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Abstract—Atherosclerotic disease progression in coronary
arteries is influenced by wall shear stress. To compute
patient-specific wall shear stress, computational fluid dynam-
ics (CFD) is required. In this study we propose a method for
computing the pressure-drop in regions proximal and distal
to a plaque, which can serve as a boundary condition in
CFD. As a first step towards exploring the proposed method
we investigated ten straightened coronary arteries. First, the
flow fields were calculated with CFD and velocity profiles
were fitted on the results. Second, the Navier–Stokes
equation was simplified and solved with the found velocity
profiles to obtain a pressure-drop estimate (Dp(1)). Next, Dp(1)
was compared to the pressure-drop from CFD (DpCFD) as a
validation step. Finally, the velocity profiles, and thus the
pressure-drop were predicted based on geometry and flow,
resulting in Dpgeom. We found that Dp(1) adequately estimated
DpCFD with velocity profiles that have one free parameter b.
This b was successfully related to geometry and flow,
resulting in an excellent agreement between DpCFD and
Dpgeom: 3.9 ± 4.9% difference at Re = 150. We showed that
this method can quickly and accurately predict pressure-drop
on the basis of geometry and flow in straightened coronary
arteries that are mildly diseased.
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INTRODUCTION

Ruptures of atherosclerotic plaques in coronary
arteries are viewed as the main cause of acute coronary
syndrome.2 Whether a plaque is rupture-prone is lar-

gely governed by its composition.21,31 As increasing
evidence shows, plaque composition and rupture
location are influenced by wall shear stress
(WSS).5,20,23 If the WSS over plaques in individual
patients could be quantified, it might prove useful in
steering treatment, especially in combination with
other plaque specific markers for vulnerability, e.g.,
cap-thickness.

While WSS in coronary arteries cannot directly be
measured in vivo, it can be examined with computa-
tional fluid dynamics (CFD), which numerically solves
the Navier–Stokes (NS) equation. With an accurate
reconstruction of the geometry of the coronary artery
and appropriate boundary conditions, CFD can com-
pute the entire flow field (e.g.,13). But while software
packages can obtain the 3D geometry of the coronary
arteries directly,6,26 CFD remains time consuming with
conventional technology. To use WSS for decision
support during an intervention, CFD must be per-
formed within a limited time frame.

One approach to reducing computational time is to
only compute flow dynamics with CFD in the stenosed
region, and use reduced-order models for epicardial
arteries proximal and distal to the stenosed region.3,25,27

This approach is illustrated in Fig. 1. A 3D recon-
struction suited for CFD computations is created based
onmulti-planar angiographyof the stenosed region. The
dotted lines represent the epicardial vessels for which
reduced-order models based on imaging data could be
used (Right panel). At the proximal end of the scheme
the proximal pressure (pprox) is imposed that is routinely
available during catheterization, and at the distal end a
lumped-parameter model is used for the myocardium
(Right panel).
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This study focused on finding a reduced-order
model based on the geometry of the epicardial
arteries for pressure-drop estimation. Past studies
presented methods to predict pressure-drop solely on
the basis of geometry. In a landmark study, Tsai and
Young derived an expression for the pressure-drop
over an idealized stenosis as a function of velocity
and geometry.34,35 This work was later used to esti-
mate the pressure-drop in stenosed human coronary
arteries.7 Previous work from our group extended
those models to incorporate more patient-specific
geometrical features.22 On average these models per-
formed well, but large deviations can occur per indi-
vidual vessel.

In this study we propose a method for computing
the flow dynamics in regions proximal and distal to a
plaque, which can serve as a boundary condition in
CFD. The NS equation was simplified and solved with
assumed velocity profiles based on the geometry. With
this approach we investigated whether the pressure-
drop can quickly and accurately be estimated on the
basis of geometry and flow.

MATERIALS AND METHODS

As a first step towards exploring the proposed
method we investigated straightened coronary arteries,
as straightening reduces the complexity of the flow
field. First, the flow fields were computed with CFD
and on the results two functions for the velocity pro-

files were fitted: vz
(1) with one free parameter and vz

(3)

with three free parameters. Second, the NS equation
was simplified and solved with the fitted velocity pro-
files to obtain the pressure-drop. Third, the resulting
pressure-drop estimate was compared with the pres-
sure-drop from CFD as a validation step. Finally, it
was found how to predict the velocity profile vz

(1), and
thus the pressure-drop, on the basis of geometry and
flow.

Case Selection

In the Prospect trial24 the three main coronary
arteries from patients with acute coronary syndrome
were imaged with multi-slice computed tomography
and intravascular ultrasound (IVUS). From this study
we took the IVUS data of the coronary arteries that
did not contain the plaque that had caused the myo-
cardial event. These segments were all affected by
atherosclerosis and considered to be mildly diseased.
They therefore represent segments proximal and distal
to a plaque, since they are often mildly diseased as
well.15 We used three left anterior descending, five left
circumflex and two right coronary arteries with excel-
lent image quality and with the maximal area stenosis
within a representative range. The average diameter
was 2.8 ± 0.5 mm and the average length
44.1 ± 10.5 mm. The maximal area stenoses in the
segments were; 1 9 20–30%, 6 9 40–50%, 1 9 50–
60% and 2 9 60–70%. All patients gave written in-
formed consent.

FIGURE 1. Pipeline for online WSS computations. Left panel: Angiography image of coronary artery with stenosed segment, i.e.
the region of interest (ROI). Middle panels: Two angiography images of the stenosed region at different angles. Based on these two
images a 3D reconstruction suited for CFD computations can be made. Right panel: Illustration of the scheme is superimposed on
the angiography image. WSS can be computed with CFD in the 3D model. The dotted lines represent the epicardial vessels for
which reduced-order models based on imaging data could be used. The scheme is closed off proximally with pressure pprox, and
distally with a lumped-parameter model for the myocardium.
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Geometrical Reconstruction and CFD

In the IVUS images the lumen was segmented.28

The centers of the lumen contours were aligned and the
distance between the contours was obtained from the
IVUS data. From the lumen contours a surface was
created (Mevis lab, Bremen, Germany), resulting in the
reconstructions of straightened coronary arteries
(Fig. 2 top). The side branches were not taken into
account in this study. An inlet of five times the inlet
radius was added to the reconstruction (VMTK,
www.vmtk.org).22

The geometries were meshed with GAMBIT (AN-
SYS, Inc., Canonsburg, PA, USA). Mesh indepen-
dency studies were conducted, resulting in a surface
mesh of triangular elements with an element size of
1.25 9 1022 mm and a volume mesh with approxi-
mately 106 tetrahedral elements. CFD was performed
with FIDAP (ANSYS, Inc., Canonsburg, PA, USA)
and steady flow was simulated. At the inlet a plug flow
was prescribed. The inlet flow was defined on the basis
of the Reynolds number (Re), which ranged from 25 to
250 with steps of 25. The outflow conditions were de-
fined as stress free. The blood was modeled as a

Newtonian fluid with a density of 1.0 9 103 kg/m3 and
a viscosity of 4.0 9 1023 Pa s.

Navier–Stokes Equation

Flow dynamics is described by the combination of
the NS equation and the continuity equation. The NS
equation is defined as:

q
@~v

@t
þ~v � r~v

� �
¼ �rpþ lr2~v: ð1Þ

In this study we investigated how the NS equation
could be simplified to a form in which it can be solved
quickly and still provides a good approximation of the
pressure-drop. As the pressure-drop was assumed to be
predominately in the axial direction, the radial pres-
sure-drop was assumed to be zero and only the axial
component of the NS equation had to be solved. To-
gether with assumed axisymmetry and steady flow, the
NS equation simplifies to:
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FIGURE 2. Top: A straightened coronary artery based on IVUS data. The iso-planes show the velocity magnitude calculated by
CFD. The roman numerals indicate five regions of interest. Middle row: Each panel shows the velocity data from CFD (black dots),
with on the horizontal axis the axial velocity and on the vertical axis the distance to center of the lumen. The spread in the velocity
data in radial direction is due to the patient-specific lumen which is not circular. In the panels three typical profiles are shown; a
parabolic profile in I and V; a plug profile in II; and a sigmoid-shaped profile in II and IV. On the CFD data two functions with
different complexity were fitted; vz

(1) (blue) with one free parameter and vz
(3) (red) with three free parameters. Both vz

(1) and vz
(3)

captured the parabolic and plug profiles. Only vz
(3) was able to capture the sigmoid-shaped profiles. Bottom: The pressure-drop as a

function axial coordinate. The pressure-drop from CFD (black line) was regarded as the gold standard. The pressure-drop Dp(1) was
computed with the fits from vz

(1), and Dp(3) with the fits from vz
(3).
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If a form of vz can be assumed that adequately de-
scribes the velocity profiles, Eq. (2) can quickly be
solved for the axial pressure-drop.

Axial Velocity Profiles

The velocity profiles that occur in the selected
geometries were studied (Fig. 2, middle row) and based
on the CFD results, two functions with different
complexities were defined to describe the axial velocity
profile. First, a simple power-law function was pro-
posed (Fig. 3, Left), previously used by:12,27,32

vð1Þz ¼ vz;max 1� r

a

� �b
� �

with r 2 ½0; a� ð3Þ

a = a(z) was defined as the radius of the geometry. a(z)
was derived as the average radius from the irregular
IVUS cross sections. With this a(z) a corresponding
A(z) was calculated. The flow q is constant throughout
the geometry:

q ¼
Z

vð1Þz dA: ð4Þ

Equation (3) was rewritten to:

vð1Þz ¼
q

pa2
bþ 2

b
1� r

a

� �b
� �

: ð5Þ

This function has one free parameter b(z), which
determines the shape of the profile. If b = 2, Eq. (5)
results in a Poiseuille profile and a b > 2 results in a
more plugged profile. The lower limit of b was set to be
larger than 1 to ensure a smooth and continuous
profile.

As the power-law profile has only one free param-
eter, it cannot adapt to all the velocity profiles

observed in the CFD results, and is especially unable to
capture the sigmoid-shaped profiles that can occur in
segments with increasing lumen area (Fig. 2, middle
row, Panels III and IV). We therefore introduced a
second velocity profile vz

(3), which has three free
parameters (b, c and d). The two additional parameters
provide more freedom to match the observed profiles.
vz
(3) is a piecewise function defined by f1 and f2 (Fig. 3,
Right):

vð3Þz ¼
f1 if 0 � r � c
f2 if c � r � a

�
: ð6Þ

Point c (0< c £ a) separates the two functions. The
above power-law function described above is retained
to describe the profile between the center and point c:

f1 ¼
q

pd2
bþ 2

b
1� r

d

� �b
� �

with r 2 ½0; c�: ð7Þ

In f1, point d (c< d £ a) determines the transition
width in sigmoid-shaped profiles. Function f2 describes
the profile between point c and the wall:

f2 ¼ c3r
2 þ c2rþ c3 with r 2 ½c; a�: ð8Þ

Function f2 is able to describe zero flow and re-
versed flow near the wall. The transition between f1
and f2 must be continuous and smooth. f2 must
therefore satisfy:

f2 að Þ ¼ 0

f2 cð Þ ¼ f1ðcÞ
df2
dr

����
c

¼ df1
dr

����
c

ð9a; b; cÞ

With these three conditions the values for the three
c’s in Eq. (7) were found directly. Functions f1 and f2
combined lead to bvð3Þz . This profile has to be scaled to
the assigned flow q. The flow with bvð3Þz is:

FIGURE 3. The two functions vz
(1) and vz

(3) were used to describe the axial velocity profiles. Left; the power-law profile vz
(1) with one

free parameter b. Right; vz
(3) with three free parameters. vz

(3) is piece-wise defined by f1 and f2, that intersect at point c. f1 is again a
power-law profile that describes the axial velocity in the core. f2 is a second-order polynomial that can describe zero flow near the
wall. Point d determines the transition width of the sigmoid-shape.
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qn ¼
Z

vð3Þz dA ð10Þ

With it bvð3Þz was scaled:

vð3Þz ¼ bvð3Þz

q

qn
: ð11Þ

Radial Velocity Profiles

Equation (2) also contains the radial velocity vr.
This was derived from the expression for the conser-
vation of mass:

1

r

@

@r
rvrð Þ þ 1

r

@vh

@h
þ @vz
@z
¼ 0: ð12Þ

If vz is known and axisymmetry is assumed, vr
becomes the only unknown in Eq. (12). vz

(1) enabled us
to find an analytical solution for vr:

vr ¼
qr

pa3
bþ 2

b
1� r

a

� �b
� �
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In the case of vz
(3) the radial velocity was derived

numerically.

Numerical Implementation

With the axial and radial velocities defined, the
pressure-drop can be computed directly with Eq. (2).
First, Eq. (2) was integrated in the cross sectional
direction: Z

dp

dz
dA ¼

Z
f vr; vzð ÞdA ð14Þ

f(vz, vr) represents the terms in Eq. (2) that contain the
velocities. To obtain the pressure-drop, Eq. (14) was
subsequently integrated in the axial direction:

Dp ¼
Z

dparea
dz

dz; ð15Þ

where dparea
dz follows from Eq. (14) after integration. The

computations were performed with a Matlab code
developed in-house (Matlab 2011b, Mathworks, Na-
tick, U.S.), and generally lasted 1021 s.

Validation

The pressure-drop from CFD was considered as the
gold standard. To validate the method, the estimated
pressure-drop was compared to the pressure-drop from

CFD (DpCFD). Velocity data from CFD were obtained
per cross section with a step size of Dz = 0.25 mm. The
pressure-drop prediction was independent of the step
size at Dz = 0.25 mm. vz

(1) and vz
(3) were fitted on the

CFD data (Fig. 2, middle). The fits of vz
(1) gave b(1) and

those of vz
(3) gave b(3), c and d. With the fits the pres-

sure-drop was computed with the above described
method: vz

(1) resulted in Dp(1) and vz
(3) in Dp(3). The

comparison between the pressure-drops showed how
well the proposed method performs when the velocity
profile is optimally captured.

Pressure-Drop Prediction

The next step was to predict the velocity profiles and
thus the parameter b(1),to derive the pressure-drop
solely on the basis of geometry. Although the addition
of the two parameters in vz

(3) improved the fits of the
velocity profile, it did not improve the pressure-drop
prediction (as shown in the result section). Therefore
the prediction of the velocity profiles was only per-
formed for vz

(1), which has one free parameter b. At a
given location vz

(1) depends on the local geometry and
on the velocity profile in the preceding cross section. b
was related to the geometry by the cross sectional area
change (@A@z). The b in the preceding cross section was
noted as b(z 2 Dz). With these dependencies, the
behavior of b was described by a first-order polyno-
mial:

b zð Þ ¼ 2þ C1
@A

@z
Dzþ C2ðbðz� DzÞ � 2ÞDz: ð16Þ

The b’s per cross section were obtained from the fits
on the CFD results and combined with the corre-
sponding geometrical parameters. Equation (16) was
fitted on this data with a least squares method (Matlab
2011b, Mathworks, Natick, U.S.). The average values
of Ci were obtained for each Re. The relation between
Ci and Re was described with a second-order polyno-
mial:

Ci Reð Þ ¼ D1iRe
2 þD2iReþD3i: ð17Þ

By fitting on the Ci’s, the values of the coefficients
Dij in Eq. (17) were obtained. The coefficients Dij can
be used to predict b(z) in all geometries.

CFD was performed in ten geometries for ten dif-
ferent Re, resulting in 100 cases. To validate the pre-
diction method, leave-one-out cross-validation was
used. For this, one case was selected and the coeffi-
cients in Eq. (17) were found with the 81 remaining
cases consisting of the other nine geometries and nine
inlet flows. The coefficients that were found were used
to predict b(z) for the selected case. b(z) was then used
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to directly predict the pressure-drop (Dpgeom). This
procedure was repeated for all 100 cases.

Variables were presented as means ± 1 standard
deviation.

RESULTS

The five panels in the middle row of Fig. 2 illustrate
the various profiles that occurred in the straightened
coronary arteries. The results of CFD were displayed
by plotting the axial velocity components vs. the dis-
tance to center of the cross section. The cross-sections
are patient-specific and thus not circular, which
resulted in the different velocities at a given radius. At
the entrance the velocity profile was nearly parabolic
(Panel I). Where the lumen narrowed a plug profile
developed (Panel II), while a sigmoid-shaped profile
appeared in sections where the lumen widened (panel
III and IV). vz

(1) adequately fitted on the parabolic and
plug-shaped profile, but was not able to capture the
sigmoid-shaped profile. vz

(3) captured all the effects seen
in the CFD results.

The pressure-drop in Fig. 2 declined rapidly in the
stenosed regions (point II). As the lumen widened
again the pressure recuperates somewhat. The behav-
ior of DpCFD is captured well by both Dp(1) and Dp(3),
except that the pressure recuperation is slightly over-
estimated. At Re = 150 (high physiological flow con-
ditions), Dp(1) and Dp(3) both met the benchmark of
DpCFD. They did, however, underestimate DpCFD
increasingly for higher Re (Fig. 4). For the ten geom-
etries, the mean difference between Dp(1) and Dp(3)
never exceeded 3.3%.

Since the pressure-drop could accurately be com-
puted with vz

(1), only the b in vz
(1)needed to be predicted

and not in vz
(3). The behavior of b(1) in the geometry

from Fig. 2 was first derived from CFD the result and
plotted in Fig. 5. The flow was nearly developed at the
entrance, resulting in a b(1) between 2 and 3. A plug-
profile developed in segments where the lumen nar-
rowed, which caused b(1) to increase up to approxi-
mately 6. The sigmoid-shaped profile is not captured
well, resulting in a b(1) at the limit of 1. Subsequently,
bgeom was predicted on the basis of geometry and Re,
and closely followed b(1) (Fig. 5, top). With bgeom, the
pressure-drop Dpgeom was accurately predicted (Fig. 5,
bottom). The mean and standard deviation of the
coefficients for bgeom were found with leave-one-out
cross-correlation are presented in Table 1.

The Dpgeom was estimated with high accuracy in all
ten geometries. Figure 6 shows that Dpgeom nicely
meets the benchmark DpCFD at Re = 100, Re = 150
and Re = 200. The absolute difference between DpCFD
and Dpgeom was small compared to the mean pressure-
drop. At Re = 150, the difference was 35.7 ± 36.0 Pa
where the mean DpCFD was 479.7 Pa. At Re = 250 this
increased to 109.9 ± 124.6 Pa and a mean DpCFD of
1025.6 Pa. And thus the relative differences were
3.9 ± 4.9% at Re = 150 and 10.9 ± 8.2% at Re =

250. Up to Re = 200 the relative difference was less
than 5%, after Re = 200 the difference increased
exponentially (Fig. 7).

DISCUSSION

In this study we investigated a method for predict-
ing the pressure-drop in straightened coronary arteries
that are mildly diseased. By straightening the coronary
arteries the complexity of the flow field was reduced.
The NS equation was simplified and assumed velocity
profiles were used to compute the pressure-drop. We
found that the pressure-drop computed with velocity
profiles that have only one free parameter b, matched
the pressure-drop from CFD, which was regarded as
the gold standard. This b was successfully related to
geometry and flow. This approach quickly and accu-
rately predicts the pressure-drop at physiological con-
ditions, and slightly underestimates it at higher Re.
Combining the model proposed in this study with
proximal pressure measurements, a model of the
microvascular resistance, and a 3D model for the re-
gion of interest, will allow us to compute the shear
stress distribution in the 3D segment.

Despite that the momentum balance is not fully
taken into account, the pressure-drop was estimated
with high accuracy. Only in regions with a relatively
large change in lumen area the pressure-drop estimation

FIGURE 4. Comparison of the found pressure-drops in the
ten geometries at Re 5 150. DpCFD is the pressure-drop
computed with CFD and Dp(i) is the pressure-drop based on
fits with either vz

(1) or vz
(3). A similar pressure-drop was found

with Dp1 (circle) and Dp3 (diamond), and an good agreement
with DpCFD was found for both.
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deviated from the CFD result. The radial pressure-
drop was neglected and it becomes higher in areas with
a large change in lumen area, and therefore the esti-
mated total pressure-drops Dp(1) and Dp(3) deviated
more. This explains the deviation seen at higher Re as
well. Subsequently we checked if the type of fit on the
velocity fields influenced the pressure-drop estimation.
Although vz

(3) matched the velocity profiles from CFD
better than vz

(1), it did not improve the pressure-drop
estimation much. This means that the deviation of the

pressure-drop estimation can mainly be attributed to
neglecting the radial term in the NS equation. Since the
axial pressure-drop is much larger than the radial, the
pressure-drop is predicted adequately with the simpli-
fication of the NS equation for mildly diseased
straightened vessels. An estimate for the error associ-
ated with neglecting the radial component can be
obtained by using the standard deviation of Dij given
in Table 1. A second finding that follows from the
accurate pressure-drop estimation with vz

(1), is that only
one free parameter b was needed. Even though b 1ð Þ
sometimes hit the imposed limit of b > 1 the estimation

FIGURE 5. Top: The distribution of b as a function of the axial coordinate of the geometry shown in Fig. 1. b(1) (red) was found by
fitting vz

(1) on the CFD data. bgeom (green) was predicted based on geometry and closely followed b(1). Around z 5 1.5 cm the
geometry narrows causing a plug profile that resulted in the high values for b. Around z 5 2 cm and z 5 3 cm, the lumen area
increases. Here a sigmoid-shaped profile was observed, what results in a b close to 1. Bottom: The pressure-drop as a function of
the axial coordinate, where pCFD (black) is found by CFD, p(1) (red) was calculated with the velocity profiles defined by b(1), and
pgeom (green) by bgeom.

TABLE 1. Coefficients and the standard deviation of Eq. (17) found with leave-one-out cross-validation.

D1i D2i D3i

C1 4.6Æ1024 ± 9.0Æ1025 232.8Æ1022 ± 2.9Æ1022 239.3 ± 2.3

C2 20.9Æ1024 ± 1.5Æ1025 3.2Æ1022 ± 0.5Æ1022 35.5 ± 0.3

FIGURE 6. The pressure-drop in the ten geometries at
Re 5 100, 150 and 200. The DpCFD was regarded as the gold
standard and compared to the pressure-drop predicted based
on geometry Dpgeom. An excellent agreement was found
between DpCFD and Dpgeom.

FIGURE 7. The mean relative difference between DpCFD and
the predicted pressure-drop Dpgeom in the ten geometries as a
function of Re. In the physiological range, below Re 5 200,
the relative difference is less than 5%. Above Re 5 200, the
difference increased exponentially.

Fast and Accurate Pressure-Drop Prediction 65



remained accurate. Subsequently, bgeom was found
with a linear combination of a geometrical measure
and a preceding b. In straightened coronary arteries
with patient-specific cross sections this gave an excel-
lent prediction of the pressure-drop Dpgeom.

The proposed method was developed to be used in
combination with steady flow simulations. Steady flow
is interesting because it is indicative of the WSS that
endothelial cells are exposed to over a prolonged per-
iod. Clinical studies showed that with this concept
relevant information regarding plaque development is
obtained.4,24,33 Secondly, because parameters used in
clinical practice, such as fractional flow reserve,18 are
based on moving averages. This can be modeled by
steady flow simulations as well. Since steady flow
simulations only need the geometry at one chosen time
point, effects such as cardiac motions or non-rigid
walls can be discarded.

This study was designed to help speed up WSS
computations in atherosclerotic coronary arteries with
CFD. Segments proximal and distal to a plaque can be
quantified from imaging data such as angiography or
CT. With that imaging data patient-specific boundary
condition for CFD can be imposed. For similar pur-
poses, other studies coupled CFD to 1D models.3,12,30

These models are based on 1D formulations of the NS
equation.1,8,9,11,14,16,19,29 These studies were able to
obtain valuable time-dependent solutions. However,
the models require an estimate for the capacitance of
vessel wall, which is difficult to obtain for diseased wall
segments. Our model used the 3D formulation as a
starting point and solved it with velocity profiles based
on geometrical features. Although the derivation from
NS in this study was done differently than the above
mentioned models, our model can still be coupled to
CFD in a similar fashion. If our method is extended to
a formulation that incorporates curvature, it would be
interesting to see how well it performs compared to the
previously developed 1D-models, since those models
cannot distinguish between different degrees of cur-
vature.

A limiting factor for a patient-specific assessment of
the WSS is that curvature still has to be implemented.
A previous study showed that, for instance, at
Re = 175 this increase was 14.8 ± 10.0%.22 A first
possibility is to choose the same approach as that
shown here, but with a curvilinear formulation rather
than a cylindrical. While this leads to a mathematically
more extensive formulation, it might still be possible to
evaluate it. In a curvilinear form an assumed velocity
profile can again be defined and subsequently be solved
for the pressure-drop. A second, more pragmatic,
approach would be to find a geometric measure for the
curvature and relate this to the additional pressure-
drop the curvature causes.22 Apart from including 3D

curvature, another limitation for accurate WSS
assessment is that the microcirculation has to be taken
into account, since this is a key determinant for the
flow distribution. However, it cannot be visualized
directly with the available imaging techniques. Al-
though several models have already modeled the
microcirculation,10,16,17 further research is still needed
for the resistance distal to diseased coronary arteries. A
third requirement is that the lumen segmentations in a
clinical setting are based on automatic reconstructions
from (bi-plane) angiography, while in this study pa-
tient-specific lumen data from IVUS were used which
have more detail. The simplification of the lumen
might influence the pressure-drop calculations. If so, it
is possible to obtain more detail of the lumen with
rotational angiography or multiple views. Fourthly, in
order for the model to be included in a scheme as
presented in Fig. 1, it should be expanded to model the
pressure drop in a bifurcation. Next, the spatial
derivative of lumen area was taken into account, but
the temporal derivative was not. Although we focused
on steady flows, it cannot be disregarded that the lu-
men area changes in time, and that the choice for a
fixed lumen area could influence the outcome. Finally,
for this study b(0) was taken from CFD results. Since
this method aims to replace CFD this value will not be
available in later applications. We found a linear
relation to estimate b(0) based on Re: b0(Re) = 1.72 +
Re 9 15e24. This relation is only based on the ten
geometries from this study and might therefore not be
generally applicable.

In conclusion, we found that it is possible to quickly
and accurately predict pressure-drop on the basis of
geometry and flow in straightened coronary arteries
that are mildly diseased. Future studies should focus
on adding curvature to further advance to patient-
specific pressure-drops predictions.
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