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Abstract

Vesico-ureteral reflux (VUR) is the retrograde passage of urine from the bladder to the urinary tract and causes 8.5% of end-
stage renal disease in children. It is a complex genetic developmental disorder, in which ectopic embryonal ureteric
budding is implicated in the pathogenesis. VUR is part of the spectrum of Congenital Anomalies of the Kidney and Urinary
Tract (CAKUT). We performed an extensive association study for primary VUR using a two-stage, case-control design,
investigating 44 candidate genes in the ureteric budding pathway in 409 Dutch VUR patients. The 44 genes were selected
from the literature and a set of 567 single nucleotide polymorphisms (SNPs) capturing their genetic variation was
genotyped in 207 cases and 554 controls. The 14 SNPs with p,0.005 were included in a follow-up study in 202 cases and
892 controls. Of the total cohort, ,50% showed a clear-cut primary VUR phenotype and ,25% had both a duplex collecting
system and VUR. We also looked for association in these two extreme phenotype groups. None of the SNPs reached a
significant p-value. Common genetic variants in four genes (GREM1, EYA1, ROBO2 and UPK3A) show a trend towards
association with the development of primary VUR (GREM1, EYA1, ROBO2) or duplex collecting system (EYA1 and UPK3A).
SNPs in three genes (TGFB1, GNB3 and VEGFA) have been shown to be associated with VUR in other populations. Only the
result of rs1800469 in TGFB1 hinted at association in our study. This is the first extensive study of common variants in the
genes of the ureteric budding pathway and the genetic susceptibility to primary VUR.
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Introduction

Vesico-ureteral reflux [VUR (MIM 193000)] is the retrograde

passage of urine from the bladder into the upper urinary tract. It is

one of the most commonly detected congenital anomalies and

probably has a conservatively estimated prevalence of 1%. [1,2] It

has a primary and a secondary form: primary VUR is due to an

incompetent valve mechanism at the uretero-vesical junction,

while secondary VUR is due to a functional or anatomical urethral

obstruction. VUR is a developmental disorder, which may occur

in isolation or as part of a Mendelian or other syndrome. The

Winter-Baraitser Dysmorphology Database lists 68 syndromes

with ‘urinary reflux’. [3]

Although most children grow out of the disorder without serious

morbidity, a subset does develop long-term complications. In this

group VUR results in renal damage, either as a result of ascending

urinary tract infections (reflux nephropathy) or of renal hypo- or

dysplasia, which is often associated with VUR. As such, in these

two groups VUR accounts for 7.4 – 9.6% and 8.8 – 13.8%,

respectively, of end-stage renal disease in Dutch children. [4]

Clinical observations and the results of many studies support the

notion that there is a heterogeneous genetic basis for VUR. The

incidence of VUR is increased in first-degree relatives of patients

[5–7] and there is 80% concordance between monozygotic twins.

[8] In a subset of families, the segregation pattern suggests

autosomal dominant inheritance with variable penetrance. [9–11]

Other inheritance patterns, including polygenic, have also been

observed. [12–14] Linkage studies have revealed different loci

linked to VUR, although most loci have not been convincingly

replicated. [10,11,15–19] Work in knock-out mice has confirmed

the importance of genetic factors in the etiology of VUR. [20]

Evidence for a continuous distribution of anatomic parameters,
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like the length of the intravesical ureter and the position of ureteric

budding from the mesonephric duct, associated with VUR

suggests that these parameters are quantitative traits encoded by

multiple genes. [20] In common complex diseases, common

genetic variants are thought to be part of the genetic disease

component. [21,22] Because of their modest individual effect size,

common variants are not detected by a linkage approach.

To date, no major susceptibility genes have been identified for

VUR. [10,11,15–17,19,20,23] However, since embryonal ectopic

ureteric budding has been proposed as a mechanism for the

development of VUR, [24,25] genes involved in this process are

considered to be potential candidate genes for VUR susceptibility

(see Schedl [60]: figure 3: http://www.nature.com/nrg/journal/

v8/n10/fig_tab/nrg2205_F3.html#figure-title). In particular, ec-

topic or deficient ureteric budding can lead to a diverse spectrum

of phenotypes known as ‘‘congenital anomalies of the kidney and

urinary tract’’ or CAKUT. CAKUT include VUR, hypo-/

dysplastic kidneys and duplex collecting systems. Variable

combinations of these phenotypes are seen in sibships (both in

mice and humans) suggesting that the same genetic variation is

causally involved in the whole CAKUT spectrum. [25] For

example, defects of the RET (ENSG00000165731) and GDNF

(ENSG00000168621) genes have been shown to cause deficient

ureteric budding with malformed or absent kidneys. [26,27]

ROBO2 (ENSG00000185008) regulates the expression of GDNF

[28] and was shown to be mutated in a small number of VUR/

CAKUT patients. [29] Genes involved in the RET/GDNF

pathway are obvious functional candidate genes for VUR. Genes

involved in syndromal VUR, like EYA1 in Branchiootorenal

Syndrome (MIM 113650) and PAX2 in Papillorenal Syndrome

(MIM 167409), are often also implicated in the ureteric budding

pathway and thus attractive candidate genes as well. Hence, we

hypothesize that common variants in genes in the ureteric budding

pathway contribute to the genetic susceptibility for primary VUR.

We describe the first genetic association study in VUR patients,

targeted to a large set of candidate genes primarily involved in the

ureteric budding pathway.

Results

We used a two-stage approach in which all of the designed

SNPs were genotyped in the first stage. Then a number of top

SNPs were chosen to be genotyped in the second stage. The joint

analysis of both stages is the end result of the study. [30]

In stage one, we successfully genotyped 567 (out of 758) SNPs

(single nucleotide polymorphisms) in 44 genes (Tables S1, S2 and

S4) for association analysis in a cohort of 207 primary VUR

patients and 554 controls (Figure 1). Examples of these 44 genes

are: BMP4, EYA1, FOXC1, GDNF, RET, GFRA1, ITGA8, PAX2,

SALL1, ROBO2 and SLIT2. We also performed a subset analysis in

two extreme phenotype subgroups: (1) a group of 111 clear-cut

primary VUR cases (e.g. patients with mild dysfunctional voiding,

a minor relative meatal stenosis, or insignificant urethral valves

were excluded) and (2) a group of 47 patients with VUR and a uni-

or bilateral, complete or incomplete, duplex collecting system.

The stage one p-values of the overall and two subset analyses

were combined in one list and ranked according to p-value (data

not shown). We set out to genotype the top 14 SNPs, which

mapped to RARB, ROBO2, EYA1, GFRA1, GREM1 and UPK3A, in

stage two (Table 1). By choosing to genotype the top 14 SNPs the

p-value threshold for the first stage was set to 0.005 (data not

shown). The stage two cohort of 202 cases and 892 controls was

also subjected to the subset analyses (87 clear-cut primary VUR

cases, and 58 cases with a duplex collecting system and VUR)

(Figure 1).

The joint results for the top 14 SNPs of the stage one and the

stage two cohorts, including the analyses in the two phenotype

subsets, are shown in Tabel 1. They did not reach significant p-

values when corrected for multiple testing (p,8.6*10–5). Analyses

of the permuted datasets did not yield significant p-values either

(data not shown). The results of the stage two cohort in themselves

do not replicate the stage one p-values.

Scrutinizing the joint results in the overall cohort and the two

phenotype subgroups for interesting trends, revealed five SNPs

(rs4476545, rs1666130, rs3735935, rs7497354 and rs1057353) and

three perfect proxies (rs1403848, rs10103397, rs9298164) in four

genes (ROBO2, EYA1, GREM1, UPK3A), that had (1) a 95%

stage one cohort stage two cohort

casescases controlscontrols

phenotype (sub-)
groups a�er quality

control 

all cases : n=207

n=554

all cases : n=202

n=892

clear cut primary VUR : 54%
(n=111) 

clear cut primary VUR : 43%
(n=87) 

VUR + duplex col-
lec�ng system : 23%

(n=47)  

VUR + duplex col-
lec�ng system : 29%

(n=58)  

gender female: 58% female: 42% female 69% female: 44%

mean year of birth
(interquar�le range) 1992 (1988-1996) 1957 (1947-1966) 1999 (1997-2002) 1948 (1940-1955)

provenance

UMC Utrecht: 64% (n=132)

Utrecht and Amster-
dam bloodbank

UMC Utrecht: 56% (n=113) Utrecht and Amster-
dam bloodbank n=144UMC St. Radboud: 34% (n=71) UMC St. Radboud: 25% (n=50)

Erasmus MC Ro�erdam: 0.5% (n=1) Erasmus MC Ro�erdam: 19% (n=38) ALS controls cohort
n=892 other: 1% (n=3) other: 0.5% (n=1)

DNA derived fr whole blood whole blood whole blood or saliva
whole blood (ampli-

fied DNA for ALS
cohort)  

Figure 1. Case-control cohorts. Detailed overview of the two Dutch case-control cohorts and two phenotype subgroups in which the association
study was performed.
doi:10.1371/journal.pone.0031327.g001
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confidence interval (95% CI) for the odds ratio (OR) that was not

equal to one and (2) a p-value smaller than 0.01 (Table 1).

For two genes, GREM1 (ENSG00000166923, OR 0.77 (95% CI

0.65 – 0.91) and ROBO2 (ENSG00000185008, OR 0.80 (95% CI

0.69 – 0.94)), it was mainly the primary VUR cases that

contributed to the overall trend. For EYA1, (ENSG00000104313,

OR 1.27 (95% CI 1.07 – 1.51)) the trend that would support our

hypothesis (arbitrarily set at p,0.05), was visible in the joint results

from both phenotype subgroups. The trend in the UPK3A gene

(ENSG00000100373, OR 1.52 (95% CI 1.11 – 2.06) only showed

in the subgroup with duplex collecting systems and VUR. In

ROBO2, EYA1 and UPK3A, more than one SNP showed in the best

results list and linkage disequilibrium plots showing the allelic

association between the SNPs are shown in Figure S1.

Although the result in UPK3A was not significant, it was

intriguing given the limited sample size of the subgroup of duplex

collecting system patients. This gene was subsequently sequenced

in all duplex collecting system patients and we identified three

inherited missense mutations that were not present in 96 control

chromosomes. In silico analysis suggested that these amino acid

substitutions have, at most, a mild effect on the protein (Table S3).

In one of the parents with the mutation there is an indication of

the presence of a duplex collecting system on renal ultrasound

(Table S3). This family will be followed up in a separate study.

Five SNPs in three genes (TGFB1 (ENSG00000105329), GNB3

(ENSG00000111664) and VEGFA (ENSG00000112715)) were

included in the stage one study because they were associated with

VUR in other populations. [31–36] The SNP in VEGFA did not

pass quality control criteria. Only rs1800469 in TGFB1 showed a

marginal effect in stage one (OR 1.32; 95% CI 1.03–1.70;

p = 0.028) but it did not reach the threshold for inclusion in stage

two.

Discussion

A cohort of VUR patients was screened for association with tag

SNPs covering 44 candidate genes (Table S1) that are related to

ureteric budding function (Schedl [60]: figure 3: http://www.

nature.com/nrg/journal/v8/n10/fig_tab/nrg2205_F3.html#figure-

title). No significant associations were detected in this exploratory,

candidate pathway association study in the Dutch population. The

best results of the study show common genetic variants in GREM1,

EYA1 and ROBO2 in the subgroup with isolated primary VUR and

of genetic variants in EYA1 and UPK3A in the subgroup with duplex

collecting systems.

Our study had several limitations. There was 80% power to

detect an effect size of .1.57 (or a protective effect of ,0.64).

Either we did not detect a larger (.1.57) effect (20% chance), or

effects of genetic variants in ureteric budding genes are more

moderate (,1.57) and therefore not significantly detected by our

study, or the selected SNPs are not associated with VUR in our

cohort. The study was designed before it was fully known that the

effect sizes of genetic variants in complex diseases are usually lower

than 1.6. But even today this would be a valid study to perform

since VUR inheritance patterns most likely range from Mendelian

to truely multifactorial, and variants with higher effect sizes are

sometimes detected in association studies for complex diseases.

[37]

It was impossible to obtain a control cohort with phenotyped

controls; not only would it have been infeasible to perform a renal

ultrasound in well over 1000 adults, it would also be pointless,

since most VUR patients (i.e. children) grow out of VUR once

they become adults. We did incorporate the 1% phenocopy rate in

our power calculation. Furthermore, as was discussed by

McCarthy et al, [38] in complex diseases with a prevalence of

5% or less, the increase in power gained by increasing the sample

size of a population based control cohort is often larger than the

increase in power gained by thoroughly phenotyping a smaller set

of controls.

As always, the moment of study design signifies a snapshot of

current knowledge, that is swiftly outdated. This means that some

genes that are currently interesting CAKUT genes, like FGFR2,

FRS2, [39,40] [39,40] ETV4 and ETV5 [41] [41] were not

considered for inclusion.

The null hypothesis (no association of common genetic variants

in the genes in the ureteric budding pathway) cannot be discarded

based on our results. Hence, our reported findings should be

interpreted cautiously and warrant replication in other, preferably

larger, cohorts.

Association studies such as this, in common complex diseases,

are suited to detecting common genetic variants with modest

individual effect sizes. [21,22] Earlier studies have shown that rare

pathogenic mutations in three of these genes cause human urinary

tract malformations or syndromes. Mutations and microdeletions

of EYA1 cause Branchiootorenal Syndrome (BOR, MIM 113650)

[42] and branchiootorenal spectrum disorders. [43] Among other

congenital anomalies, BOR is characterized by renal anomalies in

38.2% of mutation carriers. [44] These anomalies typically include

renal agenesis, hypoplasia or dysplasia, but VUR is also part of the

phenotypic spectrum. [43] ROBO2 was shown to be mutated in a

small number of (familial) VUR/CAKUT patients. [23,29,45]

Mutations in UPK3A are a cause for renal adysplasia, a phenotype

within the CAKUT spectrum. [46,47] Mouse models for all four

genes show phenotypes reminiscent of VUR/CAKUT. [23,48–

50] It is known from other diseases that different risk variants with

diverse effects in the same gene can contribute to both Mendelian

(syndromal) and multifactorial phenotypes. [51]

Since VUR, both with and without a duplex collecting system,

can occur within the same family, the phenotypes may partly be

caused by the same underlying genetic factors, as previously

discussed by Kelly et al. [18] For this reason we also included cases

with a duplex collecting system in our study. Nevertheless, for the

analyses, we also analyzed the two extreme phenotype subgroups

(i.e. clear-cut primary VUR cases and cases with a duplex

collecting system and VUR) separately. In one of the four genes

(EYA1), the joint ORs in both groups showed a trend supporting

our hypothesis of contribution of common genetic variants to the

genetic susceptibility for VUR.

The subgroup association analysis identified UPK3A as a

plausible risk factor for the duplex collecting system phenotype

alone. On sequencing the complete coding region of UPK3A in this

subgroup, we identified three inherited amino acid substitutions,

which may represent susceptibility alleles. Mutations in UPK3A

[46,47] were not detected in VUR patients so far. [52–54] One,

albeit weak, association between VUR and a missense polymor-

phism in UPK3A has been published. [53] Future studies will

reveal whether mildly pathogenic mutations and/or common

genetic variants in UPK3A contribute to the duplex collecting

system subphenotype, or also to VUR, in general.

The trends in GREM1 and ROBO2 in this study are mainly

derived from the clear-cut primary VUR cases. Interestingly, in

one of the families in which a ROBO2 mutation was previously

identified as cause of the phenotype, [23] duplex collecting systems

were also part of the phenotype. Our study only had power to

detect association in the duplex collecting system subgroup with

common variants with a relatively large effect size. It is therefore

possible that a milder effect in this subgroup from variants in

ROBO2 remained undetected.

Genes, Ureteric Budding and VUR

PLoS ONE | www.plosone.org 5 April 2012 | Volume 7 | Issue 4 | e31327



It appears from the linkage disequilibrium (LD) plots in Figure

S1a that the three SNPs in ROBO2 that reached the cut-off for

stage two of our study, might represent two independent effects.

Two SNPs are part of an LD block so the likely risk factor may be

a variant anywhere in that block. In EYA1 (Figure S1b), all four

SNPs are part of the same LD block. The SNPs in UPK3A are not

in LD. The SNP (rs1057353) that shows a trend for association

with the duplex collecting system phenotype is a non-synonymous

coding SNP and part of an LD block, so again the likely causative

locus may be anywhere in the block, or we may have picked up an

effect of this specific SNP.

As a by-product of their linkage study Cordell et al. recently

performed an association scan for six candidate genes, five of

which we also studied in our two cohorts. [19] Two of these genes

(ROBO2 and UPK3A) were included in the top results in our Dutch

cohort. None of the genes were significantly associated with VUR

in Cordell et al.’s study. They also tested their genome-wide

linkage SNP set (,140,000 SNPs) for association with VUR. The

SNPs with the most promising p-values were not located in genes

related to the ureteric budding pathway; they were therefore not

studied in our cohort. Other SNPs in genes in the ureteric budding

pathway were not reported, but since coverage may not have been

adequate, we cannot rule out that these genes play a role in that

study. [19]

SNPs in three genes (TGFB1, GNB3 and VEGFA) were

previously shown to be associated with VUR in other populations

and therefore included in our study. [31–36] Only rs1800469 in

TGFB1 showed a marginal trend towards association in our Dutch

cases.

Implication of genes involved in the ureteric budding pathway

in multifactorial, isolated primary VUR remains to be established.

Based on the large body of evidence from human and mouse

studies (see references in Introduction and for Table S1), we

believe there is also a role for these genes in the pathogenesis of

isolated VUR. Association studies in larger cohorts will elucidate

the role of common genetic variants with small effect sizes.

Furthermore, as shown for ROBO2, [23,45] it may well be that

rare as well as common genetic variants explain part of the

heritability of VUR. Future targeted sequencing of these and

newly identified genes and exome sequencing studies in well-

characterized multiplex families as well as sporadic cases may shed

light on this alternative hypothesis. [55,56] It is also possible that

common or rare genetic variants in as yet undiscovered genes in

this or another pathway will prove to be key players in the

development of VUR.

In conclusion, this was the first extensive association study of the

ureteric budding pathway in VUR patients and controls and

provides no conclusive evidence for association of common

variants in genes in the ureteric budding pathway with VUR.

Methods

Study Design
We used a two-stage approach in which all of the designed

SNPs were genotyped in the first stage. Then a number of top

SNPs were chosen to be genotyped in the second stage. The joint

analysis of both stages was the end result of the study. [30] In stage

one, SNPs in 44 genes were genotyped in 207 unrelated cases and

554 controls. The SNPs with the 14 lowest p-values (p value cut-

off: 0.005) for association in either the whole group or a subgroup

were genotyped in stage two in a second cohort of 202 cases and

892 controls. Allelic association p values were calculated per stage

(chi2 test for independence) and combined (Cochran-Mantel-

Haenszel) in PLINK. [57] The datasets were also permuted

10,000 times and analyzed in PLINK. Deviations from Hardy

Weinberg equilibrium in the controls were tested with a chi2

goodness-of-fit test in PLINK (cut-off: 0.001).

Cases and Controls
The total case population consisted of 409 VUR patients of

Dutch descent (see Figure 1 for detailed information). All patients

were diagnosed and treated in pediatric urology clinics of the

participating Dutch university medical centers. Medical records

were reviewed in order to ensure the correct diagnosis of VUR.

We performed both overall and endo-phenotype analyses

(Figure 1). The first endo-phenotype group consisted of clear-cut

primary VUR patients, i.e. with no other mild urological findings,

like mild dysfunctional voiding, a relative meatal stenosis, or

insignificant urethral valves (n = 111/207 and 87/202). The

second endo-phenotype group consisted of VUR patients with

only complete or incomplete duplex collecting systems (n = 47/207

and 58/202).

The control group comprised two independent cohorts

(Figure 1) in order to obtain a larger sample size and more

power. The first were 554 healthy Dutch donors from the blood

banks in Amsterdam and Utrecht. [58] The second group were

338 healthy Dutch volunteers recruited for an unrelated study on

amyotrophic lateral sclerosis. [59] Controls in stage one were

entirely from the blood donor group, while controls in stage two

were from both groups.

All patients and controls gave their informed consent and the

study was approved by the ethics review committees of each of the

participating hospitals (UMC Utrecht Institutional Review Board

protocol 00–103/K).

Gene Selection
For stage one, initially 52 candidate genes were selected based

on at least one of the following criteria (Table S1):

(a) direct involvement in the ureteric budding pathway as

reviewed by Schedl [60]: figure 3: http://www.nature.com/nrg/

journal/v8/n10/fig_tab/nrg2205_F3.html#figure-title; (b) evi-

dence from the literature for implication in the ureteric budding

pathway; (c) involvement in human syndromes associated with

VUR or VUR-related phenotypes; (d) five SNPs in three genes

(TGFB1, GNB3 and VEGFA) were included because they showed

association with VUR or VUR-related phenotypes in other studies

(the genes were not tagged, only the specific genetic variations

were included for replication), (e) 8 ‘‘wildcard genes’’ were

included that showed co-expression with the core group of

candidate genes as reviewed by Schedl [60]: figure 3: http://www.

nature.com/nrg/journal/v8/n10/fig_tab/nrg2205_F3.html#figure-

title, in an online database of co-expression (‘Gemma’, http://

www.chibi.ubc.ca/Gemma/). SNPs in 44 genes passed our

quality control criteria (see ‘Quality Control’).

SNP Selection
For stage one, 634 tag SNPs were selected with the Tagger

program for the following parameters: r2.0.8, minor allele

frequency (MAF) .0.1, pairwise or aggressive tagging. Each

tagged locus included the coding part of the gene and at least 3 kb

of the promoter region and 2 kb of the 3’ end. If only a few tag

SNPs were available at suboptimal parameters, all the known

SNPs were included. Furthermore, by using FastSNP, [61] where

possible we added SNPs with a predicted functional effect in the

chosen genes (n = 124). This second SNP category was allowed to

have a MAF ,0.1. For 7 of 52 genes, there were no tagging SNPs

available, so only functional SNPs were included for these (see

Table S4).
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Genotyping
DNA samples for stage one were derived from whole blood. In

stage two, DNA samples from cases were either derived from

whole blood or Oragene saliva kits (DNA Genotek, Ottawa,

Canada), but in controls they originated from whole blood. DNA

of part of the stage two control samples had been previously

amplified (REPLI-G, Qiagen, Valencia, CA, USA).

SNP genotyping for the discovery cohort was performed with a

GoldenGate assay on an Illumina BeadStation 500GX per the

manufacturer’s protocol (Illumina, San Diego, USA). Raw data

were analyzed with Bead Studio software (Applied Biosystems,

Nieuwerkerk a/d IJssel, the Netherlands). Clustering for all SNPs

was checked manually and any dubiously clustered SNPs were

removed.

Genotyping of the 14 SNPs in the replication cohort was

performed with TaqMan probes and primers and an ABI 7900HT

system (Applied Biosystems). Assay IDs are provided in Table S5.

Clustering for all SNPs was checked manually. As it proved

difficult to genotype rs1057353 satisfactorily with a TaqMan assay,

it was partly genotyped via Sanger sequencing. See Table S6 for

primer details. Because of linkage disequilibrium (D’ = 1 and r2 $

0.95) between rs1666130 and rs1403848 in ROBO2 and

rs3735935, rs9298164 and rs10103397 in EYA1, we included

one SNP from each set (rs1666130 and rs3735935) for genotyping

in stage two. These two SNPs were perfect proxies for the three

that were not actually genotyped. We consequently genotyped 11

SNPs. LD plots for the genes that showed the best results were

created with Haploview version 4.2 and based on HAPMAP CEU

data.

UPK3A was sequenced using Sanger sequencing in the endo-

phenotype subgroup of VUR patients with complete or incom-

plete duplex collecting systems, and 96 control chromosomes. A

margin of at least 143 basepairs was observed surrounding the

coding regions. See Table S6 for primer details. In silico analysis of

mutations was performed with Alamut version 1.4 from Interac-

tive Biosoftware (Rouen, France).

Quality Control
One sample was added to each of the ten 96 well plates in stage

one to check for concordance. The concordance rate over 758

SNPs was 99.9%. As stage one quality-control measures, duplicate

samples were removed, sample call rate, genotype call rate and

Hardy-Weinberg equilibrium (HWE) within controls were deter-

mined. Initially, 758 SNPs were included in this study. Only

samples with a call rate above 90% were included in further

analyses (Figure 1). SNPs with a minor allele frequency (MAF) of

,0.1 (188 SNPs) or a genotyping call rate of less than 90% (64

SNPs) were excluded. Four SNPs showed strong deviation from

Hardy- Weinberg equilibrium in the controls (pHWE ,0.001) and

were discarded from further analysis. After quality control, 567

successfully genotyped SNPs were used for further analysis. For the

42 genes for which tagging SNPs were included, the median

percentage of tagging SNPs passing our quality criteria was 90%.

For 8 of 10 genes that had only some or all functional SNPs

included, these SNPs did not pass the quality control. So

effectively, SNPs in 44 genes were tested for association with

VUR (see Tables S1 and S4).

For the stage two cohort, we determined sample call rate,

genotype call rate, MAF and HWE. Only samples with a call rate

.90% were included in further analyses (Figure 1). In stage two,

all SNPs satisfied the quality control criteria (genotyping rate

.90%, MAF.0.1, pHWE .0.001 in controls). Four 384 well

plates were used for stage two. Two of these plates contained

duplicate control samples, the concordance rate for these samples

was 100%. The stage two ALS control plates did not contain

duplicate control samples as they were not created in our own lab.

Power Estimation
The power to detect an effect in the joint cohorts under the

assumption of an additive model was estimated using the Genetic

Power Calculator [62] (Figure S2). We assumed a prevalence of

0.01, a high risk allele frequency (A) of 0.25, a disease allele

frequency of 0.25 a D’ of 1, and the use of unselected controls.

This study had 80% power to detect a heterozygote relative risk of

1.57 (or a protective effect of 1/1.57 = 0.64) at a significance level

of 8.6*1025 ( = 0.05/(567+14) tests). As can be appreciated from

Figure S2, the study had approximately 4% power to detect each

variant that has a heterozygote relative risk of 1.2. It would have

taken a five-fold number of cases and controls to obtain 80%

power to detect a 1.2 heterozygote relative risk (not shown in

Figure S2).

Supporting Information

Figure S1 LD plots for ROBO2, EYA1 and UPK3A. (a)
LD plot (based on Hapmap r2 data) for ROBO2 (3 kb upstream

and 2 kb downstream). SNPs that reached the cut-off for stage two

of our study are highlighted (from left to right: rs4476545,

rs1666130 and rs1403848; also see Table 1). (b) LD plot (based on

Hapmap r2 data) for EYA1 (3 kb upstream and 2 kb downstream).

SNPs that reached the cut-off for stage two of our study are

highlighted (from left to right: rs10103397, rs9298164, rs3735935,

rs1481800, also see Table 1). (c) LD plot (based on Hapmap r2

data) for UPK3A (3 kb upstream and 2 kb downstream). SNPs

genotyped in stage two of our study are highlighted (also see

Table 1).

(EPS)

Figure S2 Power estimation. This study had 80% power to

detect an association with a heterozygote effect size of 1.57.

(EPS)

Table S1 Genes selected for vesico-ureteral reflux
association study.
(DOCX)

Table S2 567 SNPs in the VUR association study that
passed our quality control criteria.
(DOCX)

Table S3 Three inherited UPK3A mutations identified
in the duplex collecting system subgroup. Results of in
silico analysis, online database queries, and renal
ultrasound in parents.
(DOCX)

Table S4 Tagging and functional SNPs in this associa-
tion study that passed our quality control criteria.
(DOCX)

Table S5 TaqMan assay IDs for SNPs genotyped in
stage two (Applied Biosystems).
(DOCX)

Table S6 Primer sequences used for UPK3A sequencing
and sequencing of rs1057353 (indicated with *).
(DOCX)
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