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Abstract

Vesico-ureteral reflux (VUR) is the retrograde passage of urine from the bladder to the urinary tract and causes 8.5% of end-
stage renal disease in children. It is a complex genetic developmental disorder, in which ectopic embryonal ureteric
budding is implicated in the pathogenesis. VUR is part of the spectrum of Congenital Anomalies of the Kidney and Urinary
Tract (CAKUT). We performed an extensive association study for primary VUR using a two-stage, case-control design,
investigating 44 candidate genes in the ureteric budding pathway in 409 Dutch VUR patients. The 44 genes were selected
from the literature and a set of 567 single nucleotide polymorphisms (SNPs) capturing their genetic variation was
genotyped in 207 cases and 554 controls. The 14 SNPs with p<<0.005 were included in a follow-up study in 202 cases and
892 controls. Of the total cohort, ~50% showed a clear-cut primary VUR phenotype and ~25% had both a duplex collecting
system and VUR. We also looked for association in these two extreme phenotype groups. None of the SNPs reached a
significant p-value. Common genetic variants in four genes (GREM1, EYA1, ROBO2 and UPK3A) show a trend towards
association with the development of primary VUR (GREM1, EYA1, ROBO2) or duplex collecting system (EYAT and UPK3A).
SNPs in three genes (TGFB1, GNB3 and VEGFA) have been shown to be associated with VUR in other populations. Only the
result of rs1800469 in TGFBT hinted at association in our study. This is the first extensive study of common variants in the
genes of the ureteric budding pathway and the genetic susceptibility to primary VUR.
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Introduction urinary tract infections (reflux nephropathy) or of renal hypo- or
) ) dysplasia, which is often associated with VUR. As such, in these
Vesico-ureteral reflux [VUR (MIM 193000)] is the retrograde two groups VUR accounts for 7.4 — 9.6% and 8.8 — 13.8%,

passage of urine from the bladder into the upper urinary tract. It is respectively, of end-stage renal disease in Dutch children. [4]

Clinical observations and the results of many studies support the
notion that there is a heterogeneous genetic basis for VUR. The
incidence of VUR is increased in first-degree relatives of patients
[5-7] and there is 80% concordance between monozygotic twins.
[8] In a subset of families, the segregation pattern suggests
autosomal dominant inheritance with variable penetrance. [9-11]
Other inheritance patterns, including polygenic, have also been

Winter-Baraitser Dysmorphology Database lists 68 syndromes observed. [12-14] Linkage studies have revealed different loci
with ‘urinary reflux’. [3]

one of the most commonly detected congenital anomalies and
probably has a conservatively estimated prevalence of 1%. [1,2] It
has a primary and a secondary form: primary VUR is due to an
incompetent valve mechanism at the uretero-vesical junction,
while secondary VUR is due to a functional or anatomical urethral
obstruction. VUR is a developmental disorder, which may occur
in isolation or as part of a Mendelian or other syndrome. The

linked to VUR, although most loci have not been convincingly

Although most children grow out of the disorder without serious replicated. [10,11,15-19] Work in knock-out mice has confirmed
morbidity, a subset .dOCS develop long:tcrm complicatio\ns. In Fhis the importance of genetic factors in the etiology of VUR. [20]
group VUR results in renal damage, either as a result of ascending Evidence for a continuous distribution of anatomic parameters,
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like the length of the intravesical ureter and the position of ureteric
budding from the mesonephric duct, associated with VUR
suggests that these parameters are quantitative traits encoded by
multiple genes. [20] In common complex diseases, common
genetic variants are thought to be part of the genetic disease
component. [21,22] Because of their modest individual effect size,
common variants are not detected by a linkage approach.

To date, no major susceptibility genes have been identified for
VUR. [10,11,15-17,19,20,23] However, since embryonal ectopic
ureteric budding has been proposed as a mechanism for the
development of VUR, [24,25] genes involved in this process are
considered to be potential candidate genes for VUR susceptibility
(see Schedl [60]: figure 3: http://www.nature.com/nrg/journal/
v8/n10/fig_tab/nrg2205_F3. html#figure-title). In particular, ec-
topic or deficient ureteric budding can lead to a diverse spectrum
of phenotypes known as “congenital anomalies of the kidney and
urinary tract” or CAKUT. CAKUT include VUR, hypo-/
dysplastic kidneys and duplex collecting systems. Variable
combinations of these phenotypes are seen in sibships (both in
mice and humans) suggesting that the same genetic variation is
causally involved in the whole CAKUT spectrum. [25] For
example, defects of the RET (ENSG00000165731) and GDNF
(ENSG00000168621) genes have been shown to cause deficient
ureteric budding with malformed or absent kidneys. [26,27]
ROBO2 (ENSG00000185008) regulates the expression of GDNF
[28] and was shown to be mutated in a small number of VUR/
CAKUT patients. [29] Genes involved in the RET/GDNF
pathway are obvious functional candidate genes for VUR. Genes
involved in syndromal VUR, like EYA! in Branchiootorenal
Syndrome (MIM 113650) and PAX?2 in Papillorenal Syndrome
(MIM 167409), are often also implicated in the ureteric budding
pathway and thus attractive candidate genes as well. Hence, we
hypothesize that common variants in genes in the ureteric budding
pathway contribute to the genetic susceptibility for primary VUR.

We describe the first genetic association study in VUR patients,
targeted to a large set of candidate genes primarily involved in the
ureteric budding pathway.

Genes, Ureteric Budding and VUR

Results

We used a two-stage approach in which all of the designed
SNPs were genotyped in the first stage. Then a number of top
SNPs were chosen to be genotyped in the second stage. The joint
analysis of both stages is the end result of the study. [30]

In stage one, we successfully genotyped 567 (out of 758) SNPs
(single nucleotide polymorphisms) in 44 genes (Tables S1, S2 and
S4) for association analysis in a cohort of 207 primary VUR
patients and 554 controls (Figure 1). Examples of these 44 genes
are: BMP4, EYAI, FOXCI, GDNF, RET, GFRAI, ITGA8, PAX2,
SALLI, ROBOZ2 and SLIT2. We also performed a subset analysis in
two extreme phenotype subgroups: (1) a group of 111 clear-cut
primary VUR cases (e.g. patients with mild dysfunctional voiding,
a minor relative meatal stenosis, or insignificant urethral valves
were excluded) and (2) a group of 47 patients with VUR and a uni-
or bilateral, complete or incomplete, duplex collecting system.

The stage one p-values of the overall and two subset analyses
were combined in one list and ranked according to p-value (data
not shown). We set out to genotype the top 14 SNPs, which
mapped to RARB, ROBO2, EYAI, GFRA1, GREMI and UPK34, in
stage two (Table 1). By choosing to genotype the top 14 SNPs the
p-value threshold for the first stage was set to 0.005 (data not
shown). The stage two cohort of 202 cases and 892 controls was
also subjected to the subset analyses (87 clear-cut primary VUR
cases, and 58 cases with a duplex collecting system and VUR)
(Figure 1).

The joint results for the top 14 SNPs of the stage one and the
stage two cohorts, including the analyses in the two phenotype
subsets, are shown in Tabel 1. They did not reach significant p-
values when corrected for multiple testing (p<<8.6%¥10-5). Analyses
of the permuted datasets did not yield significant p-values either
(data not shown). The results of the stage two cohort in themselves
do not replicate the stage one p-values.

Scrutinizing the joint results in the overall cohort and the two
phenotype subgroups for interesting trends, revealed five SNPs
(rs4476545, rs1666130, rs3735935, rs7497354 and rs1057353) and
three perfect proxies (rs1403848, rs10103397, rs9298164) in four
genes (ROBO2, EYAI, GREMI, UPK34), that had (1) a 95%

stage one cohort

stage two cohort

cases controls cases

control
VUR + duplex col-
lecting system : 23%
(n=47)

controls
all cases : n=207 all cases : n=202
clear cut primary VUR : 54% clear cut primary VUR : 43%
phenotype (sub-) (n=111) (n=87)
groups after quality n=554 n=892

VUR + duplex col-
lecting system : 29%
(n=58)

gender

female: 58%

female: 42%

female 69%

female: 44%

mean year of birth
(interquartile range)

1992 (1988-1996)

1957 (1947-1966)

1999 (1997-2002)

1948 (1940-1955)

UMC Utrecht: 64% (n=132)

UMC St. Radboud: 34% (n=71)

Utrecht and Amster-

UMC Utrecht: 56% (n=113)

UMC St. Radboud: 25% (n=50)

Utrecht and Amster-
dam bloodbank n=144

provenance dam bloodbank
Erasmus MC Rotterdam: 0.5% (n=1) am bloodban Erasmus MC Rotterdam: 19% (n=38) ALS controls cohort
other: 1% (n=3) other: 0.5% (n=1) n=892
whole blood (ampli-
DNA derived fr whole blood whole blood whole blood or saliva fied DNA for ALS

cohort)

Figure 1. Case-control cohorts. Detailed overview of the two Dutch case-control cohorts and two phenotype subgroups in which the association
study was performed.
doi:10.1371/journal.pone.0031327.g001
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confidence interval (95% CI) for the odds ratio (OR) that was not
equal to one and (2) a p-value smaller than 0.01 (Table 1).

For two genes, GREM1 (ENSG00000166923, OR 0.77 (95% CI
0.65 — 0.91) and ROBO2 (ENSG00000185008, OR 0.80 (95% CI
0.69 — 0.94)), it was mainly the primary VUR cases that
contributed to the overall trend. For £YA1, (ENSG00000104313,
OR 1.27 (95% CI 1.07 — 1.51)) the trend that would support our
hypothesis (arbitrarily set at p<<0.05), was visible in the joint results
from both phenotype subgroups. The trend in the UPR3A4 gene
(ENSG00000100373, OR 1.52 (95% CI 1.11 — 2.06) only showed
in the subgroup with duplex collecting systems and VUR. In
ROBO2, EYAI and UPK34, more than one SNP showed in the best
results list and linkage disequilibrium plots showing the allelic
association between the SNPs are shown in Figure SI.

Although the result in UPA34A was not significant, it was
intriguing given the limited sample size of the subgroup of duplex
collecting system patients. This gene was subsequently sequenced
in all duplex collecting system patients and we identified three
inherited missense mutations that were not present in 96 control
chromosomes. In silico analysis suggested that these amino acid
substitutions have, at most, a mild effect on the protein (Table S3).
In one of the parents with the mutation there is an indication of
the presence of a duplex collecting system on renal ultrasound
(Table S3). This family will be followed up in a separate study.

Five SNPs in three genes (TGFBI (ENSG00000105329), GNB3
(ENSG00000111664) and VEGFA (ENSG00000112715)) were
included in the stage one study because they were associated with
VUR in other populations. [31-36] The SNP in VEGFA did not
pass quality control criteria. Only rs1800469 in 7GFBI showed a
marginal effect in stage one (OR 1.32; 95% CI 1.03-1.70;
p =0.028) but it did not reach the threshold for inclusion in stage
two.

Discussion

A cohort of VUR patients was screened for association with tag
SNPs covering 44 candidate genes (Table S1) that are related to
ureteric budding function (Schedl [60]: figure 3: http://www.
nature.com/nrg/journal/v8/n10/fig_tab/nrg2205_F3. html#figure-
title). No significant associations were detected in this exploratory,
candidate pathway association study in the Dutch population. The
best results of the study show common genetic variants in GREMI,
EYAI and ROBO2 in the subgroup with isolated primary VUR and
of genetic variants in YA and UPK34 in the subgroup with duplex
collecting systems.

Our study had several limitations. There was 80% power to
detect an effect size of >1.57 (or a protective effect of <0.64).
Either we did not detect a larger (>1.57) effect (20% chance), or
effects of genetic variants in ureteric budding genes are more
moderate (<1.57) and therefore not significantly detected by our
study, or the selected SNPs are not associated with VUR in our
cohort. The study was designed before it was fully known that the
effect sizes of genetic variants in complex diseases are usually lower
than 1.6. But even today this would be a valid study to perform
since VUR inheritance patterns most likely range from Mendelian
to truely multifactorial, and variants with higher effect sizes are
sometimes detected in association studies for complex diseases.
(37]

It was impossible to obtain a control cohort with phenotyped
controls; not only would it have been infeasible to perform a renal
ultrasound in well over 1000 adults, it would also be pointless,
since most VUR patients (i.e. children) grow out of VUR once
they become adults. We did incorporate the 1% phenocopy rate in
our power calculation. Furthermore, as was discussed by

@ PLoS ONE | www.plosone.org
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McCarthy et al, [38] in complex diseases with a prevalence of
5% or less, the increase in power gained by increasing the sample
size of a population based control cohort is often larger than the
increase in power gained by thoroughly phenotyping a smaller set
of controls.

As always, the moment of study design signifies a snapshot of
current knowledge, that is swiftly outdated. This means that some
genes that are currently interesting CAKUT genes, like FGIRZ,
FRS2, [39,40] [39,40] ETV4 and ETV5 [41] [41] were not
considered for inclusion.

The null hypothesis (no association of common genetic variants
in the genes in the ureteric budding pathway) cannot be discarded
based on our results. Hence, our reported findings should be
mnterpreted cautiously and warrant replication in other, preferably
larger, cohorts.

Association studies such as this, in common complex diseases,
are suited to detecting common genetic variants with modest
individual effect sizes. [21,22] Earlier studies have shown that rare
pathogenic mutations in three of these genes cause human urinary
tract malformations or syndromes. Mutations and microdeletions
of EYAI cause Branchiootorenal Syndrome (BOR, MIM 113650)
[42] and branchiootorenal spectrum disorders. [43] Among other
congenital anomalies, BOR is characterized by renal anomalies in
38.2% of mutation carriers. [44] These anomalies typically include
renal agenesis, hypoplasia or dysplasia, but VUR is also part of the
phenotypic spectrum. [43] ROBOZ2 was shown to be mutated in a
small number of (familial) VUR/CAKUT patients. [23,29,45]
Mutations in UPK3A4 are a cause for renal adysplasia, a phenotype
within the CAKU'T spectrum. [46,47] Mouse models for all four
genes show phenotypes reminiscent of VUR/CAKUT. [23,48-
50] It is known from other diseases that different risk variants with
diverse effects in the same gene can contribute to both Mendelian
(syndromal) and multifactorial phenotypes. [51]

Since VUR, both with and without a duplex collecting system,
can occur within the same family, the phenotypes may partly be
caused by the same underlying genetic factors, as previously
discussed by Kelly et al. [18] For this reason we also included cases
with a duplex collecting system in our study. Nevertheless, for the
analyses, we also analyzed the two extreme phenotype subgroups
(.e. clear-cut primary VUR cases and cases with a duplex
collecting system and VUR) separately. In one of the four genes
(EYAI), the joint ORs in both groups showed a trend supporting
our hypothesis of contribution of common genetic variants to the
genetic susceptibility for VUR.

The subgroup association analysis identified UPA34 as a
plausible risk factor for the duplex collecting system phenotype
alone. On sequencing the complete coding region of UPK34 in this
subgroup, we identified three inherited amino acid substitutions,
which may represent susceptibility alleles. Mutations in UPK3A4
[46,47] were not detected in VUR patients so far. [52—54] One,
albeit weak, association between VUR and a missense polymor-
phism in UPK34 has been published. [53] Future studies will
reveal whether mildly pathogenic mutations and/or common
genetic variants in UPK34 contribute to the duplex collecting
system subphenotype, or also to VUR, in general.

The trends in GREMI and ROBO?2 in this study are mainly
derived from the clear-cut primary VUR cases. Interestingly, in
one of the families in which a ROBO2 mutation was previously
identified as cause of the phenotype, [23] duplex collecting systems
were also part of the phenotype. Our study only had power to
detect association in the duplex collecting system subgroup with
common variants with a relatively large effect size. It is therefore
possible that a milder effect in this subgroup from variants in
ROBOZ2 remained undetected.
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It appears from the linkage disequilibrium (LD) plots in Figure
Sla that the three SNPs in ROBOZ that reached the cut-off for
stage two of our study, might represent two independent effects.
Two SNPs are part of an LD block so the likely risk factor may be
a variant anywhere in that block. In EYAI (Figure S1b), all four
SNPs are part of the same LD block. The SNPs in UPR34 are not
in LD. The SNP (rs1057353) that shows a trend for association
with the duplex collecting system phenotype is a non-synonymous
coding SNP and part of an LD block, so again the likely causative
locus may be anywhere in the block, or we may have picked up an
effect of this specific SNP.

As a by-product of their linkage study Cordell et al. recently
performed an association scan for six candidate genes, five of
which we also studied in our two cohorts. [19] Two of these genes
(ROBO2 and UPK34) were included in the top results in our Dutch
cohort. None of the genes were significantly associated with VUR
in Cordell et al.’s study. They also tested their genome-wide
linkage SNP set (~140,000 SNPs) for association with VUR. The
SNPs with the most promising p-values were not located in genes
related to the ureteric budding pathway; they were therefore not
studied in our cohort. Other SNPs in genes in the ureteric budding
pathway were not reported, but since coverage may not have been
adequate, we cannot rule out that these genes play a role in that
study. [19]

SNPs in three genes (TGFBI, GNB3 and VEGFA) were
previously shown to be associated with VUR in other populations
and therefore included in our study. [31-36] Only rs1800469 in
TGFBI showed a marginal trend towards association in our Dutch
cases.

Implication of genes involved in the ureteric budding pathway
in multifactorial, isolated primary VUR remains to be established.
Based on the large body of evidence from human and mouse
studies (see references in Introduction and for Table S1), we
believe there is also a role for these genes in the pathogenesis of
isolated VUR. Association studies in larger cohorts will elucidate
the role of common genetic variants with small effect sizes.
Furthermore, as shown for ROBO2, [23,45] it may well be that
rare as well as common genetic variants explain part of the
heritability of VUR. Future targeted sequencing of these and
newly identified genes and exome sequencing studies in well-
characterized multiplex families as well as sporadic cases may shed
light on this alternative hypothesis. [55,56] It is also possible that
common or rare genetic variants in as yet undiscovered genes in
this or another pathway will prove to be key players in the
development of VUR.

In conclusion, this was the first extensive association study of the
ureteric budding pathway in VUR patients and controls and
provides no conclusive evidence for association of common
variants in genes in the ureteric budding pathway with VUR.

Methods

Study Design

We used a two-stage approach in which all of the designed
SNPs were genotyped in the first stage. Then a number of top
SNPs were chosen to be genotyped in the second stage. The joint
analysis of both stages was the end result of the study. [30] In stage
one, SNPs in 44 genes were genotyped in 207 unrelated cases and
554 controls. The SNPs with the 14 lowest p-values (p value cut-
off: 0.005) for association in either the whole group or a subgroup
were genotyped in stage two in a second cohort of 202 cases and
892 controls. Allelic association p values were calculated per stage
(chi® test for independence) and combined (Cochran-Mantel-
Haenszel) in PLINK. [57] The datasets were also permuted
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10,000 times and analyzed in PLINK. Deviations from Hardy
Weinberg equilibrium in the controls were tested with a chi2
goodness-of-fit test in PLINK (cut-off: 0.001).

Cases and Controls

The total case population consisted of 409 VUR patients of
Dutch descent (see Figure 1 for detailed information). All patients
were diagnosed and treated in pediatric urology clinics of the
participating Dutch university medical centers. Medical records
were reviewed in order to ensure the correct diagnosis of VUR.

We performed both overall and endo-phenotype analyses
(Figure 1). The first endo-phenotype group consisted of clear-cut
primary VUR patients, i.e. with no other mild urological findings,
like mild dysfunctional voiding, a relative meatal stenosis, or
insignificant urethral valves (n=111/207 and 87/202). The
second endo-phenotype group consisted of VUR patients with
only complete or incomplete duplex collecting systems (n =47/207
and 58/202).

The control group comprised two independent cohorts
(Figure 1) in order to obtain a larger sample size and more
power. The first were 554 healthy Dutch donors from the blood
banks in Amsterdam and Utrecht. [58] The second group were
338 healthy Dutch volunteers recruited for an unrelated study on
amyotrophic lateral sclerosis. [59] Controls in stage one were
entirely from the blood donor group, while controls in stage two
were from both groups.

All patients and controls gave their informed consent and the
study was approved by the ethics review committees of each of the
participating hospitals (UMC: Utrecht Institutional Review Board
protocol 00-103/K).

Gene Selection

For stage one, initially 52 candidate genes were selected based
on at least one of the following criteria (Table S1):

(a) direct involvement in the ureteric budding pathway as
reviewed by Schedl [60]: figure 3: http://www.nature.com/nrg/
journal/v8/n10/fig_tab/nrg2205_F3.html#figure-title; (b) evi-
dence from the literature for implication in the ureteric budding
pathway; (c) involvement in human syndromes associated with
VUR or VUR-related phenotypes; (d) five SNPs in three genes
(TGFB1, GNB3 and VEGFA) were included because they showed
association with VUR or VUR-related phenotypes in other studies
(the genes were not tagged, only the specific genetic variations
were included for replication), (e) 8 “wildcard genes” were
included that showed co-expression with the core group of
candidate genes as reviewed by Schedl [60]: figure 3: http://www.
nature.com/nrg/journal/v8/n10/fig_tab/nrg2205_F3.html#figure-
title, in an online database of co-expression (‘Gemma’, http://
www.chibi.ubc.ca/Gemma/). SNPs in 44 genes passed our
quality control criteria (see ‘Quality Control’).

SNP Selection

For stage one, 634 tag SNPs were selected with the Tagger
program for the following parameters: r?>0.8, minor allele
frequency (MAF) >0.1, pairwise or aggressive tagging. Each
tagged locus included the coding part of the gene and at least 3 kb
of the promoter region and 2 kb of the 3’ end. If only a few tag
SNPs were available at suboptimal parameters, all the known
SNPs were included. Furthermore, by using FastSNP, [61] where
possible we added SNPs with a predicted functional effect in the
chosen genes (n = 124). This second SNP category was allowed to
have a MAF <0.1. For 7 of 52 genes, there were no tagging SNPs
available, so only functional SNPs were included for these (see
Table S4).
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Genotyping

DNA samples for stage one were derived from whole blood. In
stage two, DNA samples from cases were either derived from
whole blood or Oragene saliva kits (DNA Genotek, Ottawa,
Canada), but in controls they originated from whole blood. DNA
of part of the stage two control samples had been previously
amplified (REPLI-G, Qiagen, Valencia, CA, USA).

SNP genotyping for the discovery cohort was performed with a
GoldenGate assay on an Illumina BeadStation 500GX per the
manufacturer’s protocol (Illumina, San Diego, USA). Raw data
were analyzed with Bead Studio software (Applied Biosystems,
Nieuwerkerk a/d IJssel, the Netherlands). Clustering for all SNPs
was checked manually and any dubiously clustered SNPs were
removed.

Genotyping of the 14 SNPs in the replication cohort was
performed with TagMan probes and primers and an ABI 7900HT
system (Applied Biosystems). Assay IDs are provided in Table S5.
Clustering for all SNPs was checked manually. As it proved
difficult to genotype rs1057353 satisfactorily with a TagMan assay,
it was partly genotyped via Sanger sequencing. See Table S6 for
primer details. Because of linkage disequilibrium (D’ =1 and r* =
0.95) between 1s1666130 and 1s1403848 in ROBO?2 and
rs3735935, rs9298164 and rs10103397 in EYAI, we included
one SNP from each set (rs1666130 and rs3735935) for genotyping
in stage two. These two SNPs were perfect proxies for the three
that were not actually genotyped. We consequently genotyped 11
SNPs. LD plots for the genes that showed the best results were
created with Haploview version 4.2 and based on HAPMAP CEU
data.

UPK34 was sequenced using Sanger sequencing in the endo-
phenotype subgroup of VUR patients with complete or incom-
plete duplex collecting systems, and 96 control chromosomes. A
margin of at least 143 basepairs was observed surrounding the
coding regions. See Table S6 for primer details. In silico analysis of
mutations was performed with Alamut version 1.4 from Interac-
tive Biosoftware (Rouen, France).

Quality Control

One sample was added to each of the ten 96 well plates in stage
one to check for concordance. The concordance rate over 758
SNPs was 99.9%. As stage one quality-control measures, duplicate
samples were removed, sample call rate, genotype call rate and
Hardy-Weinberg equilibrium (HWE) within controls were deter-
mined. Initially, 758 SNPs were included in this study. Only
samples with a call rate above 90% were included in further
analyses (Figure 1). SNPs with a minor allele frequency (MAF) of
<0.1 (188 SNPs) or a genotyping call rate of less than 90% (64
SNPs) were excluded. Four SNPs showed strong deviation from
Hardy- Weinberg equilibrium in the controls (ppwr <0.001) and
were discarded from further analysis. After quality control, 567
successfully genotyped SNPs were used for further analysis. For the
42 genes for which tagging SNPs were included, the median
percentage of tagging SNPs passing our quality criteria was 90%.
For 8 of 10 genes that had only some or all functional SNPs
included, these SNPs did not pass the quality control. So
effectively, SNPs in 44 genes were tested for association with
VUR (see Tables S1 and S4).

For the stage two cohort, we determined sample call rate,
genotype call rate, MAF and HWE. Only samples with a call rate
>90% were included in further analyses (Figure 1). In stage two,
all SNPs satisfied the quality control criteria (genotyping rate
>90%, MAF>0.1, pgwr =>0.001 in controls). Four 384 well
plates were used for stage two. Two of these plates contained
duplicate control samples, the concordance rate for these samples
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was 100%. The stage two ALS control plates did not contain
duplicate control samples as they were not created in our own lab.

Power Estimation

The power to detect an effect in the joint cohorts under the
assumption of an additive model was estimated using the Genetic
Power Calculator [62] (Figure S2). We assumed a prevalence of
0.01, a high risk allele frequency (A) of 0.25, a disease allele
frequency of 0.25 a D’ of 1, and the use of unselected controls.
This study had 80% power to detect a heterozygote relative risk of
1.57 (or a protective effect of 1/1.57 =0.64) at a significance level
of 8.6¥107° (=0.05/(567+14) tests). As can be appreciated from
Figure S2, the study had approximately 4% power to detect each
variant that has a heterozygote relative risk of 1.2. It would have
taken a five-fold number of cases and controls to obtain 80%
power to detect a 1.2 heterozygote relative risk (not shown in

Figure S2).

Supporting Information

Figure S1 LD plots for ROBO2, EYAl and UPK3A. (a)
LD plot (based on Hapmap r* data) for ROBO2 (3 kb upstream
and 2 kb downstream). SNPs that reached the cut-off for stage two
of our study are highlighted (from left to right: rs4476545,
rs1666130 and rs1403848; also see Table 1). (b) LD plot (based on
Hapmap r” data) for EVAI (3 kb upstream and 2 kb downstream).
SNPs that reached the cut-off for stage two of our study are
highlighted (from left to right: rs10103397, rs9298164, rs3735935,
151481800, also see Table 1). (¢) LD plot (based on Hapmap r’
data) for UPK34 (3 kb upstream and 2 kb downstream). SNPs
genotyped in stage two of our study are highlighted (also see
Table 1).

(EPS)

Figure 82 Power estimation. This study had 80% power to
detect an association with a heterozygote effect size of 1.57.

(EPS)

Table S1 Genes selected for vesico-ureteral reflux
association study.

(DOCX)

Table $2 567 SNPs in the VUR association study that
passed our quality control criteria.
(DOCX)

Table S3 Three inherited UPK3A mutations identified
in the duplex collecting system subgroup. Results of in
silico analysis, online database queries, and renal
ultrasound in parents.

(DOCX)

Table S4 Tagging and functional SNPs in this associa-
tion study that passed our quality control criteria.
(DOCX)

Table 85 TagMan assay IDs for SNPs genotyped in
stage two (Applied Biosystems).
(DOCX)

Table S6 Primer sequences used for UPK34 sequencing
and sequencing of rs1057353 (indicated with *).
DOCX)
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