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Abstract

A strong link exists between Randstad’s temporary staffing services and
Dutch GDP. The two annual series share a stochastic trend and two long-swing
deterministic cycles. Causality appears to run from temporary staffing to GDP
and not vice versa. These features are taken aboard in a simple forecasting
model for Dutch GDP growth for the period 2005-2015. The forecasts suggest
growth rates around 2 per cent, with a dip to be expected around 2012-2013.
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1 Introduction

Empirical experience reported in De Groot and Franses (2005) suggests that quar-

terly data on Randstad’s temporary staffing services and on real GDP in the Nether-

lands are strongly correlated. This correlation concerns the long run, as a cointegra-

tion relationship is found and the shorter run, where contemporaneous and lagged

correlations exist between growth rates. De Groot and Franses exploit these corre-

lations to forecast the most recent quarter of real GDP growth, 6 weeks before the

Central Bureau of Statistics makes available their first flash value. In order to do

that, the authors rely on a model for quarterly data on staffing services that fits and

predicts rather well.

An interesting feature of the quarterly data, and also for the annual data, of

both series of interest is that the data experience cycles. These cycles are the main

issue of the present paper. The reason for this is that most studies on real GDP

adopt autoregressive models for the growth rates, where the order of these models

typically is 2 or more. It is well known that when the solutions of the characteristic

polynomial of such an autoregression are complex valued, the model implies that

the data experience cycles. However, when these cycles are stable, then, due to

very nature of autoregressive models, long-term forecasts will show cycles with ever

decreasing amplitude, see Section 2 below. In order to make the cyclical patterns

to continue in a similar fashion in the forecasting sample, one can rely on harmonic

regressors, and this is what we will do in the present paper.

In Section 2, we will discuss the data (which are displayed in Table 1). It should

be stressed here that the real GDP data concern those data that were available in

June 2005. After that month, the Netherlands Central Bureau of Statistics started

a revision process, which was announced to be finished no earlier than by the end of

2006. As the main focus is to deliver forecasts for annual real GDP growth rates, we

could expect that these revisions will not change the forecasts. However, Nijmijer

and Hijman (2004) show that on average on may expect 0.35 percent increases in

growth rates. Indeed, the growth rates for 2003 and 2004 for the old data (the data

we use in the present paper) are -0.4 and 1.4, while for the new data (for which
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at this moment only 2001-2005 is available) these annual growth rates are -0.1 and

1.7. So, both increased with 0.3. In sum, we will add 0.35 to all of our long-term

forecasts, thereby incorporating upward tendencies in the next few years.

For each of the series, we first fit univariate time series models, allowing for

cycles. It is shown that suitable models for both series are AR(1) models with two

harmonic regressors, implying cycles of around 5 and 11 years.

Section 3 takes a next step by examining the possible presence of a common

stochastic trend in the log-level series, while we allow for deterministic cycles. As

expected, given the results in De Groot and Franses (2005), there is such a common

trend. However, when the cointegration variable and current and lagged growth

rates of GDP are added to the univariate model for Randstad, these terms appear

statistically irrelevant. Hence, we proceed with a single equation error-correction

model for real GDP. This model includes lags of both growth rates as well. Diagnostic

tests indicate the adequacy of this model, and also that there is no need to add any

harmonic regressor.

Section 4 takes all together and uses these to generate forecasts for 2005-2015 for

both the Randstad data and the real GDP series. An important conclusion is that

the Dutch economy will grow with around 1.5 percent per year, while a future dip

may be expected around 2012-2013.

Section 5 concludes. One of the main novelties of this paper, which is quite in

contrast with much recent research on business cycle forecasting, is that the fore-

casts are based on very simple single-equation models where only a single predictor

variable is used.

2 Univariate models

This section first discusses the annual data of interest, and then turns to univariate

models for the Randstad series and for real GDP in The Netherlands.
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The two series

The original Randstad data concern weekly data on the number of staffing employ-

ees (in all industries and sectors) employed through Randstad the Netherlands for

the years 1967 to 2004. In univariate analysis we will use the full sample. For

multivariate analysis we consider the sample starting from 1977, as from then on-

wards also reliable GDP data are available, published by the Netherlands Central

Bureau of Statistics (CBS). In our analysis we use annual staffing data, where we

have constructed the data by averaging over all 52 weeks.

Both series are transformed by taking natural logarithms. We denote by yt the

log-level of real GDP and by xt the log-level Randstad data. For the growth rates

we use the notation ∆1yt and ∆1xt, where ∆1 denotes the usual first-differencing

filter.

Figure 1 gives the two series. It is clear that they both have an upward trend1,

and also that they display cycles. These cycles show some correspondence, as their

peaks and troughs roughly coincide, where the peaks in the Randstad data seem to

occur a little earlier than those in the GDP data. Next, and not unexpectedly, we

see that the amplitude of the Randstad data is much larger than that of GDP.

Figure 2 gives the growth rates of the two series. Comparing the axes on the

both sides, we see again that the amplitude of the Randstad data is much higher

than that of GDP. We also see, now more clearly than for Figure 1, that the cyclical

patterns in the two growth rates are broadly similar. Dips in the series seem to occur

each 10 years. Indeed, peaks and troughs in both series seem to occur roughly in the

same years, where perhaps the peaks and troughs in the Randstad series sometimes

seem to lead with one year

1We do not formally test for unit roots in these data, as we believe that the alternative hypoth-
esis, that is, trend-stationarity, suggests an implausible model. Such a model would imply overly
confident long-term forecasts. So, we assume that both series have a unit root.
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Figure 1: Gross Domestic Output in millions of euros(left axis) and Staffing in
number of employees (right axis), observed per year
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Figure 2: Growth rates of Gross Domestic Output (left axis) and Staffing (right
axis), observed per year
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A model for Randstad

We first start with a univariate model for the Randstad data, for which we fit an

AR(2) model for the growth rates. The estimation results are

∆1xt = 0.055
(0.025)

+ 0.963
(0.148)

∆1xt−1 −0.532
(0.146)

∆1xt−2, (1)

where the estimated standard errors are in the parentheses.

As the solution of the characteristic equation for this estimated AR(2) polynomial

has complex components, we can compute the implied cycle length from this AR(2)

model, see Franses (1998, page 42). It turns out to be around 7 years. This seems

odd, as the graph in Figure 1 seems to suggest a cycle of length 10 to 11 years

It is possible that the value of 7 amounts to the mean length of two or more

cycles. Indeed, an AR(2) model only allows for a single cycle, and perhaps an

AR(3) or AR(4) model would have been better. However, adding more lags to the

AR(2) model leads to insignificant parameter estimates.

Another possibility, which, as it appears to us, is not very often used in practice,

is that the cycles are not stochastic (and caused by sequences of observation) but that

they are deterministic. That is, perhaps the model fit would benefit from including

harmonic regressors, which means terms like

α1 cos(
2πt

C
− α2) (2)

where t runs from 1 to T , and α1, α2 and C are unknown parameters.

The focus here is on values of cycle length C. Adding more than one harmonic

regressor can quickly lead to estimation problems and hence proper starting values

are very helpful. We decide to run 15 auxiliary regressions where each time the

AR(2) model in (1) is enlarged with a single such harmonic regressor, that is for C

= 1, C = 2, through, C = 15. We compute the R2 values of these auxiliary test

regressions, and we observe that the fit is highest C = 5 and C = 11. Including

these two harmonic terms at the same time makes the second order lagged regressor

obsolete, so the final model includes only an AR(1) term. We take C = 5 and C =
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11 as the starting values, and our final estimation result is

∆1xt = 0.031
(0.026)

+ 0.639
(0.164)

∆1xt−1 −0.115
(0.027)

cos(((2πt/ 5.144
(0.101)

)− 0.268)
(0.630)

−0.088
(0.028)

cos(((2πt/ 10.511
(0.576)

)− 1.431),
(0.659)

(3)

where the estimated standard errors are in the parentheses.

The in-sample fit of this model is depicted in Figure 3. We observe a close

fit, which is also reflected by the fact that the R2 was 0.573 for the AR(2) model,

while it has increased to 0.731 for this AR(1) model with harmonic regressors. The

Jarque-Bera test for residual normality has a p-value of 0.894, the test for residual

autocorrelation at lag 1 has a p-value of 0.553, and a test for first order ARCH gets

a p-value of 0.831. In sum, the model seems very adequate.

The estimation results show that the Randstad growth rates display cycles of

length 5.14 and 10.51 years, which also comes close to the visual impression obtained

from Figure 2.

When we add ∆1yt to this model, its t-value is 0.665. Also, adding levels of

log(GDP) does not lead to significant parameters. In sum, we believe that we can use

this model for out-of-sample forecasting, but we first need to see how a multivariate

model looks like.

A model for real GDP

Along similar lines we arrive at an AR(1) model with two harmonic regressors for

real GDP growth. The relevant estimation results are

∆1yt = 0.013
(0.005)

+ 0.439
(0.214)

∆1yt−1 −0.009
(0.002)

cos(((2πt/ 5.218
(0.185)

)− 4.577)
(1.149)

+0.010
(0.003)

cos(((2πt/ 10.667
(0.730)

)+ 1.078).
(0.961)

(4)

The R2 of this model is 0.776, and diagnostic tests do not suggest serious mis-

specification. Intriguingly, the model for real GDP growth provides estimates for

cycle lengths which are roughly the same as for the Randstad data in (3).
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Figure 3: The fit of an AR(1) model with two harmonic regressors for the growth
rates in the Randstad data
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There is one major difference though, and this follows from adding the current

variable ∆1xt and the lagged variables xt−1 and yt−1 to (4). Each of these variables

is significant, which is also reflected by the increase of the R2 from 0.776 to 0.929.

In sum, it is now time to consider the two series jointly, as we will do in the next

section.

3 Multivariate analysis

To construct a model for real GDP we wish to account for the possibility that the

two series under scrutiny have a common stochastic trend. Indeed, even though our

prime focus is on forecasting real GDP growth rates, we should allow for a common

trend if there is one, see Lin and Tsay (1998) for simulation results that show that

properly incorporating cointegration leads to better forecasts.

We apply the Johansen cointegration test, where we need to include two lags

of the first differenced series. As is well known, when the data can also have a

deterministic trend, we need to include such a trend in a restricted way in the error

correction term, while the model also includes intercepts, outside and inside the

error correction term. For Eviews, this means we need to follow option 4. We also

include as exogenous regressors two sets of harmonic terms, with fixed cycle lengths

of 5 and 11 years2. The first eigenvalue is estimated to equal 0.521 and the second

as 0.393, where only the first is significantly different from zero. Hence, there seems

to be one cointegration relation.

The next step is to estimate a bivariate vector error correction model with one

cointegration relation. The estimation results show that the cointegration variable

only has an impact on real GDP growth. Also, lagged GDP growth rates do not

have an effect on growth in Randsatd employees.

Taking all this together implies that we can proceed with a model for Randstad as

in (3), while for real GDP growth we proceed with a single equation error correction

2We are aware of the fact that the inclusion of such harmonic regressors changes the asymptotic
distribution theory. We are however unaware of such a theory, but we do expect that critical values
must become larger
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model. The final estimation results for this last model are

∆1yt = 0.560
(0.273)

− 0.060
(0.027)

(yt−1 −0.335
(0.059)

xt−1)

+ 0.056
(0.013)

∆1xt− 0.023
(0.017)

∆1xt−1+ 0.375
(0.191)

∆1yt−1. (5)

This model shows strong similarity with the model used in De Groot and Franses

(2005) for quarterly data. The long-run parameter is 0.335. The in-sample fit of this

model is depicted in Figure 4, and it is important to see that turning points seem to

be picked up by the model. As with the Randstad data, we observe a close fit, which

is also reflected by the fact that the R2 of this model is 0.764. The Jarque-Bera test

for residual normality has a p-value of 0.528, the test for residual autocorrelation at

lag 1 has a p-value of 0.995, and a test for first order ARCH gets a p-value of 0.217.

In sum, the model seems very adequate.

Notably, LM-tests based on a regression of estimated residuals on harmonic re-

gressor as in (2), for C = 1, C = 2, through C = 15, all turn out to obtain insignif-

icant values. Hence, the error correction model does not need to be enlarged with

harmonic regressors.

4 Forecasts for 2005 to 2015

We now use the above models to create forecasts for 2005 to 2015. First we give

the forecasts for the Randstad series. For this, we use model (1). We create these

forecasts in December 2005, so we have already available the figures for the quarters

1, 2 and 3 of 2005. These are 43108, 48143 and 50859, respectively. When we

consider an autoregressive time series model to predict quarter 4, and combine this

with expert opinions, we set the quarter 4 observation for 2005 at 53500. This makes

the 2005 observation to become the average of these four numbers, that is 48903.

We re-estimate model (1) now for the sample 1967-2005, and we create forecasts for

2006-2015.

The annual forecasts show that the years 2006 and 2007 will be prosperous, but

the next years thereafter suggest a slowdown. The first signs of a dip appear in 2011,

while recovery can be expected around 2014.
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Figure 4: The fit of an error correction model for the growth rates of real GDP

11



The second column gives the forecasts for real GDP growth when the univariate

model in (4) is used. We observe substantial fluctuations in these growth rates, with

some values perhaps too large, like in 2010, and too low as in 2013. We believe that

these forecasts have too large an amplitude.

The penultimate column gives the forecasts from an AR(2) model. As expected,

these forecasts mark the disappearance of cyclical patterns, which we, in the first

place, found less reliable. Indeed, we foresee that cycles will persist in the future,

and hence our focus on the error correction model for GDP.

Finally, when we plug in the forecasts for Randstad in the error correction model,

and we add 0.35 to each of these (as mentioned in the introduction) we obtain fore-

casts for real GDP growth as in the last column of Table 2. We see that these

forecasts are more dampened and, to us, there are much more plausible. The damp-

ening is caused by the link with the Randstad forecasts. On average, growth will be

around 1.5 percent per year, with a slowdown to be expected in 2012 and 2013.

5 Conclusion

This paper has put forward two simple models, one for annual staffing services of

Randstad and one for real GDP growth in the Netherlands. The two models have

been used to generate forecasts for the longer horizon, and it seems that the next

slowdown in the Dutch economy may be expected around 2012 and 2013.

A key feature of this paper is that we have used just a single explanatory series

to generate long run forecasts for the Dutch economy, which seems to be in contrast

with many current studies where hundreds of variables (or combinations) are used.

Given the in-sample fit of the two models, we are reasonably confident that these

models can reliably be used to generate long term forecasts.

There is one major caveat to make. Our forecasts are based on models with data

until and including 2004. At the moment, only revised GDP data are available from

2001 onwards. As revisions usually occur upwards, we added 0.35 to our forecasts

from the error correction model. Of course, when revise data become available for

more years, we will re-estimate the models and create new forecasts.

12



Table 1: The quarterly data
on Randstad staffing services
(number of individuals) and on
real GDP (in millions of euros),
as available in June 2005

Year Randstad real GDP

1967 856
1968 1268
1969 1855
1970 2684
1971 2899
1972 2892
1973 3902
1974 5314
1975 5982
1976 7128
1977 7619 205870
1978 8494 210985
1979 9737 214862
1980 9904 218478
1981 7116 217355
1982 6034 214566
1983 7700 218338
1984 13054 225149
1985 21152 231129
1986 25632 238352
1987 27631 242763
1988 30131 249998
1989 34395 261960
1990 38972 272607
1991 37174 279164
1992 34776 283322
1993 34622 285167
1994 40675 293336
1995 54417 302233
1996 65717 311419
1997 74347 323373
1998 79329 337435
1999 71172 350919
2000 62727 363081
2001 52096 368259
2002 45316 370355
2003 41376 367098
2004 44070 37238213



Table 2: Forecasts

Year real GDP growth real GDP growth real GDP growth
without Randstad without Randstad with Randstad

(harmonics) (AR(2))

2005 2.7 3.0 1.5
2006 3.0 3.3 1.4
2007 2.7 2.9 1.2
2008 2.9 2.4 1.5
2009 3.8 2.1 2.0
2010 4.2 2.1 1.8
2011 3.2 2.2 1.1
2012 1.2 2.3 0.4
2013 0.1 2.4 0.6
2014 0.7 2.3 1.4
2015 2.0 2.3 1.9
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