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Chapter 1 
 

 

General introduction 



Chapter 1 

1.1 Hematopoiesis and leukemia. 

 

All cells that circulate in the peripheral blood are derived from a common ancestor: the 

pluripotent stem cell in the bone marrow. During the process of blood cell formation 

(hematopoiesis), proliferation and differentiation of stem cells give rise to progenitor 

cells of the mixed myeloid and the lymphoid lineage. After further rounds of proliferation 

and differentiation, the myeloid lineage mainly generates monocytes (giving rise to 

macrophages) and granulocytes (neutrophils, basophils and eosinophils). Monocytes 

and granulocytes play critical roles in the body's main defense against pathogens. 

The lymphoid pathway mainly generates B and T lymphocytes. B lymphocytes 

differentiate further into plasma cells, which secrete immunoglobulins, required for 

elimination of pathogens. T lymphocytes play an important role in antigen-recognition 

and subsequent cell-mediated immunity.  

In healthy individuals, a tight balance is maintained between proliferation, differentiation 

and release of the blood cells from the bone marrow. Leukemia is a malignant disease 

characterized by the uncontrolled proliferation of hematopoietic cells and the 

progressive accumulation of these cells within the bone marrow and secondary 

lymphoid tissues. The leukemic cells are thought to derive from clonal expansion of a 

single neoplastic cell, which fails to differentiate beyond the blast stage. Leukemia can 

be classified into acute and chronic leukemia. Acute leukemia progresses rapidly and if 

untreated, can be fatal within weeks or months. Chronic leukemia is seldom diagnosed 

in children, has a slower course over a much longer period and is fatal in months to 

years if untreated. 

 

1.2 Acute leukemia. 

 

Acute leukemia is the most common form of childhood cancer and the primary cause of 

cancer-related mortality in children. Acute leukemias that are characterized by the 

accumulation of malignant cells of the lymphoid lineage are called acute lymphoblastic 

leukemia (ALL) and leukemias that involve cells of the myeloid lineage are called acute 

myeloid leukemia (AML) or acute non-lymphoid leukemia (ANLL). ALL is subdivided 

into B-lineage and T-lineage ALL according to the presence or the absence of lineage-

associated immunological markers. Adapted in the 1970’s the French-American-British 

(FAB) cell-classification system distinguishes among eight morphological subtypes of 

AML: FAB types M0-M7.1  
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Clinical presentation 

The clinical symptoms of acute leukemia are directly attributable to the leukemic 

infiltration of the bone marrow, with resultant cytopenia: spontaneous bruises, purpura 

and hemorrhage due to thrombocytopenia, weakness, pallor and fatigue due to anemia, 

and fever, malaise and infections due to granulocytopenia. Clinical symptoms caused 

by organ infiltration are tender bones, enlargement of lymph nodes and abdominal 

discomfort caused by an enlarged liver and spleen.  

 

Age at diagnosis 

Leukemia is the most common cancer among children, representing approximately one 

third of cancer diagnoses among children younger than 18 years of age. ALL 

represents approximately 80% of all pediatric leukemias in children, whereas AML 

comprises 15-20%. ALL and AML and are diagnosed at an annual rate of 120 and 25 

children per year in the Netherlands respectively.2  There is a peak incidence of 

childhood ALL between ages of 2 to 8 years of age. After the age of 50 there is again a 

small but progressive increase in the frequency of ALL. The incidence of AML 

increases with age with a median age at diagnosis over 60 years.3,4  

 
Treatment outcome in acute leukemia 

In general, more than 98% of children with ALL achieve a first complete remission and 

75-80% of these children stay in a long term continuous complete remission.5-7 Bone 

marrow and/or extramedullary (e.g., central nervous system, testicular) relapses can 

occur during therapy or after completion of treatment. While the majority of children with 

recurrent ALL attain a second remission, the likelihood of cure is relatively poor (5-

years event-free survival <50%) particularly for those with bone marrow relapse 

following short initial remission duration. Infants, defined as below 1 year of age, and 

adults with ALL have a much poorer prognosis, with a long-term event-free survival of 

only about 35% and 20-40% respectively.8,9  

Although a complete remission is achieved in up to 80-90% of children with AML, the 

long term event-free survival for AML is only 60%.10-12 The relatively unfavorable 

prognosis of children with AML is caused by a high proportion of relapses after initial 

achievement of complete remission (30-40%).13 Although a second complete remission 

is induced in approximately 70% of the children with recurrent AML, only 30-35% of 

these children stay in a long term continuous complete remission.14 
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1.3 Risk factors in acute leukemia. 

 

A variety of clinical and biological parameters has been associated with response to 

treatment in childhood acute leukemia. These risk factors are summarized in Table 1.  

 
Table 1: Risk factors in childhood acute leukemia 
 

Prognostic factor Favorable feature Unfavorable feature 

Age at diagnosis ≥ 1 years, <10 years 
 

<1 years,  ≥ 10 years 

White blood cell count low, e.g. <50 × 109 cells/L 
 

high, e.g. ≥ 50 × 109 cells/L 

Immunophenotype (ALL) common ALL, pre-B-ALL 
 

pro-B ALL, T-ALL 

FAB classification (AML) M1 auer+, M2, M3, M4eo 
 

M0, M6, M7 

Genetic abnormalities (B-ALL) hyperdiploid>50 
t(12;21) 
 

hypodiploid<45 
t(9;22), 11q23 rearranged 

Genetic abnormalities (T-ALL) overexpression HOX11  
t(11;19) 
 

overexpression TAL1, LYL1 

Genetic abnormalities    (AML) t(8;21), t(15;17), inv(16) t(1;22), t(6;9), inv(3), del(5q), 
del(7q), monosomy 5, monosomy 
7, trisomy 8, complex karyotypes 

Early response to treatment <1000 blasts/µl in PB after 1 week of 
systemic induction with PRED and a 
single intrathecal dose of MTX 
 

≥1000 blasts/µl in PB after 1 week 
of systemic induction with PRED 
and a single intrathecal dose of 
MTX 

Response to induction therapy 
(ALL) 

<5% blasts in the BM 
detectable MRD 
 

≥5% blasts in the BM 
no detectable MRD 

In vitro drug resistance LC50 PRED ≤ 0.100 µg/ml  
LC50 VCR ≤ 0.391 µg/ml  
LC50 ASP ≤ 0.033 IU/ml  
LC50 DNR ≤ 0.075 µg/ml  
 

LC50 PRED ≥ 150 µg/ml 
LC50 VCR ≥ 1.758 µg/ml 
LC50 ASP ≥ 0.912 IU/ml 
LC50 DNR ≥ 0.144 µg/ml 

Abbreviations: auer+=auer rods present, B-ALL=B-lineage ALL, T-ALL=T-lineage ALL, PRED=prednisolone, 
VCR=vincristine, ASP=L-asparaginase and DNR=daunorubicin, MTX=methotrexate, PB=peripheral blood, 
BM=bone marrow, MRD=minimal residual disease (persisting leukemic involvement of the BM on completion of 
induction therapy). 
 
White blood cell count and age 

To date, white blood cell count and age at the time of initial diagnosis are the two most 

important factors predictive of outcome in B-lineage ALL, although they are not 

prognostic in T-lineage ALL.13,15,16 In vitro studies in ALL and AML cells demonstrated 

that drug uptake as well as drug-induced apoptosis decreased with increasing cell 

density.17,18 However, the underlying mechanisms that account for the adverse 

outcomes associated with elevated white blood cell count are currently unknown. The 

impact of age on clinical outcome in acute leukemia may be explained by its 

association and genetic abnormalities; hyperdiploidy (>50 chromosomes) is 

predominantly found in 1- to 10-year old patients, t(12;21)/[TEL-AML1] in 2- to 5-year-

 12 



General Introduction 

old patients and MLL rearrangements in infants.19,20 Furthermore, age is associated 

with in vitro responsiveness to single drugs and in vivo response to induction 

treatment.20,21 Compared to younger patients with ALL, adolescents (10-21 years of 

age) and adults have a higher incidence of unfavorable (high white blood cell count, T-

cell immunophenotype and t(9;22)/[BCR-ABL]) and a lower incidence of favorable 

clinical and biologic features (hyperdiploidy (>50 chromosomes) and t(12;21)/[TEL-

AML1]).15,22-24 Children with T-lineage ALL were reported to have a worse prognosis 

compared with children with B-lineage ALL to the presence of numerous adverse 

presenting features, such as older age, high white blood cell count and in vitro 

resistance to a variety of drugs.20,21,25-27 The poor prognosis associated with T-lineage 

ALL and mature B-ALL has progressively improved by risk-adjusted intensified 

protocols.28,29  
 

Genetic abnormalities 

Genetic abnormalities in acute leukemia include chromosomal gains and losses, 

chromosomal translocations, enhanced expression of proto-oncogenes or decreased 

expression/function of tumor supressor genes. Genetic abnormalities are identified in 

the leukemic cells of 60-75% of children with ALL and 50-60% children with AML.8 

Frequencies of the individual genetic abnormalities and corresponding treatment 

outcomes are provided in Table 2.  

Genetic abnormalities associated with a relatively favorable outcome in B-lineage ALL 

are t(12;21)/[TEL-AML1] and hyperdiploidy (>50 chromosomes). In contrast, 

hypodiploidy (<45 chromosomes), mixed-lineage leukemia (MLL) rearrangements 

(especially t(4;11)/[MLL-AF4]) and t(9;22)/[BCR-ABL] are associated with poor 

prognosis. The presence of t(1;19)/[E2A-PBX1] was considered a poor prognostic 

factor, but its significance disappeared with the use of intensified chemotherapy for this 

form of ALL.  Within T-lineage ALL, patients with t(11;19)/[MLL-ENL] or overexpression 

of HOX11 have a favorable prognosis compared to patients with overexpression of 

TAL1 and LYL1. The prognostic significance of the HOX11L2 subtype largely depends 

on the type of treatment administered.  

Genetic abnormalities associated with a relatively favorable outcome in AML are 

t(8;21)/[AML-ETO], t(15;17)/[PML-RARα], and inv(16)/[CBFβ-MYH11], whereas 

monosomy 5/del(5q), monosomy 7/del(7q), inv(3)/t(3;3), trisomy 8, t(1;22)/[RBM15-

MKL1], t(6;9)/[DEK-CAN], and a complex karyotype (>3 chromosomal abnormalities) 

define an AML group associated with a particularly poor prognosis.  
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Table 2: Frequency of genetic abnormalities and estimated 5-year event-free 
survival (EFS) in childhood acute leukemia 

Genetic abnormality Genes involved Freq. (%) 5-yr EFS (%) Reference 
B-lineage ALL:     
  Hyperdiploid >50 - 25-30 75-90 30-34 
  Hypodiploid <45 - 1-9 25-42 30-33,35 
  t(1;19) E2A-PBX1 5-8 70-85 30-34,36 
  t(4;11) MLL-AF4 2-5 10-35 32,37-40 
  t(9;22) BCR-ABL 2-5 17-40 30,31,34,41-43 
  t(12;21) TEL-AML1 16-27 85-95 32,33,37,44-46 
T-lineage ALL:     
  t(11;19) MLL-ENL 5-8 85-95 33,47 
  t(7;10), t(10;14), del(10q24) HOX11 1-33 80-92 31,47-51 
  t(5;14) HOX11L2 2-24 30-60 31,47-49,52 
  t(1;14), TAL1 recombination TAL1 12-26 30-43 31,33,47,53 
  t(7;19), unknown abnormality LYL1 2-22 30-40 31,33,47 
AML:     
  t(1;22) RBM15-MKL1 1-3 <50 34,43,54 
  t(6;9) DEK-CAN ~1 unknown 34,43,54 
  inv(3)/t(3;3) EVI1 <1 unknown 34 
  inv(16)/t(16;16) CBFβ-MYH11 5-12 47-76 34,54-57 
  monosomy 5/del(5q) - 1-2 unknown 54 
  monosomy 7/del(7q) - 2-11 0-50 54,55,57 
  trisomy 8 - 1-23 unknown 43,54,56,57 
  t(8;21) AML1-ETO 8-15 37-60* 34,43,54,55,57 
  11q23 abnormalities MLL 8-28 22-33* 54-58 
  t(15;17) PML-RARα 2-20 20-57* 34,54-57 
  complex karyotypes - 6-11 25-66* 54-56 

Freq.=frequency, *4-year event-free survival 
 
Early response to treatment 
Early response is defined as the disappearance of leukemic blasts from the peripheral 

blood and bone marrow during induction therapy and is a reflection of the 

characteristics of the leukemic cell as well as the pharmacokinetic characteristics of the 

host. Several study groups have demonstrated that the persistence of blasts in 

peripheral blood or bone marrow after the first 7 or 14 days of treatment is highly 

predictive of clinical outcome (reviewed in ref.59). For instance, children with a reduction 

in peripheral blast count below 1000 blasts/µl after 1 week systemic monotherapy with 

prednisone and a single intrathecal dose of methotrexate, i.e. a good prednisone 

window response, have a significant better outcome than patients with a higher number 

of circulating blasts.20  In addition, the persistence of circulating blasts after 1 week of 

multi-agent remission induction therapy was the most significant adverse feature of 

patients enrolled on St Jude Total Therapy Study XI.60 

Most relapses occur in the largest group of children with no signs of residual blasts after 

induction therapy as detected by conventional morphological examination of bone 

marrow or peripheral blood aspirates. A more specific and sensitive technique to 
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assess in vivo response involves monitoring minimal residual disease (MRD) at 

consecutive time points during (induction) therapy. Various methods are used to detect 

MRD, including flow cytometric detection of leukemic clone-specific antigen patterns 

and real-time quantitative polymerase chain reaction (RQ-PCR) analysis of leukemic 

clone-specific fusion transcripts or immunoglobulin and/or T-cell receptor gene 

rearrangements.20 A number of studies independently demonstrated the prognostic 

importance of the detection of MRD in the first 1-3 months of therapy.61-63 

Consequently, monitoring of MRD is now being incorporated in many clinical protocols. 

 
In vitro drug resistance 
The in vitro response to chemotherapy can be studied by exposure of primary patient 

samples to cytostatic drugs in a cell kill assay such as the methyl-thiazol-tetrazolium 

(MTT) assay. The independent prognostic significance of in vitro resistance to single 

drugs or a combination of drugs, i.e. prednisolone, vincristine and L-asparaginase 

(PVA), was demonstrated for childhood ALL.64-68 Furthermore, in vitro resistance, 

especially towards prednisolone, is associated with numerous unfavorable risk factors 

such as a high white blood cell count, age at diagnosis of less than 1 or more than 10 

years, pro-B-ALL or T-lineage ALL immunophenotype, the presence of MLL gene 

arrangements and t(9;22)/[BCR-ABL], poor prednisone window response and MRD 

(Table 3).21,69-72 Compared to ALL, children with AML are more resistant to almost all 

drugs used, with the exception of cytarabine and thiopurines.73 Unlike in ALL, in vitro 

resistance at initial diagnosis does not correlate with long-term clinical outcome in 

childhood AML.74 
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Table 3: Correlation of in vitro drug response in childhood and prognostic factors 
acute leukemia 
 

Prognostic factor Resistant to: Sensitive to: Reference 

Age at diagnosis    
  <1.5 years PRED, ASP, VM26 ARA, CdA 21,69 
  >10 PRED, DEX, ASP, MP, IDA - 21 
Immunophenotype    
  pro-B-lineage ALL PRED, ASP, DNR, TG, MP,   

DEX, DOX, IFOS 
ARA, CdA 21,69 

  T-lineage ALL PRED, VCR, ASP, DNR, DOX, 
IDA, DEX, IFOS, ARA 

- 21 

  AML PRED, VCR, ASP, DNR, TH,  
IDA, DEX, MIT, VP16, IFOS 

- 73,75 

Genetic abnormalities    
  Hyperdiploid >50 - ASP, MP, TG, ARA 76 
  t(12;21) - ASP, DOX, VP16 77-79 
  11q23 rearrangements PRED, DEX, ASP ARA, CdA 69,80 
  t(9;22) PRED, ASP, DNR, VBL, VP16, 

BLM, MEL, MIT 
- 71,81-83 

  t(8;21) IDA - 84 
  t(9;11) - VCR, DNR, DOX, CdA, 

ARA, VP16, MIT, Amsa 
84 

  5/7 abnormalities ARA - 84 
Early response     
  high level of MRD PRED - 85,86 
  poor PRED window   
  response 

PRED - 72 

Abbreviations: Amsa=amsacrine, ARA=cytarabine, ASP=L-asparaginase, CdA=2-chlorodeoxyadenosine, 
BLM=bleomycin, DNR= daunorubicin, DOX=doxorubicin, IDA=idarubicin, IFOS=4HOO-ifosfamide, 
MAF=mafosfamide, MEL=melphalan, MIT=mitoxantrone, MP=6-mercaptopurine, MTX=methotrexate, 
PRED=prednisolone, TG=6-thioguanine, TH=thiotepa, VCR=vincristine, VBL=vinblastine, VDS=vindesine, 
VP16=etoposide VM26=teniposide.
 
Gene-expression profiling in acute leukemia

Micro-array technology research allows investigators to make a snapshot of the 

transcriptional status of the complete genome in a population of leukemic cells. This 

snapshot provides unique insights into the altered biology underlying the characteristics 

of these cells.  

As described earlier in this chapter, acute leukemia is a heterogeneous disease entity, 

which consists of various subgroups that differ markedly in treatment outcome. Most 

leukemic subtypes, however, can hardly be distinguished on the basis of conventional 

assessment of morphological and histochemical characteristics. The use of gene-

expression profiles as a classification tool in leukemia was first demonstrated by Golub 

et al., who accurately distinguished between AML and ALL using a set of genes as a 

class predictor.87 Since then, micro-array technology has been successfully used to 

distinguish additional subgroups of acute leukemia. For instance, several independent 

groups demonstrated that ALL cells with MLL rearrangements have a unique gene-

expression profile that clearly distinguishes them from MLL germline ALL or AML.88-90 

These results were confirmed and extended by others, who demonstrated distinct gene 
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expression signatures for each of the known prognostic subtypes in ALL91-94 and 

AML.95-97 

Micro-array technology has also contributed to the identification of previously 

unrecognized and prognostically significant subgroups of leukemia. For instance, Yeoh 

et al identified a previously unrecognized subset of pediatric ALL based solely on gene 

expression profiling.92 In addition, Ferrando et al identified gene expression signatures 

in T-lineage ALL that reflected leukemic arrest at specific stages of normal thymocyte 

development, i.e. LYL1 (pro-T), HOX11 (early cortical thymocyte), and TAL1 signatures 

(late cortical thymocyte).47  Furthermore, they identified HOX11L2 activation as a novel 

event involved in T cell leukemogenesis. HOX11 expression was associated with a 

favorable prognosis, whereas activation of TAL1 or LYL1 was associated with a less 

favorable prognosis. 

More recently, micro-array technology has been applied to gain insight in the 

determinants of treatment response. Analysis of gene-expression before and after 

treatment with methotrexate and 6-mercaptopurine, alone or in combination, showed 

that each of these 3 treatment regimens generated a unique in vivo response reflected 

by treatment-specific changes in gene-expression. However, different ALL subtypes 

responded with identical changes in gene-expression to the same treatment.98 

 
1.4. The treatment of acute leukemia. 
 
1.4.1 The backbone of current chemotherapeutic protocols. 

 

The purpose of treatment of acute leukemias is to induce remission and thereafter treat 

the residual cells to prevent relapse. Remission is conventionally defined by the 

presence of less than 5% blasts in the bone marrow and the regeneration of normal 

hematopoiesis. Relapse is defined as a reappearance of leukemic blasts in the bone 

marrow, peripheral blood or elsewhere in the body following complete remission. The 

backbone of current therapy for childhood ALL consists of several elements: induction, 

post-induction (consolidation and intensification), central nervous system (CNS)-

directed therapy, reinduction (delayed intensification) and maintenance treatment.20 In 

childhood AML, treatment regimens consist of: remission induction, central nervous 

system (CNS)-directed therapy, and consolidation/intensification. The clinical 

significance for maintenance therapy is questionable in childhood AML and most 

groups do not use maintenance therapy.19,99 In case of the availability of a HLA 

 17 



Chapter 1 

matched sibling donor, allogeneic bone marrow transplant is recommended for all 

patients with high-risk AML, i.e. unfavorable karyotype and a poor response to induction 

therapy.10,12  

 

Remission induction 

The aim of induction therapy is to achieve a complete remission and the restoration of 

normal hematopoiesis within approximately 4-6 weeks. In most ALL regimens this is 

achieved by systemic administration of a glucocorticoid, vincristine and L-asparaginase. 

Some protocols also include anthracyclines as a fourth drug.20 One or two short 

courses of high-dose cytarabine and anthracyclines form the backbone of remission 

induction in most protocols for childhood AML. Some treatment regimens combine 

cytarabine and anthracyclines with either etoposide or 6-thioguanine.12,19  

 
Post-induction therapy 

Consolidation of the complete remission and eradication of residual (sub-detection) 

leukemic cells is the primary aim of consolidation and intensification therapy. 

Consolidation involves the repeated administration of drugs already used during 

induction therapy and intensification involves addition of drugs that were not previously 

administered to circumvent drug resistance. Intensification therapy for ALL includes 

high-dose methotrexate and 6-mercaptopurine in most study groups.20 The most 

important component of intensification therapy for childhood AML are several courses 

of high-dose cytarabine, either alone or combined with etoposide, amsacrine, 

mitoxantrone or L-asparaginase.12,19  

 
CNS-directed therapy 

Leukemic cells in the meninges are beyond the reach of most chemotherapeutic drugs 

and repopulation of the bone marrow from the meninges was a frequent cause of 

therapy relapse in the past. Therefore, treatment of presymptomatic CNS relapses is an 

integral part of present therapeutic regimens for ALL and AML. Historically, the most 

effective CNS-directed therapy was cranial irradiation. However, due to its association 

with neurotoxicity, hormonal disturbances, development of secondary malignancies and 

long-term neurocognitive effects, most protocols have eliminated cranial irradiation and 

use multiple cycles of high dose systemic MTX and/or intrathecal chemotherapy instead 

(most often in combination with a glucocorticoid and cytarabine).33  Cranial irradiation is 

only used in children with high-risk ALL or overt CNS disease.  
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Reinduction therapy 
The benefit of reinduction or delayed intensification was first demonstrated in high-risk 

patients with ALL in the Berlin-Frankfurt-Münster (BFM) studies in the late 1970s and 

has become an integral component of most treatment regimens. Reinduction therapy is 

administered approximately 3 months after remission in most protocols and usually 

involves a repetition of the initial remission induction therapy.33,100  

 
Maintenance therapy 

In order to kill residual, slowly dividing blasts and to suppress emergence of a drug-

resistant clone, children with ALL require long-term maintenance therapy. The general 

rule is to continue therapy for at least 2 years. The usual continuation regimen for 

children with ALL involves the combination of 6-mercaptopurine administered daily and 

methotrexate administered weekly. Some protocols also administer intermittent pulses 

of vincristine and a glucocorticoid.20  

 
1.4.2 Risk-adapted therapy. 
 

Because the childhood leukemias consist of many prognostically distinct subtypes, a 

uniform treatment would be inappropriate. Instead, risk stratification is used to assess 

the risk of relapse before the onset of treatment and tailor treatment intensity 

accordingly; patients at high risk of relapse will receive augmented treatment while 

patients at lower risk will receive less-intensive regimen to reduce treatment-related 

toxicities and long-term side effects. Risk-adapted therapy regimens are usually 

subdivided into three categories: low, standard (intermediate) and high risk. Most risk-

classification schemes consider white blood cell count and age at diagnosis, 

immunophenotype, genetic abnormalities (especially t(9;22) and MLL rearrangements) 

and prednisone window response.8 The German Cooperative Study Group for 

Childhood Acute Lymphoblastic Leukemia (COALL) study group uses in addition the in 

vitro cytotoxicity to prednisolone, vincristine and L-asparaginase as risk-stratification 

tool.64,101  
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1.4.3 Drugs commonly used in anti-leukemic therapy. 
 
Various drug combinations are used in the current chemotherapeutic regimens for 

pediatric leukemia. Four chemotherapeutic agents, that are an integral part of all 

protocols, and which resistance mechanisms will be investigated in this thesis will be 

briefly discussed in this paragraph.  

 
Glucocorticoids 

Glucocorticoids such as prednisolone and dexamethasone have been the most 

important drugs used in the treatment for ALL for more than 50 years. Glucocorticoids 

exert their effects by binding to the glucocorticoid receptor (GR), which subsequently 

migrates to the nucleus to affect the transcription of various genes.102 In near-

physiological concentrations, glucocorticoids induce G1 cell cycle arrest and cell death 

or apoptosis, which will be discussed in more detail in chapter 2.  

 
Vinca alkaloids 

Vincristine is a vinca alkaloids found in the Catharanthus roseus (Vinca rosea). The 

vinca alkaloids are extensively being used in clinical treatment of ALL and other 

pediatric malignancies since the discovery of their anti-tumor properties in 1959. Vinca 

alkaloids interact with monomeric β-tubulin and hence inhibit tubulin polymerization into 

microtubules. This results in a disappearance of both interpolar and mitotic 

microtubules, leading to mitotic arrest at the G2-M stage and apoptosis.103  

 
L-asparaginase 
L-asparaginase is an enzyme-derived drug purified from Erwinia chrysanthemi or 

Escherichia coli which hydrolyzes the amino acids asparagine and glutamine. L-

asparaginase is a standard component of treatment protocols for pediatric acute 

leukemia and causes complete remission in 40-60% of ALL cases as a mono-

agent.104,105 Administration of L-asparaginase leads to rapid depletion of the amino 

acids asparagine and glutamine form the blood circulation.106 The resulting asparagine 

deficiency leads to G1 cell cycle arrest and apoptosis of leukemic cells.107,108  
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Anthracyclines 

Daunorubicin, doxorubicin, idarubicin and epirubicin are anthracycline antibiotics, 

originally isolated from the fungus Streptomyces caeruleorubidus or S. peucetius, which 

antileukemic activity in pediatric ALL was demonstrated in 1963.109 Nowadays, 

anthracyclines are widely used in the treatment of childhood acute leukemia. Various 

mechanisms have been proposed to explain anthracycline-induced cytotoxicity, 

including induction of DNA damage by interaction with DNA topoisomerase and DNA 

helicase, induction of cellular DNA and membrane damage by the generation of free 

radicals. Anthracycline-inflicted cellular damage has been shown to induce apoptosis in 

leukemic cells.110,111 

 
1.5 Acute leukemia, apoptosis and mechanisms of cellular drug resistance 

 
Most, if not all, chemotherapeutic agents ultimately induce cell death by triggering 

apoptosis.112 Apoptosis is characterized by a series of stereotypic morphological and 

biochemical alterations.113 The morphological changes include cell shrinkage, plasma 

and nuclear membrane blebbing, organelle relocalization and chromatin condensation. 

Biochemical hallmarks of apoptosis include loss of sialic acid, translocation of 

phosphatidylserine to the outer leaflet of the plasma membrane and fragmentation of 

nuclear DNA into oligonucleosomal fragments. At the end of the apoptotic process, the 

cell disintegrates into membrane-enclosed vesicles, which are subsequently recognized 

and cleared by phagocytes.  

 A family of enzymes called caspases, which are activated upon exposure to 

chemotherapeutic agents, is responsible for triggering the typical morphological and 

biochemical features of an apoptotic cell. Once activated, caspases are capable of 

cleaving a wide array of structural and regulatory cellular proteins. There are two 

possible routes by which caspases can get activated after exposure to 

chemotherapeutic agents; the intrinsic or mitochondrial apoptosis pathway and the 

extrinsic or death receptor apoptosis pathway. Both routes are tightly regulated by 

various apoptosis-regulatory proteins in healthy cells in order to prevent unnecessary 

caspase activation. For instance, heat shock proteins and Bcl-2 family members are 

known regulators of the intrinsic pathway and decoy receptors and FLIP of the extrinsic 

pathway.114-118 In addition, there are regulatory proteins, capable of regulating both the 

extrinsic and the intrinsic apoptosis pathway, i.e. IAP family members.119-121 The exact 
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role of these apoptosis-regulatory proteins in controlling apoptosis is discussed in more 

detail in chapter 2. 

 The rationale behind combination therapy protocols is that the use of multiple 

drugs with distinct targets will decrease the probability that an individual malignant 

clone will be resistant against all used drugs and may survive treatment. However, one 

of the major causes of failure to contemporary combination therapy protocols still is 

cellular drug resistance. Defects in normal cell death mechanisms allow cells to survive 

and accumulate further transforming genetic alterations122,123 and are thought of as one 

of the major mechanisms that govern the transformation of normal lymphoblasts into 

leukemia.124,125 This and the fact that most chemotherapeutic agents induce apoptosis 

into their target cells suggests that defects in the apoptosis pathway may lead to 

cellular drug resistance. Indeed, functional blocks in apoptosis pathways have been 

found in AML and correlate with poor prognosis.126 Although the investigation of defects 

in the apoptosis pathway is limited in children with acute leukemia, various aberrations 

have been identified. The nature of these defects as well as their relation to cellular 

drug resistance and clinical outcome is discussed in more detail in chapter 2. 

 
1.6 Aims of this thesis 

 

In the past 4 decades, event-free survival has increased to almost 80% for children with 

ALL and 60% for children with AML. Key clinical contributors to this progress have been 

better use of old drugs, central nervous system prophylaxis, and risk-adapted therapy. 

As described in §1.6, a large part of the failures of contemporary chemotherapeutic 

protocols are caused by cellular drug resistance, which may be caused by defects in 

the apoptosis pathway. However, little is known about the presence of defects in the 

apoptosis pathway and their relation to cellular drug resistance in childhood acute 

leukemia.  

In chapter 2 a literature overview is given of the current knowledge on apoptosis and 

defects in the execution phase of apoptosis contributing to cellular drug resistance and 

treatment outcome in childhood acute leukemia. The major aim of the studies described 

in this thesis is to evaluate which aberrations, either in or outside the execution phase 

of apoptosis, contribute to cellular drug resistance and treatment failure in childhood 

acute leukemia.  

In chapter 3 we investigated whether cellular drug resistance was associated with 

decreased functional apoptosis in newly diagnosed children with ALL. Functional 
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apoptosis was assessed at various levels of the effector apoptosis route, i.e. 

phosphatidylserine externalization, collapse of mitochondrial transmembrane potential, 

caspase-3 activation and PARP inactivation. 

In chapter 4 micro-array technology was applied to analyze the expression patterns of 

70 key apoptotic genes in leukemic cells of children with newly diagnosed ALL. The 

expression was subsequently correlated to immunophenotype, genetic subtype, in vitro 

drug resistance and clinical outcome. 

In chapter 5 the protein expression of Apaf-1, procaspase-2, -3, -6, -7, -8, -10 and 

PARP were studied in children with newly diagnosed ALL and AML and the question 

was addressed whether the expression was related to cellular drug resistance in these 

patients. 

In chapter 6 data are presented of a study in which we applied micro-array technology 

to identify gene-expression patterns related to cellular drug resistance and outcome in 

leukemic cells of children with newly diagnosed ALL. 

In chapter 7 the prognostic significance of OPAL1, a newly discovered gene shown to 

be highly predictive of outcome in childhood ALL, was investigated in an independent 

cohort of children with newly diagnosed ALL. 

In chapter 8 we investigated whether an enhanced glycolytic rate was associated with 

prednisolone resistance in human leukemia cell lines. In addition, we addressed the 

question whether inhibition of the glycolytic rate augmented prednisolone-induced 

cytotoxicity in these cell lines. 

The work presented in this thesis is summarized and conclusion and perspectives are 

given in chapter 9 (in English) and chapter 10 (in Dutch). 
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1. Introduction 

 

Acute leukemia is the most common cancer diagnosed in children. Approximately 80% 

of acute leukemia diagnoses among children represent acute lymphoblastic leukemia 

(ALL) and 20% acute myeloid leukemia (AML). The treatment of pediatric acute 

leukemia has greatly improved over the past 4 decades, resulting in long-term disease-

free survival of approximately 75-80%  for ALL1-3 and 60% for AML.4 The improved 

outcome of childhood acute leukemia can largely be attributed to the introduction of 

combination chemotherapy. The rationale behind this form of treatment is that the use 

of different drugs with distinct intracellular targets will decrease the probability that a 

malignant clone will be treatment resistant. Defects in normal cell death mechanisms 

allow cells to survive which may lead to further accumulation of transforming genetic 

alterations.5,6 This process is thought of as one of the major mechanisms that govern 

the transformation of normal lymphoblasts into leukemia.7,8 This and the fact that most, 

if not all, chemotherapeutic agents ultimately induce cell death by triggering 

programmed cell death or apoptosis9 suggests that aberrations in the apoptosis 

pathway may explain a large proportion of the acute leukemia cases resistant to 

contemporary chemotherapeutic protocols. Indeed, functional blocks in apoptosis 

pathways appear to be common in AML and correlate with poor response to induction 

chemotherapy and decreased overall survival.10 A thorough understanding of the 

defects in the apoptosis route is critical for understanding the causes of treatment 

failure and for a rational approach to drug design and therapy.  

Induction of apoptosis by chemotherapeutic agents can be subdivided into three 

general phases: insult generation, signal transduction and  execution (Figure 1).9 

Defects in the first two phases, i.e. upregulation of drugs efflux pumps11-13 or detoxifying 

enzymes14-16, mutations in p5317,18 and overexpression of Mdm219, and their relevance 

to cellular drug resistance in childhood acute leukemia have been described 

elsewhere20 and are outside the scope of this chapter. This review summarizes the 

current knowledge of genes involved in the execution phase of apoptosis and 

discusses which defects may contribute to cellular drug resistance and treatment failure 

in childhood acute leukemia. 
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(e.g. DNA, cytoskeleton) 

Figure 1. The three phases of drug-induced apoptosis. During the insult phase (phase 1), chemotherapeutic 

agents enter the cell and interact with and cause damage to their specific intracellular targets. Due to the large 

diversity of intracellular targets this phase is highly heterogeneous. During the downstream transduction of the 

apoptotic signal (phase 2), the severity of drug-induced damage is assessed and the cell determines if it arrests 

cell cycle progression and attempts to repair the damage or proceeds to the execution phase of apoptosis. The 

threshold for apoptosis is defined by the net balance of pro- and anti-apoptotic pathways activated in response to 

anticancer drugs. During the execution phase (phase 3), the morphological changes characteristic of apoptotic 

cell death occur. Aberrations in each of these phases, which have the potential to cause cellular drug resistance, 

are indicated in the boxes. 

 
2. The executioners of apoptosis: caspases 
 

During the execution phase of apoptosis the cell is disassembled by the activity of a 

family of cysteine-dependent aspartate-directed proteases called caspases. At present, 

the human caspase gene family contains 11 members, 7 of which function in apoptosis 

(caspase-2, -3, -6, -7, -8, -9, -10) and others mediate cytokine processing (caspase-1, -

4, -5, -13).21 Studies in knockout mice have shown that caspases have a highly cell- 

type specific expression pattern.22,23 Activated caspases cleave a number of structural 

and regulatory cellular proteins which are responsible for the typical morphological and 

biochemical features of an apoptotic cell.  
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constitutively active  
survival pathways 

This chapter: 

Damage detection 

Phase 2:
Signal transduction 

Decision point 

Cell cycle arrest Apoptosis 

Cellular disassembly 

Phase 3: 
Execution  

Damage repair 

 35 



Chapter 2 

To prevent demolition of healthy cells, caspases are present in the cytoplasm as 

enzymatically inactive zymogens (procaspases). Only in cells that undergo apoptosis, 

procaspases are processed into the mature active enzymes.24 Caspases have a unique 

substrate preference: they recognize a specific 4-amino acid motif and cleave this after 

the aspartic acid residue at the fourth position. The presence of an aspartic acid 

residue in caspases suggests that procaspases can be activated by active caspases 

their selves. Indeed, activation of a single caspase leads to a cascade of activated 

downstream caspases, also known as effector caspases. At least two different ways to 

activate the first or initiator caspase exist: the intrinsic and the extrinsic pathway. 

 
3. The intrinsic apoptosis pathway 
 

The intrinsic or mitochondrial apoptosis pathway is initiated by the release of the 

electron transport protein cytochrome c and other apoptogenic molecules, such as 

apoptosis-inducing factor (AIF), Smac/DIABLO and Omi/HtrA2 from the mitochondrial 

intermembrane space.25 This release is accompanied by a dissipation of mitochondrial 

inner transmembrane potential (∆Ψm).26,27 The subsequent binding of cytochrome c to 

the cytoplasmic protein Apaf-1 [apoptotic protease-activating factor-1] causes a 

dATP/ATP-dependent conformational change of Apaf-1. The more open conformation 

of Apaf-1 allows the formation of an oligomeric assembly, designated the apoptosome, 

which recruits and activates procaspase-9.28 Activated procaspase-9 subsequently 

activates among others effector caspases-3, -6 and –7, which collectively work to 

disassemble the cell.29,30 Given the lethal consequences of spontaneous caspase 

activation, it is not surprising that the intrinsic route is tightly controlled at multiple levels 

(Figure 2). 
 

 36 



Apoptosis defects and drug resistance in childhood acute leukemia 

 
Figure 2. The intrinsic, extrinsic and common apoptosis pathway. Schematic representation of the main 

cellular routes of caspase activation. The core apoptotic route is indicated with bold arrows, dotted arrows 

indicate regulation mechanisms and white arrows indicate cross-talk between both pathways. Bold striped lines 

mark the boundary between the intrinsic, the extrinsic and the common apoptosis pathway. See main text for 

details of both pathways.  

 
 

3.1 Regulation at the mitochondrial level: the Bcl-2 family 

 

Bcl-2 family members are the central regulators of the intrinsic pathway, which sense 

intracellular damage, integrate pro- and anti-apoptotic signals and finally decide 

whether cytochrome c is released and apoptosis is engaged. The Bcl-2 family consists 

of more than 30 proteins and has pro- and anti-apoptotic members, which can form 

hetero- and homodimers.31  Anti-apoptotic family members, such as Bcl-2, Bcl-XL and 

Mcl-1, localize primarily to the mitochondrial outer membrane where they can directly 

block the release of cytochrome c, preventing caspase activation.32 The pro-apoptotic 

family members are subdivided according to the number of Bcl-2 homology (BH) 

domains into the multidomain and the BH3-only subfamily. Members of the multidomain 

subfamily, like Bax and Bak, are structurally very similar to the anti-apoptotic Bcl-2-like 
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subfamily but lack the fourth BH domain (BH4). During apoptosis, Bax and Bak both 

undergo conformation changes and form homo-oligomers within the mitochondrial outer 

membrane33,34, which leads to mitochondrial permeabilization and release of 

cytochrome c.35 The still growing BH3-only subfamily includes Bad, Bid and Bik and is 

characterized by the presence of only the third BH domain (BH3). BH3-only proteins 

are thought to induce mitochondrial permeabilization by either forming heterodimers 

with anti-apoptotic Bcl-2-like proteins or by directly activating the pro-apoptotic 

multidomain proteins.31,36  

 

 
Figure 3. Regulation of apoptosome formation. The formation of the apoptosome occurs in various steps and 

finally leads to activation of the initiator caspase-9. The various steps of the formation of a functional 

apoptosome as well as the places where regulation occurs are indicated. See main text for details on these 

regulation mechanisms. Modified after Hajra et al.37 

 

3.2 Regulation at the apoptosome level 

 

The cell uses different strategies to prevent the formation of the apoptosome (Figure 3). 

One strategy, employed by heath shock protein 27 (Hsp27), is the binding to and 

sequestering of cytochrome c.38,39 Another strategy, employed by two other Hsp family 

members, i.e. Hsp70 and Hsp90, is to prevent the formation of the apoptosome by 

binding Apaf-1.40,41 It has been suggested that anti-apoptotic Bcl-2 members like Bcl-XL 

and Diva/Boo can interact with Apaf-1, thus preventing Apaf-1 oligomerization.42,43 
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However, the significance of this interaction has recently been questioned as various 

studies failed to confirm its existence.44 Aven is a protein which was identified based in 

its ability to bind both Bcl-XL and Apaf-1 in a yeast 2-hybrid screen.45 Aven was shown 

to interfere with the ability of Apaf-1 to self-associate, suggesting that Aven impairs 

Apaf-1-mediated caspase activation.45 Alternatively, formation of the apoptosome can 

be prevented by competing with Apaf-1. In the last few years various CARD-containing 

proteins, such as TUCAN, AIP and APIP, have been identified that interfere with the 

binding of procaspase-9 to Apaf-1.46-48 Finally, apoptosome formation can be prevented 

by inactivation of caspase-9, for instance by alternative splicing49 or phosphorylation by 

the serine/threonine kinase Akt.50 

 

4. The extrinsic apoptosis pathway 
 
The activation of initiation caspase-8 and caspase-10 is mediated by the death receptor 

(DR) family of transmembrane receptors, which includes TNF-R1 [tumor necrosis factor 

(TNF) receptor 1], Fas (CD95),  TRAMP [TNF receptor–related apoptosis-mediating 

protein] (DR3), TRAIL-R1 (DR4) [TNF-related apoptosis inducing ligand receptor 1], 

TRAIL-R2 (DR5) and DR6.51,52 These receptors are characterized by the presence of a 

conserved cytoplasmic death domain. The best-studied death receptor signaling 

pathway is mediated by the Fas receptor (Fas). The natural ligand of Fas (Fas-L) is a 

type II transmembrane protein. Binding of Fas-L to the extracellular domain of Fas 

leads to receptor trimerization and recruitment of the FADD [Fas-associated death 

domain] to the cytoplasmic side of Fas. This recruitment involves homotypic interaction 

between the death domain present in Fas and FADD.53,54 An additional homotypic 

interaction takes place between the death effector domains  present in FADD and 

procaspase-8 or procaspase-10.55,56 Fas, FADD and procaspase-8 or -10 together form 

the death-inducing signaling complex (DISC) where both procaspases are activated 

and released into the cytoplasm to activate the effector caspases. Other death 

receptors activate caspases in a similar way with the exception that TNF-R1 and DR6 

first bind TRADD [TNR-R associated death domain], which in turn recruits FADD. The 

association of procaspase-2 with TNF-R1 via the adapters TRADD, RIP and 

RAIDD/CRADD suggests that this caspase is involved in TNF-R1-mediated signaling.57 

Like the intrinsic pathway, activation of the extrinsic pathway is regulated at various 

levels. 
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4.1 Regulation at the death receptor level 

 

Some cells express so-called decoy receptors, i.e. proteins that bind death ligands with 

high affinity, but are incapable of recruiting cytoplasmic adapter molecules.58 The FAS 

gene encodes two isoforms through alternative splicing: full-length Fas which has a 

cytoplasmic domain and a soluble form of Fas (DcR3).59 DcR3 is secreted in the 

extracellular environment where it competes with Fas for Fas-L binding. Alternatively, a 

soluble form of Fas-L, generated through cleavage of the membrane form by 

metalloproteinases, has been described to compete with Fas-L for Fas binding.60  

Two decoy receptors are known for TRAIL; TRAIL-R3 (DcR1/TRID), which lacks a 

cytoplasmic region, including the death domain61 and TRAIL-R4 (DcR2/TRUNDD), 

which has a truncated cytoplasmic domain containing only one-third of the consensus 

death domain.62 Both decoy receptors bind TRAIL with an affinity comparable to TRAIL-

R1 and TRAIL-R2, but cannot transmit the death signal. Fas-associated phosphatase 1 

(FAP-1) is a protein tyrosine phosphatase, which inhibits Fas-induced apoptosis by 

binding to the negative regulatory domain (C-terminal 15 amino acids) of the Fas 

receptor and reducing Fas cell surface expression63,64   

 

4.2 Regulation at the death-inducing signaling complex (DISC) level 

 

The assembly of a functional DISC can be blocked by the anti-apoptotic protein FLIP 

[FLICE-like inhibitory protein]. The first FLIPs that were identified were of viral origin (v-

FLIPs). The v-FLIPs are characterized by the presence of two DED motifs and interfere 

with the recruitment of procaspase-8 to the DED of FADD.65 Based on sequence 

homology, the mammalian homologue of v-FLIPs was identified and termed cellular 

FLIP (c-FLIP). Two forms of c-FLIP are encountered in the mammalian cell: a short 

form, which structurally resembles v-FLIP (c-FLIPS) and a long form (c-FLIPL), which 

resembles caspase-8 and 10 but is catalytically inactive. c-FLIPS and c-FLIPL interact 

with FADD and procaspase-8, and potently inhibit apoptosis induced by all known 

human death receptors.66 In addition, the binding of silencer of death domains (SODD) 

to the DD of TNF-R1 is responsible for the negatively regulating downstream TNR-R1 

signaling.67 
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5. The common downstream apoptotic pathway 
 
Initially the intrinsic and the extrinsic pathways were thought of as two separate 

pathways that converge to utilize the same group of downstream effector caspases to 

execute apoptosis. More recent data suggest that this model is oversimplified and that 

both pathways are interconnected above the level of effector caspases. BAR, for 

instance, can bridge both pathways by forming a complex with procaspase-8 and the 

anti-apoptotic Bcl-2 members and Bcl-XL.68 Another type of cross-talk is observed for 

Bid and BAP31, which are both caspase-8 targets (Figure 2). 36,69,70  

 
5.1 Regulation of the common apoptotic pathway: the IAP family 

 

The inhibitor of apoptosis proteins (IAPs) constitute a family of intracellular anti-

apoptotic proteins that were first identified as homologues of genes present in 

baculoviruses. Thus far, eight human IAPs have been identified NAIP, c-IAP1, c-IAP2, 

XIAP, survivin, Apollon, Livin and ILP-2.71 The anti-apoptotic activity of IAPs is dual: 

they bind and inhibit caspase-3, -7 and -9 directly 72-74 and, in addition, some IAPs can 

induce NF-κB signaling pathways that promote survival by induction of a variety of anti-

apoptotic factors, including XIAP, c-IAP1 and c-IAP2.75,76 A number of proteins have 

been identified that regulate the activity of IAPs. Smac/DIABLO and Omi/HtrA2 reside 

in the mitochondrial intermembrane space and translocate to the cytoplasm along with 

cytochrome c during apoptosis.77,78 Both proteins promote apoptosis by binding to IAPs 

and preventing them from inhibiting caspases. XIAP-associated protein (XAF1) 

specifically binds and inhibits XIAP, probably by triggering the translocation of XIAP 

from the cytoplasm to the nucleus.79  

 
6. Downstream caspase targets 
 
Activated caspases cleave a number of structural and regulatory cellular proteins 

leading to apoptosis. For instance, cleavage of the inhibitory subunit of caspase-

activated DNase (ICAD) leads to DNA fragmentation,80 cleavage of cytoskeletal 

proteins actin, gelsolin and fodrin induces cell shrinkage and blebbing,81 and cleavage 

of lamins present within the nuclear envelope is required for blebbing of the nuclear 

membrane.82,83 Another protein cleaved by activated effector caspases is poly(ADP-
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ribose) polymerase (PARP; also as PARP1 and ADPRT), which is involved in DNA 

repair and the maintenance of genomic integrity.84 
 
7. Apoptotic defects in childhood acute lymphoblastic leukemia 
 

Caspases 

The role of caspases in cellular drug resistance in diagnostic childhood ALL samples is 

summarized in Table 2. The importance of caspase-2 in drug-induced apoptosis was 

demonstrated by the resistance of caspase-2-/- murine oocytes to cytostatic drugs.22  

The decreased procaspase-2 protein expression levels we observed in diagnostic in 

vitro drug resistant childhood ALL samples is in line with this finding.85 The loss of 

caspase-3 expression in drug-resistant ALL and AML cell lines86 and the loss of 

spontaneous caspase-3 activation observed at relapse in childhood ALL suggests that 

impaired caspase-3 activation is involved in therapy resistance.87 Indeed, decreased 

drug-induced caspase-3 activation rather than decreased base-line procaspase-3 

expression was associated with in vitro resistance to prednisolone and L-asparaginase 

in newly diagnosed childhood ALL.27,85,88,89 No evidence exists for a contribution of 

caspase-6 and -7 to drug resistance in pediatric ALL.85,88 Loss of caspase-8 expression 

though methylation of the promoter has been reported in various pediatric tumors 

including neuroblastoma, rhabdomyosarcoma, medulloblastoma and retinoblastoma.90-

92 Treatment with the demethylation agent 5-Aza-2'-deoxycytidine restored caspase-8 

expression in various human cell lines and sensitized them to death receptor- and drug-

induced apoptosis.92 Until now, no evidence for procaspase-8 promoter methylation has 

been found in hematological malignancies.93,94 Moreover, procaspase-8 expression did 

not correlate with cellular drug resistance in children with ALL.85,88  The role of caspase-

9 and caspase-10 in drug-induced apoptosis was demonstrated by the resistance of 

caspase-9-/- murine thymocytes23 and leukemic cell lines with inactivated caspase-1095 

to drug-induced apoptosis. Pharmacological inhibition of caspase-9 and -10 activity 

caused partial resistance to glucocorticoid-induced apoptosis in human pre-B ALL 

cells.96 These data suggest  that caspases-9 and -10 may contribute to drug-induced 

apoptosis in leukemic cells, although evidence is lacking in clinical samples till date88,97  
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Table 1. Caspases and cellular drug resistance in newly diagnosed childhood acute leukemia 
 

Gene Leukemia type Examined N In vitro drug resistance Refs 
CASP2 B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

or DNR 
88 

 B-ALL and T-ALL protein 43 Low expression: PVA, PRED resistance 85 
CASP3 B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

or DNR 
88 

 B-ALL and T-ALL protein 60 No relation with PRED resistance 89 
 B-ALL and T-ALL Activation 50 Decreased drug-induced inactivation related 

to ASP, PRED resistance 
27 

 B-ALL and T-ALL protein 43 No relation with PVA resistance 85 
CASP6 B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

or DNR 
88 

 B-ALL and T-ALL protein 43 No relation with PVA resistance 85 
CASP7 B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

or DNR 
88 

 B-ALL and T-ALL protein 43 No relation with PVA resistance 85 
CASP9 B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

or DNR 
88 

CASP10 B-ALL and T-ALL protein 43 No relation with PVA resistance 85 
N: number of patients, ASP: L-asparaginase, DNR: daunorubicine, PRED: prednisolone, VCR: vincristine, PVA: combined PRED, 
VCR, ASP resistance score, B-ALL: B-lineage ALL, T-ALL: T-lineage ALL 
 

Bcl-2 family members 

As was mentioned above, Bcl-2 and its family members play a central role in regulating 

the intrinsic apoptosis pathway. The role of Bcl-2 family members in cellular drug 

resistance in diagnostic childhood ALL samples is summarized in Table 2. Although 

increased Bcl-2 expression was observed in drug-resistant ALL and AML cell lines,87 no 

relation has been established between Bcl-2 expression and in vitro response to a wide 

variety of chemotherapeutic agents in diagnostic childhood ALL samples.88,89,98-100 The 

only study to date reporting a relation between high Bcl-2 expression and in vitro drug 

resistance in childhood acute leukemia was performed in relapsed ALL samples.101 We 

recently observed increased Mcl-1 mRNA levels in in vitro prednisolone resistant 

pediatric ALL samples.88 No such correlation was found for other drugs by us and other 

groups, suggesting that the role of Mcl-1 in resistance may be restricted to 

glucocorticoids such as prednisolone.88,89,98,102 No association with drug resistance was 

found for other anti-apoptotic Bcl2-family members such as Bcl-XL in childhood acute 

leukemia.88,89,98,102,103 Overexpression of pro-apoptotic Bax accelerates apoptosis104 

and inactivating BAX mutations have been documented in up to 20% of hematological 

malignancies.105 The observation that Bax expression was decreased at relapse 

suggested that loss of Bax may be involved in the development of cellular drug 

resistance in childhood ALL.87 In contrast, other studies in childhood acute leukemia 

found no significant association between Bax expression and cellular drug 

resistance.88,89,98,100,103,106  In addition, no association was found between the 

expression of other pro-apoptotic family members such as Bad and Bak and drug 

resistance and outcome in childhood ALL.88,98 We recently observed decreased mRNA 

expression of the pro-apoptotic Hrk and increased expression of the pro-apoptotic Bcl2-
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like 13 (Bcl2L13) gene, also known as Bcl-rambo, in L-asparaginase resistant B-lineage 

ALL samples.88 This gene was also linked to L-asparaginase resistance in TEL-AML1 

positive ALL cases, and, moreover, was linked to an unfavorable prognosis in these 

patients.107 Based on their capacity to form heterodimers, it has been proposed that the 

ratio of pro-apoptotic to anti-apoptotic Bcl-2 family members ultimately determines the 

cells’ susceptibility to apoptosis.104,108 The  Bax:Bcl-2 ratio rather than Bcl-2 expression 

was linked to the response to dexamethasone-induced apoptosis in a panel of leukemia 

and lymphoma cell lines. However, this could not be confirmed in samples taken at 

initial diagnosis of ALL.100   

 

Table 2. Bcl-2 family members and cellular drug resistance in newly diagnosed childhood acute 
leukemia 
 

Gene Leukemia type Examined N In vitro drug resistance Refs 
BCL2 B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

and DNR 
88 

 B-ALL and T-ALL protein 77 High expression: ARA sensitive 
No relation with resistance to PRED and DEX 

101 

 B-ALL and T-ALL protein 52 No relation with resistance to ARA, DEX, DNR, 
MTX, TG, VCR, VM26 

99 

 B-ALL and T-ALL protein 78 No relation with resistance to ASP, VCR, PRED 98 
 B-ALL and T-ALL protein 60 No relation with PRED resistance 89 
 T-ALL protein 81 No relation with resistance to DEX and DOX 100 
MCL1 B-ALL mRNA 190 High expression: PRED resistant 

No relation with resistance to VCR, ASP and DNR 
88 

 B-ALL and T-ALL protein 78 No relation with resistance to ASP, VCR, PRED 98 
 B-ALL and T-ALL protein 60 No relation with PRED resistance 89 
Bcl-XL B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

and DNR 
88 

 B-ALL and T-ALL protein 78 No relation with resistance to ASP, VCR, PRED 98 
 B-ALL and T-ALL protein 60 No relation with PRED resistance 89 
BAX B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

and DNR 
88 

 B-ALL and T-ALL protein 78 No relation with resistance to ASP, VCR, PRED 98 
 B-ALL and T-ALL protein 60 No relation with PRED resistance 89 
 T-ALL protein 81 No relation with resistance to DEX and DOX 100 
BAD B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

and DNR 
88 

 B-ALL and T-ALL protein 78 No relation with resistance to ASP, VCR, PRED 98 
BAK B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

and DNR 
88 

 B-ALL and T-ALL protein 78 No relation with resistance to ASP, VCR, PRED 98 
HRK B-ALL mRNA 190 Low expression: ASP resistant 

No relation with PRED, VCR and DNR resistance 
88 

BCL2L13 B-ALL mRNA 190 High expression: ASP resistant 
No relation with PRED, VCR and DNR resistance 

88 

BAX:BCL2 ratio T-ALL protein 81 No relation with resistance to DEX and DOX 100 
N: number of patients, ARA: cytarabine, ASP: L-asparaginase, DEX: dexamethasone, DNR: daunorubicine, DOX: doxorubicin, 
MTX: methotrexate, PRED: prednisolone, TG: 6-thioguanine, VCR: vincristine, VM26: teniposide , ASP resistance score, B-ALL: B-
lineage ALL, T-ALL: T-lineage ALL 
 

The apoptosome 

The important role of Apaf-1 in drug-induced apoptosis was demonstrated by the 

resistance of Apaf-1-/- murine embryonic fibroblasts to cytostatic drugs.109 In addition, 

methylation-induced loss of Apaf-1 expression leads to chemoresistance in human 

melanoma.110 The finding that Apaf-1 overexpression promotes111 and Apaf-1 

deficiency inhibits112 drug-induced apoptosis in leukemic cell lines suggests that 
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expression levels of Apaf-1 may play a role in resistance to apoptosis in human 

leukemia. However, no correlation was found between Apaf-1 protein expression and 

response to induction therapy in adult patients with acute leukemia.97 Interestingly, a 

recent paper describes that the methylation frequency of APAF1 promoter region was 

35% in childhood ALL.113 This may be clinically important since increasing Apaf-1 levels 

by demethylation treatment with 5-aza-2'-deoxycytidine sensitized a human leukemic 

cell line to UV light-induced apoptosis.114  
 
    
Table 3. The apoptosome and cellular drug resistance in newly diagnosed childhood acute leukemia 
 

Gene Leukemia type Examined N In vitro drug resistance Refs 
APAF1 B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

or DNR 
88 

 B-ALL and T-ALL protein 43 No relation with PVA resistance 85 
HSP27 B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

or DNR 
88 

HSP70 B-ALL and T-ALL mRNA 20 No relation with PRED resistance 120 
HSP90 B-ALL and T-ALL mRNA 20 No relation with PRED resistance 120 

N: number of patients, ASP: L-asparaginase, DNR: daunorubicine, PRED: prednisolone, VCR: vincristine, PVA: combined PRED, 
VCR, ASP resistance score, B-ALL: B-lineage ALL, T-ALL: T-lineage ALL 
 

The role of apoptosome members and regulators in cellular drug resistance in 

diagnostic childhood ALL samples is summarized in Table 3. We have recently shown 

that Apaf-1 expression does not correlate with in vitro resistance to prednisolone, 

vincristine, L-asparaginase and daunorubicine in diagnostic childhood ALL 

samples.85,88 The expression of Apaf-1 splice variants has been linked to functional 

apoptosis in tumor cell lines.115-117 The presence of an additional C-terminal WD-40 

repeat encoded by exon 18 appears to be required for in vitro activation of procaspase-

9 and -3.116 We found no relation between the expression of any Apaf-1 splice variant 

and cellular drug resistance in B-linage ALL.88 Aberrant expression of Hsp90 has been 

associated with glucocorticoid resistance in human leukemic cell lines.118 However, 

Hsp90 expression failed to correlate to in vitro or in vivo prednisolone response in 

children with ALL.119,120 In addition, Hsp70 nor Hsp27 mRNA levels correlated to in vitro 

drug resistance in childhood ALL.88,120  

 

The intrinsic apoptosis pathway 

Resistance to cytokine- and drug-induced apoptosis correlated with loss of Fas 

expression in human leukemia cell lines.86 We and others showed that Fas expression 

is not related to in vivo and in vitro drug response in childhood acute leukemia.88,100,121 

Like Fas, mRNA levels of the TRAIL receptors and their ligand TRAIL were not related 
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to cellular drug resistance in childhood ALL.88 At present the role of other death 

receptors in cellular drug resistance of acute leukemia samples is yet unanswered.  

The IAP family 

The role of IAP family members and regulators in cellular drug resistance in diagnostic 

childhood ALL samples is summarized in Table 4. Increased expression of IAPs has 

been shown to confer chemoresistance to several anticancer drugs in human leukemic 

cell lines.122 Importantly, antisense-mediated downregulation of XIAP123 and survivin124 

have been demonstrated to enhance chemosensitivity of human leukemic cells lines in 

vitro. We found no association between altered mRNA expression of any of the IAP 

family members and in vitro resistance to prednisolone, vincristine, L-asparaginase and 

daunorubicine in childhood ALL.88 However, at the protein level, expression of XIAP 

and c-IAP2 but not of c-IAP1 correlated with in vitro prednisolone resistance in 

childhood ALL.89  

 
   Table 4. The IAP family and cellular drug resistance in newly diagnosed childhood acute leukemia 
 

Gene Leukemia type Examined N In vitro drug resistance Refs 
XIAP B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

or DNR 
88 

 B-ALL and T-ALL protein 60 High expression: PRED resistance 89 
cIAP1 B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

or DNR 
88 

 B-ALL and T-ALL protein 60 No relation with PRED resistance 89 
cIAP2 B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

or DNR 
88 

 B-ALL and T-ALL protein 60 High expression: PRED resistance 89 
SURVIVIN B-ALL mRNA 190 No relation with resistance to PRED, VCR, ASP 

or DNR 
88 

N: number of patients, ASP: L-asparaginase, DNR: daunorubicine, PRED: prednisolone, VCR: vincristine, B-ALL: B-lineage ALL, T-
ALL: T-lineage ALL 
 

Transfection of the IAP inhibitor Smac/DIABLO increased the sensitivity of ALL and 

AML cell lines to UV light-induced apoptosis.125 Although these data imply 

Smac/DIABLO in drug-induced apoptosis in acute leukemia, its role of Smac/DIABLO in 

drug-induced apoptosis yet remains to be confirmed in primary acute leukemia 

samples. 

 

Downstream targets 

Although downstream targets play a role at the final stage of apoptosis, defects in these 

downstream targets have shown to influence drug-induced apoptosis in cell lines. 

Lamin B1 has been shown to be upregulated in vincristine resistant ALL cell lines126, 

and, moreover, an uncleavable mutant delayed the rate of apoptosis and fragmentation 

of DNA.127 An other cell line study showed that caspase-3 activation may occur without 

any signs of nuclear apoptosis upon induction of apoptosis.128 Pharmacological 
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inhibition of the caspase target PARP has been shown to confer chemoresistance to 

several anticancer drugs in human leukemic cell lines.129,130 In contrast to these cell line 

studies, we observed that decreased PARP inactivation in resistant cells is likely to be 

caused by a defect upstream or at the level of mitochondrial function in pediatric ALL. 

Lack of PARP inactivation coincided with lack of mitochondrial membrane 

depolarization and phosphatidyl serine exposure at the outer membrane upon drug 

exposure in these cells.27  

 
8. Conclusions and perspectives 
 
An overview of the apoptotic defects in childhood acute leukemia that are discussed in 

relation to cellular drug resistance are provided in Table 1-4. The vast majority of 

studies failed to demonstrate an association between defects in apoptotic parameters 

and drug resistance. Moreover, the studies that did show an association were often 

contradictory. There are various potential explanations for these contradictory data.  

Firstly, the discrepancies between various studies may be explained by the leukemia 

subtypes that were included. Acute leukemia is a heterogeneous disease composed of 

various subtypes defined by immunophenotype, chromosome number and the 

presence of chromosomal translocations, that differ markedly in their treatment 

response.131 The expression of apoptotic proteins has been shown to vary between 

these subgroups. For instance, T-lineage phenotype and the presence of TEL-AML or 

E2A-PBX1 fusion proteins was associated with low expression levels of Bcl-298,132,133, 

whereas the presence of MLL-AF4 or Bcr-Abl fusion transcripts were associated with 

high levels of Bcl-2 expression in childhood ALL.133 Likewise, the absence of 

expression of XIAP and Bcl-XL was highly correlated with the presence of favorable 

cytogenetics in childhood AML.103 Moreover, we recently demonstrated that different 

ALL subtypes defined by immunophenotype and genotype have a unique expression 

pattern of apoptosis genes, indicating that the expression of apoptosis genes is cell-

type specific.88 

Secondly, the activity of apoptotic proteins is often determined by post-translational 

modifications, like phosphorylation50,134,135 and cleavage.136-138 For example, decreased 

caspase-3 activation rather than decreased base-line procaspase-3 expression has 

been associated with cellular drug resistance in childhood ALL.27,87 Most studies 

described in this review quantified protein levels of the apoptotic machinery by flow 

cytometry, Western blotting or immunocytochemistry. The antibodies used in the vast 
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majority of these studies cannot distinguish between active and inactive forms of 

apoptotic proteins.  

Thirdly, the discrepancies between various studies may be explained by the fact that 

the relation of an individual apoptotic protein with clinical outcome may depend on the 

treatment that was given. 

 Fourthly, treatment-induced changes in the expression level of various apoptotic 

proteins have been reported in leukemic cells.139,140  Therefore, mRNA levels in 

untreated cells may not necessarily reflect the true cellular apoptotic potential. 

In summary, aberrant expression of apoptosis proteins has been observed at various 

levels of the effector apoptosis route in childhood acute leukemia. However, the 

baseline expression of a single apoptosis protein as the cause of cellular drug 

resistance is highly unlikely since these apoptosis proteins are part of a complex signal 

transduction pathway in which many regulating proteins play a role. A genome-wide 

screening showed that defects in drug-specific pathways rather than the common 

apoptosis route may contribute to cellular drug resistance in childhood ALL.141 

Moreover, apoptosis linked genes were not found in samples that were cross-resistant 

to four unrelated classes of drugs.142 Taken together, the current data suggest that 

resistance to multiple drugs is not caused by a single defect in the execution phase of 

apoptosis in leukemic cells. Future research therefore should focus on defects in drug-

specific targets to elucidate causes of cellular drug resistance in pediatric ALL.  
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Chapter 3 

ABSTRACT 

Resistance of leukemic cells to chemotherapeutic agents is associated with an 

unfavorable outcome in pediatric acute lymphoblastic leukemia (ALL). To investigate 

the underlying mechanisms of cellular drug resistance, the activation of various 

apoptotic parameters in leukemic cells from 50 children with ALL was studied after in 

vitro exposure with 4 important drugs in ALL therapy (prednisolone, vincristine, L-

asparaginase, and daunorubicin). Exposure to each drug resulted in early induction of 

phosphatidylserine (PS) externalization and mitochondrial transmembrane (∆Ψm) 

depolarization followed by caspase-3 activation and poly(ADPribose) polymerase 

(PARP) inactivation in the majority of patients. For all 4 drugs, a significant inverse 

correlation was found between cellular drug resistance and (1) the percentage of cells 

with PS externalization (<0.001<P<0.008) and (2) the percentage of cells with ∆Ψm 

depolarization (0.002<P<0.02). However, the percentage of cells with caspase-3 

activation and the percentage of cells with PARP inactivation showed a significant 

inverse correlation with cellular resistance for prednisolone (P=0.001; P=0.001) and L-

asparaginase (P=0.01; P=0.001) only. This suggests that caspase-3 activation and 

PARP inactivation are not essential for vincristine- and daunorubicin-induced apoptosis. 

In conclusion, resistance to 4 unrelated drugs is associated with defect(s) upstream or 

at the level of PS externalization and ∆Ψm depolarization. This leads to decreased 

activation of apoptotic parameters in resistant cases of pediatric ALL. 

  
INTRODUCTION 

Although combination chemotherapy has improved the prognosis of childhood acute 

lymphoblastic leukemia (ALL) over the last few decades, relapse still occurs in 20% to 

30% of the cases.1 Cellular drug resistance measured at initial diagnosis is associated 

with an increased relapse risk and unfavorable clinical outcome in childhood ALL.2,3 In 

addition, the presence of adverse clinical prognostic factors such as older age (> 10 

years) and pro-B and T-lineage immunophenotype have been shown to be associated 

with cellular resistance to drugs in children with ALL.4 These findings indicate that 

cellular drug resistance (measured in vitro) can be used as a tool to identify patients at 

higher risk of treatment failure. 

 Chemotherapeutic agents have been described to induce apoptosis in 

malignant cells.5 There are 2 major routes by which apoptosis can be induced: the  

 

 58 



Decreased drug-induced apoptosis in drug-resistant pediatric ALL 
 

extrinsic or death receptor–associated route and the intrinsic or mitochondrial route. 

Although there is disagreement concerning the role of the extrinsic route in 

chemotherapy-induced apoptosis6,7 there is a general agreement regarding the 

importance of the intrinsic route. The intrinsic route can be subdivided into 3 general 

phases:8 (1) insult generation, (2) signal transduction, and (3) execution. During the 

insult generation phase, chemotherapeutic agents interact with and cause damage to 

their specific cellular targets. The signal transduction phase is the least-defined phase 

and is thought to involve integration of pro- and antiapoptotic signals. The relative 

abundances of pro- and antiapoptotic signals, that can be influenced by anticancer 

drugs,9 ultimately determines if the execution phase is initiated.10 The execution phase 

is initiated by release of cytochrome c and other polypeptides from the mitochondrial 

intermembrane space.11 This release is accompanied by a dissipation of mitochondrial 

inner transmembrane potential (∆Ψm).12 Once released in the cytoplasm, cytochrome c 

interacts with Apaf-1 (apoptotic protease-activating factor-1), ATP/dATP, and 

procaspase-9 to form a complex known as the apoptosome.13 In the apoptosome, 

caspase-9 is activated which in turn activates effector caspases, like procaspase-3 and 

-7.14 The effector caspases cleave a number of structural and regulatory cellular 

proteins (e.g., poly(ADP-ribose) polymerase [PARP, lamins) and are responsible for the 

typical morphologic and biochemical features of an apoptotic cell.15,16 A simplified 

overview of the events taking place during chemotherapy-induced apoptosis is given in 

Figure 1.  

 The fact that a point of convergence in the cellular response to cytotoxic drugs 

appears to be apoptosis and that leukemic cells display cross-resistance to drugs with 

different mechanisms of action has led to the hypothesis that cellular drug resistance 

may be related to defects in the apoptotic route. Aberrations at various levels of the 

apoptotic route have been linked to a drug-resistant phenotype in cell lines: absence of 

cytochrome c release,17,18 defective Apaf-1 activity,19-21 and caspase deficiency.22-24 

However, the occurrence of apoptotic defects has not been studied in children with 

ALL. Therefore, the aim of this study was to determine whether cellular drug resistance 

is associated with defects in drug-induced apoptosis in pediatric ALL. To this aim, 

leukemic cells of 50 children with newly diagnosed ALL were exposed in vitro to 4 

structurally unrelated drugs used in induction therapy of ALL, and activation of various 

apoptotic parameters was evaluated (Figure 1). 
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Figure 1. Simplified overview of the events taking place during drug-induced activation of apoptotic 
parameters. Drugs A and B represent two structurally unrelated drugs. Numbers 1, 2 and 3 refer to the three 

phases of the drug-induced apoptotic route as described in the Introduction section; 1: insult generation, 2: 

signal transduction and 3: execution. Parameters with an asterisk (*) are measured in this study. 

 

MATERIAL AND METHODS 
 
Patient samples 

Bone marrow (BM) and/or peripheral blood (PB) were obtained from children with newly 

diagnosed ALL who entered the Sophia Children’s Hospital or one of the hospitals 

participating in the German Cooperative Acute Lymphoblastic Leukemia (COALL) 

study. Within 24 hours after sampling, mononuclear cells were isolated by density 

gradient centrifugation with a Ficoll-Isopaque gradient (Lymphoprep 1.077 mg/mL; 

Nycomed Pharma, Oslo, Norway). Cells were resuspended in culture medium 

consisting of RPMI 1640 Dutch modification without L-glutamine (Gibco BRL, Breda, 

The Netherlands) supplemented with 20% fetal calf serum (FCS; Integro, Zaandam, 

The Netherlands), 2  × 103 µmol/L L-glutamine, 900 µmol/L gentamycin (Gibco BRL), 

100 IU/mL penicillin, 100 µg/mL streptomycin, 0.125 µg/mL fungizone (Gibco BRL), and 

827 pmol/L insulin, 5 × 10-3 g/L transferrin, and 2.89 × 10-5 µmol/L sodium selenite (ITS 

media supplement; Sigma Aldrich, Zwijndrecht, The Netherlands). If necessary, the 

lymphoid cells were further purified to at least 90% leukemic blasts by removing 

nonmalignant cells with immunomagnetic beads (DynaBeads, Dynal, Oslo, Norway). 
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In vitro drug resistance assay  

In vitro drug resistance for daunorubicin (DNR; Cerubidine, Rhône-Poulenc Rorer, 

Amstelveen, The Netherlands), vincristine (VCR; TEVA Pharma, Mijdrecht, The 

Netherlands), L-asparaginase (ASP; Paronal, Christiaens, Breda, The Netherlands), 

and prednisolone (PRED; Bufa Pharmaceutical Products, Uitgeest, The Netherlands) 

was determined using the 4-day MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl 

tetrazoliumbromide) assay as described previously by Pieters et al.25 Briefly, round-

bottomed 96-well microculture plates were filled with 20 µL of different dilutions of a 

drug and stored at --20ºC. Six concentrations of each drug were tested in duplicate. 

The ranges of the final concentrations of these drugs were as follows: DNR: 0.002 

µg/mL to 2.0 µg/mL; VCR: 0.05 µg/mL to 50 µg/mL; ASP: 0.003 IU/mL to 10 IU/mL; and 

PRED: 0.008 µg/mL to 250 µg/mL.  

 Aliquots of 80 µL cell suspension (2 × 106 cells/mL) were added to each well. 

Four wells contained 100 µL culture medium without drugs or cells for blanking the 

plate reader and 8 wells contained 100 µL culture medium with cells and without drug 

for measuring control cell viability. After incubating plates for 4 days at 37°C in a 

humidified incubator in 5% CO2, 10 µL MTT (5 mg/mL; Sigma) was added and the 

plates were incubated for an additional 6 hours. During these 6 hours, the living cells 

present in each well will reduce the yellow MTT tetrazolium salt to purple–blue 

formazan crystals. The formazan crystals were dissolved with 100 µL 0.04 N HCl-

isopropanyl alcohol (acidified isopropanol). The optical density (OD) of the wells, which 

is linearly related to cell number,26 was measured spectrophotometrically at 562 nm. 

Leukemic cell survival (LCS) was calculated by the equation: LCS=(ODday4 treated 

well/mean ODday4 control wells) × 100%. The drug concentration lethal to 50% of the 

ALL cells, the LC50 value, was used as a measure for cellular drug resistance. MTT-

assay results were only used if the drug-free control wells contained at least 70% 

leukemic cells after 4 days of culture. 

 

In vitro drug exposure for measuring apoptotic features 

Fresh leukemic cells (2.0 x 106 cells/mL) with a purity of at least 90% leukemic blasts 

were cultured in the presence of drugs at 37°C in a humidified incubator in 5% CO2. 

The ranges of the final drug concentrations were as follows: PRED: 0.061 µg/mL to 250 

µg/mL; VCR: 0.195 µg/mL to 50 µg/mL; ASP: 0.016 IU/mL to 10 IU/mL; and DNR: 

0.008 µg/mL to 2.0 µg/mL. 
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Measurement of aberrant phosphatidylserine externalization on the outer cell 
membrane 
During the early stages of apoptosis, phosphatidylserine (PS) is translocated from the 

inner side of the plasma membrane to the outer leaflet of the cell membrane. Annexin V 

is a Ca2+-dependent phospholipid-binding protein with high affinity for PS and can 

therefore be used to detect apoptotic cells. 
Leukemic cells were resuspended in 200 µL Annexin V–Alexa 488 Reagent (Nexins 

Research BV, Kattendijke, The Netherlands) and incubated for 15 minutes at 4°C. A 

total of 5000 events was analyzed by flow cytometry (FACSCalibur, Becton Dickinson, 

Erembodegem, Belgium). Drug-induced apoptosis was calculated according to the 

following formula: percentage of apoptotic cells × 100% × (D-C)/(100-C), where D 

represents the percentage of Annexin V–positive cells in the presence of a drug and C 

is the percentage of Annexin V–positive cells in the absence of a drug (spontaneous 

apoptosis). The intra-assay coefficient of variation for measurements of PS 

externalization was 3.4%. 

 

Detection of apoptosis-associated alterations in ∆Ψm

Disruption of ∆Ψm was determined using 3,3’-dihexyloxacarbocyanine iodide (DiOC6(3); 

Molecular Probes Inc., Eugene, OR), a lipophilic cationic dye that accumulates in the 

mitochondrial matrix driven by ∆Ψm.27 Loss of ∆Ψm was visualized as a reduction in the 

signal in the FL1 channel. Leukemic cells were incubated in 200 µl phosphate-buffered 

saline (PBS) containing 40 nM DiOC6(3) solution and incubated in a humidified 

incubator for 30 minutes at 37˚C in 5% CO2. A total of 5000 events was analyzed by 

flow cytometry. Percentage of cells with decreased mitochondrial transmembrane 

depolarization (∆Ψm↓) was calculated with the following formula: 100% × (D-C)/(100-C), 

where D represents the percentage of cells with reduced DiOC6(3) accumulation in 

drug-treated samples and C represents the percentage of cells with reduced DiOC6(3) 

accumulation in untreated samples. The intra-assay coefficient of variation for 

measurements of disruption of ∆Ψm was 4.5%. 

 
Measurement of caspase-3 and PARP cleavage 

Leukemic cells were fixed using 2% (v/v) 37% formaldehyde solution in 100% acetone. 

Fixed cells were washed twice with PBS/0.1%BSA and incubated with an antibody 

directed against cleaved caspase-3 (Cell Signaling Technology, Beverly, MA, USA) or 

cleaved PARP (Cell Signaling Technology) at room temperature for 30 minutes. Both 
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antibodies recognize an epitope exposed only when both proteins are cleaved during 

apoptosis. Subsequently, cells were washed and incubated with fluorescein 

isothiocyanate (FITC) conjugated rabbit anti-rabbit F(ab’)2 (DAKO, Glostrup, Denmark) 

for caspase-3 and FITC-conjugated pork anti-mouse F(ab’)2  (DAKO) for PARP at room 

temperature for 30 minutes. A total of 5,000 events were measured by flow cytometry. 

Caspase-induced PARP cleavage leads to PARP inactivation,16 hence we measure 

caspase-3 activation and PARP inactivation. The percentage of cells with caspase-3 

activation or PARP inactivation was determined with the following formula: 100% × (D-

C)/(100-C), where D represents the percentage of cells that stain positive for the 

antibody in drug-treated samples, and C in untreated samples. Intra-assay variation of 

caspase-3 and PARP cleavage measurements was 11.2 and 11.8% respectively. 
 

Measurement of caspase-3 and PARP cleavage 

Leukemic cells were fixed using 2% (vol/vol) 37% formaldehyde solution in 100% 

acetone. Fixed cells were washed twice with PBS/0.1% bovine serum albumin (BSA) 

and incubated with an antibody directed against cleaved caspase-3 (Cell Signalling 

Technology, Beverly, MA) or cleaved PARP (Cell Signalling Technology) at room 

temperature for 30 minutes. Both antibodies recognize an epitope exposed only when 

both proteins are cleaved during apoptosis. Subsequently, cells were washed and 

incubated with fluorescein isothiocyanate (FITC)–conjugated rabbit antirabbit F(ab’)2 

(DAKO, Glostrup, Denmark) for caspase-3 and FITC-conjugated pork antimouse 

F(ab’)2  (DAKO) for PARP at room temperature for 30 minutes. A total of 5000 events 

was measured by flow cytometry. Caspase-induced PARP cleavage leads to PARP 

inactivation,15 hence we measured caspase-3 activation and PARP inactivation. The 

percentage of cells with caspase-3 activation or PARP inactivation was determined with 

the following formula: 100% × (D-C)/(100-C), where D represents the percentage of 

cells that stain positive for the antibody in drug-treated samples, and C is the 

percentage of cells that stain positive for the antibody in untreated samples. Intra-assay 

variation of caspase-3 and PARP cleavage measurements was 11.2% and 11.8%, 

respectively. 

 
Statistics 

Correlations between different apoptotic parameters as well as between the LC50 

values and apoptotic parameters were calculated using the Spearman rank (rs) 

correlation test. Statistical tests were performed at a 2-tailed significance level of 0.05. 
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RESULTS 

Time-dependent induction of apoptotic parameters was studied in 5 children with ALL in 

order to determine the most suitable time point for testing a larger group of children with 

ALL. In vitro exposure to each of the 4 drugs tested caused a time-dependent activation 

of apoptotic parameters in ALL cells as assessed by an increase of cells with PS 

externalization, ∆Ψm depolarization, caspase-3 activation, and PARP inactivation 

(Figure 2).  

0 6 12 18 24 30 36 42
0

25

50

75

100 PRED

VCR

ASP

DNR

time (hrs)

%
 c

el
ls

 w
ith

 P
S

ex
te

rn
al

is
at

io
n

0 6 12 18 24 30 36 42

0

25

50

75

100 PRED

VCR

ASP

DNR

time (hrs)

%
 c

el
ls

 w
ith

∆
Ψ

m
de

po
la

ri
sa

tio
n

6 12 18 24 30 36 42

-25

0

25

50

75

100 PRED

VCR

ASP

DNR

time (hrs)

%
 c

el
ls

 w
ith

 c
as

pa
se

-3
ac

tiv
at

io
n

6 12 18 24 30 36 42
0

25

50

75

100 PRED

VCR

ASP

DNR

time (hrs)

%
 c

el
ls

 w
ith

 P
A

R
P 

in
ac

tiv
at

io
n

A. B.

C. D.

 
Figure 2. Time-dependent drug-induced apoptosis in ALL. Freshly isolated ALL cells were cultured in the 

presence of 2.0 µg/ml daunorubicin (DNR), 50 µg/ml vincristine (VCR), 10 IU/ml L-asparaginase (ASP) or 250 

µg/ml prednisolone (PRED) for the indicated time points. Drug-induced PS externalization (A), mitochondrial 

transmembrane disruption (B), caspase-3 activation (C) and PARP inactivation (D) were determined by flow 

cytometry and calculated by the formula described in Materials and Methods. Results are expressed as mean ± 

SD of 5 patients with ALL.  
 

In only one patient were sufficient cells available to perform an extensive concentration 

series. The data indicated a concentration-dependent increase in the activity of all 

apoptotic parameters (data not shown).  

 Although exposure to all 4 drugs resulted in activation of similar apoptotic 

parameters, a difference in apoptosis kinetics was observed. Whereas daunorubicin 

and vincristine trigger a relatively fast activation of apoptotic parameters, L-

asparaginase and prednisolone consistently induced apoptosis more slowly (Figure 2). 

After 18 hours of daunorubicin or vincristine exposure the mean percentage of cells 
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with PS externalization in the 5 ALL samples is 52% ± 23% and 36% ± 21%, 

respectively. In contrast, the mean percentage of cells with PS externalization after 18 

hours of L-asparaginase and prednisolone exposure was 20% ± 15% and 21% ± 31% 

compared with 30% ± 18% and 19% ± 19%, respectively, after 42 hours. The 2 types of 

kinetics could be confirmed in subsequent experiments; the mean percentage of cells 

with PS externalization in the 50 patients measured in this study after 18 hours of 

daunorubicin or vincristine treatment are 60% ± 24% and 42% ± 25%, respectively, 

compared with 31% ± 19% and 30% ± 30% after 42 hours L-asparaginase and 

prednisolone exposure, respectively. To be able to study the relationship between 

apoptosis and cellular drug resistance in a large group of patients, activation of 

apoptotic parameters was measured after 18 hours of incubation with daunorubicin and 

vincristine and after 42 hours of incubation with L-asparaginase and prednisolone in 

further experiments. 

 

 
Figure 3. Correlation between drug-induced apoptotic parameters in pediatric ALL. Correlation between 

the percentage of cells with PS externalization and ∆Ψm depolarization (A), activated caspase-3 (B) or 

inactivated PARP (C) in leukemic cells in vitro incubated with prednisolone, vincristine, L-asparaginase or 

daunorubicin in 50 children with ALL. The dashed line represent the line x = y and the solid line represents the 

linear regression line.  

 

 Figure 3 shows that the percentage of cells with PS externalization is 

proportional to the percentage of cells with reduction in mitochondrial transmembrane 

potential (rs=0.75, P<0.001), caspase-3 activation (rs=0.72, P<0.001), and the 

percentage of cells with PARP inactivation (rs=0.67, P<0.001). Significant correlations 

were also found when analyzing data from each of the 4 drugs separately (Table 1). 

The slopes of the regression lines in Figure 3A-C are a=0.75, a=0.52, and a=0.44, 
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respectively. The closer the slope of the regression line approaches a=1.0, the closer 

the event probably follows after PS externalization. This indicates that upon drug 

exposure, PS externalization and ∆Ψm depolarization are early events, whereas 

caspase-3 activation and PARP inactivation are occurring relatively later. 

 
Table 1. Correlation between PS externalization and the downstream apoptotic parameters upon drug 

exposure in pediatric ALL. Freshly isolated ALL cells were cultured for 18 hours in the presence of 50 µg/ml 

vincristine or 2.0 µg/ml daunorubicin or 42 hrs in the presence of 250 µg/ml prednisolone or 10 IU/ml L-

asparaginase. Drug-induced activation of apoptotic parameters was determined by flow cytometry. Correlation 

between apoptotic parameters was calculated using the Spearman’s rank correlation test.  

 

Drug  ∆Ψm
depolarization 

caspase-3 
activation 

PARP 
inactivation 

Prednisolone Correlation coefficient 0.81 0.76 0.76 

 P-value <0.001 <0.001 <0.001 

 N 31 29 29 

Vincristine Correlation coefficient 0.80 0.56 0.64 

 P-value <0.001 <0.001 <0.001 

 N 30 32 32 

L-asparaginase Correlation coefficient 0.42 0.49 0.56 

 P-value 0.017 0.006 0.002 

 N 32 30 29 

Daunorubicine Correlation coefficient 0.63 0.50 0.41 

 P-value <0.001 0.005 0.029 

 N 29 31 29 

 

 Large interindividual variability in the extent of drug-induced activation of 

apoptotic parameters was observed between patients. For instance, prednisolone-

induced PS externalization after 42 hours ranged between -26% and 86% (median: 

27%). Figure 4 and Table 2 show for each individual drug highly significant inverse 

correlations between the LC50 and (1) the percentage of cells with PS externalization 

and (2) the percentage of cells with ∆Ψm depolarization. However, caspase-3 activation 

and PARP inactivation showed a less-consistent inverse correlation pattern with cellular 

drug resistance. A significant inverse correlation between cellular drug resistance and 

the percentage of cells with caspase-3 activation was observed for prednisolone (rs= -

0.60, P<0.001) and L-asparaginase (rs= -0.46, P=0.01) but not for vincristine and 

daunorubicin.  
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Figure 4. Drug-induced apoptosis inversely correlates with cellular drug resistance in pediatric ALL. 
Freshly isolated ALL cells were incubated in the presence of vincristine or daunorubicin for 18 hrs or 

prednisolone or L-asparaginase for 42 hrs at 37°C in a humidified incubator in 5% CO2.  
 

Likewise, PARP inactivation was inversely correlated to cellular drug resistance for 

prednisolone (rs= -0.58, P<0.001) and L-asparaginase (rs= -0.58, P<0.001) only (Table 

2). 
 

DISCUSSION 

Cellular drug resistance may reflect disruptions in the apoptotic route.17-24 Low 

caspase-3 activity has been previously linked to a poor prognosis in adult chronic 

myelogenous leukemia (CML)28 and high levels of caspase-3 with improved survival in 

adult acute myeloid leukemia (AML).29 In addition, loss of spontaneous caspase-3 

activation in vivo is associated with relapse in adults with ALL.30 However, the presence 

and clinical significance of these disruptions in the apoptotic route have not been 

studied well in pediatric ALL. In the present study, we have analyzed drug-induced 

activation of apoptotic parameters in leukemic cells taken at initial diagnosis of ALL. PS 

externalization, ∆Ψm disruption, caspase-3 activation, and PARP inactivation were 
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measured after in vitro exposure to 4 cytotoxic drugs that form the backbone of ALL 

therapy: prednisolone, vincristine, L-asparaginase, and daunorubicin.  
 
Table 2. Inverse correlation between cellular drug resistance and the activation of parameters along the 
effector route of apoptosis in pediatric ALL. See Table 1 for legends. 
 

Apoptotic parameter LC50 

Prednisolone 
LC50 

Vincristine 
LC50 

L-asparaginase 
LC50 

Daunorubicine 

PS externalization     

Correlation coefficient -0.59 -0.52 -0.72 -0.46 

P-value <0.001 0.002 <0.001 0.008 

N 32 33 32 32 

∆Ψm depolarization     

Correlation coefficient -0.43 -0.45 -0.45 0.54 

P-value 0.016 0.014 0.010 0.002 

N 31 30 32 29 

caspase-3 activation     

Correlation coefficient -0.60 -0.28 -0.46 -0.27 

P-value 0.001 N.S. 0.011 N.S. 

N 29 32 30 31 

PARP inactivation     

Correlation coefficient -0.58 -0.34 -0.58 -0.27 

P-value 0.001 N.S. 0.001 N.S. 

N 29 32 29 29 

N.S. = non-significant, i.e. P-value≥0.05 

 

 Time series experiments showed a fast activation of apoptotic parameters for 

daunorubicin and vincristine and a slower activation for L-asparaginase and 

prednisolone (Figure 2). One may speculate that this reflects differences in primary 

cellular targets of the different drugs. Hypothetically, a cell is likely to respond quickly to 

the direct damaging effect of daunorubicin and vincristine treatment, that is, DNA 

damage and microtubule damage, respectively. In contrast, it may take a cell relatively 

longer to respond to the indirect effects of L-asparaginase and prednisolone treatment, 

that is, induction of gene expression or depletion of the intracellular stock of the amino 

acid asparagine. 

 Our data suggest that PS externalization and disruption of ∆Ψm are both early 

features of apoptosis induced by 4 structurally unrelated drugs in childhood ALL 

(Figures 2-3). The spread of data points around the line x = y in Figure 3 indicates that 

in half of the patients, disruption of ∆Ψm appears to precede PS externalization (dots 

above the line x=y). However, in the other half of the patients, disruption of ∆Ψm follows 

or coincides with PS externalization. No consensus is reached in literature concerning 
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the sequence of these 2 apoptotic events. Conflicting reports have been published 

showing that disruption of ∆Ψm either preceded or coincided with or followed PS 

externalization.31-34 An explanation for this phenomenon is proposed by Denecker et 

al,33 who suggest that both ∆Ψm disruption and PS externalization are not necessarily 2 

dependent but rather parallel events initiated after an apoptotic stimulus. Consequently, 

the sequence of these 2 apoptotic events may be cell type-, stimulus-, and apparently 

also patient-specific. 

 The present data show that resistance of leukemic cells to each of 4 unrelated 

drugs is associated with decreased PS externalization and ∆Ψm depolarization 

compared with sensitive cells. Caspase-3 activation or PARP inactivation was linked to 

cellular resistance to prednisolone and L-asparaginase, but not with cellular resistance 

toward vincristine and daunorubicin (Table 2). A possible explanation for this 

observation is that caspase-3 and PARP cleavage may be an epiphenomenon, which is 

not essential for vincristine- and daunorubicin-induced apoptosis. Multiple caspases, 

which are redundant in function, are expressed in acute leukemic cells.35 Possibly, in 

case of vincristine- and daunorubicin-induced apoptosis, a caspase other than 

caspase-3 may function as the main effector caspase in primary ALL cells. 

 

 
Figure 5. Impaired apoptosis in resistant compared to sensitive ALL cells. A defect localized upstream of 

the mitochondria may lead to decreased activation of downstream apoptotic parameters in resistant ALL 

patients. Potential sites of defects are indicated with a cross. Decreased activation of apoptotic parameters is 

illustrated by the decreased size of the arrows in resistant compared to sensitive patients. 

 

 We found that cellular drug resistance is associated with decreased PS 

externalization and ∆Ψm depolarization compared with sensitive cells. Decreased 
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activation of these apoptotic parameters is likely to result from a defect upstream or at 

the level of both PS externalization and disruption of ∆Ψm (Figure 5). 

 Aberrations in the expression of various molecules associated with cellular 

drug resistance in mainly adult leukemia and cell lines have been described in 

literature.36-49 Treatment with chemotherapeutic drugs increases intracellular ceramide 

levels.36 Significantly reduced ceramide levels have been linked to drug resistance in 

adult patients with ALL, CML, and AML.37 Deficient up-regulation of CD95 ligand and 

down-regulation of CD95 receptor expression has been shown to confer drug 

resistance in leukemic cell lines.6,38 Aberrant expression of both anti- and proapoptotic 

Bcl-2 family members is known to prevent mitochondrial permeability transition pore 

opening and release of apoptogenic proteins from mitochondria.39 Data regarding the 

role of the expression levels of Bcl-2 family members and clinical outcome in ALL are 

contradictory.40-43 Overexpression of the p53 regulator MDM2 has been associated with 

early relapse, adriamycin resistance, and failure to respond to reinduction therapy in 

childhood leukemia.44 In addition, constitutive activation of antiapoptotic proteins such 

as both Akt/PKB45 and c-Raf46 as well as inactivation of the proapoptotic protein 

PTEN47 have been linked to drug resistance in various types of cancers. Other proteins 

whose overexpression is associated with resistance to apoptosis in acute leukemia are 

members of the heat shock protein family, including Hsp2748 and Hsp70.49 To find out 

(1) which molecules play an actual role in cellular drug resistance in children with ALL 

and (2) whether resistance to different drugs is associated with drug-specific defects, 

we currently perform gene expression studies using high-density oligonucleotide 

microarrays.  

 In conclusion, the present study shows that decreased PS externalization and 

∆Ψm depolarization are found in children with ALL who are in vitro-resistant to 

structurally unrelated drugs. These data suggest that cellular resistance to these drugs 

is caused by defects upstream or at the level of mitochondrial function. Caspase-3 

activation and PARP inactivation are suggested to play a role in prednisolone- and L-

asparaginase-induced apoptosis, but are not essential to vincristine- and daunorubicin-

induced apoptosis. The nature of the defects upstream or at the level of PS 

externalization and ∆Ψm depolarization in resistant cells of children with ALL are not 

elucidated and will be the subjects of further research. 
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ABSTRACT 

Childhood acute lymphoblastic leukemia (ALL) consists of various subtypes that respond 

differently to cytotoxic drugs and therefore have a markedly different clinical outcome. We 

used microarrays to investigate in 190 children with ALL at initial diagnosis whether 70 key 

apoptosis genes were differentially expressed between leukemic subgroups defined by 

lineage, genetic subtype, in vitro drug resistance and clinical outcome. The expression of 

44 of 70 genes was significantly different in T- versus B-lineage ALL, 22 genes differed in 

hyperdiploid versus non-hyperdiploid, 16 in TEL-AML1 positive versus negative, and 13 in 

E2A-rearranged versus germline B-lineage ALL. Expression of MCL1 and DAPK1 was 

significantly associated with prednisolone sensitivity, whereas BCL2L13, HRK and TNF 

were related to L-asparaginase resistance. BCL2L13 overexpression was also associated 

with unfavorable clinical outcome (P<0.001). Multivariate analysis including known risk 

factors revealed that BCL2L13 expression was an independent prognostic factor 

(P=0.011). The same trend was observed in a validation group of 92 children with ALL 

treated on a different protocol at St. Jude (P=0.051). In conclusion, ALL subtypes have a 

unique expression pattern of apoptosis genes and our data suggest that selective genes 

are linked to cellular drug resistance and prognosis in childhood B-lineage ALL. 

 
INTRODUCTION 

The treatment of pediatric acute lymphoblastic leukemia (ALL) has greatly improved over 

the past three decades, resulting in long-term disease-free survival (DFS) of approximately 

80%.1 Despite this progress, therapy resistance still forms a major obstacle to successful 

treatment in a significant number of children. Childhood ALL is a heterogeneous disease 

consisting of various genetic subtypes such as t(9;22)/BCR-ABL, t(12;21)/TEL-AML1, 

hyperdiploid (>50 chromosomes), 11q23/MLL rearranged, t(1;19)/E2A-PBX1, and T-

lineage ALL, which differ markedly in their treatment response.2 The in vitro response to 

chemotherapy can be studied by exposure of primary patient samples to cytostatic drugs in 

a cell kill assay such as the methyl-thiazol-tetrazolium (MTT) assay. We and others have 

previously demonstrated that children with ALL whose leukemia cells exhibit in vitro 

resistance to single drugs or a combination of drugs, i.e. prednisolone, vincristine and L-

asparaginase (PVA). have a significantly worse prognosis than patients with sensitive 

leukemic cells.3-7 In addition, leukemia subtypes with a relatively unfavorable prognosis 

have been associated with in vitro drug resistance8-10 and subtypes with a favorable 

prognosis with in vitro drug sensitivity.11,12  
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Apoptosis is the predominant form of cell death triggered in vivo and in vitro by 

drugs in hematological malignancies.13 There are two major routes by which apoptosis can 

be induced: (1) the mitochondrial or intrinsic apoptosis pathway and (2) the death receptor-

mediated or extrinsic apoptosis pathway. Both apoptotic pathways have been extensively 

reviewed elsewhere.14-17 Briefly, the intrinsic route is initiated by mitochondrial damage that 

leads to release of apoptogenic factors, such as cytochrome c, Smac/Diablo, and 

apoptosis-inducing factor (AIF), from the mitochondrial intermembrane space.17 The 

release of these factors is mediated by Bcl-2 family proteins, a group of key regulators of 

the intrinsic apoptosis pathway that consists of pro-apoptotic and anti-apoptotic members. 

Upon its release into the cytoplasm, cytochrome c forms a complex known as the 

apoptosome consisting of apoptotic protease-activating factor-1 (Apaf-1), ATP/dATP and 

procaspase-9.18 Following its activation within the apoptosome, caspase-9 activates the 

downstream effector caspase cascade.19  Initiation of the extrinsic apoptosis pathway 

involves ligand-induced aggregation of death receptors and activation of procaspase-8 or 

procaspase-10 within the death-inducing signaling complex (DISC).20,21 Activated 

procaspase-8 or -10 is released into the cytoplasm where it induces activation of 

downstream effector caspases. The intrinsic and extrinsic apoptotic pathways converge at 

the level of caspase-3 activation. 

 Leukemia subtypes with a relatively unfavorable prognosis have been associated 

with in vitro drug resistance.8-10 Moreover, cellular drug resistance is associated with 

decreased ability to induce apoptosis in pediatric ALL.22 Therefore, one of the factors that 

may contribute to the different treatment response of genetic leukemia subtypes may be a 

differential propensity to undergo apoptosis. Apoptosis is controlled by various positive and 

negative regulators, responding to stimuli from inside and outside the cell.23,24 Most papers 

to date addressing causes of cellular drug resistance, however, only focus on a limited 

number of apoptosis molecules. In the present study we analyzed the expression patterns 

of 70 key apoptosis genes in leukemic cells of 190 children at initial diagnosis of ALL. The 

expression of these genes was tested for association with (1) lineage and genetic subtype, 

(2) in vitro drug resistance to four widely used drugs in treatment of ALL, i.e. prednisolone, 

vincristine, L-asparaginase and daunorubicin, and (3) clinical outcome. Lastly, we analyzed 

the relation between the expression of active Apaf-1 isoforms and cellular drug resistance. 
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MATERIAL AND METHODS 
 
Patient samples 

Bone marrow (BM) and peripheral blood (PB) were obtained after informed consent from 

190 children with newly diagnosed ALL who were enrolled on treatment protocols 92 and 

97 at the hospitals participating in the German Cooperative Study Group for Acute 

Lymphoblastic Leukemia (COALL) study or the ALL-9 Dutch Childhood Oncology Group 

(DCOG) protocol at the Erasmus MC - Sophia Children’s Hospital in Rotterdam (study 

cohort); and of 92 children enrolled as part of the Total Therapy protocols 13A25 and 13B26  

of St. Jude Children’s Research Hospital (SJCRH) in Memphis, Tennessee (validation 

cohort).27 Approval was obtained from the Erasmus MC/Sophia Children’s Hospital and 

SJCRH institutional review board for these studies. Clinical characteristics of these patients 

are provided in Table 1.  

 
Table 1: Clinical and biological characteristics of patients included in this study.  

 COALL/DCOG cohort St. Jude cohort 
Variable Number of patients Number of patients 
ALL subtype   
    B-other 48 27 
    BCR-ABL 5 8 
    E2A* 9 12 
    Hyperdiploid# 44 15 
    MLL* 4 5 
    TEL-AML1 44 17 
    T-lineage 36 9 
Folluw-up (yrs)   
    median 4.8 7.1 
    P25-P75 3.8-5.9 4.9-9.0 
Age   
    median 6.0 6.2 
    P25-P75 3.5-10.2 3.3-11.8 
WBC   
    median 34.4 36.9 
    P25-P75 10.7-89.1 8.4-93.3 
Clinical response   
    CCR 143† 69 
    relapse 45 15 

CCR: continuous complete remission 
#: Cytogenetic analysis revealed more than 50 chromosomes 
*: COALL: MLL and E2A rearranged, St. Jude: MLL-AF4 and E2A-PBX1 
†: 2 patients had a competing event; a secondary malignancy and myelodysplastic symdrome (MDS)
 

Isolation of leukemia cells 

Mononuclear cells were isolated by sucrose density gradient centrifugation (Lymphoprep, 

density 1.077 g/ml; Nycomed Pharma, Oslo, Norway), within 24 hours after sampling. Cells 

were resuspended in culture medium consisting of RPMI 1640 (Dutch modification without 

L-glutamine; Gibco BRL, Life Technologies, Breda, The Netherlands) supplemented with 
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20% fetal calf serum (FCS; Integro, Zaandam, The Netherlands), 2 mM L-glutamine, 200 

µg/ml gentamycin (Gibco BRL) 100 IU/ml penicillin, 100 µg/ml streptomycin, 0.125 µg/ml 

fungizone (Gibco BRL), and 5 µg/ml insulin, 5 µg/ml transferrin and 5 ng/ml sodium 

selenite (ITS media supplement; Sigma-Aldrich Chemie B.V., Zwijndrecht, the 

Netherlands). If necessary, leukemic samples were further enriched to more than 90% 

leukemic blasts by removing non-malignant cells with immunomagnetic beads 

(DynaBeads, Dynal Inc., Oslo, Norway).28 

 

In vitro drug-resistance assay  
Responsiveness of leukemia cells to prednisolone (PRED; Bufa Pharmaceutical Products, 

Uitgeest, The Netherlands), vincristine (VCR; TEVA Pharma, Mijdrecht, The Netherlands), 

L-asparaginase (ASP; Paronal, Christiaens, Breda, The Netherlands), and daunorubicin 

(DNR; Cerubidine, Rhône-Poulenc Rorer, Amstelveen, The Netherlands) was determined 

by the 4-day in vitro MTT drug resistance assay3. The concentration ranges tested for 

these drugs were: PRED: 0.008-250 µg/ml; VCR: 0.05-50 µg/ml; ASP: 0.003-10 IU/ml and 

DNR: 0.002-2.0 µg/ml. The drug concentration lethal to 50% of the ALL cells (LC50 value) 

was used as the measure of cellular drug resistance. The cut-off LC50 values used to 

assign cases as sensitive or resistant to each agent, were those previously shown to be 

associated with a good or poor treatment outcome in children with ALL3,4. 

 
Gene expression profiling: purification, labeling and hybridization of RNA   

Total cellular RNA was extracted from leukemic cells of 190 patients with acute 

lymphoblastic leukemia and hybridized to the U133A GeneChip® oligonucleotide 

microarray containing 22,283 probe sets (~12,700 genes) according to manufacturer’s 

protocols (Affymetrix, Santa Clara, CA). Gene-expression values were scaled to the target 

intensity of 2500, using Affymetrix Microarray Analysis Suite® (MAS) 5.0 software.29,30 

Probe sets expressed in fewer than 5 patients were omitted, leaving 14,550 probe sets in 

the filtered dataset for subsequent analyses. Gene expression analysis of 173 out of these 

190 patients  was published previously29 in this paper we focus solely on genes involved in 

apoptosis. All analyses were carried out on log2-transformed gene-expression values. 

 
Real time quantitative PCR   

Total cellular mRNA was extracted using Trizol reagent (Gibco BRL) and cDNA was 

synthesized using random hexamers and oligo dT. mRNA expression levels of total Apaf-1, 

“active” Apaf-1 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a reference, 
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were quantified using real-time quantitative (RTQ) PCR analysis on a ABI Prism 7700 

sequence detection system (Applied Biosystems, Foster City, CA) as previously 

described.31,32 The comparative cycle time (Ct) value of the target PCR was normalized by 

subtracting the Ct value of GAPDH (∆Ct). The ∆Ct value was used to calculate the relative 

expression level to GAPDH for each target PCR using the following formula: relative mRNA 

expression = 2-∆Ct x 100%.33 Primer sequences used were: upper: 5’-ACCAGCCGCATAC 

TCTT-3, lower: 5’-CAGGGCCTACAAGTTCTG-3’ (total Apaf-1), upper: 5’-GGACCCTCAA 

GAGGATATG-3’, lower 5’-GTGGGGAGAAGTCACAGTAC-3’ (“active” Apaf-1) and upper: 

5’-GTCGGAGTCAACGGATT-3’, lower: 5’-AAGCTTCCCGTTCTCAG-3’ (GAPDH). Probe 

sequences were: ‘5-CACATGGCCAGTGCCAAGAT-3’ (total Apaf-1), 5’-AAGTGTTGTTCG 

TGGTCTGCTGAT-3’ (“active” Apaf-1) and 5’-TCAACTACATGGTTTACATGTTCCAA-3’ 

(GAPDH). 

 
Statistical analysis  

A selection of genes with known involvement in apoptosis was made by a search at 

https://www.genmapp.org and in literature. Corresponding probe sets were retrieved using 

Affymetrix® NetAffx (https://www.affymetrix.com). From the total of 179 selected probe 

sets, 118 were present in the filtered dataset corresponding to 70 apoptosis genes (intrinsic 

pathway: 40, extrinsic pathway: 30) for subsequent analysis.   

 We applied the global test34 to identify those probe sets that are simultaneously 

differentially expressed between different subgroups defined by: lineage, genetic subtype, 

in vitro drug resistance and clinical outcome. Briefly, the global test compares two or more 

groups taking into account the association between probe sets as well as their individual 

effects.34 The advantage of the global test is that it is applied to the entire set of probe sets 

under study at the same time, yielding a single overall P-value, rather than on individual 

probe sets consecutively. Thus, there are no multiple testing issues associated with the 

global test. In addition, the global test can be applied to multiple probe sets encoding one 

gene, since this test investigates the influence of each single probe set on the 

discrimination between the two studied groups. One of the outputs of this test is a so-called 

gene plot, which displays the individual influences of the probe sets on the test result. The 

gene plot was used to select those probe sets that were most strongly explaining the 

difference between two subgroups.  

 In addition, we applied the Wilcoxon rank-sum test to each probe set to identify 

those probe sets that were individually associated with the subgroups. P-values were 

corrected for multiple testing using the false discovery rate (FDR) step-up procedure 
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proposed by Benjamini & Hochberg.35 The global test has more power to detect differential 

expression when dealing with multiple probe sets with small effects, compared with tests 

applied probe set-wise, such as the Wilcoxon rank-sum test. The output of the global test 

and the FDR-corrected Wilcoxon rank-sum test were combined in Table 2, 3 and 4. 

 The duration of disease-free survival (DFS) was defined as the time from 

diagnosis until the date of leukemia relapse (event) or the last follow-up (censored). 

Univariate analysis using Cox proportional hazard regression models estimated the relative 

risk of an event. Significant probe sets from the univariate analysis were entered in a 

multivariate analysis using Cox’s proportional hazards regression model, which included 

the known risk factors white blood cell count (WBC), age, lineage and genetic subtype. 

DFS curves were calculated by reversing the cumulative incidence curve38. Presence of 

competing events were accounted for in comparisons of DFS curves 36,37 and in 

multivariate analysis.38 

 The Wilcoxon rank-sum test was applied to compare Apaf-1 isoform mRNA 

expression in sensitive and resistant patients for each individual drug. 

 

RESULTS 
 
Apoptosis-related genes and immunophenotypic and genetic subtypes of pediatric 
ALL 

The expression of 118 probe sets corresponding to 70 apoptosis-associated genes was 

compared between various leukemic subgroups, i.e. T-lineage and B-lineage ALL 

(lineage); hyperdiploid (i.e. more than 50 chromosomes present at cytogenetic analysis) 

and non-hyperdiploid B-lineage ALL patients (ploidy); TEL-AML1 positive and negative B-

lineage ALL patients (TA) and E2A-rearranged and E2A-germline B-lineage ALL patients 

(E2A). The global test applied to all 118 probe sets generated P-values <0.001 for lineage, 

ploidy, TA and E2A. Gene plots that visualize influences for individual probe sets on the 

global test P-value are indicated in Figure 1S of the Supplementary Appendix (available at 

http://www2.eur.nl/fgg/kgk/onco/Supplementary_Appendix_Holleman_et_al.pdf or http:// 

www.bloodjournal.org /cgi/content/full/2005-07-2930/DC1).  

 Probe sets were selected that had an influence on the global test P-value of 

larger than 2 standard deviations above the expected value under the null hypothesis of no 

association (Table 2). Table 2 also includes the probe sets that were selected by Wilcoxon 

rank-sum test after correction for multiple testing (FDR controlled at 5%).  
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Table 2. Differential expression of apoptosis genes between ALL subtypes 

 
G

C

 

 

ene Name Pro- or anti- Probe set ID lineage ploidy TA E2A
apoptotic

aspases
CASP3 pro 202763_at 1.23

ASP6 pro 211464_x_at 1.32 0.61
ASP6 pro 209790_s_at 1.73

CASP7 pro 207181_s_at 0.61 1.5
ASP9 pro 203984_s_at 1.25 0.78
ASP9 pro 210775_x_at 0.88

Bcl2 family

C
C

C
C

 
BAD
BAD
BAK

 

 

 

 

 

 

pro 1861_at 1.22 0.71 1.12
pro 209364_at 1.5 0.6 1.28 1.53

1 pro 203728_at 1.25
BAX pro 211833_s_at

pro 208478_s_at 0.92 1.24
L2 anti 207005_s_at 0.57 0.49

BCL2 anti 207004_at 0.90 1.27 0.82
L2 anti 203685_at 0.59 0.66

CL2L1 anti 215037_s_at 1.56
BCL2L1 anti 206665_s_at 0.71
BCL2L1 anti 212312_at 1.39 0.66 1.38

CL2L13 pro 217955_at 1.45 0.70
D pro 204493_at 1.24 0.77

BIK pro 205780_at 0.64 0.78 14.40
pro 206865_at 0.32 1.90
pro 206864_s_at 0.62

MCL1 anti 200797_s_at 0.66 0.62
L1 anti 200798_x_at 0.59 0.75
L1 anti 214056_at 0.73 0.79

MCL1 anti 214057_at 0.61
MCL1 anti 200796_s_at 0.56

cl2-interacting

BAX
BC

BC
B

B
BI

HRK
HRK

MC
MC

B
BAG

 

 

 

1 anti 211475_s_at 1.23 0.84 0.81 1.31
BAG1 anti 202387_at 1.43 0.80

3 anti 217911_s_at 3.23 0.39 2.61
4 anti 219624_at

BAG5 anti 202985_s_at 0.70 1.58
5 anti 202984_s_at 0.74 1.27

AR anti 218056_at 1.07 0.91
MA pro 211692_s_at 0.81 1.34

IAP family

BAG
BAG

BAG
BF
PU

NA
NA

 

 

 

IP anti 204861_s_at 1.87
IP anti 204860_s_at

cIAP1 anti 202076_at 1.56 0.80
2 anti 210538_s_at 1.73

AP anti 206536_s_at
XIAP anti 206537_at 0.64

URVIVIN anti 202094_at 1.65 1.82
URVIVIN anti 210334_x_at 1.35
URVIVIN anti 202095_s_at 1.95

LIVIN anti 220451_s_at 0.55 0.71 5.79
RD-containing

cIAP
XI

S
S
S

CA
APA

 

F1 pro 211553_x_at 0.80 1.26
APAF1 pro 204859_s_at 0.74 1.84 0.87

1 pro 221073_s_at 0.79 0.92
UCAN anti 204950_at 0.7 0.59

Mitochondrial

NOD
T

 
AI
Om
Om

 

F pro 205512_s_at 1.43 1.02
i-HtrA2 pro 203089_s_at 0.89 1.15
i-HtrA2 pro 211152_s_at 0.84

CYCS pro 208905_at 1.41 0.83
AC pro 219350_s_at 1.13

scellaneous
SM
Mi

 

 

 

DFFA pro 203277_at 1.25 0.88 0.98
FB pro 206752_s_at 2.84 0.59

SP27 anti 201841_s_at 0.27 2.00
PARP pro 208644_at 0.71 0.83 1.90

PL1 anti 202239_at 0.86
PL2 pro 204752_x_at 1.21 1.19 0.86
PL2 pro 214086_s_at 1.29 1.60 0.38

PARPL2 pro 215773_x_at 1.13 1.26 0.84
AM-1 anti 208983_s_at 6.50 0.58
AM-1 anti 208982_at 1.83 0.54

PECAM-1 anti 208981_at 2.37 0.43

DF
H

PAR
PAR
PAR

PEC
PEC

Gene Name Pro- or anti- Probe set ID lineage ploidy TA E2A
apoptotic

Ligands
FAS-L pro 211333_s_at
FAS-L pro 210865_at
TNF pro 207113_s_at 0.27 1.94 2.07
TRAIL pro 202687_s_at
TRAIL pro 202688_at
TRAIL pro 214329_x_at
Death receptors
FAS pro 215719_x_at
FAS pro 216252_x_at
FAS pro 204780_s_at 1.45 1.23
FAS pro 204781_s_at 1.42 1.06
DcR3 anti 206092_x_at
DcR3 anti 206467_x_at 1.32
DcR3 anti 213829_x_at 0.90
TNFR1 pro 207643_s_at 0.55 1.79 0.27
TNFR2 pro 203508_at 0.54 1.62 0.59
TRAIL-R2 pro 210405_x_at 0.24 2.29 0.26
TRAIL-R2 pro 209295_at 0.38 1.93
TRAIL-R3 anti 206222_at
TRAIL-R4 anti 210654_at 0.37 1.54
TRAMP pro 219423_x_at 1.39
TWEAK-R pro 218368_s_at 0.58
Caspases
CASP1 pro 211368_s_at 1.68 0.38
CASP1 pro 209970_x_at 0.75
CASP1 pro 211367_s_at 1.43 0.36
CASP1 pro 211366_x_at 0.72
CASP2 pro 34449_at
CASP2 pro 209811_at
CASP8 pro 207686_s_at 1.48
CASP8 pro 213373_s_at 2.81 1.00 0.37
CASP10 pro 205467_at 1.69 0.29
Adapters
DAXX pro 201763_s_at 1.37
FADD pro 202535_at 1.99
FLASH pro 222201_s_at
FLIP anti 211862_x_at 1.55 0.79
FLIP anti 208485_x_at 1.21
FLIP anti 211317_s_at 1.29 1.32
FLIP anti 209939_x_at 1.69 0.81
FLIP anti 214618_at
FLIP anti 209508_x_at 0.86
FLIP anti 211316_x_at 1.21
FLIP anti 210563_x_at 1.54 0.79 1.03
RIPK1 pro 209941_at
TANK pro 207616_s_at 0.89 1.20
TANK pro 209451_at 1.41
TANK pro 210458_s_at
TRADD pro 1729_at 2.17
TRAF1 anti 205599_at
TRAF2 anti 204413_at
TRAF3 pro 208315_x_at
TRAF4 pro 211899_s_at 2.15
TRAF6 anti 205558_at 0.83 1.26
Miscellaneous
CRADD pro 209833_at 0.71 0.91 0.67
DAPK1 pro 203139_at 1.45 0.29

The global test and Wilcoxon’s rank-sum test were performed to identify which of the indicated 118 apoptosis probe 

sets were differentially expressed in various ALL subgroups defined by T- versus B-lineage ALL (lineage), or genetic  

subtype, i.e. TEL-AML1 status (TA), ploidy and E2A status (E2A). For each subgroup, probe sets selected only by 

the global test (P<0.001) are marked light gray, probe sets selected only by Wilcoxon’s rank-sum test with false 

discovery rate (FDR) <5% are marked dark gray, probe sets selected by the global test (P<0.001) and Wilcoxon’s 

rank-sum test with false discovery rate (FDR) are marked black and probe sets selected by none of these tests are 
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marked white. The numbers indicated in colored boxes are the ratio per significant gene between: T-lineage ALL and 

B-lineage ALL samples (column: lineage), hyperdiploid and non-hyperdiploid B-lineage ALL samples (column: 

ploidy), TEL-AML1 positive and TEL-AML1 negative B-lineage ALL samples (column: TA) and E2A-rearranged and 

E2A-germline B-lineage ALL samples (column: E2A). 

 
Sixty-six probe sets (44 different genes) were differentially expressed in T-lineage versus B-lineage 

ALL and selected by both tests (indicated black in Table 2), 31 probe sets (22 different genes) genes 

in hyperdiploid versus non-hyperdiploid B-lineage ALL, 20 probe sets (16 different genes) in TEL-

AML1 positive versus negative B-lineage ALL, and 15 probe sets (13 different genes) in E2A-

rearranged versus E2A-germline B-lineage ALL. The probe-set identification, gene names and median 

expression of all probe sets are listed in Table 1S of the Supplementary Appendix. 

 

Apoptosis-related genes and cellular drug resistance in pediatric B-lineage ALL 

Due to the large difference in the expression of apoptosis genes between T- and B-lineage 

ALL (P<0.001, global test) and the limited number of T-lineage ALL patients, differences in 

expression of apoptosis genes between drug sensitive and resistant patients was only 

addressed in the B-lineage ALL group. The global test generated significant P-values for 

prednisolone (16 probe sets corresponding to 14 different genes, P=0.007), vincristine (14 

probe sets corresponding to 13 different genes, P=0.002) and L-asparaginase (20 probe 

sets corresponding to 15 different genes, P<0.001), but not for daunorubicin (Table 3). The 

probe sets most strongly associated with resistance to individual drugs in the global test 

and the Wilcoxon rank-sum test (FDR controlled at 5%) are indicated in black in Table 3. 

While no probe sets were associated with resistance to vincristine or daunorubicin, 4 probe 

sets (corresponding to 2 genes, i.e. MCL1 and DAPK1) and 3 probe sets (i.e. BCL2L13, 

HRK and TNF) were significantly associated with resistance in both tests towards 

prednisolone or L-asparaginase, respectively. Gene plots for each drug are shown in 

Figure 2S and probe-set identification, gene names and median expression are shown for 

each drug in Table 2S of the Supplementary Appendix. 
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Table 3. Apoptosis genes associated with resistance to four individual chemotherapeutic agents in B-lineage 

ALL 

 Gene Name Pro- or anti- Probe set ID PRED VCR ASP DNR
apoptotic

aspases

 
C
C

 

 

ASP3 pro 202763_at 1.19
CASP6 pro 211464_x_at
CASP6 pro 209790_s_at

ASP7 pro 207181_s_at 0.73
ASP9 pro 203984_s_at

CASP9 pro 210775_x_at
l2 family

C
C

Bc
BA

 

 

 

 

 

 

D pro 1861_at
BAD pro 209364_at

AK1 pro 203728_at
X pro 211833_s_at
X pro 208478_s_at

BCL2 anti 207005_s_at
2 anti 207004_at 1.12
2 anti 203685_at 1.43

BCL2L1 anti 215037_s_at
CL2L1 anti 206665_s_at
CL2L1 anti 212312_at

BCL2L13 pro 217955_at 1.25 1.35 1.24
BID pro 204493_at

pro 205780_at 3.25
pro 206865_at 0.3 0.34

HRK pro 206864_s_at 0.63
L1 anti 200797_s_at 1.42 1.28
L1 anti 200798_x_at

MCL1 anti 214056_at 1.44
L1 anti 214057_at 1.6 1.12
L1 anti 200796_s_at

Bcl2-interacting

B
BA
BA

BCL
BCL

B
B

BIK
HRK

MC
MC

MC
MC

 

 

 

BAG1 anti 211475_s_at 0.78 1.2
G1 anti 202387_at 1.11
G3 anti 217911_s_at 1.71

BAG4 anti 219624_at
G5 anti 202985_s_at 0.83
G5 anti 202984_s_at

BFAR anti 218056_at
A pro 211692_s_at 

P family

BA
BA

BA
BA

PUM
IA

 

 

 

NAIP anti 204861_s_at
NAIP anti 204860_s_at

AP1 anti 202076_at 1.19
AP2 anti 210538_s_at

XIAP anti 206536_s_at
AP anti 206537_at

IVIN anti 202094_at
SURVIVIN anti 210334_x_at

IVIN anti 202095_s_at 0.66
IN anti 220451_s_at 2.05
RD-containing

cI
cI

XI
SURV

SURV
LIV
CA

 

 

APAF1 pro 211553_x_at
PAF1 pro 204859_s_at 0.76

D1 pro 221073_s_at 1.4
TUCAN anti 204950_at 1.04

tochondrial

A
NO

Mi
AIF

 

 

pro 205512_s_at 0.93
Omi-HtrA2 pro 203089_s_at

i-HtrA2 pro 211152_s_at
pro 208905_at

AC pro 219350_s_at
Miscellaneous

Om
CYCS
SM

DF
DF

 

 

 

FA pro 203277_at 1.01
FB pro 206752_s_at 2.24

HSP27 anti 201841_s_at
RP pro 208644_at 0.81
RPL1 anti 202239_at 1.28

PARPL2 pro 204752_x_at 0.98
PARPL2 pro 214086_s_at 0.84

RPL2 pro 215773_x_at
CAM-1 anti 208983_s_at 0.43

PECAM-1 anti 208982_at 0.83
CAM-1 anti 208981_at 1.2 0.73

PA
PA

PA
PE

PE

Gene Name Pro- or anti- Probe set ID PRED VCR ASP DNR
apoptotic

Ligands
FAS-L pro 211333_s_at
FAS-L pro 210865_at
TNF pro 207113_s_at 0.63
TRAIL pro 202687_s_at 1.43
TRAIL pro 202688_at
TRAIL pro 214329_x_at
Death receptors
FAS pro 215719_x_at
FAS pro 216252_x_at
FAS pro 204780_s_at
FAS pro 204781_s_at
DcR3 anti 206092_x_at
DcR3 anti 206467_x_at
DcR3 anti 213829_x_at
TNFR1 pro 207643_s_at 1.54
TNFR2 pro 203508_at
TRAIL-R2 pro 210405_x_at 0.74
TRAIL-R2 pro 209295_at 0.83
TRAIL-R3 anti 206222_at
TRAIL-R4 anti 210654_at 0.76
TRAMP pro 219423_x_at
TWEAK-R pro 218368_s_at
Caspases
CASP1 pro 211368_s_at
CASP1 pro 209970_x_at 1.16
CASP1 pro 211367_s_at 0.86
CASP1 pro 211366_x_at 0.86
CASP2 pro 34449_at
CASP2 pro 209811_at
CASP8 pro 207686_s_at
CASP8 pro 213373_s_at 0.98 0.69
CASP10 pro 205467_at
Adapters
DAXX pro 201763_s_at
FADD pro 202535_at
FLASH pro 222201_s_at
FLIP anti 211862_x_at
FLIP anti 208485_x_at
FLIP anti 211317_s_at
FLIP anti 209939_x_at
FLIP anti 214618_at
FLIP anti 209508_x_at
FLIP anti 211316_x_at
FLIP anti 210563_x_at
RIPK1 pro 209941_at 1.16
TANK pro 207616_s_at 1.12
TANK pro 209451_at
TANK pro 210458_s_at
TRADD pro 1729_at 0.59
TRAF1 anti 205599_at 1.54
TRAF2 anti 204413_at
TRAF3 pro 208315_x_at
TRAF4 pro 211899_s_at 0.81
TRAF6 anti 205558_at 0.93 0.95
Miscellaneous
CRADD pro 209833_at 1.3
DAPK1 pro 203139_at 1.71 1.77

The global test and Wilcoxon’s rank-sum test were performed to identify which of the indicated 118 apoptosis probe 

sets were differentially expressed in B-lineage ALL cells sensitive and resistant to prednisolone (PRED), vincristine 

(VCR), L-asparaginase (ASP) and daunorubicin (DNR). For each drug, probe sets selected only by the global test 

(P<0.001) are marked gray, probe sets selected by the global test (P<0.001) and Wilcoxon’s rank-sum test with false 
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discovery rate (FDR) <5% are marked black and probe sets not selected by none of the tests are marked white. The 

numbers indicated in colored boxes are the ratio per significant gene between: PRED resistant and PRED sensitive 

ALL samples (column: PRED), VCR resistant and VCR sensitive ALL samples (column: VCR), ASP resistant and 

ASP sensitive ALL samples (column: ASP) and DNR resistant and DNR sensitive ALL samples (column: DNR). 

 

The expression of apoptosis-related genes and clinical outcome in pediatric ALL 

From the 190 patients included in this study (median follow-up at risk of event: 4.8 years, 

range: 0.3-10.5 years), 45 had disease-related events and 2 had a competing event, which 

was censored at the time of occurrence. Apoptosis gene expression profiles measured at 

initial diagnosis were compared between patients who entered and remained in continuous 

complete remission (CCR) and those who relapsed during follow-up.  
 
Table 4: Apoptosis genes associated with disease-free survival in pediatric ALL.  

 Gene Name Probe set ID outcome

BAG1 211475_s_at 0.91
BAG1 202387_at 0.81
BAG5 202985_s_at 1.26
BAG5 202984_s_at 1.20
BCL2L13 217955_at 0.72
BID 204493_at 0.87
BIK 205780_at 0.25
XIAP 206537_at 1.30
CASP9 203984_s_at 0.79
CYCS 208905_at 0.83
PECAM-1 208982_at 1.33
PECAM-1 208981_at 1.66
CASP1 211367_s_at 0.77
FAS 216252_x_at 0.99
TRAIL-R2 210405_x_at 1.73
TRAIL-R2 209295_at 1.36
TRAIL-R4 210654_at 1.53

Legend

Significant P<0.001 in global test only

Significant P<0.001 in global test and 
significant P<0.05 in FDR

Gene Name Probe set ID outcome

BAG1 211475_s_at 0.91
BAG1 202387_at 0.81
BAG5 202985_s_at 1.26
BAG5 202984_s_at 1.20
BCL2L13 217955_at 0.72
BID 204493_at 0.87
BIK 205780_at 0.25
XIAP 206537_at 1.30
CASP9 203984_s_at 0.79
CYCS 208905_at 0.83
PECAM-1 208982_at 1.33
PECAM-1 208981_at 1.66
CASP1 211367_s_at 0.77
FAS 216252_x_at 0.99
TRAIL-R2 210405_x_at 1.73
TRAIL-R2 209295_at 1.36
TRAIL-R4 210654_at 1.53

Legend

Significant P<0.001 in global test only

Significant P<0.001 in global test and 
significant P<0.05 in FDR

 

 

 

 

 

 

 

 

 

 

 

 
The global test and Wilcoxon’s rank-sum test with false discovery rate (FDR) controlled at 5% were performed to 

identify which of the 118 apoptosis probe sets under study were differentially expressed in leukemic cells taken at 

initial diagnosis of ALL from patients who achieved and remained in continuous complete remission (CCR) and 

patients who achieved a complete remission but relapsed during or after completion of chemotherapy. 

 

Gene plots for each drug are shown in Figure 3S and probe-set identification, gene names 

and median expression are shown for each drug in Table 3S of the Supplementary 

Appendix. 17 Probe sets (13 genes) influenced the global test P-value by more than 2 

standard deviations. Out of these 17 probe sets, 4 probe sets (3 genes) were also selected 

by the univariate Cox regression analysis with FDR controlled at 5% (marked black in 

Table 4). 
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Subsequently, each of these 4 significant probe sets was analyzed in a multivariate Cox 

regression analysis with inclusion of conventional risk criteria, i.e. age, white blood cell 

count, lineage and genetic subtype (Table 5). BCL2L13 was the only gene that was 

independently and significantly associated with treatment outcome (P=0.011; Table 5A). 

BCL2L13 expression was significantly associated with treatment outcome when used as 

continuous variable (P<0.0001) and when divided into two equally sized groups (P=0.002; 

Figure 1). The 5-year probability of disease-free survival (pDFS) ± SE was 85% ± 5.2% for 

patients with low (i.e. below median) and 66% ± 7.3% for patients with high (i.e. above 

median) expression of BCL2L13. 
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Figure 1. Disease-free survival according to BCL2L13 expression in pediatric ALL. The disease-free survival 

(DFS) of patients was estimated according to a Kaplan-Meier among 190 patients of the COALL/DCOG study cohort. 

Patients were grouped according to on their expression of BCL2L13, i.e. expression higher than (black line) or lower 

than (gray line) the median. 
 

For 92 patients enrolled at St. Jude the median follow-up was 6.2 years. Of these patients, 

15 had disease-related events and 8 had a competing event, which was censored at the 

time of occurrence. In this independent cohort treated with the same chemotherapeutic 

agents but on a different protocol at the St. Jude Children’s Research Hospital the 

association between BCL2L13 expression and outcome was significant in a univariate 

analysis when treated as a continuous variable (P=0.025), but not significant when patients 

below and above the median were compared (P=0.28). In a multivariate Cox analysis 
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including the above mentioned known risk factors BCL2L13 expression showed the same 

trend for an association with outcome in patients treated according to St. Jude protocols 

(P=0.051; Table 5B). 
 
Table 5. Multivariate proportional-hazards analysis of the risk of relapse. Multivariate Cox regression analysis 

among 190 patients of the original COALL/DCOG cohort (A) and 92 patients in the validation St. Jude cohort (B) was 

performed to quantify the independent contribution of BCL2L13 to disease-free survival. Age, white blood cells count 

(WBC) and genetic subtype were considered as discrete and BCL2L13 expression as a continuous variable in the 

analysis. A hazard ratio >1 indicates increased probability of relapse. CI denotes confidence interval. 
 

A. COALL/DCOG cohort B. St. Jude cohort 
Variable N HR 95% CI P-value N HR 95% CI P-value 
Age         
    <10 years 138 1.0*   63 1.0*   
    >10 years 52 1.47 0.77-5.13 0.24 29 7.88 1.45-42.90 0.017 
White-cell count         
    <10/nL 44 1.0*   26 1.0*   
    10-49/nL 71 0.56 0.21-1.48 0.24 26 1.06 0.21-5.46 0.95 
    50-100/nL 31 1.12 0.40-3.17 0.83 18 6.48 1.25-33.62 0.026 
    >100/nL 44 1.49 0.54-4.06 0.44 22 2.57 0.52-12.64 0.24 
ALL subtype         
    B-other 48 1.0*   24 1.0*   
    BCR-ABL 5 1.33 0.34-5.13 0.68 8 5.49 1.49-20.23 0.011 
    E2A₤ 9 1.10 0.31-3.86 0.89 12 0.70 0.07-6.62 0.75 
    Hyperdiploid# 44 0.28 0.08-0.97 0.045 15 0.48 0.05-4.44 0.51 
    MLL₤ 4 9.45 2.42-36.88 0.001 8 1.01 0.15-6.99 0.99 
    TEL-AML1 44 0.23 0.07-0.80 0.021 16 1.40 0.14-14.30 0.78 
    T-lineage 36 0.66 0.28-1.60 0.36 9 4.85 0.64-36.60 0.13 
BCL2L13         
    expression 190 1.94 1.17-3.24 0.011 92 4.09 0.99-16.78 0.051 

 N: number of patients, HR: hazard ratio, CI: confidence interval, *: this group served as the reference group to   
 calculate the ratio, #: Cytogenetic analysis revealed more than 50 chromosomes, ₤: COALL: MLL and E2A  
 rearranged, St. Jude: MLL-AF4 and E2A-PBX1 
 

Expression of Apaf-1 isoforms and cellular drug resistance in pediatric ALL 

The expression of Apaf-1 splice variants has been linked to functional apoptosis in tumor 

cell lines.39-41 The presence of an additional C-terminal WD-40 repeat encoded by exon 18 

appears to be required for in vitro activation of procaspase-9 and -3. The Affymetrix probe 

sets are unable to distinguish between the individual isoforms of Apaf-1 (Figure 2).  To 

investigate whether the relative expression of pro-apoptotic (active) Apaf-1 isoforms, i.e. 

the isoforms containing exon 18, is linked to sensitivity to antileukemic agents, real-time 

quantitative PCR was carried out in 36 children with ALL at initial diagnosis. Two primer 

pairs were used: one pair recognizes both pro- and anti-apoptotic Apaf-1 isoforms and one 

pair hybridizes to exon 18 and is thus specific for the pro-apoptotic isoform of Apaf-1 

(Figure 2). 

 87 



Chapter 4 

 

 
21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

21 3 4 5 6 7 8 9 1011121314151617181920212223242526 27 Apaf-1-XL/LC

21 3 4 5 6 7 8 9 10111213141516171920212223242526 27 Apaf-1-S/LN

204859_s_at211553_X_at

204859_s_at211553_X_at

Pro-apoptotic

Role in apoptosis:

Presumed anti-apoptotic

1

1

2

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

21 3 4 5 6 7 8 9 1011121314151617181920212223242526 27 Apaf-1-XL/LC

21 3 4 5 6 7 8 9 10111213141516171920212223242526 27 Apaf-1-S/LN

204859_s_at211553_X_at

204859_s_at211553_X_at

Pro-apoptotic

Role in apoptosis:

Presumed anti-apoptotic

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2525 2626 27

21 3 4 5 6 7 8 9 1011121314151617181920212223242526 27 Apaf-1-XL/LC

21 3 4 5 6 7 8 9 10111213141516171920212223242526 27 Apaf-1-S/LN

204859_s_at211553_X_at211553_X_at211553_X_at

204859_s_at211553_X_at

Pro-apoptotic

Role in apoptosis:

Presumed anti-apoptotic

1

1

2 

 

 

 

Figure 2. Structure of the Apaf-1 gene and two Apaf-1 transcript variants. Indicated is the location of the Affymetrix 

probe sets and the Taqman primer pairs (1 and 2).  

 

The relative expression of pro-apoptotic Apaf-1 isoform ranged between 2%-69% of total 

Apaf-1 and did not differ significantly in patients sensitive and resistant to prednisolone  

(P=0.74), vincristine (P=0.33), L-asparaginase (P=0.79) or daunorubicin (P=0.95). In 

addition, the absolute expression of the pro-apoptotic isoform did not differ significantly in 

patients sensitive and resistant to prednisolone (P=0.96), vincristine (P=0.20), L-

asparaginase (P=0.25) or daunorubicin (P=0.67). 

 
DISCUSSION 

Leukemic subtypes with an unfavorable prognosis may have a decreased tendency to 

undergo apoptosis compared to subtypes with a favorable prognosis. Gene expression 

signatures discriminative for lineage,27,42 genetic subtype,27,42 in vitro,29 and in vivo29,42 drug 

response were previously reported. Among the discriminative genes identified in these 

studies were virtually no apoptosis genes. This does not rule out a role for apoptosis genes 

in these leukemic subtypes per se, because these genes may be significant at a lower level 

than the cut-off P-values used for the construction of these signature models. Therefore, 

we analyzed the expression patterns of 70 selected key apoptotic genes in leukemic cells 

of 190 children at initial diagnosis of ALL and correlated the expression of these genes to 

lineage, genetic subtype, in vitro drug resistance and clinical outcome. 

 Children with T-lineage ALL have an increased risk of treatment failures compared 

to children with B-lineage ALL43, which can be attributed to the presence of numerous 

adverse presenting features, such as older age, high white blood cell count and in vitro 

resistance to a variety of drugs.8,44 However, intensification of treatment regimens has 

resulted in remarkably improved outcomes for children with T-ALL.45 Although T-ALL has 

been associated with aberrant expression of some apoptosis genes,46,47 the underlying 

causes of in vitro drug resistance have not yet been fully determined. Global test analysis 

 88 



Apoptosis genes and clinical parameters in pediatric ALL 
                                                                                                                        
                                    

indicated that the expression of apoptosis genes differs between T-lineage and B-lineage 

ALL (P<0.001). A large number of apoptosis genes, i.e. 44 out of 70 examined genes, were 

most discriminative between T-lineage and B-lineage ALL (as defined by ≥2 sd influence 

on the global test P-value, see explanation in Materials and Methods).  

The death-receptor Fas has been linked to apoptosis and NF-kB-related inflammatory 

response pathways.48 Activation of NF-kB inhibits drug-induced apoptosis in various cell 

line studies and was shown to be linked to drug resistance in childhood ALL.49-51 

Interestingly, we observed simultaneous upregulation of Fas and its downstream effectors, 

i.e. FADD, caspase-8 and caspase-10 in T- compared to B-lineage ALL and upregulation 

of several NF-κB target genes, i.e. cIAP1, cIAP2, survivin and FLIP. The relative high 

expression of NF-kB associated genes may point to enhanced NF-kB activity in T-lineage 

compared to B-lineage ALL.  

 Children with hyperdiploid and TEL-AML1 positive ALL have a favorable 

prognosis, which is associated with a relatively high in vitro sensitivity to various drugs, 

including L-asparaginase11,12 Interestingly, the TNF receptor ligand (TNF) is expressed 

higher in hyperdiploid and TEL-AML1 positive B-lineage ALL patients (Table 2). Moreover, 

TNF is 0.6-fold lower expressed in L-asparaginase sensitive cases (Table 3). Since both 

hyperdiploid and TEL-AML1 positive B-lineage ALL are in vitro sensitive to L-

asparaginase,11,12 these data point to novel insights in the apoptotic changes underlying L-

asparaginase cytotoxicity. Another notable feature of hyperdiploid B-lineage ALL cells is 

the simultaneous overexpression of TNF-R1, TRAIL-R2 and TRAIL-R4. The 

overexpression of these cytokine receptors was not previously observed in hyperdiploid B-

lineage ALL but may contribute to their marked apoptotic propensity in allogeneic bone 

marrow-derived stromal layers that contain the micro-environment to trigger these 

receptors.52 

 The relation between the expression of apoptosis genes and in vitro,53-55 or in vivo 

response56-59 has been extensively studied in ALL. However, these studies each focused 

on the expression of only a few genes out of the large family of apoptosis-related genes. In 

this study, analysis of 70 key apoptotic genes revealed that only 2 and 3 genes were 

significantly associated with resistance towards prednisolone and L-asparaginase 

respectively. Bcl2-family members are thought of as the central regulators of apoptosis by 

regulating cytochrome c release upstream of the mitochondria.60 We observed increased 

expression of the anti-apoptotic Bcl-2 family member MCL1 in prednisolone resistant B-

lineage ALL cells and decreased expression of the pro-apoptotic Bcl2-family member HRK 

in L-asparaginase resistant B-lineage ALL cells. The differential expression of these Bcl2-
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family members may contribute to the apoptotic blockage we previously observed 

upstream of the mitochondria in prednisolone and L-asparaginase resistant ALL cells.22 

The fact that we observed decreased apoptosis in vincristine and daunorubicin resistant 

ALL cells in the former study22 and no apoptosis gene was associated with vincristine and 

daunorubicin resistance in the present study suggests that resistance to these drugs is 

caused by mechanisms that do not appear transcriptionally. Alternatively, VCR and DNR 

resistance in childhood ALL may be caused by a defect further upstream of the 

mitochondria. Aberrant expression and function of cytoskeleton-associated genes29,61  and 

lack of ceramide generation62 are examples of upstream defects that were previously 

observed in leukemic samples resistant to VCR and DNR respectively.  

 BCL2L13 (Bcl-rambo) is a recently discovered member of the Bcl-2 family with 

pro-apoptotic activity.63,64 Remarkably, however, in this study we observed that a high 

mRNA expression of BCL2L13 was associated with in vitro L-asparaginase resistance and 

an unfavorable long-term clinical outcome in children with ALL. This finding suggests 

BCL2L13 may have a different apoptotic role in primary leukemic cells of children 

compared to the cell lines used to describe its apoptotic role. Alternative splicing is known 

to generate both anti- and pro-apoptotic variants of a single apoptosis gene (e.g., Apaf-1, 

Figure 2).40,65,66 Therefore, an alternative explanation for our finding may be the existence 

of a previously unrecognized anti-apoptotic splice variant. Probe sets designed by 

Affymetrix are (in general) not suitable to recognize differential expression of splice variants 

of a single gene. Most importantly, high expression of the BCL2L13 probe set was 

associated with resistance towards L-asparaginase and independently linked to an 

unfavorable prognosis compared to other know risk factors. Since BCL2L13 expression 

was also associated with an inferior outcome in a second (differently treated) validation 

cohort, this gene may represent a new risk factor in childhood ALL. The fact that only 1 out 

of the 70 apoptosis genes was independently associated with treatment outcome in this 

study suggests that treatment outcome in childhood ALL is largely dependent on genes 

involved in other pathways than the apoptosis pathway. This notion is supported by the 

absence of apoptosis genes amongst the genes previously associated with treatment 

response in several studies in diagnostic childhood ALL samples.42,67,68 

 In conclusion, this study is the first to describe an association between the 

differential expression of key apoptosis genes and lineage, genetic subtype and in vitro 

drug resistance in children with ALL. In addition, we identified a single gene, i.e. BCL2L13, 

which is related to both L-asparaginase resistance and treatment outcome independent 

from known prognostic factors in two independent cohorts of children with B-lineage ALL. 
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To establish BCL2L13 expression as a true prognostic factor in childhood ALL, prospective 

validation is required. Also, the currently identified genes warrant further studies on 

expression and function at the protein level to further increase our insight in the causes of 

drug resistance and therapy failure in pediatric ALL. It was recently demonstrated that 

inhibition of Mcl-1 by the cyclin-dependent kinase (CDK) inhibitor Seliciclib induced 

significant cytotoxicity in multiple myeloma cells sensitive and resistant to conventional 

therapy.69 In addition, depletion of Mcl-1 levels by antisense Mcl-1 oligonucleotides 

sensitized lung cancer cells to apoptosis induced by cytotoxic agents as well as by ionizing 

radiation.70 Likewise, it can be hypothesized that downregulation of Bcl2l13 by antisense 

oligonucleotides or specific inhibitors may sensitize ALL cells to L-asparaginase and 

eventually other drugs.  
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Chapter 5 

ABSTRACT 

Drug resistance in childhood acute lymphoblastic leukemia (ALL) and acute myeloid 

leukemia (AML) is associated with impaired ability to induce apoptosis. To elucidate 

causes of apoptotic defects, we studied the protein expression of Apaf-1, procaspases-

2, -3, -6, -7, -8, -10, and poly(ADPribose) polymerase (PARP) in cells from children with 

acute lymphoblastic leukemia (ALL; N=43) and acute myeloid leukemia (AML; N=10). 

PARP expression was present in all B-lineage samples, but absent in 4 of 15 T-lineage 

ALL and 3 of 10 AML cases, which was not caused by genomic deletions. PARP 

expression was a median 7-fold lower in T-lineage ALL (P<0.001) and 10-fold lower in 

AML (P<0.001) compared with B-lineage ALL. PARP expression was 4-fold lower in 

prednisolone, vincristine and L-asparaginase (PVA)–resistant compared with PVA-

sensitive ALL patients (P<0.001). Procaspase-2 expression was 3-fold lower in T-

lineage ALL (P=0.022) and AML (P=0.014) compared with B-lineage ALL. In addition, 

procaspase2 expression was 2-fold lower in PVA-resistant compared to PVA-sensitive 

ALL patients (P=0.042). No relation between apoptotic protease-activating factor 1 

(Apaf-1), procaspases-3, -6, -7, -8, -10, and drug resistance was found. In conclusion, 

low baseline expression of PARP and procaspase-2 is related to cellular drug 

resistance in childhood acute lymphoblastic leukemia. 

 

INTRODUCTION 

The treatment of pediatric acute leukemia has greatly improved in the past 4 decades, 

resulting in long-term disease-free survival of approximately 80%1 for acute 

lymphoblastic leukemia (ALL) and 60% for acute myeloid leukemia (AML).2 Despite this 

progress, therapy resistance in a significant number of children still forms a major 

obstacle to successful treatment. We and others have previously shown that ALL 

patients whose leukemia cells exhibit 

in vitro resistance to antileukemic agents have a significantly worse prognosis than 

patients whose leukemic cells are sensitive.3-6 Compared with ALL, leukemic cells of 

children with AML have a less favorable prognosis and are in vitro more resistant to 

several antileukemic agents.7 Apoptosis is the predominant form of cell death triggered 

in vivo and in vitro by chemotherapeutic agents in hematological malignancies.8 There 

are 2 major routes by which apoptosis can be induced: the intrinsic and the extrinsic 

apoptosis pathways. The intrinsic pathway is initiated by mitochondrial damage that 

leads to release of cytochrome c from the mitochondrial intermembrane space.9 Upon 
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entry in the cytoplasm, cytochrome c interacts with apoptotic protease-activating factor 

1 (Apaf-1), deoxyadenosine triphosphate (dATP), and procaspase-9 to form a complex 

known as the apoptosome.10 In the apoptosome, caspase-9 is activated, which in turn 

induces processing and activation of downstream effector caspases such as caspases-

2, -3, -6, and -7.11,12 Activation of the effector caspases results in the cleavage of a 

number of structural and regulatory cellular proteins (e.g., poly(ADPribose) polymerase 

[PARP; also known or PARP1 and ADPRT]) and lamins.13,14 Initiation of the extrinsic 

apoptosis pathway involves ligand-induced aggregation of membrane receptors of the 

tumor necrosis factor receptor superfamily and subsequent cytoplasmic recruitment of 

Fas-associated protein with death domain (FADD), and procaspase-8 or procaspase-

10 to form the death-inducing signaling complex (DISC).15,16 Within the DISC 

procaspase-8 or procaspase-10 is activated and released back into the cytoplasm, 

where it induces activation of downstream effector caspases. Both pathways converge 

at the level of caspase-3 activation and therefore have several downstream effector 

caspases and substrates (e.g., PARP) in common. 

 Decreased apoptosis may be an important event in the acquisition of cellular 

drug resistance in pediatric acute leukemia.17 Studies evaluating the expression levels 

of apoptotic proteins in clinical samples are limited in leukemia and mainly restricted to 

adult acute leukemia.18-22 In the present study, we examined the expression of Apaf-1, 

procaspases-2, -3, -6, -7, -8, -10, and PARP in diagnostic samples containing at least 

85% leukemic blasts of 43 children with ALL and 10 children with AML samples using 

quantitative Western blotting. The protein expression was compared between B-lineage 

ALL, T-lineage ALL, and AML, and between acute leukemia cases that are in vitro–

sensitive and resistant to prednisolone (PRED), vincristine (VCR), L-asparaginase 

(ASP), and daunorubicine (DNR). 

 

MATERIAL AND METHODS 

 
Leukemia samples 

Bone marrow and peripheral blood samples were obtained at initial diagnosis after 

informed consent from children with newly diagnosed ALL who were enrolled on 

protocol DCOG ALL-9 at the Erasmus MC/Sophia Children’s Hospital or on COALL-97 

treatment protocol at one of the hospitals participating in the German COALL study 

group. Approval was obtained from the Erasmus MC/Sophia Children’s Hospital 

institutional review board for these studies. Mononuclear cells were isolated by sucrose 
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density gradient centrifugation (Lymphoprep, density 1.077 g/mL; Nycomed Pharma, 

Oslo, Norway), within 24 hours after sampling at the research laboratory of Pediatric 

Oncology, Erasmus MC/Sophia Children’s Hospital, Rotterdam, the Netherlands. Cells 

were resuspended in culture medium consisting of RPMI 1640 (Dutch modification 

without L-glutamine; Gibco BRL, Life Technologies, Breda, the Netherlands) 

supplemented with 20% fetal calf serum (FCS; Integro, Zaandam, the Netherlands), 

2 mM L-glutamine, 200 µg/mL gentamycin (Gibco BRL) 100 IU/mL penicillin, 100 µg/mL 

streptomycin, 0.125 µg/mL fungizone (Gibco BRL), and 5 µg/mL insulin, 5 µg/mL 

transferring, and 5 ng/mL sodium selenite (ITS media supplement; Sigma-Aldrich 

Chemie B.V., Zwijndrecht, the Netherlands). If necessary, leukemic samples were 

further enriched to at least 85% leukemic blasts by removing nonmalignant cells with 

immunomagnetic beads (DynaBeads, Dynal Inc, Norway).23 Cell pellets were 

immediately stored at -80°C until use. 

 

Antibodies 

Monoclonal mouse antibodies to human procaspase-2, PARP were purchased from 

PharMingen (San Diego, CA, USA). Polyclonal rabbit antibodies to human procaspase-

6, procaspase-10, and a monoclonal mouse antibody to human procaspase-8 were 

purchased from Cell Signaling Technology (Beverly, MA). In addition, we used 

monoclonal mouse antibodies to human procaspase-3 (Transduction Laboratories, 

Lexington, KY, USA) and procaspase-7 (StressGen, Victoria, BC, Canada). Monoclonal 

antibodies tested for human procaspase-9 were purchased at Oncogene Research 

Products (Cambridge, MA, USA), Santa Cruz Biotechnology (Santa Cruz, CA, USA) 

and Cell Signaling Technology. 

 
In vitro drug resistance assay 

Responsiveness of leukemia cells to PRED, VCR, ASP, and DNR was determined by 

the 4-day in vitro methyl thiazolyl tetrazolium (MTT) drug resistance assay as described 

previously.3,4 The concentration ranges tested for these drugs were as follows: PRED, 

0.008-250 µg/mL; VCR, 0.05-50 µg/mL; ASP, 0.003-10 IU/mL; and DNR, 0.002-2.0 

µg/mL. The drug concentration lethal to 50% of the ALL cells (LC50 value) was used as 

the measure of cellular drug resistance. The PVA score was calculated as previously 

described (ie, each patient was given a score according to the LC50 value measured in 

the MTT assay).4 Patients were given a score of 1 if sensitive, 2 if intermediate, and 3 if 
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resistant per agent. (The cut-off LC50 values used to assign these scores were those 

previously associated with treatment outcome in ALL4,24 and are provided in Table 1).  
 

Table 1. Cut-off LC50 values used to assign a patient as in vitro sensitive, intermediate, or resistant 

Drug In vitro sensitive In vitro resistant 

PRED (µg/ml) ≤ 0.100 ≥ 150 

VCR (µg/ml) ≤ 0.391 ≥ 1.758 

ASP (IU/ml) ≤ 0.033 ≥ 0.912 

DNR (µg/ml) ≤ 0.075 ≥ 0.114 

 
The sum of the individual scores for PRED, VCR, and ASP resulted in the PVA score. 

Patients with a combined PVA score of 3 or 4 are relatively sensitive to PRED, VCR, 

and ASP, and have a favorable treatment outcome compared with patients with a 

combined PVA score of 7, 8, or 9, which are relatively resistant to these 3 drugs. 

 

Western blotting 

Leukemic cells were lysed in 50 mM Tris (pH 7.6) containing 150 mM NaCl, 10 mM 

EDTA, and 1% Triton X-100. Protease inhibitors (200 µg/mL pepstatin A, 200 µg/mL 

leupeptin and 2 mM PMSF were freshly added prior to use. Protein concentration was 

determined using the BCA protein assay (Pierce, Rockford, IL, USA). All samples were 

kept on ice during the protein isolation and lysates were either used directly or stored 

immediately at -80°C until use. Twenty micrograms of protein in Laemmli buffer (4% 

(wt/vol) SDS, 100 mM Tris-HCl [pH 6.8], and 20% glycerol) was heated to 100°C for 3 

minutes and loaded onto a 5%-15% gradient polyacrylamide gel. After electrophoresis, 

samples were transferred to nitrocellulose blots, blocked with skim milk, and incubated 

for 1 hour with primary antibodies. Blots were washed and incubated for 1 hour with 

peroxidase-conjugated secondary antibody (DAKO, Carpentaria, CA, USA). Presence 

of proteins was detected by enhanced chemiluminescent staining using the 

SuperSignal West Femto kit (Pierce). Signals were directly scanned by the 

ChemiGenius imaging system (SynGene, Cambridge, United Kingdom) and signal 

intensity was quantified using GeneTools 3.1 image analysis software (SynGene). 

 

Quantification of apoptotic proteins 

A dilution series of 30, 25, 20, 15, and 10 µg protein lysate of the human B-cell 

leukemia cell line Reh (N CRL-8286; ATCC, Rockville, MD, USA) was included in each 
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gel. Expression levels of protein were expressed in arbitrary units (AU) and were based 

on the relative quantity present in the patient’s sample compared to the Reh cell line 

dilution series (Figure 1).  
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Figure 1. Quantification of apoptotic proteins in newly diagnosed childhood acute leukemia. A 

representative blot for cells of 9 acute leukemia samples incubated with monoclonal anti-PARP antibody is 

depicted in the top panel. The dilution series consists of 30, 25, 20, 15, and 10 µg Reh protein lysate. The 

presence of PARP was detected by enhanced chemiluminescent staining and the signal intensity was quantified 

by densitometry and plotted (bottom). This graph was used to estimate the relative quantity present in the 

patient’s sample compared with the Reh cell line dilution series by linear regression. The 9 samples shown here 

are part of the group of 53 patients and include 3 B-lineage ALL samples, 3 T-lineage ALL samples, and 3 AML 

samples. OD indicates optical density. 

 

Reproducibility of our method was assessed by subjecting 27 samples to duplicate 

Western blot analysis and is illustrated in Figure 2 for 16 representative samples. 
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Figure 2. Reproducibility of PARP and procaspase-2 protein detection in childhood acute leukemia 
samples. Representative Western blots from 2 independent experiments incubated with monoclonal anti-PARP 

or anti–procaspase-2 antibodies are depicted. 

 

Real time quantitative PCR 

Total cellular mRNA was extracted using Trizol reagent (Gibco BRL) and cDNA was 

synthesized using random hexamers and oligo dT primers. mRNA expression levels of 

PARP and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a reference, were 

quantified using real-time polymerase chain reaction (PCR) analysis on a ABI Prism 

7700 sequence detection system (Applied Biosystems, Foster City, CA, USA) as 

previously described.25 PCR reactions were performed and optimized to an 

 102 



Procaspase-2 and PARP levels in drug-resistant pediatric ALL 
 

amplification efficiency of more than 95%. The comparative cycle time (Ct) value of the 

target PCR was normalized by subtracting the Ct value of GAPDH (∆Ct). The ∆Ct value 

was used to calculate the relative expression level to GAPDH for each target PCR 

using the following formula: relative mRNA expression = 2-∆Ct × 100%.25 PARP primer 

sequences used were: sense, 5’-AGGCTGCTTTGTCAAGAA-3’ and antisense: 5’-CTT 

GCTGCTTGTTGAAGAT-3’ and the probe sequence: 5’-ATGAGGTGGATGGAGTGGA 

TGA-3’. GAPDH primers and probe sequences have been described elsewhere.26 

 
Fluorescence in situ hybridization analysis 

To investigate the PARP gene copy number, dual colored fluorescence in situ 

hybridization (FISH) was applied using 2 combinations of probes: (1) Two 1q42-specific 

bacterial artificial chromosome (BAC) clones (Roswell Park Cancer Institute, Buffalo, 

NY, USA), RP11-118H4 labeled with biotin-16-dUTP, and RP11-125A15 labeled with 

digoxigenin-12-dUTP, with a 50-kilobase (kb) overlap in the PARP gene; and (2) a 

combination of the PARP-specific BAC clone RP11-118H4 (labeled with biotin-16-

dUTP) and 2 PAC clones 203H23 and 213H16 (RCPI-6 Human PAC Library, Roswell 

Park Cancer Institute) labeled with digoxigenin-12-dUTP specific for the AF1q gene on 

1q21. Cytospins of leukemic samples stored at -20°C were used for FISH analysis. The 

FISH protocol was based on that described previously.27 Briefly, slides were pretreated 

with RNase and pepsin and subsequently fixed with formaldehyde. Hybridization of 100 

ng of each probe to the slides was performed overnight at 37°C. Biotinylated probes 

were detected via subsequent incubation with fluoroscein isothiocyanate (FITC)–

labeled avidin-d, biotinylated goat-anti-avidin and avidin-d FITC (Vector, Burlingame, 

CA, USA), whereas digoxigenin-labeled probes were detected via sheep-anti-TRITC-

labeled antibodies (Boehringer Mannheim, Mannheim, Germany), followed by Texas-

red-conjugated donkey antisheep antibodies (Jackson ImmunoResearch, Westgrove, 

PA). Slides were counterstained with DAPI and embedded in Vectashield/DABCO. 

Hybridization results were examined using a Zeiss Axioplan 2 fluorescence microscope 

(Zeiss, Oberkochen, Germany). 

 

Statistics 

Protein expression in different leukemic subgroups (B-lineage ALL, T-lineage ALL, and 

AML) was compared using the Mann-Whitney U test. Spearman rank (rs) correlation 

test was used to correlate protein expression to several variables on the study. 
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Statistical tests were performed at a 2-tailed significance level of 0.05. Whenever 

applicable, a Bonferroni correction was applied to correct for multiple comparisons. 

 

RESULTS 
 
Expression of various apoptotic proteins in ALL 

The expression of Apaf-1, procaspases-2, -3, -6, -7, -8, -10, and PARP was first 

determined in a test group of 20 children with ALL. These 20 patients were selected by 

having a PVA score of 3 or 4 (i.e., relatively in vitro sensitive to PRED, VCR, and ASP; 

N=10) or 7, 8, or 9 (i.e., relatively in vitro–resistant to PRED, VCR, and ASP; N=10). 

The expression of procaspase-9 could not be analyzed in these samples since all 

procaspase-9 antibodies tested revealed abundant nonspecific staining, whereas 

staining of procaspase-9 itself was low. Most other apoptotic proteins were ubiquitously 

expressed in the ALL samples and varied markedly between patients (Figure 3). 
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Figure 3. Variation in expression of 8 apoptotic proteins in PRED, VCR, and ASP (PVA)–sensitive and –resistant 
childhood ALL. Protein levels of Apaf-1, procaspases-2, -3, -6, -7, -8, -10, and PARP of leukemic cells from 10 patients 

compared by Western blot analysis. Arrows indicate the positions of full-length procaspase-2 (48 kDa), procaspase-3 (32 

kDa), procaspase-6 (33 kDa), procaspase-7 (35 kDa), procaspase-8 (50/55 kDa), procaspase-10 (58 kDa), full-length 
and cleaved PARP (116/89 kDa), and Apaf-1 (140 kDa). The in vitro drug responsiveness of each patient is indicated 

below each lane; R indicates in vitro resistant and S indicates in vitro sensitive toward PRED, VCR, and ASP (PVA). 
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Exceptions were procaspase-10 and PARP, which were not expressed in 4 (2 B-

lineage ALL, 2 T-lineage ALL) and 1 (T-lineage ALL) out of the tested 20 samples, 

respectively. Expression values in arbitrary units (A.U.) for each apoptotic protein are 

provided in Table 2.  
 

Table 2: Apoptosis-associated protein expression in PRED, VCR and ASP (PVA) sensitive and resistant 
childhood ALL patients. 

Apoptotic protein# PVA sensitive patients (N=10) 
median (range)*

PVA resistant patients (N=10) 
median (range)*

P-value 

Apaf-1 21.6 (12.7-124.4) 17.4 (4.0-175.3) 0.529 

Procaspase-2 13.4 (1.1-27.2) 6.2 (1.2-10.1) 0.019

Procaspase-3 18.5 (9.9-41.0) 20.8 (8.0-35.7) 0.912 

Procaspase-6 17.5 (11.0-78.8) 25.2 (16.3-49.0) 0.280 

Procaspase-7 10.8 (6.1-32.4) 8.6 (1.0-25.2) 0.247 

Procaspase-8 32.4 (21.5-75.2) 42.3 (17.0-110.1) 0.393 

Procaspase-10 5.4 (0.0-40.8) 6.4 (0.0-47.0) 0.912 

PARP 35.8 (6.5-48.9) 15.1 (0.0-38.5) 0.042
#:  the expression of the predominantly expressed isoform was quantitated for all proteins 
*:  In arbitrary units (expression of an apoptotic protein in the patient sample related to the expression of this 
 protein in a dilution series of the Reh leukemic cell line), see materials and methods 
 

The variation in expression ranged between 5-fold for procaspase-3 and 44-fold for 

Apaf-1. In vitro cross-resistance to PRED, VCR, and ASP (PVA) is an important 

independent predictor of treatment failure and long-term outcome in childhood ALL.4,5,28 

Therefore, the expression of the 8 apoptotic proteins was subsequently correlated to in 

vitro PVA resistance. Only procaspase-2 and PARP protein expression were 

significantly associated with in vitro PVA resistance in ALL. Procaspase-2 expression 

was 2.2-fold lower in cells of ALL patients resistant to PRED, VCR, and ASP, hereafter 

called PVA resistant (median: 6.2 A.U.) compared with cells of ALL patients sensitive to 

these 3 drugs, hereafter called PVA sensitive (median, 13.4 A.U.; P=0.019). PARP 

expression was 2.4-fold lower in PVA-resistant (median, 15.1 A.U.) compared with 

PVA-sensitive children with ALL (median, 35.8 A.U.; P=0.042). Based on these data, 

we examined the expression of PARP and procaspase-2 in a larger group of children 

with ALL (N=43) and AML (N=10). 
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Expression of PARP in acute leukemia 

Twenty-eight patients with B-lineage ALL, 15 patients with T-lineage ALL, and 10 

patients with AML were studied. PARP expression varied between 0 and 59.8 A.U. in 

these patients with the relatively highest expression level found in B-lineage ALL 

(Figure 4A).  

 

 

B-ALL T-ALL AML

0

N=28 N=15 N=10

P<0.001

P<0.001

1

10

100

PA
R

P 
ex

pr
es

si
on

 (A
.U

.)

0

B-ALL

T-ALL

AML

S R
N=22 N=27

P<0.001

1

10

100

PA
RP

 e
xp

re
ss

io
n 

(A
.U

.)

A B

 

 

 

 

 

 

 

 
 
Figure 4. (A) PARP expression in different types of childhood acute leukemia. Each dot represents an individual 

patient and the horizontal bar represents the median protein level. Protein expression level of PARP was 

quantitated in 28 B-lineage ALL samples (○), 15 T-lineage ALL samples (●) and 10 AML samples (▼). (B) PARP 

expression versus in vitro PRED, VCR, and ASP (PVA) resistance in childhood acute lymphoblastic leukemia. 

The protein expression level of PARP quantitated in 21 PVA sensitive (S) and 22 PVA resistant (R) patients with 

B-lineage ALL (○) or T-lineage ALL (●). *Statistically significant after Bonferroni correction for multiple 

comparisons. A.U. indicates arbitrary units. 

 

The expression of PARP was significantly lower in T-lineage ALL (median, 4.3 A.U.; 

P<0.001) and in AML (median, 3.1 A.U.; P<0.001) compared to B-lineage ALL (median, 

32.0 A.U.). PARP expression did not differ significantly between AML and T-lineage 

ALL. Whereas all patients with B-lineage ALL showed PARP expression, we identified 

4 T-ALL and 3 AML patients without detectable PARP expression (see below). PARP 

mRNA levels correlated with PARP protein levels (rs=0.58, P=0.018). FISH analysis of 

the 4 patients with T-lineage ALL and 3 patients with AML with absent PARP protein 

expression revealed that the lack of PARP protein and mRNA expression was not 

associated with genomic deletions in the PARP gene region of these patients (data not 

shown). Epigenetic changes such as DNA methylation of promoter regions may result 

in decreased mRNA levels; however, no CpG islands have been reported within the 

promoter region of PARP, nor could we identify these using the CpGPlot program 

(http://www.ebi.ac.uk/emboss/cpgplot/).29 
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 Next, we compared PARP expression in sensitive and resistant patients with 

acute leukemia to PRED, VCR, ASP, or DNR. After correction for multiple comparisons 

(Bonferroni model), we observed a significantly decreased PARP expression in 

samples resistant to PRED, VCR, and ASP (Table 3). PVA resistance data were 

available for 8 AML samples, 15 T-lineage ALL samples, and 28 B-lineage ALL 

samples; of these, 5 AML samples (63%) and 12 T-lineage ALL samples (80%) were 

PVA resistant, whereas only 10 B-lineage ALL samples (36%) were PVA resistant. This 

is in line with our previous findings that children with AML and T-lineage ALL are 

relatively in vitro resistant to various drugs including PRED, VCR, and ASP.7,30  
 

Table 3. PARP and procaspase-2 expression in childhood acute leukemia patients sensitive and 
resistant to PRED, VCR, ASP, and DNR. 

   PARP   Procaspase-2  
Drug  N median (A.U.) P-value N median (A.U.) P-value 

PRED sensitive 20 39.8 <0.001 15 24.7 0.012 

 resistant 21 6.9  19 8.8  

VCR sensitive 24 31.0 0.002 19 22.0 0.142 

 resistant 21 4.7  18 9.3  

ASP sensitive 21 31.7 0.004 18 23.3 0.070 

 resistant 22 7.0  19 9.5  

DNR sensitive 30 31.0 0.017 24 12.8 0.188 

 resistant 9 4.7  8 7.3  

 

Since PRED, VCR, and ASP are an integral part of ALL therapy, PARP expression was 

compared between PVA-sensitive and PVA-resistant ALL samples. Within the total 

group of ALL cases, PVA-resistant cases (median, 39.2 A.U.) had a 4-fold lower 

expression of PARP compared with sensitive cases (median, 9.2 A.U., P<0.001). Our 

observation that PARP expression is lower in T-ALL and that this immunophenotype is 

associated with cellular drug resistance partly explains our finding that low PARP 

expression is associated with PVA resistance in pediatric ALL (Figure 4B). Within the 

B-lineage group, PVA resistant patients (N=10; median, 20.2 A.U.) also had a 2-fold 

lower expression of PARP compared with sensitive patients (N=18, median, 39.8, 

P=0.040; Figure 4B, open symbols). No difference was found in PARP expression 

between ALL patients with an M1 bone marrow response at day 15 and those having 

an M2 or M3 bone marrow response (P=0.11). Due to limited follow-up of patients no 

relevant comparisons with long-term outcome could be made. 
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Expression of procaspase-2 in acute leukemia 

A slightly smaller group of 34 ALL cases (besides 10 AML) were analyzed for 

procaspase-2 expression due to limitations in availability of material. Procaspase-2 

expression was detectable in all leukemic samples. As shown in Figure 5A, 

procaspase-2 expression varied between 2.1 and 65.4 A.U. in these patients, with the 

relatively highest expression level found in B-lineage ALL. The expression of 

procaspase-2 was 3-fold lower in T-lineage ALL (median, 7.0 A.U.; P=0.014) and in 

AML (median, 6.80 A.U.; P=0.022) compared with B-lineage ALL (median, 22.0 A.U.). 

Procaspase-2 expression did not differ significantly between AML and T-lineage ALL 

(P=0.976).  
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Figure 5. (A) Procaspase-2 expression in different types of childhood acute leukemia. Each dot represents an 

individual patient and the horizontal bar represents the median protein level. Protein expression level of 

procaspase-2 quantitated in 21 B-lineage ALL samples (○), 13 T-lineage ALL samples (●) and 10 AML samples 

(▼). (B) Procaspase-2 expression versus in vitro PRED, VCR, and ASP (PVA) resistance in childhood acute 

lymphoblastic leukemia. The protein expression level of PARP quantitated in 16 PVA sensitive (S) and 18 PVA 

resistant (R) patients with B-lineage ALL (○) or T-lineage ALL (●). *Statistically significant after Bonferroni 

correction for multiple comparisons. 

 

 Procaspase-2 expression was compared between in vitro sensitive and 

resistant patients for PRED, VCR, ASP, or DNR as single drugs. After correction for 

multiple comparisons, we observed that decreased procaspase-2 expression was 

related to in vitro PRED resistance only, although a trend with resistance to the other 

drugs was found (Table 3). Within the total group of ALL patients, PVA resistant cases 

(median, 9.7 A.U.) had a 2-fold lower expression of procaspase-2 compared with 

sensitive cases (median, 24.0 A.U., P=0.042; Figure 5B). Within the B-lineage group, 

PVA resistant patients (N=6; median, 11.8 A.U.) had a 2.1-fold lower expression of 

procaspase-2 compared with sensitive patients, although this difference was not 
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statistically significant (N=15, median, 24.7 A.U., P=0.132; Figure 5B, open symbols). 

Since the expression of procaspase-2 and PARP showed similar expression patterns, 

we examined the possibility whether the expression of both proteins was correlated. As 

shown in Figure 6 there is a strong positive correlation between the expression of 

PARP and procaspase-2 (rs=0.58, P<0.001). Procaspase-2 expression did not differ 

between ALL patients with an M1 bone marrow response at day 15 and those having 

an M2 or M3 bone marrow response (P=0.30). Due to limited follow-up of patients no 

relevant comparisons with long-term outcome could be made. 
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Figure 6: Correlation between PARP and procaspase-2 protein levels in newly diagnosed childhood 
acute leukemia. Comparison between PARP and procaspase-2 protein expression levels in 21 B-lineage ALL 

samples (○), 13 T-lineage ALL samples (●) and 10 AML samples (▼). 

 
DISCUSSION 

The prognosis of childhood acute lymphoblastic leukemia (ALL) has improved 

remarkably over the past 4 decades due to the introduction of effective combination 

risk-adapted therapies. Conventional factors used to stratify patients are clinical and 

biological parameters such as age and white blood cell (WBC) count at diagnosis, 

immunophenotype, the presence of specific genetic abnormalities,1 and initial response 

to PRED treatment.31 Newer approaches are measurement of minimal residual disease 

after induction of initial remission32 and in vitro drug resistance profiles.4 We and others 

showed that children whose leukemic cells exhibit in vitro resistance to antileukemic 

agents, especially to PRED, VCR, and ASP, have a significantly worse prognosis than 

patients whose ALL cells are sensitive.3-6 Children with T-lineage ALL and AML are, in 

vitro, more resistant to a variety of drugs.7,30 The use of more intensive risk-adapted 

treatment regiments, however, has resulted in a prognosis for children with T-lineage 
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ALL similar to that of children with B-lineage ALL.33 In the present study, the expression 

of Apaf-1, procaspases-2, -3, -6, -7, -8, -10, and PARP was studied in childhood ALL 

and AML and was related to immunophenotype and in vitro resistance to PRED, VCR, 

and ASP (PVA) as well as to resistance to PRED, VCR, and ASP and DNR individually. 

 We observed no relation between the expression of Apaf-1, procaspases-3, -6, 

-7, -8, and -10, and PVA resistance in childhood ALL in the present study. The absence 

of a relation with drug resistance may explain why no prognostic value was found for 

these proteins in adult ALL and AML,22 although data in children and adults are not 

necessarily interchangeable. In a previous study we demonstrated that the degree of 

caspase-3 activation (ie, cleavage of procaspase-3 into caspase-3) correlates with the 

degree of resistance to PRED and ASP in childhood ALL.17 In our present study no 

correlation was found between the baseline expression levels of procaspase-3 and 

resistance to these chemotherapeutic drugs. Taken together, these studies suggest 

that resistance to these 2 drugs may not be caused by decreased availability of the 

active enzyme due to decreased expression of procaspase-3, but rather may be 

caused by defects upstream of caspase-3 that inhibit caspase-3 activation upon PRED 

or ASP exposure. 

 PARP (EC 2.4.2.30) is an abundantly expressed nuclear enzyme, which 

binds to single- or double-stranded DNA breaks in response to DNA damage. At the 

breakage site, PARP catalyzes the transfer of the ADP-ribose polymers from the 

respiratory coenzyme NAD+ to nuclear acceptor proteins involved in chromatin 

structure, DNA repair, and DNA metabolism.34 Its poly(ADP ribosylation) activity as well 

as its association with components of base-excision repair35 contribute to the role of 

PARP in DNA repair and the maintenance of genomic integrity. In the present study, we 

observed that in vitro drug resistant childhood leukemia subtypes (ie, T-lineage ALL 

and AML), have a decreased and occasionally even absent expression of PARP. 

Complete absence of PARP expression was observed in 4 out of 15 patients with T-

lineage ALL and 3 out of 10 patients with AML, but in none of the patients with B-

lineage ALL. The variation in PARP expression between leukemia subtypes suggests 

that caution should be taken when interpreting studies that examining protein 

expression in a mixed group of B-lineage ALL, T-lineage ALL, and AML samples 

without correcting for leukemia subtypes. The absence of PARP was not caused by 

deletions of the PARP gene. Given the absence of CpG islands within the PARP 

promoter, it seems unlikely that the absence of PARP is caused by methylation-induced 

PARP silencing in these patients. The presence of putative binding sites for several 
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transcription factors, including simian virus 40 protein 1 (Sp1),36,37 activator protein-2 

(AP-2),37 v-ets erythroblastosis virus E26 oncogene homolog 1 ( Ets-1),38 and yin-yang 

1 (YY1)39 within the PARP promoter region, suggests that PARP expression is 

regulated at the transcriptional level. In addition, we observed that decreased or absent 

expression of intact PARP is related to in vitro resistance to PRED, VCR, and ASP in 

childhood ALL. Other studies also reported that depletion of PARP, either by gene 

disruption,40,41 antisense RNA,40,42 or pharmacologic inhibitors,40,43-45 resulted in 

decreased drug-induced apoptosis. Various explanations have been proposed for the 

requirement of PARP during apoptosis, including depletion of cellular NAD+ and ATP 

pools,46 modification of proteins involved in apoptosis like p53,47,48 facilitation of 

oligonucleosomal DNA fragmentation,49 and up-regulation of P-glycoprotein in PARP-

depleted cells.41 We previously observed that, in resistance to PRED and ASP, but not 

to VCR and DNR, is linked to decreased drug-induced PARP cleavage (i.e. inactivation 

of PARP).17 Our current observation that resistant cells express lower baseline levels 

of this protein suggests that the suitability to use cleaved PARP as read-out for 

functional apoptosis is drug/stimuli dependent. 

 Caspase-2 activity is implicated in the initiation50,51 as well as the effector 

phase52,53 of apoptosis induced by various stimuli. The present study shows a 

decreased procaspase-2 expression in in vitro drug resistant childhood leukemia 

subtypes (i.e., T-ALL and AML). In addition, we observed a relation between decreased 

procaspase-2 expression and in vitro PVA resistance in childhood ALL. This suggests 

that sufficient intracellular amounts of procaspase- 2 are required to respond to these 

drugs, and that relative deficits in procaspase-2 expression levels may contribute to 

cellular PVA resistance in childhood acute leukemia. In adult acute leukemia, high 

expression of procaspase-2 was not linked to prognosis.19-22 The lack of prognostic 

value for the response to combination chemotherapy in these studies does not rule out 

a role for procaspase-2 in cellular responses to PRED and/or other drugs in adult 

leukemias. Since this relationship has not been addressed in adults so far, no 

comparison between childhood and adult studies can be made. In cell lines the 

requirement of caspase-2 for drug-induced apoptosis was shown to be highly cell 

specific.51,54,55 

 Decreased PARP and procaspase-2 expression did correlate with in vitro PVA 

resistance, whereas these expression levels did not correlate with an early bone 

marrow response at day 15. One may argue that this is exactly the time period when 

the leukemia is treated with PRED, VCR, and ASP in most protocols. However, in the 
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COALL-97 protocol, patients are first treated with a DNR window (up-front combination 

chemotherapy) for 7 days, followed by PRED, VCR, and DNR for 4 weeks. After this 

period of 5 weeks, ASP is given for the first time. Since PARP and procaspase-2 

expression are not linked to DNR resistance, and this drug is used up-front of 

combination chemotherapy as well as in the first 4 weeks, this may explain the lack of 

correlation between both proteins and day-15 bone marrow response of COALL-97 

patients. 

 In our previous study we observed that resistance to each of the 4 studied 

drugs (PRED, VCR, ASP, and DNR) was associated with a decreased ability to expose 

phosphatidyl serine on the outer membrane and decreased collapse of the 

mitochondrial membrane potential.17 Caspase-3 activation and PARP inactivation 

correlated to PRED and ASP resistance, but not to VCR and DNR resistance. This 

finding suggested that cleaved caspase-3 and PARP are not important determinants of 

the VCR- and DNR-triggered apoptotic route. Both phosphatidyl serine exposure and 

the collapse of the mitochondrial membrane potential occurred earlier than caspase-3 

activation and PARP inactivation, implying that resistance to these 4 drugs is caused by 

a blockade at the level of or upstream of mitochondrial function. The identity of these 

upstream causes of resistance are part of extensive research in the past few years by 

different groups (reviewed by Pieters and Den Boer).56 

 Recently, new insights were obtained by comparing gene expression profiles 

of drug-resistant and -sensitive cells of children with ALL.24 In this latter study, drug-

specific genes rather than more general apoptosis-associated genes (such as 

caspases, Bcl-2 family members, and inhibitors of apoptosis [IAP] factors) were among 

the most discriminative genes that were associated with resistance to PRED, VCR, 

ASP, and DNR in ALL cells. These findings do not rule out a role for altered expression 

and/or activity f apoptosis genes, but suggest that, at the mRNA level, genes upstream 

of the apoptosis-execution pathway are more important or resistance to these drugs. At 

the protein level, we here show that the basal expression levels of Apaf-1 and 

procaspase-3, -6, -7, -8, and -10 are not differentially expressed between drug-resistant 

and -sensitive patients with acute leukemia. Expression of procaspase-2 and PARP 

were decreased in children with drug-resistant ALL. The causal aspect of this 

association should be further determined with functional studies showing the sensitizing 

effect of ectopic expression of PARP and procaspase-2 on drug resistance in leukemic 

cells of children with ALL. 
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ABSTRACT 

Childhood acute lymphoblastic leukemia (ALL) is curable with chemotherapy in 

approximately 80 percent of patients. However, the cause of treatment failure in the 

remaining 20 percent of patients is largely unknown. We tested leukemia cells from 173 

children for sensitivity in vitro to prednisolone, vincristine, asparaginase, and 

daunorubicin. The cells were then subjected to an assessment of gene expression with 

the use of 14,500 probe sets to identify differentially expressed genes in drug-sensitive 

and drug-resistant ALL. Gene-expression patterns that differed according to sensitivity 

or resistance to the four drugs were compared with treatment outcome in the original 

173 patients and an independent cohort of 98 children treated with the same drugs at 

another institution. We identified sets of differentially expressed genes in B-lineage ALL 

that were sensitive or resistant to prednisolone (33 genes), vincristine (40 genes), 

asparaginase (35 genes), or daunorubicin (20 genes). A combined gene-expression 

score of resistance to the four drugs, as compared with sensitivity to the four, was 

significantly and independently related to treatment outcome in a multivariate analysis 

(hazard ratio for relapse, 3.0; P=0.027). Results were confirmed in an independent 

population of patients treated with the same medications (hazard ratio for relapse, 

11.85; P=0.019). Of the 124 genes identified, 121 have not previously been associated 

with resistance to the four drugs we tested. In conclusion, differential expression of a 

relatively small number of genes is associated with drug resistance and treatment 

outcome in childhood ALL. 

  
INTRODUCTION 

Improvements in the treatment of childhood acute lymphoblastic leukemia (ALL) over 

the past four decades have resulted in rates of long-term disease-free survival of 

approximately 80 percent.1,2 We have shown that children whose ALL cells exhibit in 

vitro resistance to antileukemic agents have a substantially worse prognosis than 

children whose ALL cells are drug-sensitive.3-5 However, little is known about the 

genetic basis of resistance to chemotherapy. Multidrug-resistance genes6 and genes 

involved in cell-cycle progression,7,8 DNA repair,9 drug metabolism,9-11 and apoptosis12 

have been associated with the prognosis of ALL, but their role in determining the 

sensitivity of ALL cells to individual antileukemic agents is not known. Gene products 

arising from rearrangements of the TEL-AML1,13 BCR-ABL,14 and MLL15 genes are also 

associated with prognosis and drug resistance, but for unknown reasons, many 

patients with a favorable genetic subtype (e.g., TEL-AML1) are not cured, whereas 
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many with an unfavorable subtype (e.g., certain MLL rearrangements) are cured. 

Although it is likely that multiple pathways and genes contribute to the sensitivity of ALL 

cells to specific agents,16-18 all studies to date have focused on a small number of 

candidate genes instead of taking advantage of the genomic survey that is possible 

with the use of gene-expression profiling. Such profiles have been used successfully to 

investigate drug resistance in cancer cell lines19,20 and human tumor xenografts,21 but 

not in primary cancer cells. 

 Gene-expression profiles can differentiate lineage (T cell or B cell) and 

molecular subtypes of ALL22-25 and identify treatment-specific changes in gene 

expression in ALL cells.23 However, it is not known whether gene-expression profiles of 

leukemia cells are associated with resistance to individual drugs. The present study 

was undertaken to identify genes that are differentially expressed in primary ALL cells 

exhibiting resistance or sensitivity to prednisolone, vincristine, asparaginase, or 

daunorubicin and to determine whether the expression of such genes influences the 

response to treatment. 

 

MATERIAL AND METHODS 
 
Patients 

The study population consisted of 271 children with newly diagnosed ALL: 173 were 

enrolled as part of the 9th ALL Dutch Childhood Oncology Group protocol at Erasmus 

Medical Center, Sophia Children’s Hospital, in Rotterdam or treatment protocols 92 and 

97 of the German Cooperative Study Group for Childhood Acute Lymphoblastic 

Leukemia in Hamburg, and 98 were enrolled as part of the Total Therapy protocols 

XIIIA and XIIIB of St. Jude Children’s Research Hospital in Memphis, Tennessee, 

USA26,27 Patients were enrolled in the German protocol from 1992 to 2003, in the Dutch 

protocol from 1997 to 2004, and in the St. Jude protocols from 1991 to 1998. The 

original gene-profiling population consisted of the 173 children in the Dutch and 

German protocols, and the independent-validation population consisted of the 98 

patients in the St. Jude protocols. The parents or guardians of the patients provided 

written informed consent, and the patients provided assent. 
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Isolation of leukemia cells 

Bone marrow and peripheral blood were obtained before treatment, and mononuclear 

cells were isolated by means of sucrose density-gradient centrifugation (density, 1.077 

g per milliliter; Lymphoprep, Nycomed Pharma) within 24 hours. Cells were 

resuspended in RPMI 1640 medium (GIBCO BRL) supplemented with 20 percent fetal-

calf serum (Integro), 2 mM L-glutamine, 200 µg of gentamycin per milliliter (GIBCO 

BRL), 100 IU of penicillin per milliliter, 100 µg of streptomycin per milliliter, 0.125 µg of 

fungizone per milliliter (GIBCO BRL), 5 µg of insulin per milliliter, 5 µg of transferrin per 

milliliter, and 5 ng of sodium selenite per milliliter (ITS media supplement, Sigma-

Aldrich Chemie). If necessary, ALL samples were further enriched to achieve more than 

90 percent blasts by removing nonmalignant cells with the use of immunomagnetic 

beads (DynaBeads). 

 
Drug-resistance assay 

The sensitivity of leukemia cells to prednisolone (Bufa Pharmaceutical Products), 

vincristine (TEVA Pharma), asparaginase (Paronal, Christiaens), and daunorubicin 

(Cerubidine, Rhône-Poulenc Rorer) was determined with the use of the four-day in vitro 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) drug-resistance 

assay.3 The following concentrations of each drug were tested: 0.008 to 250 µg of 

prednisolone per milliliter, 0.05 to 50 µg of vincristine per milliliter, 0.003 to 10 IU of 

asparaginase per milliliter, and 0.002 to 2.0 µg of daunorubicin per milliliter. The drug 

concentration lethal to 50 percent of the leukemia cells (the LC50 value) was used as 

the measure of drug resistance. The LC50 values used to define cells as sensitive or 

resistant to each agent were those previously associated with a good or bad treatment 

outcome in patients with ALL (see Table 1 in the Supplementary Appendix, available 

with the full text of this article at www.nejm.org). 3-5 

 
Purification, labeling, and hybridization of RNA 
Total cellular RNA was extracted from a minimum of 5 x 106 leukemia cells with the use 

of Trizol reagent (GIBCO BRL), RNA was additionally purified with phenol–chloroform–

isoamylalcohol (25:24:1), and RNA integrity was assessed as previously described.23,24 

RNA processing and hybridization to the U133A GeneChip oligonucleotide microarray 

(Affymetrix) were performed according to the manufacturer’s protocol. 
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Statistical analysis 

Gene-expression values were calculated with the use of Affymetrix Microarray Suite 

version 5.0.2.3,24 Expression signals were scaled to the target intensity of 2500 and log-

transformed. Arrays were omitted if the scaling factor exceeded 3 SD of the mean or if 

the ratio of 3' to 5' messenger RNA for β-actin or glyceraldehyde-3-phosphate 

dehydrogenase was greater than 3. From the total of 22,283 probe sets, those 

expressed in fewer than five patients were omitted, leaving 14,550 probe sets for 

subsequent analyses. 
 For each antileukemic agent, we identified genes that were most discriminative 

for resistance and sensitivity using the Wilcoxon rank-sum test and t-test for each probe 

set and estimated the false discovery rate using the q value according to Storey and 

Tibshirani.28,29 At the selected P value (alpha) for ranked discriminating genes (e.g., 

P<0.001), the overall significance of the estimated false discovery rate was computed 

as the probability of observing equal or lower false discovery rates on the basis of 1000 

random permutations. 

 To assess the predictive accuracy using the top 30, 50, and 100 discriminating 

genes for drug sensitivity as compared with drug resistance, for each drug, we 

randomly divided the patients with drug-sensitive leukemic cells and the patients with 

drug-resistant leukemic cells into two groups, using two thirds to build the model and 

one third to assess the accuracy of the model. This process was repeated 1000 times; 

in each case we reselected a fixed number of probe sets to build a prediction model 

using support vector machines. Predictive accuracies of the various gene-expression 

profiles with respect to the sensitivity of each antileukemic agent and their confidence 

intervals were computed with the use of data from the 173 Dutch and German patients. 

 In the outcome analysis, we computed drug-resistance gene-expression 

scores for the 173 Dutch and German patients in the original population and the 98 St. 

Jude patients25 in the validation population on the basis of the 172 gene-probe sets that 

discriminated between leukemic cells that were sensitive and those that were resistant 

to each of the four drugs. The scores were computed with the use of bagging 

algorithms.30 For each of the four drugs, we assigned each patient a score of 1 if the 

cells were predicted to be sensitive and 2 if the cells were predicted to be resistant. 

After 1000 iterations, the average scores for each of the four drugs for each patient 

were combined as the final drug-resistance gene-expression score and used in the 

outcome analysis. For the analysis of disease-free survival, any type of leukemia 

relapse was considered. The duration of disease-free survival was defined as the time 
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from diagnosis until the date of treatment failure. Data were censored at the time of the 

last follow-up visit in the absence of treatment failure. Cox proportional-hazards 

regression analysis was used to assess the association between the combined gene-

expression score and treatment outcome. Leukemia-free survival was analyzed with 

the use of Fine and Gray’s estimator accounting for competing events.30 

 We used Fisher’s exact test to determine the degree of overrepresentation or 

underrepresentation of discriminating genes in specific functional groups as compared 

with the genes on the U133A GeneChip, using the Gene Ontology database 

(http://www.geneontology.org/). Probe sets with the same gene symbol were counted 

as one. Primary data are available through the GeneExpression Omnibus of the 

National Center for Biotechnology Information at http://www.ncbi.nlm.nih.gov/geo/ 

(Platform, GPL91; Sample, GSM9653 to 9934; Series, GSE635 to 660). Additional 

information concerning the methods used is available at http://www.stjuderesearch.org/

data/ALL4/index.html at http://www2.eur.nl/fgg/kgk/, and in the Supplementary 

Appendix. 
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RESULTS 

 

Gene expression was determined in ALL cells from 173 patients with newly diagnosed 

disease whose leukemia cells were either sensitive or resistant to prednisolone, 

vincristine, asparaginase, or daunorubicin, as assessed by the in vitro MTT assay. The 

distribution of LC50 values (the drug concentration lethal to half the cultured 

lymphoblasts) in our study population did not differ significantly from that of the entire 

population of approximately 700 patients for whom we had previously determined the 

sensitivity status to each of these antileukemic agents (Figure 1). Likewise, the 

proportion of patients classified as having sensitive or resistant leukemia cells, 

according to previously defined LC50 values (Table 1 in the Supplementary Appendix)3-5 

did not differ significantly between the study group and the entire population (Figure 1). 

The leukocyte counts, age at diagnosis, proportions of girls and boys, and 

immunophenotypes in the drug-sensitive and drug-resistant groups for each 

antileukemic agent are summarized in Table 2 in the Supplementary Appendix. 

 

 
Prediction of sensitivity and resistance with the use of differentially expressed 
genes 

Unsupervised hierarchical clustering, which groups patients according to the 

predominant similarities in gene expression, did not cluster patients according to their 

resistance to any of the four antileukemic agents. Rather, patients were clustered 

predominantly according to immunophenotype or ALL genetic subtype (Figure 1 in the 

Supplementary Appendix).24 Because cases of T-lineage ALL have a strong gene-

expression signature, subsequent analyses were performed with the use of all samples 

or only the samples of B-lineage ALL (Table 2 in the Supplementary Appendix). At 28, 

the number of cases of T-lineage ALL was too small for a separate analysis. The false 

discovery rate was higher for daunorubicin than for the other three drugs. For all drugs, 

the false discovery rates were lower in the B-lineage ALL group than in the total group 

and highest for daunorubicin (Table 3 in the Supplementary Appendix). Using the top 

30, 50, and 100 discriminating genes for each drug yielded predictive accuracies of 67 

to 73 percent. For B-lineage ALL, the estimated predictive accuracies were higher, 

ranging from 71 to 76 percent (Table 5 in the Supplementary Appendix). 
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Figure 1. Distribution of the Drug Concentrations Lethal to 50 Percent of Primary Leukemia Cells (LC50) 
in the Study Group and in the Larger Population of Children with ALL. The study group comprised 173 

patients whose leukemia-cell samples were selected for gene-expression analysis from the total group of 

approximately 700 patients whose ALL blasts had been assessed at diagnosis for sensitivity to a panel of four 

antileukemic agents. The distribution of LC50 values between the study group and the corresponding total group 

did not differ significantly for any of the drugs:  P=0.89 for prednisolone, P=0.63 for vincristine, P=0.89 for 

asparaginase, and P=0.22 for daunorubicin (by the chi-square test). 

 

Supervised clustering and principal-component analysis 

The number of genes used to build drug-resistance models for each antileukemic agent 

was based on the false discovery rate and predictive accuracy (Tables 3, 4, and 5 in 

the Supplementary Appendix). This determination resulted in 172 probe sets 

corresponding to 124 unique genes and 28 complementary DNA clones (some genes 

are represented on the array by multiple probe sets) that were differentially expressed 

in sensitive and resistant B-lineage ALL. This included 42 gene-probe sets for 

prednisolone, 59 for vincristine, 54 for asparaginase, and 22 for daunorubicin. 

Hierarchical clustering with the use of these probe sets correctly assigned the drug-

sensitivity status (as sensitive or resistant) of 66 of 74 cases with respect to 

prednisolone, 84 of 104 with respect to vincristine, 83 of 106 with respect to 

asparaginase, and 86 of 105 with respect to daunorubicin (Figure 2) (Table 4 in the 

Supplementary Appendix). Similarly, principal-component analyses correctly grouped 

samples from most patients into the resistant or sensitive cluster for each of the four 

antileukemic agents (Figure 2). Hierarchical clustering and principal-component 
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analyses involving all 173 patients gave similar results (Figure 3 and 4 in the 

Supplementary Appendix). The probe-set identification, gene names, annotations, and 

the gene-expression ratio in resistant as compared with sensitive leukemia cells for 

discriminating genes are shown for each drug in Figures 5, 6, 7, and 8 (B-lineage ALL) 

and 9, 10, 11, and 12 (B-lineage and T-lineage ALL combined) in the Supplementary 

Appendix. 

 

Figure 2. Results of Supervised Hierarchical-Clustering and Principal-Component Analyses with the Use 
of Genes That Discriminate between Drug-Resistant and Drug-Sensitive B-Lineage ALL with Respect to 
Prednisolone, Vincristine, Asparaginase, and Daunorubicin.  The Wilcoxon rank-sum test and t-test were 

used to identify genes that were differentially expressed in sensitive and resistant ALL (P<0.001). Each column 

represents an ALL sample, labeled according to whether it was sensitive (green) or resistant (red) to a given 

drug, and each row represents a probe set. The "heat" maps on the left side of the figure indicate a high (red) or 

a low (green) level of expression relative to the number of standard deviations from the mean. The three-

dimensional plots on the right show three principal components based on the significant discriminating genes for 

each drug. Each circle represents a patient with leukemia; red circles indicate those with drug-resistant ALL, and 

green circles those with drug-sensitive ALL. 
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Resistance genes, combined gene-expression scores, and treatment outcome 

For the 173 patients treated according to the Dutch and German protocols, the median 

follow-up was 4.2 years; 132 patients remained in continuous complete remission, 40 

patients relapsed, and 1 patient had a second cancer, at which time data on this patient 

were censored. A high combined gene-expression score indicative of resistance to the 

four drugs was associated with a significantly increased risk of relapse (P=0.001) 

(Figure 3A). The combined drug-resistance gene-expression score also predicted the 

outcome of treatment in a multivariate analysis that included the patient’s age, ALL 

genetic subtype, ALL lineage, and leukocyte count at diagnosis (hazard ratio for 

relapse with a high score as compared with a low score, 3.0; P=0.027) (Table 1). 

 
Table 1. Multivariate proportional-hazards analysis of the risk of relapse. 

Study cohort (N=173) Validation cohort (N=98) 
Variable N HR 95% CI P-value N HR 95% CI P-value 
Age         
    1-10 years 126 1.0*   62 1.0*   
    <10 years 0    7 6.48 0.60-69.79 0.12 
    >10 years 47 1.37 0.68-2.75 0.37 29 7.61 1.23-46.95 0.029 
White-cell count         
    <10/nL 36 1.0*   25 1.0*   
    10-49/nL 68 0.84 0.30-2.34 0.74 27 1.93 0.24-15.15 0.53 
    50-100/nL 28 0.97 0.28-3.35 0.96 20 12.02 1.30-110.79 0.028 
    >100/nL 39 2.74 0.92-8.12 0.07 26 8.35 0.84-83.11 0.07 
ALL subtype         
    B-other 46 1.0*   71 1.0*   
    BCR-ABL 5 2.08 0.56-7.63 0.27 9 8.99 2.33-34.7 0.002 
    E2A-PBX1 8 1.75 0.47-6.52 0.40 14 0.53 0.07-4.17 0.69 
    Hyperdiploid# 3 13.63 2.98-62.27 0.001 51 0.75 0.26-2.18 0.81 
    MLL-AF4 43 0.13 0.03-0.58 0.007 5 3.92 0.59-26.2 0.81 
    TEL-AML1 40 0.34 0.09-1.24 0.10 71 0.83 0.20-3.35 0.94 
    T-lineage 28 0.63 0.24-1.66 0.35 36 3.40 1.25-9.28 0.15 
Combined drug-resistance 
    gene-expression score 

       

    Sensitive (<4.7) 60 1.0*   29 1.0*   
    Interm.(4.7-5.6) 56 2.58 0.97-6.87 0.07 48 4.00 0.58-27.73 0.16 
    Resistant (>5.6) 57 3.00 1.13-7.96 0.027 21 11.85 1.51-93.12 0.019 

 N: number of patients, HR: hazard ratio, CI: confidence interval, *: this group served as the reference group to   
 calculate the ratio, #: Cytogenetic analysis revealed more than 50 chromosomes, ₤: COALL: MLL and E2A  
 rearranged, St. Jude: MLL-AF4 and E2A-PBX1 
 

The combined gene-expression score was tested in an independent cohort of 98 U.S. 

patients who had been treated with these four drugs, but according to a different 

protocol. The median follow-up of these patients was 7.0 years; 17 patients relapsed, 9 

had competing events (7 had second cancers, and remission failed in 2), and 72 

remained in continuous complete remission. As in the training set, a high combined 

drug-resistance gene-expression score was associated with a significantly increased 

risk of relapse (P=0.003) (Figure 3B). When the patient’s age, genetic subtype of ALL, 

ALL lineage, and leukocyte count at diagnosis were included in a multivariate analysis, 
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a high combined drug-resistance gene-expression score was independently associated 

with a higher probability of relapse than was a low score (hazard ratio, 11.85; P=0.019) 

(Table 1). 

 

 

 
 
Figure 3. Kaplan–Meier Estimates of Disease-free Survival among 173 Patients in the Original Study 
Group (Panel A) and 98 Patients in the Validation Cohort (Panel B), According to Whether the Pattern of 
Gene Expression Indicated Cellular Resistance or Sensitivity to the Four Antileukemic Agents. In each 

panel, patients are grouped according to their combined drug-resistance gene-expression scores for 172 probe 

sets for prednisolone, vincristine, L-asparaginase, and daunorubicin. The 33 percent with the lowest score 

(indicating sensitivity), the 33 percent with an intermediate score (indicating an intermediate level of resistance), 

and the 33 percent with the highest score (indicating resistance) are shown. 
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Ontology classification of discriminating genes 

Genes that could be used to identify B-lineage ALL that was resistant to each 

antileukemic agent were grouped into functional categories according to the Gene 

Ontology database (Figure 4).  
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Figure 4. Gene ontology (GO) functional classification of genes that discriminated between drug-
sensitive and drug-resistant B-lineage ALL. The functional GO classification of genes identified as 

discriminating B-lineage ALL cells that are resistant to each of the antileukemic agents, as compared with the 

entire genome as represented by all probe sets on the U133A GeneChip (222,283 probe sets, 12,893 with GO 

annotation). Functional categories that are overrepresented in the probe sets, as compared with the entire 

genome, are indicated by an asterisk (P<0.05 by Fisher’s exact test). 
 

As compared with the entire array, the 42 gene-probe sets related to prednisolone 

sensitivity had a higher percentage of genes involved in carbohydrate metabolism (25 

percent vs. 11 percent, P=0.039). As compared with the entire array, the gene-probe 
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sets related to vincristine sensitivity had a higher percentage of genes involved in 

nucleic acid metabolism (39 percent vs. 23 percent, P=0.021), and the gene-probe sets 

related to L-asparaginase sensitivity had a higher percentage of protein metabolism 

genes (53 percent vs. 20 percent, P<0.001). 

 
Genes previously linked with drug resistance or prognosis in ALL 
Of the 124 differentially expressed genes, to our knowledge 121 have not previously 

been linked to resistance to the four agents investigated. Only three genes for which 

results were significant in our analyses (RPL6, ARHA, and SLC2A14) have previously 

been associated with resistance to doxorubicin (RPL631 and ARHA32) or vincristine 

(SLC2A1433). Other genes previously associated with drug resistance or prognosis 

were not associated with sufficient statistical significance (i.e., P<0.001) for inclusion in 

our models (Tables 4 and 7 in the Supplementary Appendix). 

 

DISCUSSION 

We have identified genes that are differentially expressed in ALL cells with resistance 

to four antileukemic drugs and have shown that the pattern of expression of these 

genes is related to the outcome of treatment. The expression of 172 gene-probe sets 

(representing 124 unique known genes and 28 complementary DNA clones) in primary 

B-lineage leukemia cells was associated with resistance to prednisolone (42 probe 

sets), vincristine (59 probe sets), L-asparaginase (54 probe sets), and daunorubicin (22 

probe sets). Of these 124 genes, to our knowledge 121 have not previously been 

associated with resistance to the four agents. Twelve other genes that have previously 

been associated with drug resistance or prognosis in ALL were differentially expressed 

in sensitive and resistant ALL but not at the level required for inclusion in our models 

(P<0.001). No universal cross-resistance gene was identified, since no single gene was 

associated with resistance to all four drugs. Discriminating genes belong to numerous 

functional groups, and specific functional categories were significantly overrepresented 

for some antileukemic agents (Figure 4). These findings document that resistance to 

mechanistically distinct antileukemic agents is associated with the expression of 

different functional groups of genes and support the use of combination chemotherapy 

for cancer treatment. 

 Our findings point to previously unrecognized potential targets for new agents 

to augment the efficacy of current chemotherapy for ALL. For example, in prednisolone-

resistant ALL there was overexpression of the anti-apoptosis gene MCL1 and 
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underexpression of several transcription-associated genes (e.g., SMARCB1, PRPF18, 

and CTCF), in L-asparaginase-resistant ALL there was overexpression of several 

ribosomal protein genes (e.g., RPL3, RPL4, RPL5, RPL6, and RPL11), and in 

vincristine-resistant ALL there was altered expression of cytoskeleton and extracellular-

matrix genes (e.g., TMSB10, PDLIM1, and DSC3). It will be important to determine 

whether modulation of the proteins encoded by these genes will enhance treatment 

efficacy in patients with drug-resistant ALL. 

 It is noteworthy that the gene-expression signatures associated with resistance 

to individual antileukemic agents were also related to the response to treatment. The 

robustness of these signatures was validated in an independent population of patients 

who were treated with these same drugs, but in a different country and according to a 

different protocol. In a multivariate analysis that included the patient’s age, ALL genetic 

subtype, ALL lineage, and leukocyte count, the combined gene-expression score 

remained significantly related to the risk of relapse in both the training and validation 

populations (Table 1). This indicates that the expression of genes associated with drug 

resistance has an independent influence on the outcome of treatment in ALL. Because 

genes associated with sensitivity or resistance differ for each antileukemic agent, our 

findings point to strategies whereby one could modulate specific components of therapy 

to which an individual patient is resistant. 
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ABSTRACT 

The discovery of new prognostic genes may result into better risk classification and improve 

treatment of children with acute lymphoblastic leukemia (ALL). Recently, high expression of a 

novel gene named OPAL1 (Outcome Predictor in Acute Leukemia) was reported as a new 

risk factor associated with favorable prognosis in ALL. Therefore, we investigated whether 

OPAL1 was of prognostic importance in two independent cohorts of children treated on 

COALL-92/-97 (N=180) and on St. Jude (SJCRH) Total 13 protocols (N=257). We observed 

a 2.8-fold higher expression of OPAL1 in TEL-AML1-positive compared to TEL-AML1-

negative B-lineage ALL in both cohorts (P<0.0001). High OPAL1 expression was not 

consistently associated with other favorable subtypes defined by age and white blood cell 

count at diagnosis (WBC), gender, immunophenotype or genetic abnormalities. OPAL1 

expression was not associated with increased in vitro sensitivity to prednisolone, vincristine, 

L-asparaginase or daunorubicin. In addition, OPAL1 expression was not independently 

related to induction failure or long-term clinical outcome (DFS) in the total group of patients or 

in specific subgroups, such as T-lineage, TEL-AML1-positive and TEL-AML1-negative B-

lineage ALL in either cohort. In conclusion, OPAL1 gene expression is not an independent 

prognostic marker for childhood ALL treated on contemporary COALL and St. Jude 

protocols, and its previously reported prognostic relevance therefore appears to be 

treatment-specific. 

 

INTRODUCTION 

The prognosis of childhood acute lymphoblastic leukemia (ALL) has improved remarkably 

over the past four decades due to the introduction of effective risk-adapted combination 

chemotherapies. Conventional factors used to stratify patients are clinical and biological 

parameters such as age at diagnosis, initial white blood cell count (WBC), 

immunophenotype, the presence of specific genetic abnormalities1 and early response to 

treatment.2 Newer approaches include in vitro drug resistance profiles,3 and measurement of 

minimal residual disease after induction of initial remission.4,5 

 The use of DNA microarrays enables investigators to simultaneously assess the 

expression of thousands of genes. In previous studies in childhood ALL, microarray analysis 

was successfully applied to identify known genetic and phenotypic subtypes,6-8 as well as 

treatment-specific changes in gene expression9 and genes related to drug resistance.10 

Recently, investigators used this technology to identify three novel genes, referred to as G0, 

G1 and G2, that were highly predictive of outcome in 254 patients with childhood ALL 

enrolled in Pediatric Oncology Group (POG) treatment protocols.11-13 The top discriminating 
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gene, G0, was fully cloned and named OPAL1 (Outcome Predictor in Acute Leukemia 1). 

The function of OPAL1 is currently unknown, although the presence of a cytochrome c-like 

heme-binding site and a transmembrane domain suggests OPAL1 may be involved in the 

mitochondrial electron transport chain.14 We initially identified this gene as one of the top 

ranked class discriminating genes that was over-expressed in ALL cells positive for the TEL-

AML1 gene fusion.7,8 In the POG study, OPAL1 was expressed at higher levels in ALL 

subgroups with a favorable prognosis (i.e., ALL with t(12;21)/TEL-AML1, normal and 

hyperdiploid karyotypes) compared to a subgroup with an unfavorable prognosis (i.e., ALL 

with t(9;22)/BCR-ABL) and another subgroup previously associated with an unfavorable 

prognosis in (i.e., ALL with t(1;19)/E2A-PBX1).12 High OPAL1 expression was shown to be 

highly predictive of a favorable outcome in the total ALL group, but also in ALL subgroups, 

such as T-lineage ALL and t(12;21)/TEL-AML1-positive B-lineage ALL. Finally, low OPAL1 

was significantly related to induction failures.12 

 These provocative results based on one single gene prompted us to analyze in 

depth the expression pattern of OPAL1 in independent cohorts of children with newly 

diagnosed ALL treated on protocols of the Cooperative Study Group for Childhood Acute 

Lymphoblastic Leukemia (COALL, N=180) and St. Jude Children’s Research Hospital (St. 

Jude, N=257). OPAL1 expression was extensively investigated in T-lineage ALL, TEL-AML1-

positive and hyperdiploid B-lineage ALL as well as other prognostic factors were considered. 

In addition, OPAL1 expression was tested as a predictor of clinical outcome as well as its 

relation to in vitro resistance to four widely used drugs in the treatment of childhood ALL, i.e. 

prednisolone, vincristine, L-asparaginase and daunorubicin. 

 
MATERIALS AND METHODS 
 
Patient samples  

Bone marrow and peripheral blood samples were obtained after informed consent from 

children with newly diagnosed ALL who were enrolled on either the Cooperative Study 

Group for Childhood Acute Lymphoblastic Leukemia protocols COALL-92/97 (N=180)10,15 

or the St. Jude Children’s Research Hospital (St. Jude) protocols Total Therapy 13A 

(N=99) and B (N=158).7,8,16 Leukemic blasts were enriched from peripheral blood or 

diagnostic bone marrow aspirates as previously described.7,8 For in vitro drug sensitivity 

assays, mononuclear cells were isolated by sucrose density gradient centrifugation 

(Lymphoprep, density 1.077 g/ml; Nycomed Pharma, Oslo, Norway) within 24 hours after 

sampling. Cells were resuspended in culture medium consisting of RPMI 1640 (Dutch 
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modification without L-glutamine; Gibco BRL, Life Technologies, Breda, The Netherlands) 

supplemented with 20% fetal calf serum (FCS; Integro, Zaandam, The Netherlands), 2 mM 

L-glutamine, 200 µg/ml gentamycin (Gibco BRL) 100 IU/ml penicillin, 100 µg/ml 

streptomycin, 0.125 µg/ml fungizone (Gibco BRL), and 5 µg/ml insulin, 5 µg/ml transferrin 

and 5 ng/ml sodium selenite (ITS media supplement; Sigma-Aldrich Chemie B.V., 

Zwijndrecht, the Netherlands). If necessary, leukemic samples were further enriched to 

more than 90% leukemic blasts by removing non-malignant cells with immunomagnetic 

beads (DynaBeads, Dynal Inc., Norway).17  
 

In vitro drug resistance assay  

Responsiveness of leukemia cells to prednisolone (PRED; Bufa Pharmaceutical Products, 

Uitgeest, The Netherlands), vincristine (VCR; TEVA Pharma, Mijdrecht, The Netherlands), 

L-asparaginase (ASP; Paronal, Christiaens, Breda, The Netherlands), and daunorubicin 

(DNR; Cerubidine, Rhône-Poulenc Rorer, Amstelveen, The Netherlands) was determined 

by the 4-day in vitro MTT drug resistance assay.3 The concentration ranges tested for 

these drugs were: PRED: 0.008-250 µg/ml; VCR: 0.05-50 µg/ml; ASP: 0.003-10 IU/ml and 

DNR: 0.002-2.0 µg/ml. The drug concentration lethal to 50% of the ALL cells (LC50 value) 

was used as the measure of cellular drug resistance. The cut-off LC50 values used to 

assign cases as sensitive or resistant to each agent, were those previously shown to be 

associated with a good or poor treatment outcome in children with ALL.3,18 

 
Real-time quantitative PCR   

The mRNA expression levels of OPAL1 and glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) as a reference, were quantified using real-time PCR analysis on the ABI Prism 

7700 sequence detection system as previously described.19 PCR reactions were performed 

with an amplification efficiency of more than 95%. The comparative cycle time (Ct) value of 

the target PCR was normalized by subtracting the Ct value of GAPDH (∆Ct).20 Primer 

sequences used for OPAL1 (NM_017787, chromosome 10) were: sense, 5’-TCCTTTTGGG 

TCTTAGACAG-3’ and antisense, 5’-TTGGCAAAAACCTGAAAT-3’ and the probe sequence: 

5’-ACAGTCTCAGTGCTGCAACTACTACTATGA-3’. We observed a significant correlation 

between OPAL1 mRNA expression assessed by real-time quantitative PCR and microarray 

(rs=0.59, P=0.03, N=14). 
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Microarray analysis 

Total RNA was hybridized to U133A (COALL) and U95Av2 (St. Jude) GeneChip® 

oligonucleotide microarrays, according to manufacturer’s protocol (Affymetrix, Santa Clara, 

CA, USA). Data analysis was performed as described before and the full gene-expression 

profiles of the leukemic samples included in this present study were previously 

published.8,10 Briefly, gene expression values were scaled to the target intensity of 2500, 

using Affymetrix Microarray Suite® (MAS) 5.0 software and log2-transformed. We used the 

U133A probe set 202808_at, which covers the same DNA sequence (99.8% sequence 

identity) as the Affymetrix U95A.v2 GeneChip® probe set 38652_at used by Mosquera-

Caro et al.,8,12 to analyze the expression of OPAL1. More information on these probe sets 

and its target sequences is available at Affymetrix® NetAffx https://www.affymetrix.com 

OPAL1 expression determined with the U133A and the U95Av2 chip was available for a 

subset of 92 St. Jude patients (rs=0.58, P<0.0001, Spearman rank correlation).   

 

Statistics 

The duration of disease-free survival (DFS) was defined as the time from diagnosis until 

the date of leukemia relapse (event), the last follow-up or secondary events other than 

relapse (censored). DFS curves were calculated according to the Kaplan-Meier method or 

a modification thereof in the presence of competing events (St. Jude)21,22 Since no cut-off 

for OPAL1 expression was provided by Mosquera-Caro et al.,12 we performed survival 

analysis in two different ways; OPAL1 was treated either as a continuous variable or as a 

categorical variable (OPAL1 expression was divided into 3 groups by the 33rd  and 67th 

percentile of expression (i.e., low [bottom third], intermediate [intermediate third] and high 

[top third]). Univariate analysis of the predictive value of OPAL1 expression in three groups 

(2 degrees of freedom, 2 d.f.) was analyzed by log-rank test (COALL) and adjusted for 

competing events (St. Jude) whereas a Cox proportional hazard regression model 

(adjusted for competing events)23 was used in univariate and multivariate analyses to 

assess the association of OPAL1 expression as a continuous variable with DFS and other 

known prognostic factors. The model for multivariate analysis included conventional risk 

factors (i.e., WBC, age, immunophenotype and genetic abnormalities). Differences in 

OPAL1 expression between ALL subgroups were tested using the Mann-Whitney U test. 

Spearman’s correlation test was used to compare the expression of OPAL1 by microarray 

with the expression data obtained by real-time quantitative-PCR and to relate OPAL1 

expression to in vitro drug resistance. All statistical tests were performed at a two-tailed 

significance level of 0.05. 
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RESULTS 

The association of OPAL1 expression with prognostic features in ALL (i.e., age, white 

blood cell count (WBC), immunophenotype and genetic subtype) was tested. 

 
Table 1. OPAL1 expression in prognostic subgroups of ALL at diagnosis OPAL1 expression was compared in 

prognostic ALL subgroups defined by age, white blood cell count (WBC), gender, immunophenotype and genetic 

subtype in children treated on A. COALL and B. St. Jude protocols. Indicated are the number of patients (N), median 

log2 transformed scaled OPAL1 expression (OPAL1) in arbitrary units, the ratio of OPAL1 expression in non-

reference versus reference (*) group (fold-difference in scaled linear OPAL1 expression signal) and P-values 

determined by the Mann-Whitney U test.  
 

A. COALL/DCOG cohort B. St. Jude cohort 
Variable N OPAL1 Ratio P-value N OPAL1 Ratio P-value 
Age         
    <10 years 131 10.96 1.0*  181 12.29 1.0*  
    >10 years 49 10.75 0.86 0.39 76 12.08 0.87 0.001 
White-cell count         
    <10/nL 43 10.92 1.0*  90 12.23 1.0*  
    10-49/nL 67 10.78 0.91 0.97 90 12.38 1.11 0.42 
    50-100/nL 28 10.97 1.04 0.93 40 12.29 1.05 0.88 
    >100/nL 42 10.97 1.04 0.76 47 11.99 0.85 0.023 
Gender         
    Female 104 10.92 1.0*  95 12.10 1.0*  
    Male 76 10.93 1.00 0.74 162 12.23 1.09 0.53 
ALL subtype         
    B-other 44 10.57 1.0*  71 11.90 1.0*  
    BCR-ABL 4 10.45 0.92 0.65 9 11.92 1.01 0.68 
    E2A₤ 9 10.78 1.16 0.58 14 11.83 0.96 0.95 
    Hyperdiploid# 40 10.52 0.97 0.37 51 12.12 1.17 0.006 
    MLL₤ 4 10.91 1.28 0.90 5 12.06 1.12 0.47 
    TEL-AML1 44 12.04 2.77 <0.001 71 13.38 2.79 <0.001 
    T-lineage 35 10.79 1.16 0.44 36 12.08 1.13 0.06 

 N: number of patients, HR: hazard ratio, CI: confidence interval, *: this group served as the reference group to   
 calculate the ratio, #: Cytogenetic analysis revealed more than 50 chromosomes, ₤: COALL: MLL and E2A  
 rearranged, St. Jude: MLL-AF4 and E2A-PBX1 
 

 

However, OPAL1 expression was not related to age, WBC or gender nor did it differ between 

B-lineage without genetic markers (B-other) and T-lineage ALL among COALL and St. Jude 

patients (Table 1) but its lower expression was related to age >10 years and leukocyte count 

>100/nL among St. Jude patients (Table 1B).  
We observed a 2.8-fold higher expression of OPAL1 in TEL-AML1-positive 

compared to TEL-AML1-negative B-lineage ALL in both the COALL and St. Jude cohorts 

(P<0.0001; Figure 1). OPAL1 expression did not consistently differ in both study groups for 

the other ALL subtypes examined (i.e., hyperdiploid, E2A-rearranged, MLL-rearranged or 

BCR-ABL-positive B-lineage ALL).  
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Figure 1. OPAL1 expression in different ALL subtypes. OPAL1 expression was compared in a total of 180 

children with ALL treated according to COALL protocols (A), and in a total of 257 children with ALL treated according 

to St. Jude protocols (B). OPAL1 expression is expressed in log2-transformed scaled arbitrary units (AU), the 

medians (horizontal lines), the 25th and 75th percentiles (boxes), the ranges (bars) and the outliers (open circles) are 

shown. **Indicates P<0.0001, determined by the Mann-Whitney U test.  

 

Because drug resistance is a major cause of treatment failure, we investigated 

whether OPAL1 expression was related to in vitro drug resistance to any of four drugs that 

form an integral component of contemporary chemotherapeutic protocols for children with 

ALL. No correlation was observed between in vitro drug resistance and OPAL1 expression 

for prednisolone (rs=0.00, P=0.99), L-asparaginase (rs=-0.02, P=0.81) and daunorubicin 

(rs=0.05, P=0.54). By contrast, vincristine resistance showed a significant correlation with 

OPAL1 expression (rs=0.34, P<0.0001) which was opposite from expected. This 

observation was concordant with 3.6-fold increased VCR-resistance of TEL-AML1-positive 

ALL compared to nonTEL-AML1 precursor B-lineage ALL (P<0.0001; LC50=0.697 ug/ml 

and 0.193 µg/ml, respectively). 
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The relation between OPAL1 expression and treatment outcome was 

subsequently investigated in both cohorts. Of the 180 patients that were part of the COALL 

studies 92 and 97, 42 had disease-related events and 6 had competing events (2 

secondary malignancies and 4 deaths in remission). Of the 257 patients included in the St. 

Jude study Total Therapy 13A and B, 42 had disease-related events, 20 had competing 

events (16 secondary malignancies and 4 deaths in remission). In the group of COALL 

patients, OPAL1 expression was significantly associated with disease-free survival (DFS) 

when OPAL1 expression was divided into 3 equally sized groups based on the individual 

rank in expression (2 d.f., P=0.01; Figure 2A) but not when OPAL1 expression was treated 

as continuous variable (P=0.45). In contrast to COALL patients, but as reported 

previously,11-13 OPAL1 expression was significantly associated with DFS of St. Jude 

treated patients both when divided into three equally sized groups (2 d.f.: P=0.002; Figure 

2B) and when used as continuous variable (P<0.0001). However, from the order of both 

DFS-curves of COALL and St. Jude it becomes clear that the predictive value of OPAL1 is 

not biological relevant since the order for favorable, intermediate and unfavorable outcome 

is high-low-intermediate expression of OPAL1, respectively (Figure 2). 
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Figure 2. OPAL1 versus prognosis in children with newly diagnosed ALL. Disease-free survival (DFS) of A. 180 

children with newly diagnosed ALL treated on COALL 92/97 and B. 257 newly diagnosed children with ALL treated 

on St. Jude Total 13 protocols was estimated according to Kaplan-Meier analysis adjusted for competing events. 

Patients were grouped based on their rank in OPAL1 expression in the total group of each cohort (i.e., low [bottom 

third], intermediate [intermediate third] and high [top third]).  
 

The clinical value of OPAL1 expression was further studied within major prognostically 

important ALL subtypes (Table 2). Firstly, within T-lineage ALL and B-lineage ALL negative 

for the TEL-AML1 fusion transcript, we were unable to confirm an association between high 
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OPAL1 expression and a favorable DFS in either treatment cohort. In both cohorts even 

the opposite (although statistically non-significant) correlation was observed in T-ALL, i.e. a 

low OPAL1 expression correlated with a favorable DFS (Table 2). This result is in 

disagreement with our results for the total group of patients (Figure 2) as well as those 

obtained for the initial POG cohort11-13 where high OPAL1 expression was found to be a 

favorable outcome predictor in T-ALL patients.  

 
Table 2. Predictive value of OPAL1 in pediatric ALL. Overview of 4-year disease-free survival rates for low, 

intermediate and high OPAL1 expression (division based on cut-offs as established in COALL and St. Jude study 

cohorts) in genetic subgroups of pediatric ALL. A. COALL patients and B. St Jude patients. P-values are derived from 

Cox univariate analysis using OPAL1 expression as continuous variable. 

A.        COALL     B.         St. Jude 
Variable N 4-yr DFS 

with SE (%) 
P-value* N 4-yr DFS 

with SE (%) 
P-value* 

Total group   0.45   <0.0001 
    low 60 78 ± 6  85 86 ± 4  
    intermediate 60 63 ± 7  86 82 ± 4  
    high 60 87 ± 5  86 96 ± 2  
Non-TEL-AML1   0.84   0.35 
    low 48 75 ± 5  70 87 ± 4  
    intermediate 36 67 ± 9  63 90 ± 4  
    high 17 77 ± 14  17 94 ± 6  
TEL-AML1   0.61   0.006 
    low 2 n.d.  1 n.d.  
    intermediate 6 83 ± 15  3 67 ± 33  
    high 36 97 ± 3  67 97 ± 2  
Hyperdiploid   0.16   0.0005 
    low 20 95 ± 5  15 93 ± 7  
    intermediate 15 92 ± 8  27 89 ± 6  
    high 5 100  9 100 ± 0  
B-other   0.55   0.0001 
    low 21 67 ± 14  70 87 ± 4  
    intermediate 12 42 ± 16  65 89 ± 4  
    high 11 60 ± 22  84 96 ± 2  
T-lineage   0.06   0.61 
    low 10 90 ± 12  14 79 ± 12  
    intermediate 18 47 ± 14  20 60 ± 11  
    high 7 57 ± 37  2 n.d.  

*: P-value Cox univariate analysis adjusted for competing events, OPAL1 as continuous variable, n.d.=not detected 

 

Among TEL-AML1-positive B-lineage ALL cases treated in the COALL protocols, 

OPAL1 expression was not significantly associated with DFS (continuous variable: 

P=0.61). When all patients treated on the St. Jude protocols (Total Therapy 13A and 13B) 

were analyzed, the association between high OPAL1 expression and higher DFS was 

significant when the expression was analyzed as a continuous variable (P=0.006). 

Interestingly, OPAL1 expression treated as continuous variable had no prognostic 

significance among the 37 patients treated in study 13A (P=0.32), but was significant 

among the 34 patients treated in study 13B (P=0.0002). Notably, all 37 patients except one 
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in 13A, as compared to only 10 of the 34 in 13B TEL-AML1 positive patients were treated 

according to the high-risk arm of the respective protocol, suggesting that the prognostic 

impact of OPAL1 expression may be treatment dependent. 

 
Table 3. Prognostic value of OPAL1 expression in ALL Cox multivariate proportional hazards analysis computed 

with known prognostic factors (i.e., age, white blood cell count (WBC), immunophenotype and genetic subtype). 

OPAL1 expression was treated as continuous variable. Hazard ratios (HR), 95% confidence intervals (95% CI) and 

P-values are shown. 
 

COALL cohort St. Jude cohort 
Variable N HR 95% CI P-value N HR 95% CI P-value 
Age         
    <10 years 131 1.0*   181 1.0*   
    >10 years 49 1.24 0.64-2.41 0.52 76 1.27 0.63-2.54 0.50 
White-cell count         
    <10/nL 43 1.0*   90 1.0*   
    10-49/nL 67 0.55 0.20-1.54 0.25 80 1.02 0.43-2.38 0.97 
    50-100/nL 28 0.97 0.33-2.88 0.96 40 0.64 0.18-2.29 0.50 
    >100/nL 42 1.59 0.58-1.35 0.36 47 1.06 0.38-3.00 0.92 
ALL subtype         
    B-other 44 1.0*   71 1.0*   
    BCR-ABL 4 2.38 0.51-11.14 0.27 9 8.99 2.33-34.70 0.001 
    E2A₤ 9 0.97 0.28-3.40 0.96 14 0.53 0.07-4.17 0.55 
    Hyperdiploid# 40 0.15 0.03-0.65 0.010 51 0.75 0.26-2.18 0.60 
    MLL₤ 4 9.28 2.37-36.4 0.001 5 3.92 0.59-26.2 0.16 
    TEL-AML1 44 0.18 0.06-0.68 0.010 71 0.83 0.20-3.35 0.79 
    T-lineage 35 0.79 0.33-1.93 0.61 36 3.40 1.25-9.28 0.020 
OPAL1         
    expression 180 1.02 0.77-1.34 0.90 257 0.68 0.42-1.12 0.13 

 N: number of patients, HR: hazard ratio, CI: confidence interval, *: this group served as the reference group to   
 calculate the ratio, #: Cytogenetic analysis revealed more than 50 chromosomes, ₤: COALL: MLL and E2A  
 rearranged, St. Jude: MLL-AF4 and E2A-PBX1 
 

 

Among hyperdiploid cases, higher expression of OPAL1 was significantly related 

to a favorable prognosis in St Jude (P = 0.0005; Table 2) but not in COALL patients 

(P=0.16). 

No association with induction failure was found in either COALL or St. Jude 

cohort. When known risk factors (i.e. age, WBC, immunophenotype and genetic subtypes) 

were included in a multiple regression model, OPAL1 expression was no longer predictive 

of prognosis in ALL in the COALL as well as in the St. Jude study groups (P>0.1, 

continuous variable; Table 3).  

 

DISCUSSION 
Recently, we identified expression signatures associated with cellular drug resistance and 

outcome in B-lineage ALL.10 In this study, OPAL1 was not among the top 124 most 

discriminating genes for cellular drug resistance that were associated with outcome. This 

 142 



Prognostic value of OPAL1 expression in pediatric ALL 
 

per se does not exclude a predictive role for OPAL1 in childhood ALL, as this gene may be 

significant at a lower level than the cut-off P-values used for the construction of the 

resistance signature models, or may directly be related to treatment outcome as the 

selection of genes in our earlier study was focused on in vitro drug resistance profiles and 

not directly on outcome. Therefore, we analyzed the expression patterns of OPAL1 in 

leukemic cells of two independent groups of 180 COALL and 257 St. Jude patients at initial 

diagnosis of ALL and correlated the expression of this gene to age, WBC, gender, 

immunophenotype, genetic subtype, in vitro drug resistance and clinical outcome. 
We observed a 2.8-fold higher OPAL1 expression in children with TEL-AML1-

positive B-lineage ALL uniformly in both cohorts. This is consistent with the higher OPAL1 

levels observed in TEL-AML1-positive cases as initially reported by our study8 and by 

Mosquera-Caro et al.12 OPAL1 expression was not consistently elevated in ALL with 

normal karyotypes or in hyperdiploid B-lineage ALL samples which was in disagreement 

with the previous POG report.12 In addition, we were not able confirm the low levels of 

OPAL1 in ALL containing the BCR-ABL gene fusion, but the numbers of patients may be 

too small to detect a difference (N=4 [COALL], N=9 [St. Jude]). For the St. Jude patient 

group higher levels of OPAL1 were found in hyperdiploid ALL cells, and a relation was 

found for lower OPAL1 expression in patients older than 10 years and WBC greater than 

100/nL. OPAL1 expression was not increased in subgroups of COALL patients with a 

favorable prognosis (i.e., age less than 10 years, WBC less than 25/nL, female sex, 

hyperdiploidy, normal karyotype) except for TEL-AML1. Taken together, these data 

suggest that, in contrast to the observation made by Mosquera-Caro et al., OPAL1 was not 

consistently related to all subgroups with favorable prognosis.  

In vitro sensitivity to several drugs are related to favorable outcome.3,18,24,25 Based 

on the previously observed relation between high OPAL1 expression and favorable 

prognosis12,13 we tested the relation between high OPAL1 expression and in vitro drug 

sensitivity. However, in the present study we observed no relation between a high OPAL1 

expression and sensitivity to prednisolone, L-asparaginase and daunorubicin and a weak 

relation with vincristine resistance, which is more likely explained by TEL-AML1-positive 

ALL being more resistant to vincristine than OPAL1 expression being related to vincristine 

resistance. This indicates that OPAL1 is not a major determinant of cellular drug sensitivity, 

suggesting that its prognostic value (as seen in St. Jude treated patients only) may be 

associated with regrowth capacity of leukemic cells. More insight into the biological function 

of OPAL1 is needed to address this issue. 
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 We found no evidence of an association between low OPAL1 expression and 

worse outcome in COALL and St. Jude-protocol treated ALL patients of T-lineage and TEL-

AML1-negative B-lineage ALL. In T-lineage ALL the prognostic value of OPAL1 expression 

even was reversed (i.e., low [instead of high] expression of OPAL1 was linked to a 

favorable prognosis). The significant association for high OPAL1 expression and favorable 

disease-free survival in TEL-AML1-positive and hyperdiploid ALL patients treated at St. 

Jude was not consistent with these subgroups treated at COALL centers. In addition, the 

association was only significant for TELAML1-positive patients treated on the Total 13B 

protocol, where TEL-AML1-positive ALL were largely under-treated using low-risk therapy. 

These data suggest that OPAL1 expression may be prognostic in ALL containing the TEL-

AML1 gene fusion, but that this association is not independent of the treatment patients 

receive. Most importantly, the relationship of OPAL1 expression with disease-free survival 

was not independent of known risk factors (i.e., age, WBC and ALL subtype) in two 

independent cohorts of patients. 

In conclusion, OPAL1 expression is expressed at a higher level in TEL-AML1-

positive B-lineage ALL compared to other leukemic subtypes. However, we found no major 

evidence of elevated OPAL1 expression in other subgroups with a favorable prognosis nor 

did we consistently observe decreased OPAL1 expression in subgroups with an 

unfavorable prognosis. In addition, increased OPAL1 expression was not independently 

associated with in vitro drug sensitivity of COALL-treated children with ALL. Not 

considering other known risk factors, a predictive value of OPAL1 expression was only 

found in St. Jude treated patients and not in COALL patients. However, this predictive 

value was highly dependent of other known risk factors (as shown in multivariate analysis). 

This suggests that the predictive value previously reported for OPAL1 expression in 

childhood ALL may be related to the treatment given. The present data suggest that 

OPAL1 expression is not suitable as treatment-independent marker for risk stratification of 

children with ALL. 
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ABSTRACT 

Glucocorticoids are a key component of chemotherapeutic protocols used to treat 

childhood acute lymphoblastic leukemia (ALL) and both in vitro and in vivo glucocorticoid 

sensitivity are important prognostic factors in childhood ALL. We recently observed that 

enhanced expression of the glycolytic enzymes GAPDH and GLUT3 is related to in vitro 

prednisolone (PRED) resistance in pediatric B-lineage ALL.. In the present study, we 

demonstrate that PRED-resistance is linked to a higher glycolytic rate in ALL cell lines. 

Moreover, we show that the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) selectively 

sensitized PRED-resistant but not PRED-sensitive ALL cell lines to PRED-induced 

apoptosis. In conclusion, these data suggest that resistance to PRED is associated with an 

enhanced glucose metabolism in ALL. Chemotherapeutic intervention by targeting the 

glucose metabolism with agents such as 2-DG may offer a new strategy to sensitize 

leukemic cells to glucocorticoids.  

 

INTRODUCTION 

Prednisolone (PRED) is a member of the glucocorticoid class of hormones, which form a 

standard component of the treatment of childhood acute lymphoblastic leukemia (ALL).1 

Sensitivity of leukemic blasts to glucocorticoids is an important prognostic factor in 

childhood ALL. Children with a good in vivo PRED response, i.e. a reduction in peripheral 

blast count below 1,000 blasts/µl after 1-week prednisone monotherapy, have a significant 

better outcome than patients with a higher number of circulating blasts.1-4 In addition, 

various groups demonstrated a relation between in vitro PRED resistance at initial 

diagnosis and short- and long-term clinical outcome.5-7 Despite its clinical significance, the 

molecular basis of glucocorticoid resistance in childhood ALL is still poorly understood. 

 After administration to the patient’s blood, glucocorticoids enter the leukemic cells 

by passive diffusion and bind to the cytoplasmic glucocorticoid receptor. The resulting 

complex subsequently translocates to the nucleus where it triggers transactivation or 

transrepression of a wide array of target genes. Collectively this altered gene-expression is 

though to result in the induction of apoptosis in the leukemic cell.8,9 The causes of 

glucocorticoid resistance in pediatric ALL have been investigated at various levels between 

the entry of the glucocorticoids in the cell and the final induction of apoptosis.10 Current 

data suggest that the level of glucocorticoid receptor expression is lower in PRED resistant 

leukemic cells of patients, but this observation is presumably not the only explanation for 

PRED resistance in ALL.11-16 We previously observed less PRED-induced phosphatidyl 

serine exposure, mitochondrial membrane depolarization, caspase-3 activation and PARP 
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inactivation in PRED-resistant ALL cells, suggesting that PRED resistance is associated 

with a defect at the mitochondrial level in childhood ALL.17 Baseline expression of Bcl-2 

family members such as Bcl-2, Bcl-Xl, Bax so far have not been significantly been 

associated with glucocorticoid resistance in pediatric ALL.13,18-20 A notable exception is the 

anti-apoptotic Bcl-2 family member MCL1, which was overexpressed in PRED-resistant 

pediatric B-lineage ALL.21 Besides altered MCL1 expression, we recently demonstrated 

that both the glucose transporter 3 (GLUT3) and the glycolytic enzyme glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) were relatively overexpressed in PRED resistant 

leukemic cells of children with B-lineage ALL.21 Since drug resistance in malignant cells 

has previously been linked with an altered glucose metabolism22-24, we hypothesized that 

the high level expression of two glycolysis-associated genes may be indicative for 

increased glucose consumption in PRED resistant leukemic cells.  

 In the present study we show that PRED-resistant ALL cell lines have an 

increased glycolytic rate compared to PRED-sensitive ALL cell lines. Inhibition of glycolysis 

selectively sensitized PRED -resistant but PRED-sensitive ALL cell lines to PRED-induced 

apoptosis. We conclude from these data that resistance to PRED is functionally linked to 

an increased glycolytic rate in leukemic cells. This knowledge may point to new strategies 

to sensitize leukemic cells to glucocorticoids in clinical practice. 

 

MATERIALS AND METHODS 

 

Cell lines and culture 

The human T-lineage leukemic cell line Jurkat (ACC 282), and the human T-lineage 

leukemic cell line Molt4 (ACC 362) were obtained from the Deutsche Sammlung von 

Mikroorganismen und Zellkulturen GmbH (DSMZ, Braunschweig, Germany). The human 

precursor B-lineage leukemic cell line RS4;11 (CRL 1873) was obtained from the American 

Type Cell Culture Collection (ATCC, Manassas, VA, USA). The human precursor B-lineage 

leukemic cell line TOM-1 was a kind gift of Dr. H.B. Beverloo (Department of Clinical 

Genetics, Erasmus MC Rotterdam, the Netherlands).25 All cell lines were maintained in 

RPMI 1640 (Gibco BRL, Breda, the Netherlands) supplemented with 10% fetal calf serum 

(FCS; Integro, Zaandam, The Netherlands), 100 IU/ml penicillin, 100 µg/ml streptomycin 

and 0.125 µg/ml fungizone (PSF; Gibco BRL).  
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Drug-resistance assay 

The in vitro sensitivity of leukemia cells to prednisolone (PRED; Bufa Pharmaceutical 

Products, Uitgeest, The Netherlands) was determined in the MTT assay. Briefly, round-

bottomed 96-well microculture plates were filled with 20 µl of different dilutions of a drug 

and stored at –20ºC. Six concentrations of each drug were tested in duplicate. The range 

of final concentration ranged between 22 and 69,000 ug/ml for the PRED resistant (Jurkat 

and Molt4) and between 0.0073 and 2×10-7 µg/ml for PRED sensitive cell lines (RS4;11 

and TOM-1). To determine the effect of 2-deoxy-D-glucose (2-DG; Sigma Aldrich, 

Zwijndrecht, the Netherlands) on in vitro PRED cytotoxicity, the ALL cell lines were pre-

incubated for 1 hour prior to PRED exposure with 2-DG or an equivalent volume of culture 

medium (control) at 37ºC in a humidified incubator in 5% CO2. Aliquots of 80 µl cell 

suspension (2 x 106 cells/ml) were added to each well. Four wells contained 100 µl culture 

medium without drugs or cells for blanking the plate reader and 8 wells contained 100 µl 

culture medium with cells and without drug for measuring control cell viability. After 

incubating plates for 4 days at 37˚C in a humidified incubator in 5% CO2, 10 µl of 3-[4,5-

dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT, 5mg/ml; Sigma Aldrich) was 

added and the plates were incubated for an additional 6 hours. During these 6 hours, the 

living cells present in each well will reduce the yellow MTT tetrazolium salt to purple-blue 

formazan crystals. The formazan crystals were dissolved with 100 µl of 0.04 N HCl-

isopropanyl alcohol. The optical density (OD) of the wells, which is linearly related to cell 

number,28 was determined spectrophotometrically at a wavelength of 562 nm. Leukemic 

cell survival (LCS) was calculated by the equation: LCS = (ODday4 treated well/mean ODday4 

control wells) x 100%. MTT-Assay results were only used if the drug-free control wells 

contained ≥70% leukemic cells after 4 days of culture.  

 
Measurement of glycolytic rate 

Glycolytic rate was measured as conversion of [5-3H]glucose to 3H2O, as described 

previously.26,27  Briefly, 106 cells were washed in PBS and resuspended in 500 µl Krebs 

buffer [25 nM NaHCO3, 115 mM NaCl, 2mM KCl, 2 mM CaCl2, 1 mM MgCl2, and 0.25% 

BSA (pH 7.4)] containing 10 mM glucose and 1 µCi [5-3H]glucose, and incubated for 1 hour 

in 5% CO2 at 37°C.  For each sample an open tube containing 100 µl of cells and 50 µl 0.2 

N HCl was placed upright in a scintillation vial containing 1 ml H2O.  The vials were sealed 

and 3H2O produced as a result of glycolysis was allowed to equilibrate with H2O outside the 

tube for 24 hours at room temperature.  The amount of 3H retained within the tube, and the 
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amount that had diffused into the surrounding H2O by evaporation and condensation, were 

determined separately. [5-3H]glucose and 3H2O standards were included in each 

experiment, allowing calculation of the rate of conversion of [5-3H]glucose to 3H2O.26 

 
Measurement of the doubling time 

Logarithmically growing cells were exposed to low dose 2-DG (0.2 mM), high dose 2-DG 

(4.0/1.0 mM) or an equivalent volume of culture medium (control). Subsequently, the cell 

concentration was measured every 24 hours for 8 days by a Coulter Particle Analyzer 

(Beckman-Coulter, Inc., Fullerton, CA, USA). Cell viability was assessed by propidium 

iodide exclusion on a FACSCalibur flow cytometer (Becton Dickinson, San Jose, CA) and 

analyzed using CellQuest Pro software (Becton Dickinson). The cells lines were passed 

every 48 hrs back to a density of 1×106 cells/ml during the course of the experiment to 

prevent overgrowth. The doubling time was estimated with the numbers of viable cells from 

day 0 to day 8. All experiments were performed in duplicate.  

 
RESULTS 
 
Enhanced expression of glycolytic enzymes in PRED-resistant ALL cell lines 

ALL cell lines were selected for relative sensitivity and resistance towards prednisolone 

(PRED; Figure 1). Jurkat (median LC50: 7791 µg/ml) and Molt4 (median LC50: 8436 µg/ml) 

are in vitro both 2×106-fold more resistant to PRED than RS4;11 (median LC50: 0.00394 

µg/ml) and  1×107-fold more resistant to PRED than TOM-1 (median LC50: 0.00081 µg/ml).  
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Figure1. In vitro PRED responsiveness of 2 PRED-resistant and 2 PRED-sensitive ALL cell lines In vitro 

responsiveness to PRED was assessed by the MTT assay in 4 ALL cell lines as described in materials and methods. 

The presented data are the result of three independent experiments.  
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The rate of conversion of 5-3H glucose to 3H2O was examined in these ALL cell lines. The 

rate of glycolysis was enhanced in both PRED-resistant (129 and 132 nmol glucose/106 

cell/hr for Jurkat and Molt4 respectively) compared to both PRED-sensitive ALL cell lines 

(38 and 87 nmol glucose/106 cell/hr for RS4;11 and TOM-1 respectively; Figure 2).  
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Figure 2. Glycolytic rate in glucocorticoid (GC) resistant and sensitive ALL cell lines. All cells lines were 

maintained at log-phase during culture and the baseline glycolytic rate was measured in cells incubated with a 5-3H-

glucose tracer by the production of [3H]2O as described in "Materials and methods". Measurements of glycolytic rate 

were performed in triplicate. Individual bars represent the mean ± SD. 

 

To further establish the causal relation between an enhanced glycolytic rate and PRED 

resistance, we investigated whether the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) has 

the potential to sensitize PRED-resistant cell lines to PRED-induced apoptosis. 2-DG is a 

non-metabolizable glucose analog that interferes with glycolysis by competing with glucose 

for key enzymes in the glycolysis pathway.28 The effect of 2-DG is considered to be 

sensitizing when the observed effect of the combination of 2-DG and PRED is greater than 

the product of the effects of each individual agent. As shown in Figure 3, inhibition of 

glycolysis by 2-DG synergistically sensitized PRED-resistant but not PRED-sensitive ALL 

cells to PRED-induced apoptosis. 
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Figure 3. The effect of 2-DG on PRED-induced cytotoxicity. ALL cell lines were pre-incubated for 1 hour in 5% 

CO2 at 37°C with the indicated doses of 2-DG. The % of surviving cells was subsequently determined by the MTT 

assay as described in "Materials and methods". MTT results are show for 2760 µg/ml PRED for (A) the PRED-

resistant and 0.00011 µg/ml PRED and (B) for the PRED-sensitive ALL cell lines. Values shown are the mean ± SD 

of three independent experiments. 

 

The effect of 2-DG on doubling time in PRED-resistant cell lines  
Theoretically, the influence of 2-DG is expected to be the largest in rapidly dividing cell 

lines due to their higher energy consumption. As indicated in Figure 4 both PRED-resistant 

cell lines divide more rapidly than the PRED-sensitive cell lines. Since this might bias our 

results, we determined the effect of 2-DG on the doubling time of PRED-sensitive and 

PRED-resistant cell lines. Exposure to 2-DG increases the doubling time for the PRED-

sensitive RS4;11 cell line by ~2-fold (Figure 4). No doubling time could be determined for 

TOM-1 treated with 0.4 mM 2-DG due to the toxic effect of this 2-DG dosage on this cell 

line. In contrast to the PRED-sensitive cell lines, 2-DG exposure hardly affected the 

doubling time of both PRED-resistant cell lines (Figure 4). This excludes the possibility that 

the sensitizing effect of 2-DG in PRED-resistant ALL cell lines was due to interference of 

this compound with the proliferation rate of these cells.  
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Figure 4. The effect of 2-DG on doubling time. Cells lines were treated with low dose 2-DG (0.2 mM) or high dose 

2-DG (0.4 or 1.0 mM) or an equivalent volume of culture medium (control). The number of cells was counted every 24 

hrs for 8 days and the doubling time was based on the number of viable cells as described in "Materials and 

methods". Since TOM-1 stopped dividing after treatment with 0.4 mM 2-DG, this doubling time could not be 

determined (indicated by a ∞ in the graph). 

 

DISCUSSION 

Sensitivity of leukemic blasts to glucocorticoids is an important determinant of treatment 

response in childhood ALL. Identification of the possibilities to circumvent glucocorticoid 

resistance is therefore of clinical importance. We recently demonstrated overexpression of 

the glucose membrane transporter GLUT3 and the glycolytic enzyme glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) in PRED-resistant childhood B-lineage ALL.21 These 

data suggested that an enhanced glycolytic rate may be involved in PRED-resistance in 

childhood ALL. Glycolysis is the primary source of ATP generation in malignant cells under 

both hypoxic and normoxic conditions (the Warburg effect)29, suggesting that glycolysis 

plays a crucial role in the maintenance of the cancer cell.30,31 Enhanced glycolysis as 

demonstrated by increased accumulation of the glucose analog 18fluorodeoxyglucose is 

observed in virtually all invasive human tumors.30  

 In the present study, we demonstrated that PRED-resistant ALL cell lines have an 

increased glycolytic rate compared to PRED-sensitive cell lines. The non-hydrolysable 

glucose analog 2-DG selectively sensitized PRED-resistant leukemic cells to PRED. These 

findings imply enhanced glycolysis as one of the factors underlying PRED resistance in 

ALL. How can an increased glycolytic rate hamper PRED-induced apoptosis? The facts 

that glycolysis is the primary source of ATP in malignant cells and exposure of leukemic 

cell lines to genotoxic agents, including glucocorticoids, led to down-regulation of glycolytic 
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metabolism10,32-34 suggests that a decrease in cellular ATP levels is required for drug-

induced apoptosis to occur. In agreement with this hypothesis, maintenance of ATP 

production after treatment with genotoxic agents was associated with resistance to 

apoptosis in Fanconi anemia.35 Conversely, depletion of ATP by inhibition of glycolysis 

potently induced apoptosis in both solid36 and leukemic cell lines34,37 A recent study shed 

light on the mechanisms of ATP depletion-induced apoptosis in multidrug-resistant 

leukemic cells; inhibition of glycolysis led to a rapid dephosphorylation of the glycolysis-

apoptosis integrating molecule BAD38, relocalization of BAX to mitochondria, and massive 

cell death.39 Taken together these data suggest that the decreased apoptosis we 

previously observed in resistant ALL cells after exposure to PRED17 may be explained by 

their enhanced glycolytic rate. This higher glycolytic rate may facilitate ATP production 

under conditions were mitochondrial functionality is normally inhibited (e.g. upon exposure 

to PRED).  

 An attractive explanation for the augmented glycolytic rate as observed in PRED-

resistant ALL cell lines may be the activity of  the serine-threonine kinase Akt.40 

Constitutive activation of Akt is commonly observed in malignant cells and is directly 

responsible for the enhanced glycolytic rate of cancer cells.41 The serine-threonine kinase 

mammalian target of rapamycin (mTOR) is a downstream target of Akt. The mTOR-

inhibitor rapamycin has been shown to inhibit Akt-mediated maintenance of glycolysis22 

and sensitized primary multiple myeloma cells to dexamethasone-induced apoptosis.42 

One of the factors responsible for the Akt-induced increase in glycolysis is the hypoxia-

inducible factor (HIF). The HIF transcriptional complex is a heterodimer that consists of a 

constitutively β-subunit (HIF-1β) and a α-subunit (HIF-1α, HIF-2α, or HIF-3α) that 

accumulates rapidly under hypoxic conditions or after activation of mTOR.43 Activation of 

the HIF pathway leads to an enhanced glycolytic rate by inducing the expression of a wide 

array of key genes regulating glycolysis, including GLUT3 and GAPDH.43-45 Interestingly, it 

has been recently demonstrated that the oxygen-regulated component of HIF-1 (HIF-1α) is 

overexpressed in bone marrow samples of childhood ALL and absent in biopsies of normal 

bone marrow.46 These data imply that PRED resistance may be explained by constitutive 

activation of Akt and HIF signaling pathways resulting into an increased glycolytic rate.  

 In conclusion, PRED resistance in ALL cells is linked to a higher glycolytic rate 

which can be selectively modulated by the glycolysis inhibitor 2-DG. Historically, enhanced 

glycolysis was thought of as an adaptation to the hypoxic conditions that occur in the core 

of solid tumors.30 Here we show that enhanced glycolysis also occurs in leukemias. At the 

moment, a phase I clinical trail is being conducted that evaluates the effectiveness of 2-DG 
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as a single agent or in combination with docetaxel in patients with solid tumors.31 Our 

present data as well as the recent observation that HIF-1a is overexpressed in bone 

marrow samples of children with ALL suggest that 2-DG may also be applied to sensitize 

resistant leukemic cells to glucocorticoids in pediatric ALL. 
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Chapter 9 

9.1 Summary 

The treatment of pediatric acute leukemia has greatly improved over the past 4 decades, 

resulting in long-term disease-free survival of approximately 80%  for ALL1-3 and 60% for 

AML.4 Despite this progress, a considerable number of children ultimately relapse with a 

disease that is highly refractory to further treatment. A high proportion of the contemporary 

treatment failures can be contributed to cellular drug resistance. However, relatively little is 

known about the causes of cellular drug resistance in childhood acute leukemia.  

 In the last years it has become clear that most, if not all, chemotherapeutic agents 

ultimately induce programmed cell death or apoptosis in their target cells.5 Defects in the 

apoptosis route allow genetically instable cells to survive and are thought of as one of the 

major driving forces behind leukemogenesis.6,7 These observations led to the hypothesis 

that aberrations in the apoptosis pathway contribute to cellular drug resistance in children 

with acute leukemia. Therefore, a thorough knowledge of the aberrations in the apoptosis 

route is critical for understanding the causes of treatment failure and for a rational 

approach to drug design and therapy. 

 In chapter 2 a literature overview is given of the current knowledge on apoptosis 

and defects in the execution phase of apoptosis contributing to cellular drug resistance in 

childhood ALL and AML. Each cell possesses two major pathways which can induce 

apoptosis upon activation, the mitochondrial or “intrinsic” pathway and the death receptor 

or “extrinsic” pathway. Activation of both pathways leads to cellular disassembly by the 

activity of a family of cysteine proteases called caspases.8 There is general agreement that 

the intrinsic apoptosis pathway is involved in drug-induced apoptosis. The role of the 

extrinsic apoptosis pathway in drug-induced apoptosis, however, remains controversial. 
9,10,11,12  

 Functional blocks in both apoptosis pathways have been identified in childhood 

acute leukemia. Most reports failed to demonstrate an association between expression 

levels of apoptotic proteins and cellular drug resistance. Moreover, the studies that did 

show an association were contradictory. This may be explained by the fact that most 

studies examined a small number of apoptosis proteins in rather heterogeneous groups of 

children with acute leukemia. In addition, aside from the Bcl-2 and IAP family, almost none 

of the large numbers of known apoptosis regulators has been examined in clinical 

specimens of childhood acute leukemia until now. In the subsequent chapters we describe 

our studies that investigate whether aberrations, either in or outside the apoptosis pathway, 

contribute to cellular drug resistance and treatment failure in childhood acute leukemia. 
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We started by testing the hypothesis that cellular drug resistance is associated 

with decreased functional apoptosis in childhood ALL. To this aim, drug-induced apoptosis 

was compared between sensitive and resistant ALL cells to 4 chemotherapeutic drugs 

which form an integral part of contemporary treatment protocols, i.e. prednisolone, 

vincristine, L-asparaginase and daunorubicin, in chapter 3. Flow cytometry was used to 

assess functional apoptosis at various levels of the apoptosis route, i.e. phosphatidylserine 

externalization, collapse of mitochondrial transmembrane potential (ΔΨm), caspase-3 

activation and PARP inactivation. Exposure to each drug resulted in early induction of 

phosphatidylserine externalization and ΔΨm depolarization followed by caspase-3 

activation and PARP inactivation in the majority of patients. For all four drugs, a significant 

inverse correlation was found between cellular drug resistance and (1) the percentage of 

cells with phosphatidylserine externalization and (2) the percentage of cells with ΔΨm 

depolarization. However, the percentage of cells with caspase-3 activation and the 

percentage of cells with PARP inactivation showed a significant inverse correlation with 

cellular resistance for prednisolone and L-asparaginase only. This suggests that caspase-3 

activation and PARP inactivation are not essential for vincristine and daunorubicin -induced 

apoptosis. In conclusion, resistance to 4 unrelated drugs is associated with defect(s) 

upstream or at the level of phosphatidylserine externalization and ΔΨm depolarization. This 

leads to decreased activation of apoptotic parameters in resistant cases of pediatric ALL. 

 We next investigated whether the decreased apoptosis observed in drug resistant 

ALL samples was associated with defects in the effector apoptosis route itself. To this aim 

we used micro-array technology to analyze the expression of 70 key apoptosis-associated 

genes in leukemic cells of 190 children with newly diagnosed ALL in chapter 4. Expression 

of MCL1 and DAPK1 as well as BCL2L13, HRK and TNF was significantly associated with 

prednisolone and L-asparaginase resistance respectively. No single apoptosis-related 

gene was associated with resistance to all four unrelated drugs. High Bcl2L13 expression 

was not only associated with L-asparaginase resistance, but also with unfavorable clinical 

outcome. Multivariate analysis including known risk factors revealed that BCL2L13 is an 

independent prognostic factor in pediatric ALL. The same trend was observed in a 

validation group of 92 children with newly diagnosed ALL treated on a different protocol.  

 Childhood ALL is a heterogeneous disease consisting of various genetic subtypes 

such as t(1;19)/[E2A-PBX1], t(9;22)/[BCR-ABL], t(12;21)/[TEL-AML1], 11q23/[MLL] 

rearrangements, hyperdiploidy (>50 chromosomes) and T-lineage ALL, that differ markedly 

in their treatment response.13 Leukemia subtypes with a relatively unfavorable prognosis 

have been associated with in vitro drug resistance14-16 and subtypes with a favorable 
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prognosis with in vitro drug sensitivity.17,18 Therefore, we also investigated in chapter 4 

whether these subtypes are associated with differential expression of any of these 70 

apoptosis-associated genes. Differential expression of 44 out of 70 apoptosis genes was 

observed in T-lineage ALL, 22 in hyperdiploid, 16 in TEL-AML1 positive, 13 in E2A-

rearranged B-lineage ALL. The simultaneous upregulation of several NF-κB target genes in 

T-lineage ALL may point to enhanced NF-kB activity in T-lineage compared to B-lineage 

ALL. The TNF receptor ligand (TNF) is expressed higher in hyperdiploid, TEL-AML1 

positive B-lineage ALL and in L-asparaginase sensitive patients. Since both hyperdiploid 

and TEL-AML1 positive B-lineage ALL are in vitro sensitive to L-asparaginase,17,18 these 

data point to novel insights in the apoptotic features underlying L-asparaginase cytotoxicity. 

In conclusion, ALL subtypes have a unique expression pattern of apoptosis genes, which 

can be used to generate new hypotheses regarding the origin of cellular drug resistance in 

different leukemic subtypes. 

 Decreased mRNA levels or increased mRNA levels of anti-apoptotic of pro-

apoptotic genes may not necessarily reflect the actual activity at the protein level.19-24 

Therefore, we used quantitative Western blotting to investigate protein levels of Apaf-1, 

procaspase-2, -3, -6, -7, -8, -10 and PARP in children with newly diagnosed ALL and AML 

in chapter 5. PARP expression was absent in 4/15 T-ALL and 3/10 AML cases. The 

absence of PARP protein was associated with decreased PARP mRNA levels, which were 

not caused by genomic deletions. PARP expression was 7-fold lower in T-lineage ALL and 

10-fold lower in AML compared to B-lineage ALL. In addition, PARP expression was lower 

in prednisolone, vincristine and L-asparaginase (PVA) resistant compared to sensitive 

patients. Not only PARP, but also procaspase-2 expression was decreased in T-lineage 

ALL (3-fold) and AML (3-fold) compared to B-lineage ALL and in PVA resistant patients 

compared to sensitive patients (2-fold). No relation between Apaf-1, procaspase-3, -6, -7, -

8, -10 and drug resistance was found. In conclusion, expression of PARP and procaspase-

2 is lower in leukemic subtypes with an unfavorable prognosis and low expression of these 

proteins is related to cellular drug resistance in childhood acute leukemia. 

 In chapter 6 a genome-wide approach was used to identify gene-expression 

patterns associated with cellular drug resistance in leukemic cells of children with newly 

diagnosed ALL. We identified 42, 59, 54 and 22 gene probes that were differentially 

expressed in B-lineage leukemia cells that were either in vitro sensitive or resistant to 

prednisolone, vincristine, L-asparaginase or daunorubicin, respectively. These include 

carbohydrate metabolism-associated genes (e.g., CS, GAPDH and GLUT3) and 

transcription associated genes (e.g., SMARCB1, PRPF18, and CTCF) for prednisolone, 

 164 



General discussion 

translation-associated genes (e.g., RPS3, RPL3, EIF3S7 and EEF1G) for L-asparaginase 

and cytoskeleton- and extracellular matrix-associated genes (e.g., TMSB10, PDLIM1, and 

DSG3) for vincristine. The set of genes associated with daunorubicin resistance formed a 

heterogeneous group, where no single pathway was overrepresented. The expression 

pattern of these 124 genes and 28 ESTs was significantly related to treatment outcome, in 

a multivariate analysis with other known prognostic variables. Furthermore, the expression 

of these genes discriminated treatment outcome in an independent population of patients 

treated on a different protocol at a different institution. Notably, 121 of the 124 

discriminating genes have not been previously associated with resistance to these 

anticancer agents. So, differential expression of a relatively small number of genes confers 

drug resistance and alters treatment outcome in childhood acute lymphoblastic leukemia.  

 Children with acute lymphoblastic leukemia (ALL) may benefit from the discovery 

of new prognostic factors to improve risk group stratification. Recently, high expression of a 

novel gene named OPAL1 (Outcome Predictor in Acute Leukemia) was reported as a new 

risk factor associated with favorable prognosis in childhood ALL.25-27 In chapter 7 we 

investigated whether OPAL1 was of prognostic importance in two independent cohorts of 

children treated on COALL-92/-97 (n=180) and on St. Jude Total 13 protocols (n=257). We 

observed a 2.8-fold higher expression of OPAL1 in TEL-AML1-positive compared to TEL-

AML1-negative B-lineage ALL in both cohorts. In contrast to the original report25-27, we 

found no consistent association between high OPAL1 expression and favorable subtypes 

defined by age and white blood cell count at diagnosis (WBC), gender, immunophenotype 

or genetic abnormalities. In addition, OPAL1 expression was not associated with increased 

in vitro sensitivity to prednisolone, vincristine, L-asparaginase or daunorubicin and was not 

independently related to induction failure or long-term clinical outcome (DFS) in the total 

group of patients or in specific subgroups, such as T-lineage, TEL-AML1-positive and TEL-

AML1-negative B-lineage ALL in either cohort. In conclusion, OPAL1 gene expression is 

not an independent prognostic marker for childhood ALL treated on contemporary COALL 

and St. Jude protocols, and its previously reported prognostic relevance therefore appears 

to be treatment-specific. 

 The large advantage of micro-array technology is that the findings provide new 

insights into the basis of treatment failure and may point to novel targets for developing 

strategies to overcome drug resistance. In the chapter 6, we observed that prednisolone 

resistance in childhood B-lineage ALL was associated with concomitant upregulation of 

genes involved in glycolysis, i.e. the glucose transporter 3 (GLUT3) and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH). Therefore, we investigated in chapter 8 whether an 
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enhanced glycolytic rate was associated with prednisolone resistance and whether 

inhibition of the glycolysis augmented prednisolone-induced cytotoxicity in human leukemia 

cell lines. We observed an enhanced glycolytic rate in 2 prednisolone-resistant compared 

to 2 prednisolone-sensitive cell lines. The glycolytic inhibitor 2-deoxy-D-glucose markedly 

sensitized the prednisolone-resistant cell lines to prednisolone-induced apoptosis, but had 

no effect in the prednisolone-sensitive cell lines.  

 In summary, we identified various aberrations, both at mRNA, protein and 

activation level, within the apoptosis route that were associated with cellular drug 

resistance in childhood acute leukemia. In addition, by applying a genome-wide analysis, 

we observed that aberrations in drug-specific pathways upstream of the mitochondria 

(glycolysis, protein synthesis) were associated with cellular drug resistance. The lack of 

apoptosis genes within the selected genes suggests that, at least at mRNA levels, defects 

upstream of the effector apoptosis pathway are more important than defects within the 

apoptosis pathway in cellular drug resistance in children with ALL. Alleviation of these 

aberrations may be a valuable tool to enhance the efficacy of chemotherapy in childhood 

acute leukemia in the future. 
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9.2 General discussion and future perspectives. 

 

In this thesis, we investigated whether defects in the apoptosis route were associated with 

cellular resistance to 4 drugs that form an integral part of anti-leukemic therapy in children, 

i.e. prednisolone, vincristine, L-asparaginase and daunorubicin. Induction of apoptosis by 

chemotherapeutic agents can be subdivided into three general phases: insult generation, 

signal transduction and execution (Figure 1). 

 

 
        Figure 1. The three phases of drug-induced apoptosis 
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The main results of the conducted studies were summarized in the previous paragraph. We 

observed no single apoptosis-associated gene which expression was associated with 

resistance to all 4 antileukemic agents examined. This is in agreement with our recent 

study, where no apoptosis-associated genes were among the genes discriminative for de 

novo crossresistance to these 4 agents in newly diagnosed ALL.28 Table 1 provides an 

overview of the aberrations in the apoptosis pathway we described in this thesis for each 

individual antileukemic agent. Since the apoptotic defects associated with sensitivity or 

resistance differ for each drug, our findings point to strategies whereby one could modulate 

specific components of therapy. In this paragraph, we will address the most promising 

modulation targets to modulate for each drug. 

 167 



Chapter 9 

   

Prednisolone 
We identified aberrations within the effector apoptosis route at mRNA (chapter 4), protein 

(chapter 3 and 4) and functional level (chapter 3 and 5) in prednisolone resistant ALL 

samples.  

 We observed increased expression of the anti-apoptotic Bcl-2 family member Mcl-

1 in ALL cells resistant to prednisolone (Table 1). Interestingly, a recent report described 

BCR-ABL-dependent upregulation of Mcl-1 in BCR-ABL positive primary chronic myeloid 

leukemia (CML) cells.29 This suggests Mcl-1 may be involved in prednisolone resistance 

commonly observed in BCR-ABL positive childhood ALL.30 Depletion of Mcl-1 levels by 

antisense Mcl-1 oligonucleotides sensitized lung cancer cells lines to apoptosis induced by 

cytotoxic agents as well as by ionizing radiation.31  

                                  
Table 1. Drug-specific defects with the apoptosis pathway 

Gene involved Mechanism in resistant samples Chapter 

PRED resistance   

- Decreased drug-induced PS externalization 3 

- Decreased drug-induced ΔΨm externalization 3 

CASP2 Decreased protein expression in untreated cells 5 

CASP3 Decreased drug-induced cleavage 3 

DAPK1 Increased mRNA expression in untreated cells 6 

MCL1 Increased mRNA expression in untreated cells 6 

PARP Decreased protein expression in untreated cells 5 

PARP Decreased drug-induced cleavage 3 

VCR resistance   

- Decreased drug-induced PS externalization 3 

- Decreased drug-induced ΔΨm externalization 3 

PARP Decreased drug-induced cleavage 3 

ASP resistance   

- Decreased drug-induced PS externalization 3 

- Decreased drug-induced ΔΨm externalization 3 

BCL2L13 Decreased mRNA expression in untreated cells 6 

CASP3 Decreased drug-induced cleavage 3 

HRK Decreased mRNA expression in untreated cells 6 

DNR resistance   

- Decreased drug-induced PS externalization 3 

- Decreased drug-induced ΔΨm externalization 3 

 

A promising new strategy to inhibit Mcl-1 is the administration of the oral multi-kinase 

inhibitor Sorafenib or BAY 43-9006. This compound has broad-spectrum antitumor activity 
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in colon, breast, and non-small-cell lung cancer xenograft models. Its activity in various 

malignancies, including CML and AML, is currently assessed in clinical trials.32 Treatment 

of various cell lines, including leukemic cells lines, with BAY 43-9006 diminished Mcl-1 

levels in a dose-dependent fashion without affecting other Bcl-2 family members.33 Taken 

together, these data suggest that BAY 43-9006 is an attractive candidate for modulation of 

prednisolone resistance in childhood ALL. 

 Enzymes of the carbohydrate metabolism were relatively overrepresented in the 

set of genes associated with prednisolone resistance. The simultaneous upregulation of 

the glucose transporter GLUT3 and the glycolytic enzyme glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) suggested that prednisolone resistance is associated with an 

enhanced glycolytic rate (chapter 6). Indeed, we observed an increased glycolytic rate in 

prednisolone-resistant compared to prednisolone-sensitive ALL cell lines (chapter 8). 
Moreover, administration of the glycolysis inhibitor 2-deoxy-G-glucose (2-DG) sensitized 

prednisolone-resistant ALL cell lines towards prednisolone-induced apoptosis (chapter 9). 

The clinical potential of 2-DG was recently underlined in a study where administration of 2-

DG increased the efficacy of standard chemotherapeutic drugs in vivo when applied in 

nude mouse xenograft tumor model34. The toxicity of 2-DG is currently assessed in a 

phase I clinical trial for solid tumors and lymphomas.35  The glycolytic inhibitor 3-BrPA was 

able to substantially increase the cytotoxic effect of doxorubicin, vincristine, or Ara-C in 

multidrug resistant AML cell lines.36 A disadvantage of the use of glycolytic inhibitors is that 

its effectiveness is significantly affected by the presence of its natural counterpart 

glucose.37 Further research is required to determine whether the use of glycolysis inhibitors 

may lead to clinical benefit in childhood acute leukemia. 

 

Vincristine 

Besides defects within the apoptosis pathway (Table 1), vincristine resistance was 

associated with cytoskeleton- and extracellular matrix-associated genes (chapter 6). The 

association between vincristine resistance and aberrant expression of cytoskeleton 

proteins is in line with microtubule alterations previously observed in vincristine-resistant 

ALL cell lines38. As mentioned in chapter 1, vinca alkaloids like vincristine exert its cytotoxic 

effect by inhibiting tubulin polymerization and disrupting overall cytoskeletal integrity. 

Vincristine has been found to work synergistically with the actin depolymerizing agent 

cytochalasin B39. These data suggest that modulation of cytoskeleton proteins other than 

tubulin, such as TMSB10 or actin, may offer a strategy to sensitize leukemia cells to vinca 

alkaloids. A recent report described aberrant expression of multiple cytoskeleton proteins in 
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vincristine resistant ALL cell lines, i.e. tubulin-associated genes, actin, actin-associated 

genes and the intermediate filament lamin B.40 It should be noted that vincristine resistance 

was induced in this study by culturing ALL cell lines in the continuous presence of 

vincristine. The cytoskeletal defects that accumulated in these cell lines may not 

necessarily reflect the in vivo situation. Therefore, it remains to be determined whether 

modulation of cytoskeletal proteins will increase the therapeutic efficacy of leukemia 

therapy in vincristine-resistant children with acute leukemia. 

 

L-asparaginase 

Besides defects within the apoptosis pathway (Table 1), L-asparaginase resistance in 

childhood ALL was associated with overexpression of a large group of ribosomal proteins, 

initiation and elongation factors (chapter 6). We hypothesized that his may be caused by a 

constitutively activated mTOR pathway in L-asparaginase resistant ALL samples. 

Mutations leading to overexpression of eIF-4E/4E-BP1 and p70s6k have been previously 

described to induce cellular transformation41-43 and are commonly observed in several 

types of human cancers44 Rapamycin (sirolimus) is an anti-proliferative and 

immunosuppressive streptomyces derivative which inhibits the protein kinase activity of 

mTOR and blocks downstream signaling events, including the transcription of TOP-

containing mRNAs, which encode many components of the translational apparatus such as 

ribosomal proteins, initiation and elongation factors (Fig 2).  

In our hands, the use of rapamycin did not sensitize primary ALL and AML cells to L-

asparaginase-induced apoptosis (unpublished data). However, a recent report showed that 

rapamycine induced apoptosis in primary leukemic blasts in children with ALL and, more 

importantly, increased doxorubicin-induced apoptosis even in non-responder samples.45 A 

closer look at the data described in that report learned that rapamycin did not induce 

significant apoptosis in 11 of the 25 leukemia samples (44%). Interestingly, 11 of the 14 

good in vitro responders to rapamycine had a good in vivo prednisone response and 8 of 

the 11 in vitro poor responders to rapamycin had a poor in vivo prednisone response.45 

This suggests that the effectiveness of rapamycine may be limited in drug resistant ALL 

samples. Moreover, caution must be taken when using ribosomal protein inhibitors to 

overcome L-asparaginase resistance. We demonstrated that overexpression of the same 

group of ribosomal proteins was associated with L-asparaginase resistance but also with 

vincristine sensitivity in newly diagnosed ALL.28 Therefore, although ribosomal protein 

inhibitors may have the potential to sensitize ALL cells to L-asparaginase-induced 

apoptosis they may actually increase vincristine resistance.  
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PI3K Rapamycin 

Figure 2. Overview of mTOR-mediated signaling in mammalian cells. Abbreviations: ASN: asparagine, GLN: 
glutamate, mTOR: mammalian target of rapamycin, PI3K: phosphatidylinositol-3-kinase, p70S6K: p70 S6 kinase, 
RPS6: ribosomal protein S6, TOP: oligonucleotide tract rich in pyrimidines juxtaposed to the 5'-cap of particular 
transcripts, 4E: eukaryotic initiation factor 4E, 4E-BP1: 4E-binding protein 
                        
Daunorubicin 

The set of genes associated with daunorubicin resistance formed a heterogeneous group, 

where no single pathway was overrepresented (chapter 6). One of the genes that was 

over-expressed in DNR resistant ALL was chromodomain helicase DNA-binding protein 4 

(CHD4). CHD4 is a central component of the nucleosome remodeling and histone 

deacetylation (NRD) complex, which leads to transcriptional repression46. Indeed, the 

histone deacetylase inhibitor (HDAC) AN-9 has been shown to sensitize non-leukemic cell 

lines to the cytotoxicity of anthracyclines47,48. The synergy between doxorubicin and AN-9 

is caused by the ability of AN-9 metabolites to facilitate the formation of DNA-doxorubicin 

adducts48,49. This suggests that targeting CHD4 and/or HDACs may be new strategies to 

circumvent DNR resistance in pediatric ALL. The clinical benefit of several HDAC inhibitors 

is currently evaluated in patients with various malignancies, including leukemia, in phase I 

clinical trails. 
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Gene-expression signatures profiling and cellular drug resistance  

As discussed in the previous paragraphs, gene expression profiling has revealed new 

important clues for causes of resistance to 4 classes of drugs in children with ALL. The 

relationship between affected genes and drug resistance is currently being functionally 

validated as well as ways to modulate drug resistance by targeting the affected genes 

and/or pathways. It should be noted that the prediction accuracy of drug resistance-

associated gene expression signatures was lower (i.e. ~70-75%) compared to the 

prediction accuracy found for signatures that can be used to classify ALL50-53 or AML54-56 in 

immunophenotypic and genetic subgroups (i.e. ~80-100%). This may be explained by the 

fact that the gene expression signatures predictive for immunophenotype and genetic 

subgroups are more discriminative than the signature associated with drug resistance. For 

example, we found that unsupervised hierarchical clustering clustered patients according to 

immunophenotype rather than according to their resistance to any of the four antileukemic 

agents in children with ALL at initial diagnosis.57 These data suggest that the relatively 

lower prediction accuracies of ~70-75% for drug resistance may be caused by the strong 

influence of genetic subtypes on the expression signatures of individual leukemic samples. 

 
Gene-expression profiling and treatment outcome 

The gene-expression signatures that were associated with resistance to individual agents 

were also related to treatment outcome in two independent cohorts of children with ALL. In 

2002, Van ‘t Veer et al. applied micro-array technology to identify a set of 70 genes able to 

predict clinical outcome in women with breast cancer with 90% accuracy.58 This has led to 

the development of a chip carrying these 70 discriminative genes, which will be used in the 

near future to select patient with an unfavorable prognosis who will benefit from adjuvant 

chemotherapy. As mentioned above, the prediction accuracy of the expression signatures 

for drug resistance described in chapter 6 was ~70% in the total group and ~73%in the B-

lineage ALL group.57 This is prediction accuracy is too low to create a “prognostic 

microarray” containing only these drug resistance-predictive genes. It should be noted that 

the primary selection of genes in this study was based upon in vitro drug resistance profiles 

and not on treatment outcome and the relationship between this gene signature and 

outcome was done to confirm the clinical relevance of these resistance genes. A new 

selection of genes directly based upon treatment outcome most likely will produce 

expression signatures with higher outcome prediction accuracies. Advantages of the use of 

micro-arrays as treatment stratification tools are that they allow a fast screening. For 

instance gene expression profiles can be used to distinguish between ALL and AML 
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subtypes with different prognosis.50-56 A micro-array combining genes associated with 

subtype classification and relapse would be a valuable diagnostic tool. The use of gene 

expression signatures for subtype classification and relapse prediction in pediatric ALL is 

prospectively evaluated in the new SKION ALL-10 treatment protocol, which has started in 

November 2004. Future generation whole-genome chips may help to identify additional 

genes and increase the prediction accuracy.   

  

9.3 Conclusions  

 

The data described in this thesis suggest that cellular drug resistance to four widely used 

chemotherapeutic agents in children with acute leukemia cannot be explained by one 

isolated defect. As illustrated in Figure 2, simultaneous defects upstream and in the 

effector apoptosis route were described in this thesis. These defects may contribute to 

cellular drug resistance in children with acute leukemia. 
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Figure 2. Summary of drug-specific defects associated with cellular drug resistance in childhood acute leukemia 

 
 

Importantly, new mechanisms of drug resistance have been described in this thesis, which 

may lead to a better understanding of the underlying biology of cellular drug resistance in 

childhood acute leukemia. This knowledge may be applied in the future to develop rational 

treatment strategies in order to improve the efficacy of chemotherapy in childhood acute 

leukemia. This is exemplified by the rational strategy we used for augmenting the efficacy 

of prednisolone-induced cytotoxicity in prednisolone-resistant acute leukemia.  
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 The majority of studies described in this thesis have been performed in untreated 

primary ALL and AML cells. The big advantage of this approach is that genes discovered in 

untreated samples can be used as a treatment stratification tool at the onset of treatment. 

Treatment-induced changes in the expression level of a small number of apoptotic proteins 

have been reported in leukemic cells.59,60 The relation between treatment-induced changes 

in a large number of apoptosis-associated genes or proteins and cellular drug resistance 

has not been investigated. Screening of treatment-induced changes of gene expression 

both at mRNA and protein level will give additional insights in the mechanisms of cellular 

drug resistance.  
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Chapter 10 

INTRODUCTIE 
 
Wat is leukemie? 

Bij een gezonde persoon worden in het beenmerg witte bloedcellen worden gevormd, die 

vervolgens afgegeven worden aan het bloed. In het bloed aangekomen spelen ze een 

belangrijke rol bij de bescherming van het lichaam tegen infecties. Leukemie, ook wel 

“bloedkanker” genoemd, begint met een foutje in een witte bloedcel, waardoor deze 

ongeremd gaat delen. Na een tijdje zitten er zo veel abnormale witte bloedcellen in het 

beenmerg dat er onvoldoende ruimte is voor andere cellen die ook in het beenmerg 

gevormd worden, zoals normale rode en witte bloedcellen en bloedplaatjes. Dit leidt tot de 

karakteristieke klinische symptomen van leukemie: bloedarmoede, bloedingen en infecties 

door onvoldoende afweer.  

 
De verschillende soorten leukemie 

Afhankelijk van het type witte bloedcel waarin het foutje voorkomt, kan leukemie worden 

onderverdeeld in 2 groepen: myeloïde of lymfatische leukemie. Op basis van de snelheid 

waarmee er klinische symptomen ontstaan wordt leukemie nog verder ingedeeld in: acute 

of chronische leukemie. Chronische leukemie waarbij de klinische symptomen geleidelijk 

ontstaan komt vaker voor bij ouderen. Bij patiënten met acute leukemie ontwikkelen de 

symptomen zich snel. Als patiënten met acute leukemie niet behandeld worden, zal het 

merendeel daarom binnen een paar weken tot maanden aan de gevolgen van de ziekte 

overlijden. Bij patiënten met chronische leukemie duurt dit langer. Acute leukemie is de 

meest voorkomende vorm van kanker bij kinderen. Ongeveer 80% van de kinderen met 

leukemie heeft acute lymfatische leukemie (ALL) en 15-20% van de kinderen heeft acute 

myeloïde leukemie (AML). 

 

De behandeling van kinderen met acute leukemie 

Kinderen met acute leukemie worden behandeld met cytostatica, dit zijn geneesmiddelen 

die de kwaadaardige leukemiecellen moeten vernietigen. Tijdens de chemotherapie 

worden er verschillende combinaties van cytostatica gebruikt. Door een continue 

verbetering van de chemotherapieprotocollen bereikt momenteel meer dan 98% van de 

kinderen met ALL en 80-90% van de kinderen met AML een complete remissie. Van de 

kinderen die complete remissie bereiken zal op de lange termijn echter bij 20-25% van de 

kinderen met ALL en 40-50% van de kinderen met AML de leukemie weer terug komen, dit 

noemt men een recidief. Bij kinderen die een recidief hebben gehad, is moeilijker om alle 
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leukemiecellen weer weg te krijgen. Van deze kinderen geneest uiteindelijk minder dan 

50% met ALL en 30-35% met AML. 

 

Cellulaire drug resistentie 

ALL is de meest voorkomende kanker op de kinderleeftijd met 120 nieuwe patiënten in 

Nederland per jaar. Daarom is het van groot belang dat uitgezocht wordt waarom sommige 

kinderen met acute leukemie niet genezen. De algemene gedachte is dat bij de kinderen 

waarbij de leukemie niet verdwijnt de leukemiecellen niet adequaat op cytostatica kunnen 

reageren. Dit verschijnsel wordt cellulaire drug resistentie genoemd.  

 Uit laboratoriumonderzoek is gebleken dat alle cytostatica die gebruikt worden in 

de behandeling van de acute leukemie de cellen aanzetten tot zelfmoord, ook wel 

apoptose genoemd. Dit heeft geleid tot de gedachte dat de leukemiecellen van kinderen 

die niet genezen fouten hebben in de apoptose route. Er is echter maar weinig bekend 

over eventuele defecten in de apoptose route in de cellen van kinderen met acute leukemie 

en de rol daarvan bij cellulaire drug resistentie. Daarom hebben we in dit proefschrift de 

mechanismen van cellulaire drug resistentie bestudeerd en ons vooral toegespitst op de 

identificatie van mogelijke fouten in de apoptose route in leukemiecellen die resistent zijn 

voor cytostatica. 

 

NIEUWE GENOMISCHE DETERMINANTEN VAN APOPTOTISCHE DEFECTEN IN 
ACUTE LEUKEMIE 
 
In hoofdstuk 2 van dit proefschrift wordt een uitgebreid overzicht gegeven van de huidige 

kennis op het gebied van apoptose en de defecten in de apoptose route die tot op dat 

moment beschreven waren in cellen van kinderen met leukemie. Zodra een leukemiecel 

cytostatica vanuit het bloed opneemt, wordt normaliter een “zelfmoordprogramma” ofwel 

apoptose geactiveerd. Zodra dit programma aan gaat, worden er een heleboel eiwitten in 

de cel actief, waaronder caspases. Actieve caspases knippen als een soort schaartjes de 

cel van binnenuit kapot. Caspases kunnen behalve door cytostatica (de intrinsieke 

apoptose route) ook door cytokines zoals TNFα (de extrinsieke apoptose route) 

geactiveerd worden.  

 Uit de literatuur blijkt dat er wel al eerder defecten zijn gevonden in met name de 

intrinsieke apoptose route bij kinderen met acute leukemie. Het bleek echter een stuk 

moeilijker om een consistent verband te vinden tussen deze defecten en cellulaire drug 
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resistentie. Vaak zijn in deze studies slechts enkele van de vele mogelijke eiwitten 

bestudeerd die een rol spelen in de apoptose route.  

 

Apoptose en cytostatica resistentie 

 

In hoofdstuk 3 hebben we een aantal apoptose kenmerken onderzocht in  de resistente 

cellen van kinderen met ALL wanneer ze in het laboratorium worden blootgesteld aan 

verschillende cytostatica. De 4 cytostatica die we getest hebben (prednisolon, vincristine, 

L-asparaginase en daunorubicine) vormen een belangrijke component van de 

chemotherapieprotocollen die gebruikt worden voor de behandeling van kinderen met ALL.  

 Nadat de leukemiecellen waren bloot gesteld aan een van de 4 cytostatica 

hebben we de activatie van diverse apoptose-parameters gemeten. Daarnaast werden 

voor dezelfde cellen gemeten of ze gevoelig of juist resistent waren voor deze 4 cytostatica 

met behulp van de in vitro MTT test. Met deze test wordt bepaald hoeveel cellen doodgaan 

na blootstelling aan deze cytostatica. 

 Behandeling met ieder van de 4 cytostatica leidde tot activatie van 4 belangrijke 

fases in de apoptose route, d.w.z. phosphatidylserine externalisatie en depolarisatie van de 

mitochondriale transmembraan-potentiaal (∆Ψm), activatie van caspase-3 en inactivatie van 

PARP. Uit het onderzoek bleek echter dat ALL cellen die in vitro resistent waren voor 

prednisolon of L-asparaginase verminderde phosphatidylserine externalisatie, ∆Ψm 

depolarisatie, caspase-3 activatie én PARP inactivatie vertoonden vergeleken met de in 

vitro gevoelige cellen. ALL cellen die in vitro resistent waren voor vincristine en 

daunorubicine vertoonden ook een sterk verminderde apoptotische activiteit, maar dan 

alleen op het niveau van phosphatidylserine externalisatie en ∆Ψm depolarisatie. Dit 

suggereert dat caspase-3 activatie en PARP inactivatie niet noodzakelijk zijn voor 

apoptose geïnduceerd door vincristine en daunorubicine. Concluderend kunnen we stellen 

dat er in in vitro resistente cellen van kinderen met ALL iets fout gaat voordat er 

phosphatidylserine externalisatie en ∆Ψm depolarisatie optreedt. Dit leidt tot een 

verminderde activiteit op alle fases van de apoptose route in resistente kinderen met ALL 

cellen. 

 

mRNA expressie van apoptose genen en cytostatica resistentie 

 

In vitro resistente ALL cellen gaan minder snel dood  na behandeling met cytostatica. 

Onbekend is echter of dit komt omdat resistente cellen defecten hebben in de uiteindelijke 
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uitvoer van het  apoptose programma of dat dit komt doordat resistente cellen over een 

mechanisme beschikken waardoor het cytostaticum zijn werk niet kan doen en daardoor 

ook nooit tot apoptose kan aanzetten . In een cel worden allerlei eiwitten actief als een cel 

in apoptose gaat. Of die eiwitten wel of niet in de cel aanwezig zijn, wordt bepaald door de 

genen die in het DNA van de cel liggen. Als een gen “aanstaat” wordt er eerst messenger 

RNA (mRNA) gemaakt, wat vervolgens in de cel wordt omgezet tot eiwit. In hoofdstuk 4 

hebben we van 70 genen die een rol spelen bij apoptose gekeken of ze “aan” of 

“uitstonden” in de cellen van 190 kinderen met nieuw gediagnosticeerde ALL. De gedachte 

hierbij was dat als er apoptose genen “uit” staan die eigenlijk “aan” horen te staan, dit kan 

leiden tot cellulaire drug resistentie, omdat de cellen gewoonweg niet in apoptose kunnen 

gaan.  

 We vonden een afwijkende hoeveelheid mRNA van 2 apoptose genen (MCL1 en 

DAPK1) in prednisolon-resistente ALL cellen en van 3 apoptose genen (BCL2L13, HRK en 

TNF) in L-asparaginase-resistente ALL cellen. Een hoge expressie van BCL2L13 op 

mRNA niveau was niet alleen geassocieerd met L-asparaginase resistentie, maar ook met 

een langere overlevingskans . Als we andere bekende risicofactoren in overweging namen, 

bleek BCL2L13 de enige onafhankelijke prognostische factor voor overleving bij kinderen 

met ALL. Dat betekent dat we op basis van de mate van BCL2L13 expressie bij diagnose 

uitspraken kunnen over de kans dat een kind geneest of niet. 

 Leukemiecellen vertonen bijna altijd genetische afwijkingen. ALL bij kinderen is 

daarom een heterogene groep die is opgebouwd uit vele verschillende genetische 

subtypes (zie ook Tabel 2 van hoofdstuk 1). Bij ALL cellen met een translocatie hebben er 

2 chromosomen een stukje DNA uitgewisseld. De meest voorkomende genetische 

subtypes zijn ALL met de t(12;21) translocatie en ALL waarin de celkern meer dan 50 

chromosomen bevat: hyperdiploïde ALL. Verder zijn vinden er ook herschikkingen van het 

MLL gen op chromosoom 11q23, t(1;19) translocaties en t(9;22) translocaties plaats in ALL 

cellen. Deze genetische afwijkingen komen allen voor in ALL die uitgaat van “foute” B-

lymfocyten, ofwel B-cel ALL. Daarnaast is er ook nog ALL die uitgaat van T-lymfocyten: T-

cel ALL. Omdat deze types allemaal verschillend op chemotherapie reageren en dus een 

verschillende prognose hebben, hebben we in hoofdstuk 4 ook onderzocht of dit te maken 

heeft met de expressie van 70 verschillende apoptose genen. We hebben ontdekt dat ieder 

van deze ALL subtypes inderdaad een eigen expressiepatroon heeft van apoptose genen. 
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Eiwit expressie van apoptose genen en cytostatica resistentie 

 

Over het algemeen geldt dat er van genen die hoog “aanstaan” en dus veel mRNA 

produceren ook veel eiwit in de cel aanwezig is. Er zijn echter uitzonderingen. Daarom 

hebben we in hoofdstuk 5 voor verschillende apoptose genen ook de hoeveelheid eiwit 

gekwantificeerd en vergeleken tussen in vitro gevoelige en resistente cellen van kinderen 

met nieuw gediagnosticeerde ALL (N=43) en AML (N=10). De genen waarvan we het eiwit 

hebben gekwantificeerd zijn: Apaf-1, procaspase-2, -3, -6, -7, -8, -10 en PARP. In 5 van de 

15 kinderen met T-cel ALL en in 3 de van de kinderen met AML was geen PARP 

detecteerbaar. De afwezigheid van PARP eiwit ging in dit geval gepaard met een sterk 

verminderde aanwezigheid van mRNA. Bij de patiënten die wel PARP eiwit hadden, viel op 

dat binnen die groep de patiënten met T-cel ALL en AML een significant verlaagde PARP 

expressie vertoonden. Daarnaast hadden de cellen die resistent waren voor prednisolon, 

vincristine én L-asparaginase (PVA) minder PARP eiwit dan de cellen die gevoelig waren 

voor deze 3 middelen. Niet alleen van PARP, maar ook van procaspase-2 was er minder 

eiwit aanwezig in T-cel ALL, AML en PVA-resistente cellen. De hoeveelheid eiwit die er 

van Apaf-1, procaspase-3, -6, -7, -8, en -10 aanwezig was, hing niet samen met 

gevoeligheid dan wel resistentie voor PVA. Van zowel T-cel ALL, AML als drug resistente 

cellen is bekend dat de prognose slechter is dan B-cel ALL. Concluderend kunnen we 

stellen dat er minder PARP en procaspase-2 eiwit aanwezig is in leukemie subtypes met 

een slechte prognose.  

 

Gen-expressie profielen en cytostatica resistentie 

 

Omdat het DNA van de mens tienduizenden verschillende genen bevat, was het vroeger 

onbegonnen werk om te kijken welke genen er precies “aan” en welke genen er “uit” 

stonden. Gelukkig maken micro-arrays dit tegenwoordig mogelijk voor een heel groot deel 

van de genen die in een menselijke cel aanwezig zijn. Het geheel aan genen wat in een cel 

“aan” en “uit” staan noemen we het gen-expressie profiel. In hoofdstuk 6 hebben we 

micro-arrays gebruikt om genen te identificeren die betrokken zijn bij cellulaire 

chemotherapie resistentie. Dit hebben we bereikt door gen-expressie profielen van ALL 

cellen van patiënten die gevoelig voor een bepaald cytostaticum waren te vergelijken met 

die van patiënten die resistent waren voor hetzelfde cytostaticum. 

 Op deze manier hebben we 42, 59, 54 en 22 genen ontdekt die betrokken waren 

bij respectievelijk in vitro prednisolon, vincristine, L-asparaginase of daunorubicine 
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resistentie in B-cel ALL. Genen die geassocieerd waren met resistentie voor prednisolon 

coderen relatief vaak voor eiwitten die betrokken zijn bij het omzetten van glucose in 

energie (glycolyse) in de cel. Voor vincristine resistentie betrof dit genen die een functie 

hadden in de opbouw van RNA en DNA. Genen die betrekking hadden op L-asparaginase 

resistentie waren vooral betrokken bij de vorming van eiwitten in de cel. De gecombineerde 

expressiescore van alle 124 genen bleek onafhankelijk van andere bekende prognostische 

factoren de kans op een recidief van de leukemie te voorspellen. Dit was niet alleen het 

geval bij de eerste studiegroep van kinderen met ALL, maar ook bij een tweede 

onafhankelijke groep kinderen met ALL die met een ander chemotherapieprotocol waren 

behandeld in het St. Jude Children’s Research Hospital in Amerika. Opvallend is dat 121 

van de 124 genen nog nooit eerder aan cellulaire drug resistentie gelinkt waren. 

Concluderend kan gesteld worden dat een relatief beperkt aantal genen samenhangt met 

chemotherapie resistentie en genezingskans bij kinderen met ALL. 

 

 
De voorspellende waarde van OPAL1 voor de uitkomst van therapie 

 

Als het mogelijk zou zijn om voor aanvang van chemotherapie te voorspellen wat de kans 

is dat een kind gaat genezen met reguliere chemotherapie, zouden de kinderen met een 

kleine kans op genezing zwaardere therapie kunnen krijgen en kinderen met een grote 

genezingskans juist een lichtere vorm, zodat ze minder last hebben van de bijwerkingen 

die gepaard gaan met chemotherapie. Therapie aangepast op het risicoprofiel van een 

individueel kind noemen we “tailored therapy” of therapie op maat. Omdat veel kinderen 

baat kunnen hebben van deze therapie op maat wordt veel energie gestoken in het vinden 

van prognostische factoren. OPAL1 (Outcome Predictor in Acute Leukemia) is een nieuw 

gen waarvan recent is gesuggereerd dat hoge expressie sterk geassocieerd zou zijn met 

een grote kans op genezing in kinderen met ALL.  

 In hoofdstuk 7 onderzochten wij of dit ook opgaat voor kinderen die behandeld 

werden met het Duitse COALL en het Amerikaanse St. Jude Total 13 protocol. We zagen 

een verhoogde mRNA expressie van OPAL1 in t(12;21)-positieve B-ALL cellen. We waren 

echter niet in staat de verhoogde OPAL1 expressie te bevestigen die men eerder zag in 

andere ALL subtypes met een gunstige prognose. Daarnaast was OPAL1 expressie niet 

gerelateerd aan gevoeligheid voor prednisolone, vincristine, L-asparaginase of 

daunorubicin. Opvallend was ook dat OPAL1 expressie niet onafhankelijk van andere 

risicofactoren gerelateerd was aan de kans op genezing in de totale groep patiënten of in 
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ALL subtypes, zoals T-cel ALL, t(12;21)-positieve of -negatieve B-cel ALL in geen van 

beide cohorten. Onze resultaten tonen aan dat OPAL1 expressie geen onafhankelijke 

prognostische marker is in kinderen behandeld met COALL en St. Jude protocollen en 

benadrukken dat de prognostische waarde van OPAL1 protocolspecifiek is.  

 

Nieuwe behandelingsstrategieën 
 

Het grote voordeel van micro-array studies is dat ze tal van nieuwe data genereren die 

vervolgens gebruikt kunnen worden voor de identificatie van aangrijpingspunten voor 

nieuwe behandelingsstrategieën. Zoals in hoofdstuk 6 beschreven, waren genen die hoog 

aan stonden in prednisolon-resistente ALL cellen relatief vaak betrokken bij de glycolyse. 

Tijdens de glycolyse wordt glucose in de cel omgezet naar energie. De cel heeft deze 

energie nodig voor allerlei processen, bijvoorbeeld celdeling. Uit onderzoek was al bekend 

dat in vergelijking met gezonde cellen, de sneldelende kankercellen vaak een verhoogde 

glycolyse hebben. Verder was er bekend dat in cellen die in apoptose gaan de totale 

hoeveelheid energie binnen de cel drastisch afneemt. Dit bracht ons op het idee dat een 

verhoogde glycolyse wel eens betrokken zou kunnen zijn bij prednisolon resistentie in ALL.  

 In hoofdstuk 8 tonen we aan dat ALL cellijnen die resistent zijn voor prednisolon 

daadwerkelijk een hogere glycolyse vertonen vergeleken met ALL cellijnen die gevoelig 

zijn voor prednisolon. Opvallend was dat het toedienen van de glycolyse remmer 2-deoxy-

D-glucose de ALL cellijnen die resistent zijn voor prednisolon, maar niet de ALL cellijnen 

die gevoelig zijn voor prednisolon,  gevoeliger maakte voor prednisolon. 

 Ten slotte volgt in hoofdstuk 9 een discussie van de resultaten van het 

onderzoek zoals in dit proefschrift beschreven is. De bevindingen in dit proefschrift kunnen 

wellicht bijdragen aan betere behandelingen voor kinderen met ALL door (a) betere 

stratificatie van kinderen met ALL en hierop aangepaste therapie op maat en (b) de 

identificatie van aangrijpingspunten voor nieuwe behandelingsstrategieën die in 

vervolgonderzoek verder uitgewerkt zullen worden. 
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DANKWOORD 

 

Eindelijk is het dan zo ver: de laatste letters van mijn proefschrift worden op papier gezet. 

Mij rest nu nog de taak alle mensen die een belangrijke taak hebben gespeeld bij de 

totstandkoming van mijn “opus magnus” hartelijk te bedanken. Ik weet niet goed waar ik 

moet beginnen, er zijn zoveel mensen belangrijk geweest tijdens deze 5-jarige periode van 

mijn leven. Jullie kennen me waarschijnlijk allemaal als iemand die niet echt goed is in 

dingen kort en bondig weergeven, dus maak je borst maar nat voor de lap tekst die nu gaat 

volgen! 

 

Allereerst wil ik me richten tot de helden zonder wie dit proefschrift absoluut onmogelijk 

was geweest: de kinderen met leukemie en hun ouders. Ik kan me er zoveel bij voorstellen 

dat als je te horen krijgt dat je kind leukemie heeft, je al genoeg aan jezelf hebt en geen 

behoefte hebt aan vragen of het bloed of beenmerg van je kind gebruikt mag worden voor 

wetenschappelijk onderzoek. Ik ben jullie ontzettend dankbaar dat jullie de keuze hebben 

gemaakt dit wel te doen. Door jullie moed wordt met elk nieuw proefschrift weer een klein 

stapje gezet in de richting van een betere genezingskans voor jullie kinderen. 

 

Mijn promotor, Prof.dr. Rob Pieters wil ik bedanken, beste Rob: ik was elke keer opnieuw 

weer onder de indruk hoe je uit een enorme berg data binnen no-time de precieze essentie 

wist te destilleren. Vaak stelde je me de vraag wat je aan de ouders van kinderen met 

leukemie kon vertellen als ze je zouden vroegen wat mijn resultaten voor hun kind konden 

betekenen. De vertaling van onderzoeksresultaten naar de kliniek is iets wat een 

fundamenteel medische bioloog zeker niet uit zichzelf doet. Ik ben erg blij mee dat ik deze 

manier van denken van je meegekregen heb.  

 Daarnaast wil in mijn copromotor Dr. M.L. den Boer bedanken. Beste Monique, 

allereerst wil ik je bedanken voor je volhardendheid mij bij de vraagstelling van het project 

te houden: in mijn enthousiasme wilde ik alles tegelijk doen. We hebben hierover onze 

meningsverschillen gehad, maar ik ben achteraf erg blij dat je me hierin geremd hebt. Ik 

denk ook met veel plezier terug aan ons verblijf in the “99 Tower Place” in Memphis: jouw 

kookkunsten (wist niet dat rabarber ook lekker kon zijn) en natuurlijk onze bezoeken aan 

Graceland, de dierentuin (jammer dat we net de panda misten) bioscoop (met en zonder 

brandalarm) en sportschool. Ten slotte wil ik je bedanken voor je enorme nakijktempo in 

mijn eindsprint. Dat heeft er zeker voor gezorgd heeft dat het me toch gelukt is alles in de 

zomervakantie af te krijgen. 
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Ik denk dat dit proefschrift er niet zou hebben gelegen zonder de aanwezigheid en de 

ongelooflijke hoeveelheid steun van mijn mede AIO’s van het eerste uur: Ronald, Wendy 

en Barbara: in 2000 als volslagen vreemden op een kamer gezet en in 2005 gaan we als 

vrienden weer ieder hun eigen weg. Ronald, a.k.a. “de tiran van Catan”: ik heb veel geleerd 

van jouw manier om overal de humor van in te zien en “pipetering!”, wat kun jij enthousiast 

over je onderzoeksideeën praten (vooral na een paar wijntjes). Ik hoop dat Colin en ik met 

jou en Saskia nog veel avondjes Catan mee zullen maken en wie weet zal het t-shirt ooit 

nog in jou bezit komen. En wat de rest ook zegt….. onze kant van de kamer was duidelijk 

de beste ;-). Wendy, ik vind het geweldig hoe jij het zware werk als AIO, het verre reizen en 

het moederschap hebt weten te combineren en het ook nog hebt weten te presenteren als 

eerste van ons allemaal je boekje af te hebben. Als ik weer eens helemaal in de stress 

schoot, was jij er altijd om dat te relativeren en dat heb ik enorm gewaardeerd. Ondanks je 

teleurstelling dat je geen kinderarts kon worden, heb je gelukkig helemaal je roeping 

gevonden als klinisch geneticus. Jouw kennende ga je een hele goede worden. Barbara, 

tijdens de communicatietraining op mijn nieuwe studie werd er aan ons gevraagd of we 

iemand kende die echt, maar dan ook echt, naar je kon luisteren. Er was niemand die 

bevestigend antwoordde, maar ik kon dat wel doen: jij hebt die gave. Dat ik na de 

gebeurtenissen van vorig jaar weer aan de slag ben gegaan is absoluut mede aan jou te 

danken. Dank voor je vrolijkheid en dat je er was. Je hebt zelf ook de nodige tegenslagen 

gehad, maar ik ben er helemaal zeker van dat ondanks alles jouw boekje er ook komt.  

 En natuurlijk de AIO’s die er later bijkwamen. Henne, ik vond het ontzettend 

jammer dat je weg ging en heb onze gezamenlijke lunches en thee drinken erg gemist. Het 

feit dat we Phileine allebei een heldin vinden, is waarschijnlijk een van de redenen dat we 

zo goed met elkaar op kunnen schieten. Ik wens je nog veel succes op het NKI en hoop 

dat volgend jaar mei echt de mooiste dag van je leven wordt. Marrit, helaas zat je niet op 

“onze” AIO-kamer en daarom duurde het wat langer voordat ik je goed leerde kennen. 

Gelukkig is dat nu wel zo! Ik wens je heel veel succes met het afronden van je onderzoek 

en die sushi gaan we absoluut nog een keer proberen. Wim, jij was er altijd vol van 

overtuigd dat je alles af ging krijgen volgens de planning die je voor jezelf gemaakt had… 

totdat je bij ons op de AIO-kamer kwam…. Je wees me er eens zeer terecht op dat degene 

die de uitdrukking laatste loodjes had verzonnen er met het -jes deel van loodjes behoorlijk 

naast zat. Daarom wens ik jou bij deze veel succes met je laatste loden. Ook veel succes 

wens ik aan de andere (ex)-AIO’s: Arantza, Robert, Inge, Pieter, Judith en Martine.  
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Ook wil ik alle mensen van het onderzoekslab kindergeneeskunde hartelijk bedanken. 

Allereerst de mensen van “ons lab”: Karin, zonder jouw geweldige analytische 

ondersteuning zat ik nu waarschijnlijk nog steeds uit te vogelen hoe de FACS werkt. Je zei 

altijd dat mannen niet geschikt zijn als analist, omdat ze niet goed in staat zijn van alles 

tegelijk te doen. Als we jouw tempo als voorbeeld moeten gebruiken, geldt dat zeker ook 

voor bijna alle vrouwen! Jij had vaak al een compleet experiment uitgedacht en 

uitgeschreven als ik nog met de berekening van de eerste verdunningsstap bezig was. Ik 

vond onze gezamenlijke treinreizen altijd erg plezierig: terwijl jij de “trein-appel” opat 

bespraken we van alles en nog wat en was ik zo weer in Utrecht.  

 Verder wil ik Jules hartelijk bedanken voor de tijd die hij voor me heeft gemaakt 

als ik weer eens een stapel primers en probes had ontwikkeld. Vraag me af of er iets is 

over de Taqman wat je niet weet. Ik heb ook erg veel gehad aan jouw enorme kennis op 

het gebied van apoptose. En natuurlijk Monique P., die me heel hard heeft geholpen en 

nog steeds helpt met het “glycolyse stuk”. Vorig jaar was voor ons allebei geen topjaar, 

eigenlijk kan alles nu alleen maar beter worden. Susan wil ik bedanken voor het 

Taqmannen voor het “OPAL1 stuk” en Jessica voor de enorme berg werk die ze verzet 

heeft toen de monsters voor Memphis klaar gemaakt moesten worden. Paul wil ik 

bedanken voor zijn gezelligheid en de eerste hulp bij PC-problemen. Wel een beetje 

jammer van dat ACP-effect he? Natuurlijk gaat ook mijn dank uit naar de rest van de 

“onco-groep” voor hun gezelligheid tijdens etentjes en borrels: Marli, Nathalie, Anita, Bas, 

Pauline, Mathilde, Esther, Sanne en Ella. En de mensen van het lab “beneden”: Mieke, 

Rolinda, Henk, Carla en Emmie. 

 En natuurlijk ook bedankt aan de rest van het lab KG. Vooral aan Marcel, niet 

alleen voor zijn hulp als mijn computer het weer eens gehad had met mij, maar ook voor de 

goede zorg voor Polly en Dexter als we op reis waren. Ik had altijd een beetje het idee dat 

ze een beetje teleurgesteld waren als we weer terug waren ;-) Ook wil ik Ada bedanken 

voor haar hulp met rekeningen waar ik niets van snapte en het regelen van computers en 

aanverwante zaken voor presentaties. 

 

Much international collaboration has been essential to the research described in this thesis. 

Prof.dr. G.E. Janka-Schaub and Drs. U Göbel and U.B. Graubner from the German COALL 

study-group are kindly acknowledged. Dear Gritta, herzliche dank for making it possible for 

me to analyze ALL samples form patients participating in the COALL study. I would also 

like to thank you for taking place in my promotion committee and for the stimulating e-mail 

discussions we had about the contents of my papers. 
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 I had the great privilege to conduct a part of the research described in this thesis 

in the St. Jude Children’s Research Hospital at the Department of Pharmaceutical Science 

of Prof.dr. William Evans. Dear Bill, I am very grateful that you gave me the opportunity to 

work in your laboratory. You and Mary Relling made us feel really at home. It has been a 

great experience! Dear Meyling, we had a lot of fun during my stay in Memphis. You did 

not only teach me the ins and outs of micro-array analysis but also showed us around in 

Memphis and introduced us to your friends. I really admire the great conviction you put in 

everything you do and I hope we stay in touch after my thesis is finished. And to all the 

other wonderful people in St. Jude that I worked with: thank you very much! 

 I also would like to express my gratitude to Dr. Charles Rudin and David 

VanderWeele of the Department of Oncology of the Kimmel Cancer Center at Johns 

Hopkins University. Dear Charlie, I am very grateful that you believed enough in my 

research proposal to put it in the capable hands of David. We are still finalizing the 

experiments, but I am sure our paper will turn out great. David, thanks for the enormous 

amount of work and your input in our paper. It was great meeting you and Anne in both 

your country and mine. Good luck with finishing med school and if you are ever in the 

Netherlands again, please let me know. 

 

Ook wil ik al mijn collega’s van het HOVON datacenter hartelijk bedanken voor hun 

interesse en gezelligheid tijdens een voor mij enorm stressvolle periode.  

 

Ik ben eindelijk bij mij vrienden aangekomen. Ik wil jullie collectief hartelijk bedanken voor 

het aanhoren van mijn promotiestress en vooral voor zorgen voor de broodnodige 

ontspanning. Ik vind het prachtig dat ik van bijna alle periodes in mijn leven nog vrienden 

heb. Dus een bedankje per periode. Vanaf de middelbare school: Charlotte, Kim, Dirk, 

Dennis en Wouter. Vanaf mijn studententijd: Suzanne, Anita, Els (we moeten binnenkort 

zeker weer eens een dagje gaan ontspannen in de sauna), Lotte, Melanie, RJ, Arnoud, 

Lars en Mark. Vanaf mijn stages: Marja, Miranda en Ingrid. Mijn balletvriendinnetjes: 

Esther, Nathalie, Lenny, Marije en Nadja. I miss you girls very much! I am very happy we 

still see each other now and then even though we do not dance together anymore. De 

bikkels en de babes (jongens we moeten echt iets aan die naam doen): Jolanda, Joost en 

Amélie, Patricia en Sebastiën, Jeroen en Anke en Wouter. En vrienden in de maak: 

groepje 1F02 en 1F01 van SUMMA. En zonder al mijn andere geweldige vrienden tekort te 

doen nogmaals een speciale dank je wel aan mijn beste vriendinnetje Suus: omdat je er 

altijd voor me bent en ik daar zo blij mee ben. Dikke kus voor jou, Paul en de kleine Floor.  
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En nu mijn familie. Lieve pap en mam, ik wil jullie van harte bedanken dat jullie me de 

essentiële dingen van het leven hebben geleerd. De normen en waarden die jullie me mee 

hebben mee gegeven, vormen nog steeds een basis voor al de beslissingen in mijn leven. 

Zonder jullie steun en de solide thuisbasis die jullie altijd hebben gevormd was ik nooit zo 

ver gekomen. Ik hoop dat jullie even trots op mij zijn als ik op jullie.  

 Mijn lieve zussen en paranimfen Stacey en Rachel. Jullie hebben heel mijn leven 

achter mij gestaan. Wat is er mooier dan dat jullie dat op mijn grote dag ook in de letterlijke 

zin van het woord doen? We hebben veel meegemaakt samen en dat maakt onze band 

onverwoestbaar. Zussen, maar bovenal vriendinnen. Ook op jullie ben ik erg trots en ik ben 

vereerd dat jullie mij paranimfen willen zijn. 

 

Ook wil ik Marco bedanken voor wie hij is en zijn liefde voor Stacey. En Desiree: je kunt er 

op de grote dag niet bij zijn en dat vind ik erg jammer. Ik wilde je bedanken voor het feit dat 

ik altijd bij jou en papa terecht kan. En natuurlijk mijn stiefbroer en -zusje: Niek en Cecile. Ik 

beschouw het als een voorrecht jullie op te zien groeien. Zwem maar een extra baantje 

voor mij in Turkije. Mijn tweede ouders, mijn peetouders Mariët en Peter: jullie zijn er heel 

mijn leven altijd al voor mij geweest. Superbedankt daarvoor! Jullie zijn de dapperste 

mensen die ik ken. Een speciale dank voor Laura: de wereld zal een stuk minder mooi zijn 

zonder jou erin, ik hoop je nog heel lang bij mij te kunnen houden. Ook wil ik Nel, Ron, 

Roderik, Chantal en Stephan, mijn “schoonfamilie”, hartelijk bedanken voor hun steun en 

interesse in mijn belevenissen op het lab.  

 

En nu de allerbelangrijkste persoon in mijn leven. Lieve Colin, ik heb het boekje niet voor 

niets aan jou opgedragen, want jij bent de enige echte reden, dat het afgekomen is. Jouw 

voortdurende steun en aanmoediging zijn absoluut onontbeerlijk geweest. Als ik het in 

mezelf niet meer kon vinden, was jij het heldere licht dat ervoor zorgde dat ik mijn weg niet 

kwijt raakte. Ik houd van je. 

 

Dit was het lieve mensen, bijna 200 pagina’s noeste arbeid. En zoals velen al voor mij 

hebben gezegd: “nu is het tijd voor een feestje!” 
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