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ZERO SUMS OF IDEMPOTENTS IN BANACH ALGEBRAS 

H. Bart, T. Ehrhardt and B. Silbermann 

The problem treated in this paper is the following. Let Pl,...,Pk be 
idempotents in a Banach algebra B, and assume p l + . . . + p k = 0 .  Does it follow that p j = 0 ,  
j =  1,...,k? For important classes of Banach algebras the answer turns out to be 
positive; in general, however, it is negative. A counterexample is given involving 
five nonzero bounded projections on infinite-dimensional separable Hilbert space. The 
number five is critical here: in Banach algebras nontrivial zero sums of four 
idempotents are impossible. In a purely algebraic context (no norm), the situation is 
different. There the critical number is four. 

1. INTRODUCTION 

In this paper we study the problem stated in the abstract. The problem is 

intriguing in its own right, but it came to the attention of the authors in their 

investigation of logaritmic residues in Banach algebras. This background, and more 

specifically the connection with [BES1], is briefly explained at the end of this 

introduction. 

A full solution to the problem is not yet available (and might very well 

stay out of reach for some time to come). For a variety of important Banach algebras, 

however, positive results are obtained. Among these are the generalizations of 

commutative Banach algebras called polynomial-identi ty Banach algebras and certain 

Banach algebras that appear in the (numerical) work of S. Roch and B. Silbermann. An 

important instance of the latter category is the Banach subalgebra of s 

generated by all compact operators on Lz(T), all operators on Lz(T ) of multiplication 

by piece-wise continuous functions, and the operator S of singular integration along 

1; here T is the unit circle in the complex plane. This Banach algebra is not a 

polynomial- identi ty algebra. 

In spite of the positive results indicated in the previous paragraph, the 

answer to the question under discussion is generally negative. This appears from a 

counterexample involving five nonzero bounded projections on infinite-dimensional 

separable Hilbert space. As an immediate consequence, one has that nontrivial zero 

sums of k bounded projections on infinite dimensional Hilbert space exist for every 
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k larger than or equal to five. 

The number five is critical here: Nontrivial zero sums of four idempotents 

in Banach algebras do not exist. This is especially remarkable because in a purely 

algebraic context, the critical number is not five, but four. The existence of rings 

with four nonzero idempotents adding up to zero was already established in [Ma]; see 

also [Be]. The approach in these papers is rather abstract. In the present paper we 

give an example involving a concrete algebra of linear operators. 

As announced already, we conclude this introduction by briefly indicating 

the connection with [BES1]. In that paper, the authors introduce and investigate the 

concept of a logarithmic residue in a Banach algebra. A logarithmic residue is an 

element of the form 

(1.1) 1 
2~ri f f'(A)f(A)-ldA 

OD 

where the Banach algebra valued function f and the Cauchy domain D(cC) satisfy 

certain conditions (such as, for example, that f is analytic in a neighbourhood of 

the closure of D). Each sum of idempotents in a Banach algebra is a logarithmic 

residue. So the problem discussed in the present paper is a special case of the 

broader issue of vanishing logarithmic residues. It is that issue that is addressed 

in [BES1]. The main results is [BES1] are concerned with sufficient conditions under 

which the assumption that (1.1) vanishes implies that f takes invertible values on D. 

Theorems of this type are vector valued versions of one of the basic results from 

complex function theory. 

Acknowledgements: The foundation for this paper was laid when the first and 

last author were at the 20th Functional Analysis Seminar organized by V. Pt~k and 

P. Vrbobs in Liptovsky Jkn, Czechoslovakia, May-June 1989. The authors are grateful 

to T.J. Laffey for bringing to their attention the references [Be] and [Ma]. 

2. BANACH ALGEBRAS WITHOUT NONTRWIAL ZERO SUMS OF IDEMPOTENTS 

The problem discussed in this paper is the following: Let B be a Banach 

algebra, and let Pl,...,Pk be idempotents in B such that p l + . . . + p k = O .  Does it follow 

that p j = 0 ,  j =  1,...,k? In this section we shall see that for important classes of 

Banach algebras, the answer is positive. 

We begin with an elementary observation. For X a Banach space, s will 

denote the Banach algebra of all bounded linear operators on X. Note that the 

idempotents in s are just the projection operators on X. 
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PROPOSITION 2.1 Let B = L ( X ) ,  where X is a Banach space, and let P1,. . . ,Pk be 

idempotents in B such that PI+. . .+Pk=O.  Assume, in addition, that P1,. . . ,Pk are of  

finite rank. Then Pj  = O, j = 1,...k. 

PROOF Take traces and use tha t  for a finite rank projection operator,  trace 

and rank coincide. [] 

For our next  result, we need some notat ion and terminology. As before, the 

setting is a Banach algebra B with unit element, here to be denoted by e. By C n• we 

mean  the Banach algebra of all complex n• matrices. The unit element in s215 is the 

n• ident i ty  mat r ix  I n. Of course C nxn can be identified with /::(Ca). 

A mapping ~:B-~C n• is called an n• matrix representation of B if it is 

linear, continuous (bounded) and multiplicative. So a 1• matr ix  representat ion is 

just a multiplicative bounded linear functional on B. If ~ is an n• matr ix  

representat ion of B, then T(e) is an idempotent  nxn matrix.  Hence T(e) is invertible 

if and only if ~ ( e ) = l n ,  and in tha t  case ~0(b-1)=~0(b) -1 for each invertible b �9 B. We 

call ~b a matrix representation of B if there exists n such tha t  ~b is an n• matr ix  

representat ion for B. A nonempty  set M of matr ix  representations of B is said to be a 

sufficient family of  matrix representations for B if for each b � 9  the following 

holds: b is invertible if and only if det ~b(b)#0  for all ~b �9 M. 

This terminology is inspired by N. Krupnik [K]. In Section 29 of [K], the 

characterizat ion of Banach algebras possessing a sufficient family of mat r ix  

representat ions is identified as an open problem. For our purposes here it is of 

interest to note tha t  the class of Banach algebras possessing a sufficient family of 

mat r ix  representat ions is large. It contains all matr ix  algebras cn• (take 34={In})  

and all commutat ive  Banach algebras with unit  element (Gelfand Theory).  More 

generally, each polynomial - ident i ty  Banach algebra possesses a sufficient family of 

mat r ix  representat ions (cf. [K]). Recall tha t  B is called a polynomial-identity 

Banach algebra if there exist a positive integer k and a polynomial  p(xl , . . . ,xk)  in 

k noncommut ing  variables Xl,...,xk, p~0,  such that  p(bx,...,bk) = 0  for arbi t rary 

bl,  ... ,b k �9 B. As an example of a polynomial- ident i ty  Banach algebra we ment ion 

cnxn. In tha t  case one can take for p the so called s tandard polynomial  involving 2n 

variables, i.e., the polynomial  ~(sgr~)xcr (1) . . .X~(2n) ,  where a runs through the 

symmetric group S2n (cf.[AL]). For a proof of this result and more examples, see [K]. 

THEOREM 2.2 Suppose B is a Banach algebra possessing a sufficient family of  

matrix representations. I f  Pl, . . - ,Pk are idempotents in B with Pl +...  + Pk =O, then 

pj=O, j =  l , . . . , k .  

This result can be viewed as a comment  to Problem 12 in [K], Section 29; 

see however Remark 2.4 below. In light of [BES1], Theorem 4.1, Theorem 2.2 above is 
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contained in [BES1], Proposition 5.1. For the convenience of the reader, we present a 

simple direct proof. 

PROOF Take ~beM, where )4 is a sufficient family of matrix representations 

for B, and put Pj=~(Pi)" Then PI+...+Pk=O. Note that P1,...,P k are idempotents 

matrices (of the same size). Hence P1 . . . . .  Pk=O by Proposition 2.1. Take je{1, . . . ,k}.  

Then ~ ( e - p j ) = I - P j = I  , where I is the identity matrix of the appropriate size. In 

particular g , (e -p j )  is invertible. Since ~b~)4 was taken arbitrarily, it follows that 

e - p j  is invertible. Clearly (e-pj )p j=O,  and so pj=O. [] 

COROLLARY 2.3 Let Px,...,Pk be commuting idempotents in a Banach algebra B, 

and assume Pl+... +Pk =0.  Then p j = 0 ,  j=  l,...,k. 

PROOF We may assume that B is a commutative Banach algebra; otherwise 

replace B by the Banach subalgebra of B generated by Pl,.. . ,Pk. Since a commutative 

Banach algebra posesses a sufficient family of matrix representations (Gelfand 

Theory), Theorem 2.2 applies. [] 

A more straighforward proof of Corollary 2.3 can be given along the lines 

suggested by the proof of Proposition 4.1 below. We leave the details to the reader. 

REMARK 2.4 As was already noted, Theorem 2.2 is a special case of [BES1], 

Proposition 5.1. Specializing another result from [BES1]~ namely [BES1], Remark 5.3, 

we see that the statement of Theorem 2.2 is also true when B is a Banach algebra of 

the type considered in [Sm]~ Theorem 2 (and [BES1], Theorem 4.2). Such Banach 

algebras appear in the (numerical) work of S. Roch and B. Silbermann (cf. [Sm]), and 

they need not possess a sufficient family of matrix representations. As an important 

example (cf.[K]), we mention the Banach subalgebra of s generated by all 

compact operators on L2(]-), all operators on L2(T ) of multiplication by piece-wise 

continuous functions and the operator S of singular integration along [ ;  here T is 

the unit circle in the complex plane (:. This Banach algebra does not possess a 

sufficient family of matrix representations (see [BES1]~ Section 4). So it is not 

covered by Theorem 2.2; nevertheless the statement of the theorem holds true. 

3. A COUNTEREXAMPLE 

As we have seen in the previous section, the answer to the question 

discussed in this paper is positive for important classes of Banach algebras. In 

general, however, it is negative. Here is a (nonexotic) example. 

EXAMPLE 3.1 Let H be the Hilbert space obtained by taking the orthogonal 

direct sum of three copies of the sequence space ~2: H=~2@~2@g2. The identity 

operator on ~ will be denoted by I. 

Let a,b,c and d be complex numbers such that ac=3 and bd= -14, and introduce 
5 
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~( I cI dI I 
PI= aI acI adI 

bI bcI bdI) 
: d 2 ~ 2 ~ d  2 ~ . i ~ 2 ~ 2 ~  2 

I I -cI 
P2 = 5_. -aI acI 

6 | bI -bcI 

dI 
: ~ 2 ~ ' ~ 2 ~ 2  ~ ~2~2~4~ 2 

q/ I 
P3=  0 o~ 

o ~ , )  
: "~2~'~2~2 ~ ~2~4~2~4~2. 

Then P1,P2,P3 �9 s and 

(3.1) PI+P2+Pa= [io o} 51 0 .  
0 -71 

In order to introduce P4 and P5 we need to make some preparat ions.  Define 

the bounded l inear operators Ti~ T2~ S 1 and S 2 on ~2 by stipulating that  

TI(xO,Xl,X2, ... ) = (xo, O,xl,O,x2,0,x3,... ) 
T2(xo, xl,xz,... ) = (O,xo, O,Xl,O,x2,0, . . .  ) 

Sl(Xo,Xx,Xz, . . .  ) = (Xo,X2,X4,X~,...  ) 

S2(Xo,XI,X2,"" ) = (Xl,X3,XS,XT,. . . ) .  

Then the following identities are satisfied: 

T1SI+T2Se=I, S1Tl=S2T2=I, SITz=SzTI=O. 

Now choose c~ and ~ in C such that  ( x 8 = - s 5  - 4 , and introduce 

P 4 =  --~I : d 2 ~ d z ~ e  2 -~ e z ~ e z ~ e  2 

[ r ~T 2 ~I ) 

P5 

~ o 

--:I -~s~ / 
~,-,~r~ - , ~  -:I) 
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Then P4,P5 ~ s and 

(3.2) 
51 0 

P4 +P~ = 0 - 5 1  . 
0 0 71 

Combining (3.1) and (3.2), we see that  PI+P2+P3+P4+Ps=O.  Straightforward 

computat ions show tha t  P1,P2,P3,P4 and P5 are idempotents in s  i.e., bounded 

projections on If. [] 

COROLLARY 3.2 Let H be an infinite-dimensional Hilbert space. Then, for  

k>_5, there exist  k d i f ferent  nonzero bounded projections P1,. . . ,Pk on H such that 

P I + . . .  + P k = 0 .  

PROOF If Q1,'",Qm are non-zero  projections on H that  add up to zero, then 

at least one of these projections has infinite rank (ef. Proposition 2.1). Further, 

if Q is a projection of infinite rank on H, then Q can be written as Q = Q ' + Q "  where 

Q' is a projection on H of rank 1 and Q" is a projection on H of infinite rank. So, 

it suffices to deal with the case k = 5 .  We may also assume that  H is separable. But 

then H is isomorphic to the othogonal  direct sum of three copies of the sequence 

space ~2. This brings us back to Example 3.1. [] 

4. ZERO SUMS OF FOUR IDEMPOTENTS 

The material  contained in Section 3 induces the following question: What 

about zero sums o f  idempotents involving (at most) four  terms? As we shall see, the 

answer to this question has some intriguing aspects. We begin by considering zero 

sums of three idempotents in a purely algebraic context. 

PROPOSITION 4.1 Let A be an algebra, and let p,q and r be idempotents in A. 

I f  p + q + r = O ,  then p = q = r = O .  

The case where one actually has a zero sum of only two idempotents 

(for instance r = O )  is extremely simple. Indeed, if p and q are idempotents and p + q = O ,  
~ 2 

then P = P 2  (_q)2 q = q = - p .  For three idempotents the argument  is slightly more 

involved. 

PROOF Clearly ( p + q ) 2 = ( _ r ) 2 = r 2 = r = _ p _ q  and ( p + q ) 2 = p + q + p q + q p .  Hence 

2p + 2q + pq + qp = O. From this we obtain 

2p+ 3pq + pqp = p(2p+ 2q + pq+qp) = 0 

2p+ 3qp+ pqp = (2p+ 2q+ pq+qp)p  = 0 
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and these identities imply tha t  pq=qp.  So p+q+pq=O.  Multiplying this identi ty f rom 

the left  with p and from the right with q, we get pq=O. It follows tha t  r = - ( p + q ) = O .  

Analogously, p = 0 and q = 0. [] 

In a purely algebraic context,  an extension of Proposition 4.1 to zero sums 

involving four idempotents is not  possible. In an abstract  r ing- theore t ic  framework, 

this has been established in [Ma]; see also [Be]. Here we present an example 

involving a concrete algebra of linear operators. 

EXAMPLE 4.2 Let X be the linear space of complex valued functions on the 

real line ~ endowed with the usual pointwise operations, and write L(X) for the 

algebra of l inear operators on X. Define P,Q,R and S in L(X) by 

(Pf)(x)  = x [f(x) + f (1  - x)] 

(Of)(x) = x [ f ( x ) - f ( 1  - x ) ]  

(Rf)(x) = x [ - f ( x ) + f (  - 1 - x)] 

(sf)(x) = x [ - f ( x ) - f (  - ~ - x ) ] .  

Then, obviously, P + Q + R + S  = 0. Straightforward computations show that  pZ = p, Q2 = (2, R 2 = R 

and S 2 = S. [] 

We conclude by showing that  Proposition 4.1 does allow for an extension to 

zero sums involving four idempotents when the context is tha t  of normed algebras. 

This fact is remarkable  in view of the previous example and Example 3.1. 

THEOREM 4.3 Let B be a Banach algebra and let a,b,c and d be idempotents in 

B. I f  a+b+c+d=O,  then a = b = c = d = O .  

It is not essential tha t  B has a unit element. In fact, one can always 

adjoin one. The assumption that  B is (topologically) complete also does not play a 

role in the proof. Crucial is that  B is a normed algebra (which, of course, can 

always be completed).  

PROOF For idempotents  u and v, we have 

(u+v)2+ ( u -  v) 2 = 2(u + v) 

(u-v)(u+v)+(u+v)(u-v) = 2 (u -  v). 

These identities will be used frequently in what  follows. 

Put p = ( c - d ) ( a - b )  and q = ( a - b ) ( c - d ) .  Then 

p(a + b) = ( c -  d ) (a -  b)(a + b) = ( c -  d) [ 2 ( a -  b) - (a+ b) (a-  b)] 

= 2 p + ( c - d ) ( c + d ) ( a - b )  = 2 p +  [ 2 ( c - d ) - ( c + d ) ( c - d ) ] ( a - b )  

= 4p + (a+b)p. 
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With induction, one can now easily prove that 

p~(a+ b) - (a+b)p m = 4mp m 

for all positive integers m (and also for m = 0  provided p~ and (a+b)p ~ are read 

as a+b). Taking norms, we get 

Ilpmll [4m-211 +bLL] =0. 

It follows that pro=0 for m sufficiently large. In other words: p is nilpotent. The 

same conclusion holds for q. 

Let y e B, A a C and assume 

(4.1) (a+b)y=Ay. 

We shall prove that 

(4.2) (a+b)qy = (A +4)qy, 

(4.3) pqy= (A2 +6A + 8)(A2+2A)y. 

This goes as follows. From (4.1) and a+b+c+d=O, we obtain (c+d)y=-Ay and 

(c+d)(c-d)y= [2(c-d)- (c-d)(c+d)]y= (2+A)(c-d)y .  

Hence (a+b) (c -d )y=- (c+d) (c -d )y=( -2 -A) ( c -d )y .  This gives, on the one hand 

(a+b)qy=(a+b)(a-b)(c-d)y= [ 2 ( a - b ) - ( a - b ) ( a + b ) ] ( c - d ) y  

= 2qy - ( - 2  -,k)qy = (A+4)qy 

and, on the other, 

pqy= (c-d)(a-b)a(c-d)y= (c-d)[2(a+b)-(a+b) z] ( c - d ) y  

= ( c - d ) [ ( - 4 - 2 A ) ( c - d ) y - ( - 2 - A ) ~ ( c - d ) y ]  = - (8+6A+A2)(c -d )2y  

= - ( 8 + 6 A + A  2) [2 ( c+d)y - ( c+d )2y ]  = - (8+6A+A2)[-2Ay-A2y]  

= (8 +6A+A2)(2A+A2)y. 

With this, (4.2) and (4.3) have been derived from (4.1). 

Suppose, again, that (4.1) is satisfied. Repeated application of (4.2) 

yields that 
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(a+b)qmy = (A +4m)qmy. 

This identi ty holds for all non-nega t ive  integers m (provided q0y is read as y). 

Applying (4.3), with y replaced by qmy and ,~ by $ + 4 m ,  now gives 

(4.4) p q m + l y = [ $ 2 + ( S m + 6 ) $ + 1 6 m 2 + 2 4 m + 8 ] . [ $ 2 + ( S m + 2 ) $ + 1 6 m 2 + 8 m ] q m y .  

Now consider the equation ( a + b ) x = 2 x .  We shall prove tha t  there is only one 

solution, namely x = O .  Indeed, f rom (4.4), with $ = 2  and y = x ~  one gets 

(4.5) pqm+lx = (256m 4 + 1024m 3 + 1472m 2 + 896m + 192)qmx. 

This identi ty holds for all non-nega t ive  integers m (provided q~ is read as x). 

Since q is nilpotent,  a sufficiently high power of q vanishes. But then it is clear 

from (4.5) tha t  x = O .  

Next we prove that ,  with ~ a nonzero scalar (later to be taken +1 or - 1 ) ,  

( a + ~ b ) x = 0  

implies a x = b x = c x = d x = O .  The analogous result for c and d is of course also true. The 

argument  is as follows. Clearly 

( a + b )ax = a2x + bax = a2x - cb 2x = ax - ~bx = 2ax. 

Hence ax = 0 and bx = - c - l a x  = 0. From c + d = - ( a  + b), it follows tha t  (c + d)x = 0, and so cx  = dx  = 0 

(same argument) .  

We are now ready to prove that  p x  = 0 implies a x =  b x =  c x = d x =  O. Indeed, p x  = 0  

means ( c - d ) ( a - b ) x = O .  Hence a ( a - b ) x = b ( a - b ) x = O ,  and so ( a - b ) 2 x = O .  But then 

( a + b ) 2 x =  [ 2 ( a + b ) - ( a - b ) 2 ] x = 2 ( a + b ) x ,  

and so ( a + b ) x = O .  This, in turn, implies that  a x = b x = c x = d x = O .  The same conclusion holds 

when qx = O. 

Recall tha t  q is nilpotent.  We claim that ,  in fact, q = 0 .  For this, it is 

sufficient to establish tha t  qm=0 with m_>2 implies qm- l=o .  This goes as follows. 

From 0 = qm = q" qm-1, we get cq m-1 = dq m-1 = O. Hence (c - d)q m-1 = O, i.e., 

( c - d ) ( a - b ) ( c - d ) q m - 2 = O .  In other words p ( c - d ) q m - 2 = O .  Thus a ( c - d ) q m - 2 = O  and 

b ( c - d ) q m - 2 = O ,  and so q m - l = ( a - b ) ( c - d ) q m - 2 = O .  
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Since q = 0, we have qa = qb = qc = qd = O. But then a 2 = b 2 = c 2 = d 2 = 0. This completes 

the proof because a,b,c and d are idempotents. 
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