that  in our exper iments  inhibition of 
1,25(OH)2D 3 binding was only observed after incubation pe- 
riods exceeding 4 h, it is not likely that a direct phosphory- 
lation of the 1,25(OH)zD 3 receptor by EGF-receptor  tyrosine 
kinase is involved. 

EGF has been shown to modulate cellular responses to 
several hormones in various cell types [21-25]. Recently, it 
has been reported that pretreatment of UMR 106 cells with 
EGF inhibits the cellular cAMP response to PTH [20]. In 
these cells the PTH-stimulated 1,25(OH)zD 3 binding is pre- 
ceded by an increase in cAMP production [11]. The present 
study shows that inhibition of PTH-stimulated cAMP pro- 
duction is accompanied by an at tenuat ion of the PTH- 
stimulated increase of  1,25(OH)2D 3 binding sites (Fig. 3). 
This observation is in contrast to the effect of  EGF on basal 
1,25(OH)2D 3 receptor level which is not accompanied by a 
change in cellular cAMP content (Figs. 1 and 5). A remark- 
able difference between the inhibition of  PTH-stimulated 
cAMP response and 1,25(OH)zD3 receptor  up-regulation 
concerns the magnitude of the maximal inhibition, 65 and 
30%, respectively. However,  if one plots cAMP content 
against the number of 1,25(OH)2D 3 binding sites, a 65% in- 
hibition of the PTH-stimulated cAMP production still leaves 
an absolute cAMP content sufficient to maintain a stimula- 
tion of 1,25(OH)2D 3 binding by PTH of  approximately 70% 
of the maximal stimulation of 1,25(OH)2D 3 binding by PTH. 

For  human choriogonadotropin-stimulated steroidogene- 
sis in cultured Leydig tumor ceils, two opposing effects, 
dependent on the incubation period with EGF,  have been 
described [25]. Based on the present data it is unlikely that, 
dependent on the incubation period, EGF has opposing ef- 
fects on PTH responses in UMR 106. In our cells, EGF 
reduced both PTH-st imulated 1,25(OH)2D 3 binding and 
cAMP generation without an apparent change in sensitivity 
to PTH (Figs. 6A and B). The effect of EGF on PTH- 
stimulated cAMP production is similar to the effect of trans- 
forming growth factor-or (TGFe0, known to act via the EGF 
receptor,  on PTH-stimulated cAMP production [20]. 

In an attempt to pinpoint the site of action of EGF,  we 
tested its effect on 1,25(OH)2D 3 receptor  up-regulation by 
direct stimulation of protein kinase A with Bt2cAMP. As 
shown in Figure 8, BtzcAMP-stimulated 1,25(OH)2D3 bind- 
ing is not affected by EGF.  The observed reduction is com- 
pletely due to a reduction of basal 1,25(OH)2D3 binding by 
EGF,  as the absolute increase in 1,25(OH)2D 3 binding by 
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Fig. 5. Time-course of effects of preincubation 
with EGF on basal and PTH-stimulated cAMP 
production. Twenty-four hours after plating, the 
culture medium was changed to a-MEM with 2% 
charcoal-treated FCS and the cells were incu- 
bated for varying periods of time with 1 ng/ml 
EGF. The incubation with EGF was followed by 
an incubation for 3 min with or without 10 nM 
PTH after which the cAMP content was deter- 
mined. **P < 0.05, *P 0.001 vs. cAMP content 
after preincubation for the same period without 
EGF. 
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Fig. 6. Effect of EGF on PTH dose-response curves for (A) 1,25(OH)2D 3 binding and (B) cAMP production. Twenty-four hours after plating, 
culture medium was changed to a-MEM with 2% charcoal-treated FCS and the cells were incubated for 24 h with or without 0.01 or 1 ng/ml 
EGF. The incubation with EGF was followed by an additional incubation for 4 h or 3 min in serum-free a-MEM with varying concentrations 
of PTH after which 1,25(OH)2D3 binding and cAMP content, respectively, were determined. 1,25(OH)zD 3 binding and cAMP content were 
assessed as described in Materials and Methods. **P < 0.01, *P < 0.001 vs. the effect of the same concentration of PTH after preincubation 
with control medium. 

Bt2cAMP remains constant over the whole range of EGF 
concentrations tested. Also the rise in 1,25(OH)2D3 binding 
and cAMP content induced by the cAMP phosphodiesterase 
inhibitor IBMX were not affected by EGF. These data sug- 
gest that EGF exerts its effect at the level of cAMP produc- 
tion, i.e., the PTH receptor or the G-protein/adenylate cy- 
clase complex. 

To elucidate whether the EGF effect is located at the 
level of  the PTH receptor we tested two other drugs known 
to stimulate 1,25(OH)2D 3 binding and to act via the cAMP- 
messenger system: PGE 2 and forskolin. Figure 7A and B 
show that inhibition of stimulated 1,25(OH)2D3 binding and 
cAMP production by EGF is not specific for PTH. The for- 

skolin-stimulated cAMP production and 1,25(OH)2D 3 bind- 
ing are reduced in a similar way to the PTH and PGE z re- 
sponses, although the maximal effect on forskolin-stimulated 
1,25(OH)2D3 binding is somewhat lower. These data indicate 
that the EGF effect is not primarily located at the PTH or 
PGE2 receptor. However,  conclusive data have to be pro- 
vided by PTH and PGE2 binding experiments which are part 
of forthcoming studies. Moreover,  the facts that forskolin 
responses are also reduced by EGF and that forskolin is 
capable of stimulating adenylate cyclase without G-protein 
interaction [34] suggest a localization of the EGF effect at 
the catalytic unit of the adenylate cyclase. In both the UMR 
106 cells [20] and the MA-10 Leydig tumor cells [25] it has 
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Fig. 7. Inhibition of (A) PGE2- and (B) forskolin-stimulated 1,25(OH)2D3 binding and cAMP production by EGF. Twenty-four hours after 
plating, the culture medium was changed to ct-MEM with 2% charcoal-treated FCS, and the cells were incubated for 24 h with or without 
EGF. Subsequently, the cells were incubated for an additional 4 h or 3 min in serum-free a-MEM with or without 10 IxM PGE2 or 10 I~M 
forskolin after which 1,25(OH)2D3 binding and cAMP content, respectively, were determined as described in Materials and Methods. *P < 
0.001 vs. effect of PGE2 or forskolin on 1,25(OH)2D3 binding and cAMP content after preincubation with control medium. 

been shown that TGFtx and EGF do not act on the G i- 
protein. Whether Gs is a target for EGF action needs further 
studies. It has recently been demonstrated that TGFa inhib- 
its the cholera toxin-stimulated cAMP production in UMR 
106 cells [20]. In contrast to one of the results of this latter 
study by Gutierrez et al. [20] we did find that PGE2 stimu- 
lated cAMP production is reduced by EGF. Whether this 
discrepancy represents differences in cell type or culture or 
incubation procedures is not clear. 

The present study shows a close relation between the 
EGF-induced inhibition of heterologous up-regulation of the 
1,25(OH)zD3 binding sites and of cAMP production. This is 
supported by the finding that cAMP-independent homolo- 
gous up-regulation of the 1,25(OH)zD3 receptor is not af- 
fected by EGF (Table 1). However, the current data contain 
three observations that suggest an effect of EGF also on 
stimulated 1,25(OH)2D 3 binding independent of the cAMP 
messenger  system. First,  at 0.01 ng/ml, EGF inhibits 
1,25(OH)2D 3 receptor up-regulation by PTH but not the 
stimulation of cAMP production (Figs. 3, 6A, and B). Sec- 
ond, comparison of Figures 4 and 5 reveals that preincuba- 
tion with EGF for 2-4 h results in a decrease of PTH- 
stimulated 1,25(OH)2D 3 binding whereas the cAMP re- 
sponse to PTH is not affected. Thus, in both instances the 
generation of the second messenger signal is normal but the 
biological response is already reduced. Third, the maximal 
inhibition of cAMP production is similar for PTH, PGE2, and 
forskolin whereas the degree of inhibition of 1,25(OH)2D 3 
binding is twice as high for PTH and PGE2 as for forskolin. 
All three agonists increase the intracellular ionized calcium 
concentration in osteoblastic cells [35-38]. Inositol 1,4,5- 
trisphosphate (IP 3) formation, and thereby calcium release 
from intracellular stores, is involved in the action of PTH 
and PGE2 [35, 39, 40] whereas the effect of forskolin on the 
intracellular ionized calcium concentration is the result of an 
increased calcium influx [37, 38]. Indeed, in mouse osteo- 
blast cultures, forskolin had no effect on basal levels of total 
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Fig. 8. Effect ofEGFon Bt2cAMP-stimulated 1,25(OH)2D3 binding. 
Twenty-four hour plating, the culture medium was changed to 
ot-MEM with 2% charcoal-treated FCS and the cells were incubated 
for 24 h with or without EGF. Subsequently, the cells were incu- 
bated for an additional 4 h in serum-free ct-MEM with or without 1.5 
mM BtzcAMP after which 1,25(OH)2D 3 binding was determined as 
described in Materials and Methods. *P < 0.001 vs. the 1,25(OH)2D 3 
binding after preincubation with control medium. 

IP 3 accumulation [41]. Therefore, it would be interesting to 
study the effect of EGF on IP 3 formation and protein kinase 
C activation which could provide an explanation for the less 
potent effect of EGF on forskolin-stimulated 1,25(OH)2D 3 
receptor up-regulation. In hepatocytes it has been shown 
that EGF stimulates formation of IP 3 and activates diacyl- 
glycerol- and CaZ+-dependent protein phosphorylation [42, 
43]. 

The present study shows that in the osteoblastic cell line 
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Table 1. Effect of EGF on homologous up-regulation of the 
1,25(OH)2D 3 binding by 10 nM 1,25(OH)2D 3 

EGF 1,25(OH)2D3 receptor content 
(ng/ml) (% of control) 

0 100 -+ 7.6 
0.01 107 -+ 16.9 
0.1 100 �9 15.7 
1 103 -+ 12.5 

10 96 --- 9.6 

Twenty-four hours after plating, culture medium was changed to 
ct-MEM with 2% charcoal-treated FCS and the cells were incubated 
for 24 h with or without EGF. Subsequently the cells were incubated 
for an additional 4 h in serum-free a-MEM with or without 10 nM 
1,25(OH)2D3, after which 1,25(OH)2D 3 binding was determined as 
described in the Materials and Methods 

UMR 106 important interactions exist (1) between EGF and 
a steroid hormone, 1,25(OH)2D3; and (2) between EGF and 
a polypeptide hormone, PTH. Interactions shown in the cur- 
rent study and in other studies [20, 44] indicate that at the 
level of the osteoblast a regulation mechanism exists be- 
tween EGF, 1,25(OH)2D 3 and PTH. The effects of EGF de- 
scribed in the current study are exerted at EGF concentra- 
tions which are comparable with the physiological plasma 
concentrations of EGF. Therefore, the results presented 
here may have important physiological implications for the 
regulation of bone metabolism. However,  whether the ob- 
served reduction of 1,25(OH)2D 3 binding by EGF also re- 
suits in a reduced biological response to 1,25(OH)2D3 is not 
yet clear and currently under investigation. Preliminary data 
point to a relation between changes in 1,25(OH)2D 3 binding 
and its biological responses. As various tumors produce 
TGFc~ [45, 46] the present data may also be significant for the 
understanding of the process of humoral hypercalcemia of 
malignancy. 
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