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Abstract Objectives." The purpose 
of this study was to build an exper- 
imental set-up to assess continuous- 
ly the humidification, heating and 
resistance properties of  heat-mois- 
ture exchangers (HMEs) under 
clinical conditions. 
Design: The experimental set-up 
consists of  a patient model, mea- 
surement systems and a ventilator. 
Setting." Surgical ICU, University 
Hospital of  Rotterdam. 
Materials: A clinically used HME. 
Measurements and results." The air 
flow, pressure in the ventilation cir- 
cuit, pressure difference over the 
HME, and partial water vapour 
pressure and temperature at each 
side of  the H M E  were measured. 
The resistance, absolute humidity, 
humidification efficiency and tem- 
perature difference at the patient 
side of  the H M E  were calculated. 
Measurements were performed dur- 
ing 24 h. The temperature output, 
humidity output and lung mechan- 

ics of  the patient model were simi- 
lar to values found in mechanically 
ventilated patients. The measure- 
ment system was in agreement with 
the ISO draft standard and was ca- 
pable of  measuring dynamic varia- 
tion of water and heat exchange 
over the range of a clinically used 
ventilator setting. 
Conclusion: The experimental set- 
up described is reliable for evaluat- 
ing HMEs and can also be used for 
future clinical evaluation of  HMEs. 
The main advantages of  this set-up 
over those described previously are: 
(i) measurements of dynamic varia- 
tions of  water and heat exchange; 
(ii) on-line measurements of  expira- 
tory, as well as inspiratory resis- 
tance. 

Key words Humidity �9 Heat  and 
Moisture exchangers �9 Mechanical 
ventilation �9 Mass spectrometry �9 
Temperature �9 Resistance 

Introduction 

The heat and humidity exchange functions of  the nose 
and upper airways are bypassed during endotracheal in- 
tubation and tracheostomy. Use of  dry medical gases for 
mechanical ventilation increase the water and heat loss 
from the lower airways, which can produce serious airway 
damage and worsen pulmonary function [1-5] .  Heated 
humidifiers (HHs) or heat-moisture exchangers (HMEs) 
are therefore used to both heat and humidify the air be- 

fore being delivered to the patient. HHs,  however, have 
some disadvantages such as the potential to deliver exces- 
sive heat with the consequent problem of thermal injury 
and of acting as a reservoir for bacterial growth resulting 
in nosocomial infections [6]. 

The H M E  filter is a simple solution to the problems of 
humidification of  inspired gases and contamination of  
ventilatory circuits. HMEs are passive devices which ab- 
sorb the expiratory moisture and heat, and return it par- 
tially to the patient at the next inspiration [7, 8]. However, 
previous publications have reported some drawbacks of  
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the use H M E s  such as inadequa te  humid i f i ca t ion  and  
hea t ing  efficiency, high resistance to airflow, clogging by 
spu tum and  endot rachea l  tube  occlus ion [ 8 - 1 2 ] .  None-  
theless, con t inued  deve lopments  o f  the  H M E s  have im- 
proved thei r  hea t ing  and  humid i f i ca t i on  efficiency, de- 
creased their  resis tance to a i r f low and  improved  their  
qual i t ies  as a bacter ia l -v i ra l  f i l ter [8, 13 - 15]. A var ie ty  o f  
H M E s  are avai lable  with di f ferent  physical  p roper t ies  and  
var ious  exper imenta l  set-up mode l s  have been  developed 
to evaluate these proper t ies  [ 7 - 1 0 ,  13, 1 6 - 2 2 ] .  The  In-  
t e rna t iona l  Organ iza t ion  for S tanda rd iza t ion  (ISO) has 
released a d ra f t  s t andard  for  test ing H M E s  [18]. This  
draf t  s t andard  specifies the  m i n i m u m  requirements  o f  a 
pa t i en t  m o d e l  and  measuremen t  system to test HMEs .  A n  
ideal  exper imenta l  set-up should  not  only  imi ta te  the re- 
sp i ra to ry  proper t ies  o f  mechan ica l ly  vent i la ted pa t ien ts  
bu t  also be able to record  dynamic  var ia t ions  o f  humidi ty ,  
t empera tu re  and  resistance to calcula te  more  accurate ly  
the  p e r f o r m a n c e  character is t ics  o f  H M E s  in time. 

The  present  s tudy  concerns  the design and  va l ida t ion  
o f  an exper imenta l  set-up to test H M E s  in accordance  
with the  technical  s tandards  o f  the  ISO and  with the  abil i-  
ty to measure  dynamic  var ia t ions  o f  humidi ty ,  tempera-  
ture and resistance. 

The  a ims o f  the s tudy are: (i) to cons t ruc t  a pa t ien t  
mode l  which imitates  a mechan ica l ly  vent i la ted pa t ien t  in 
terms o f  compl iance ,  resistance, exp i ra tory  t empera tu re  
and  humid i ty  ou tput ;  (ii) to measure  dynamic  var ia t ions  
o f  flow, pressure, pressure difference, t empera tu re  and  
h u m i d i t y  cont inuously ,  thereby al lowing intra-  and  inter- 
b rea th  in te rp re ta t ion  o f  the  results; (iii) to calcula te  in- 
sp i ra tory  and  expi ra tory  f low-weighted mean  values o f  
humid i ty  and  t empera tu re  to assess the  p e r f o r m a n c e  
character is t ics  o f  the  H M E  (efficiency o f  humid i f i ca t ion  
and heat ing);  (iv) to de te rmine  the in t r ins ic  proper t ies  o f  
the  exper imenta l  test system with  a c o m m o n l y  used venti- 
la tor  sett ing and  to val idate  the  set-up dur ing  long- te rm 
measurements  wi th  a c o m m o n l y  used H M E .  

Materials and methods 

The experimental set-up 

The experimental set-up includes a patient model, measurement 
systems and a ventilator. 

The patient model consisted of a 1 1 training thorax (Ubungs- 
thorax, M 13333, Dr~ger, Germany), a HH (Conchatherm 3, Ken- 
dall Company Limited, London, UK), standard ventilatory tubing, 
two one-way valves, connectors and an incubator (Intensivpflege 
Incubator 6500, Dr~gerwerk AG, L~beck, Germany) as shown in 
Fig. 1. A calibration bag with a capacity of 650 ml was used during 
high tidal volume settings to prevent changes in compliance and 
pressure of the patient model. The output of the patient model was 
adjusted to produce 100% relative humidity at 34.5+ 1.0~ The 
incubator was kept at 36.0_+0.5~ to prevent condensation. 

CALIB RATII_i N BAG 
INCUBATOR PRESSU 

MODU[ 

FLOWMETER 

TETZ IE 

Fig. 1 The measurement set-up. The calibration bag (*) was only 
used during high tidal volume settings. 4 denotes the direction of 
the flow on the one-way valve 

A heated flowmeter (Fleisch No. 2, Sensormedics, Bilthoven, 
The Netherlands), located between the training thorax and the HH, 
connected to a pneumotachograph (Type 17212, Godart-Statham, 
Bilthoven, The Netherlands) was used for flow measurements. The 
flow measurement system was linear between 0-100 l/rain, and 
used to measure the inspiratory and expiratory flow ('~i and V~). 

Two sampling ports were used to introduce the temperature pro- 
bes, humidity sampling capillary and pressure lines; one sampling 
port was located between the patient model and HME ("P" site), 
and the other was located between the HME and Y-piece of the ven- 
tilatory tubing ("V" site). Two differential pressure transducers 
(Hewlett-Packard model 270, HP International, CA) and two signal 
conditioners (Hewlett-Packard model 8805 B carrier amplifier, HP 
International, CA) were used to measure the pressure in the ventila- 
tion circuit at the "V" site (Pv) and the pressure difference between 
the "P" and "V" site (APHME). The response time and ranges of 
the pressure transducers were 5 ms and -40  to 40 cmH20 , respec- 
tively. 

Two precalibrated, small bead NTC thermistors (Fenwal Elec- 
tronics, American Power Devices, MA) and a two channel tempera- 
ture module (Temperature module 78204B, Hewlett-Packard, HP 
International, CA) were used for temperature measurements at the 
"P" and "V" sites. The accuracy of the temperature module was 
+0.2~ The 0-90% step response times of the thermistors in 
flowing air were 200 and 300ms respectively. The temperature 
probes were calibrated between 20-40 ~ C with a mercury thermom- 
eter. 

A quadrupole mass spectrometer (MGA 3000, Case, Biggin 
Hill, UK) was used to measure partial water vapour pressures at the 
"P" and "V" sites. A transparent, unheated, constricted tip capil- 
lary was used for humidity measurements (sampling flow: 
40 ml/min). The delay time of the mass spectrometer was 460 ms 
with a 10-90% step response time of 600 ms. 

The barometric pressure was measured by a barometer (Fues 
barometer, Berlin, Germany) before each measurement and used 
for calibration of the mass spectrometer. 

Bottled helium with a dew point of -30~  (0.038kPa or 
0.34 rag/1 humidity) and a vapour generator (Type WG-600 water 
vapour generator, The Analytical Development Co. Ltd., UK) were 
used to calibrate the mass spectrometer. 

All signals (flow, pressure, pressure difference, temperature and 
humidity) were amplified (Medium gain differential input DC am- 
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plifier, Model 56-1340-00, Gould Electronics, OH) and plotted con- 
tinuously (Gould TA2000 thermal array recorder, Gould Electron- 
ics, OH). All signals were recorded concomitantly on magnetic 
tapes (Store-14, Racal Instrumentation Recorder, Racal, Southamp- 
ton, UK). During replay of the tapes, the analog signals were digi- 
tized (50 Hz), saved on a PC and corrected for the delay of the mass 
spectrometer. 

The incubator and room temperatures (Tinc, Troom ) were mea- 
sured by two mercury thermometers with an accuracy of _+0.2 ~ C 
and _+0.t ~ C respectively, 

An electronic scale (ED-60T, Berkel, The Netherlands) with an 
accuracy of _+0.5 g was used to weigh the patient model and the 
HME. 

A volume controlled ventilator (Dr~ger-Evita, Dr~tgerwerk AG, 
Ltibeck, Germany) was used to ventilate the patient model with the 
following settings: an expiratory tidal volume of 1.01, a frequency 
of 10 breaths/rain, an I : E ratio of 1 : 2, and an inspiratory flow of 
0.5 1/s. Central medical air with a dew point of -20~  (equal to 
0.1 kPa or 0.85 mg/1 humidity) was used to ventilate the patient 
model. 

The HME used in this study was the Dar Hygroster (Dar SpA 
Mirandola, Italy). 

Results 

The compliance and  resistance values of the pat ient  
model  over 24h  were 3 0 . 0 + l . 0 m l / c m H z O  and  
10.9+ 1,5 cmHzO/1/s  respectively. T(P)~,mea n and 
PH20(P)E, mean were 34.1_+0.8~ C and 5.2+0.3 kPa respec- 
tively dur ing the whole study (equal to an absolute 
humidi ty  of 36 .5+1 .7mg/1  or a relative humidi ty  of 
97.3+3.2~ The incubator  temperature over 24 hours 
was 35.8_+ 0.2 ~ C. The condensa t ion  in the pat ient  model  
was only  3 g over 24 h. 

Figure 2 shows an example of  the con t inuous  recording 
of  the different signals. Figure 3 shows the mean  in- 
spiratory and  expiratory absolute humid i ty  at each site of 
the HME.  As can be seen in Table 1, there were no  signifi- 
cant  changes in absolute humid i ty  over 24 h. 

Measurement protocol 750 
500 
250 

0 
-250 
-50~ 
-750 

-i000 

For stabilization, the patient model was ventilated for 1.5 h without "~ 
a HME in the system. After attachment of the HME, measurements (ml/s) 
were made every l0 rain in the first hour and continued hourly for 
24 h. Between the measurements the signals were plotted continu- 
ously. The humidity sampling capillary was placed from one sam- 
pling site to the other to measure the humidity at each side of the 
HME. At regular intervals the calibration, step-response time and 5.5 
delay time of the mass spectrometer were checked and updated if P-site 5.0 

4.,5 
necessary in combination with frequent inspection of the transpar- 
ent capillary to detect condensation. The weight of the HME and Pmo 
patient model without the incubator were measured before and af- (kPa) 
ter the measurement period. 1.5 

Calculated parameters included (see appendix for formulae): (i) V-site 1 
0.5 inspiratory-maximum, inspiratory-plateau and end-expiratory pres- 

sures at the V site (P(V)l . . . . .  P( )I, plat, P(V)z, end), (ii) Flow- 
weighted mean inspiratory and mean expiratory partial water va- 34 

33 pour pressures at the "P" and "V" sites of five successive breaths P-site 32 
(PH20(P)I, mean, PHao(P)~,~ . . . . .  P H 2 0 ( V ) I  . . . . . .  P H 2 0 ( V ) E ,  mean), ( i i i )  al 
Mean inspiratory and mean expiratory absolute humidity values T 
(equal to the water content of the inspiratory and expiratory air) of (~ 
five successive breaths in mg/t (AH(P)i, mean, AH(P)E, mean, 

26 AH(V)i,mean, AH(V)E, mean); (iv) Flow-weighted mean inspiratory V-site 25 
and mean expiratory temperature values at the "P" and "V" sites 
of 5 successive breaths (T(P)! . . . .  n, T(P)E,m .... T(V)I,m .... 
T(V)ILmean; (V) Resistance values: the total resistance of the patient 
model with the HME (RToT), mean inspiratory and maximum ex- 1.0 
piratory resistance of the HME (Ri.mean, RE, max) and the resistance 0.5 
of the patient model (RpM); (vi) Compliance of the patient model zXPHME 0.0 
(CpM); (vii) Weight differences: Weight gain of the HMEs and con- (emH20) -0.5 

-1,0 
densation in the patient model; (viii) Water losses at the "P" and -1.5 
"V" sites; (ix) Humidification efficiency of the HME (I-tEFF); (X) -2,0 
Temperature difference at the "P" site of the HME (AT(P)) [17]. 

Results are expressed as mean_+SD over 24h (n =30). The 
Kruskal-Wallis one-way analysis of variance test was used for the 
comparison of averages over time, using a statistical computer pro- 
gram (SPSS/PC+). p <0.05 was considered as being significant. 

i i i i 
5 i0 15 20 25 

T I M E  (s) 

Fig, 2 A continuous registration of the flow (f/), humidity 
(PH2o(P), Pmo(V): partial water vapour pressure recordings from 
"P" and "V" sites), temperature (T(P), T(V)." temperature record- 
ings from "P" and "V" sites) and pressure difference (APHME: be- 
tween "P" and "V" sites) signals after correction of the delay times 
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Fig. 3 Inspiratory and expiratory absolute humidity values over 
24 h measured at the "P"  site and "V" site 

Table 1 The measured and calculated parameters during the 24 h 
study (mean + SD) with the results of the statistical analysis (n = 30) 

Trnom (~ 24.0 +0.7 
Tin c (~ 35.8 _+0.2 
T(V)[ . . . . .  (~ 26.3 +0.5 
T(P)I  . . . . .  (~ 32.3 + 1.3 
T(P)E . . . . . .  ( ~  34.1 +_0.8 
T(V)E . . . . .  (~ 26.2 +-0.4 
PH o(V)i  mean (kPa) 0.76 +-0.0 

2 
PH2o (P)i, mean (kPa) 4.85 _+0.2 
PH o(P)E mean (kPa) 5.17 _+0.3 

2 
PHzo (V)s, mean (kPa) 1.14 _+0.1 
AH ( V)[, mean (mg/1) 5.5 -+ 0.2 
AH (P)I,mean (rag/l) 34.4 + 1.3 
AH(P)g,  mean (rag/l) 36.5 _+1.7 
AH (V)E ,mean (rag/l) 8.2 _+ 0.4 
WLp (mg/l) 2.1 + 0.8 
WL v (rag/l) 2.8 _+ 0.2 
R~, m e a n  (cmHzO/1/s) 1.7 + 0.1 
RE, max (cmHzO/1/s) 1.8 4- 0.1 
Hef t (o70) 93.44 _+ 1.0 
AT(P)  (~ 1.7 +-0.7 

p = 0 . 3  
p = 0.4 
p = 0.2 
p = 0.2 
p = 0.2 
p = 0 . 2  
p = 0.2 
p =  0.2 
p = 0.2 
p =  0.5 

Figure 4 shows the mean inspiratory and maximal ex- 
piratory resistances of  the HME during the 24 h study pe- 
riod. There was no significant increase of resistance over 
24 h (Table 1, p = 0.2 and p = 0.2 respectively). 

Table 1 shows the flow-weighted mean temperature 
and humidity values at each side of the HME, the mean 
room temperature and the mean water losses at the each 
side of  the HME over 24 h. As it should be, WLp equals 
WL v within the error range. The mean inspiratory fresh 
air temperature at the "V" site was always higher than the 
room temperature, as the ventilator heats the expiratory 
air to prevent condensation. The produced heat is con- 
ducted to the inspiratory limb by the metal parts of the 
ventilator and heats the inspiratory air to a temperature 
above the room temperature. Because of the heat and 

moisture exchange capacity of  the "V" site sampling port 
and Y-piece of the tubing set, the inspiratory air humidity 
content at the "V" site was higher than the content of the 
central medical air. 

Figure 5 shows the humidification efficiency (HEFF) 
of the HME and the temperature difference at the "P"  
site (AT(P)) during 24h.  There were no significant 
changes in humidification efficiency (p = 0.2) or AT(P) 
(p = 0.5) over 24 h. 

The weight gain of the HME was 4 g during the study. 
The sensitivity and dynamic response of the mass spec- 
trometer remained constant during the whole study. Dur- 
ing the study the barometric pressure ranged between 
100.7 and 101.9 kPa. 
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Discussion 

This study describes an experimental set-up and method 
to test HMEs, which is in close agreement with clinical 
conditions during mechanical ventilation. As can be seen 
from Fig. 2 and Table 1, the patient model characteristics 
of flow, expiratory temperature (T(P)E, mean), and expira- 
tory humidity (AH(P)E, mean), were indeed comparable to 
values found in humans [23-27] and were in agreement 
with the ISO draft standard [18]. 

During pilot studies we observed a decrease in the ex- 
piratory saturation level with an incubator temperature of 
more than 38~ and the occurrence of condensation in 
the patient model with a temperature lower than 34~ 
which interfered with the measurements. The ISO draft 
standard allows the incubator temperature to be in a wide 
range [18]. A mean incubator temperature of 35.8 + 0.2 ~ C 
over 24 h was sufficient to prevent condensation in this 
study. Vickers et al. stated that heating the patient model 
to prevent condensation, can result in incomplete satura- 
tion of  expiratory air [19]. As shown above, complete sat- 
uration of the expiratory air leaving the patient model 
was reached with the set incubator temperature. 

The ISO draft standard suggests compliance and 
resistance values for the patient model at various tidal 
volumes [18[. Our patient model showed a lower compli- 
ance and higher resistance compared to the recommenda- 
tions of  the ISO draft standard. The compliance value 
was in the same range as observed clinically by Eckerbom 
et al. [17]. Furthermore the efficiency of  the HME is re- 
lated to the flow rate, tidal volume, and transmission time 
of air through the HME [8, 9, 16, 20 -22 ,  281. However, 
the draft standard does not specify any inspiratory and 
expiratory flow rate. The expiratory flow profile of the 
patient model is more important for the function of the 
HMEs than the individual flow, compliance and resis- 
tance values. As can be seen in Fig. 2, the expiratory flow 
profile of the patient model closely resembles the expira- 
tory profile during mechanical ventilation in normal pa- 
tients. 

In order to measure the dynamic variations in water 
exchange of HMEs during mechanical ventilation, we 
chose to use a mass spectrometer. Although the ISO draft 
standard specifies detailed technical requirements of  the 
measurement equipment, the technique to measure hu- 
midity, an essential parameter for evaluation of  HMEs, is 
only defined for the gravimetric method [18]. Gravimetric 
humidity measurements, however, are only reliable during 
long term studies and give an overall, average value with- 
out information of transient changes [291. Thermocouple 
psychrometers and hygrometers have been used to mea- 
sure humidity in various studies. However, thermocouple 
psychrometers have long time constants and require high 
flow rates for accurate measurements [29]. Hygrometers 
are particularly suitable for measurements at low satura- 
tion levels but generally have long response times [13, 291. 

The use of a mass spectrometer avoids the above men- 
tioned problems and allows measurement of dynamic 
variations of  the water content of  the inspiratory and ex- 
piratory air [26, 29, 30]. However, condensation and evap- 
oration on the internal surfaces of the sampling capillary 
and the mass spectrometer can prolong the response time 
to the order of seconds. As others, we used a specially 
devised capillary (unheated, constricted tip capillary) to 
minimize these effects [31]. A heated sampling capillary 
was not used because this would possibly interfere with 
the local heat and water transport at the measurement site 
[31]. The dynamic response of the mass spectrometer was 
assessed at other ventilator settings (frequency i0 and 
15breaths/min, Tv of  1000 and 500ml, V: 30 and 
60 l/rain) and proved to be adequate to measure dynamic 
variations. To minimize the response time we also subject- 
ed the water vapour signals to an off-line deconvolution 
procedure based on a double-exponential approximation 
to the average of increasing step-responses [33]. Compari- 
son of absolute humidity values calculated from compen- 
sated water vapour measurements were not significantly 
different from those calculated with uncompensated mea- 
surements. For a better signal to noise ratio we used, 
therefore, the uncompensated water vapour measure- 
ments for subsequent absolute humidity calculations. 
One practical problem with the use of a constricted tip 
capillary is the increased risk of obstruction. In general, 
when an obstruction is present, this can be deduced from 
the quality of the water vapour signals and an increase of 
step-response time. However, frequent recalibration of the 
mass spectrometer and assessment of the step-response 
time at regular intervals did not reveal any indication of 
obstruction of the sampling capillary during our mea- 
surements. 

The main advantages of our system for measuring 
humidity is the application of an online, relative fast and 
accurate method for measurements of the water content 
of the inspiratory and expiratory air, which allows mea- 
surement of  dynamic variations in water exchange of a 
HME. 

As expected, the inspiratory and expiratory resistances 
of the HME were different, caused by the difference in 
inspiratory and expiratory flow rate and the amount of 
water captured in the HME. Expiratory resistance of the 
HME is related to the expiratory flow rate which is mainly 
dependent on the mechanical time constant of the patient 
model. In this study, we tried to imitate the expiratory 
flow profile of a mechanically ventilated patient in order 
to assess the influence of the HME on lung mechanics. 
The expiratory resistance of the HME we used did not 
influence the mechanics of our patient model as found by 
Conti et al. [32]. However, in diseases such as asthma, ex- 
piratory resistance has to be assessed for different HMEs. 

A continuous and obvious increase in the inspiratory 
resistance as reported by Ploysongsang et al. [10] could 
not be observed in our study. 
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The ISO draft standard suggests only 2 resistance mea- 
surements during 24 h measurement period by using dry 
air and a measurement system separated from the patient 
model  [181. The use of a dry gas flow to measure resis- 
tance outside the system, as suggested by the draft  stan- 
dard, can cause an underes t imat ion  of  the resistance val- 
ues. Moreover, d isconnect ion  can cause possible water 
loss from the H M E  which also can lead to an underesti-  
ma t ion  of  the resistance. Therefore, resistance measure- 
ments  will be more accurate when measured in the pat ient  
model  circuit wi thout  d isconnect ion  of the HME.  

The thermic gradient  across the H M E  determines its 
humid i ty  ou tpu t  [7, 8, 12, 211. This thermal  gradient  
changes with the ambien t  temperature  or the pat ient  
model  output .  The change in these variables makes it dif- 
ficult to compare  the different measurements  performed 
at different times and  condit ions.  The inf luence of the 
temperature  and  humid i ty  difference of the inspiratory 
fresh gas and  the pat ient  model  ou tpu t  on  the results can 
be el iminated by calculat ing the humidi f ica t ion  efficiency 

and the temperature difference at the "P" site as sug- 
gested in this and other papers [17]. Calculation of these 
parameters is easy and essential for comparison of differ- 
ent HMEs and protocols to test HMEs. 

It is concluded that the experimental set-up described 
in this paper is in accordance with the ISO draft standard 
and closely imitates the use of HMEs in a clinical setting. 
This set-up and method is therefore a reliable means to 
evaluate HMEs. The principle advantages of this set-up 
over those described previously include: (i) continuous 
measurements of dynamic variations of water and tem- 
perature exchange; (ii) calculation of expiratory as well as 
inspiratory resistance of the HME; (iii) calculation of hu- 
midification efficiency and temperature difference at the 
patient site, which can be used for comparison of the per- 
formance of different HMEs. 

Future studies will be directed to compare different 
HMEs during different clinical an experimental condi- 
tions. 
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Appendix 

A H  - PH2~ XMH2~ • 1000 (rag/l) (1) 
R •  

CpM = VTI X 1000 (ml /cmHzO) (2) 
P ( V)I, plat - P ( V)~, end 

P(V)I,  max- P(Vh,plat (cmH20/1/s)  (3) RTOT = 

R (HME) i ,  mean- API' mean (cmH20/1/s)  (4) 
r][ ~ m e a n  

R ( H M E ) E ,  m a x -  APE'max (cmH2 O/ l / s )  (5) 
I)-E, max 

RpM = RTOT - R  (HME)~, mean (cmH20/1/s)  (6) 

WLp = A H ( P ) E ,  mean - A H ( P ) i ,  mean (mg/1) (7) 

W L  V ~ A N (  V)E ' mean -AI - / (  V)I ' mean (rag/l) (8) 

mean water loss x] 
HEF F = 1 . . . . .  

.water output  patient m o d e l /  

(wLp + wLv)/2'  
= 1 -  --,~,-.-~..A--~)-----~-~ - / x l O 0  (070) (9) 

A T ( P )  = T(P)E, mean-r (P) t ,  mean (~ (I0) 


