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Abstract

Oral administration of autoantigens is a safe and convenient way to induce peripheral T-cell tolerance in autoimmune diseases like
multiple sclerosis (MS). To increase the efficacy of oral tolerance induction and obviate the need for large-scale purification of human
myelin proteins, we use genetically modified lactobacilli expressing myelin antigens. A panel of recombinant lactobacilli was constructed
producing myelin proteins and peptides, including human and guinea pig myelin basic protein (MBP) and proteolipid protein peptide
139–151 (PLP139–151). In this study we examined whether theseLactobacillusrecombinants are able to induce oral and intranasal tolerance
in an animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Lewis rats received soluble cell extracts
of Lactobacillustransformants intranasally three times prior to induction of EAE. For the induction of oral tolerance, rats were fed live
transformed lactobacilli for 20 days. Ten days after the first oral administration EAE was induced. Intranasal administration of extracts
containing guinea pig MBP (gpMBP) or MBP72–85significantly inhibited EAE in Lewis rats. Extracts of control transformants did not reduce
EAE. Live lactobacilli expressing guinea pig MBP72–85fused to the marker enzyme�-glucuronidase (�-gluc) were also able to significantly
reduce disease when administered orally. In conclusion, these experiments provide proof of principle that lactobacilli expressing myelin
antigens reduce EAE after mucosal (intranasal and oral) administration. This novel method of mucosal tolerance induction by mucosal
administration of recombinant lactobacilli expressing relevant autoantigens could find applications in autoimmune disease in general, such
as multiple sclerosis, rheumatoid arthritis and uveitis.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory dis-
ease of the central nervous system (CNS) that leads to
destruction of CNS myelin. It is widely assumed that MS
is an autoimmune disease mediated by CD4+ T cells of

Abbreviations: MS, multiple sclerosis; EAE, experimental autoim-
mune encephalomyelitis; APL, altered peptide ligand; gp, guinea pig;
MBP, myelin basic protein; PLP, proteolipid protein peptide;�-gluc,
�-glucuronidase
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the T helper 1 subset. The current therapies available for
MS are non-specific, may have toxic side effects or cannot
be used in long-term treatment. Therefore, antigen-specific
therapies to silence or delete autoreactive T cells are pre-
ferred. In animal models for MS (experimental autoimmune
encephalomyelitis (EAE)), induction of peripheral T-cell
tolerance can be achieved by injection of large doses of sol-
uble myelin antigens intravenously or intrathymically[1,2]
(reviewed by Liblau et al.[3]). Also systemic administra-
tion of altered peptide ligands (APL) or MHC-II–peptide
complexes can suppress EAE in an antigen-specific manner
(reviewed by Liblau et al.[3]). For use in humans a disad-
vantage is that some of these therapies need to be tailored
to the HLA haplotype of individual patients.
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A promising antigen-specific therapy is the induction
of peripheral T-cell tolerance by mucosal administration
of autoantigen (mucosal tolerance). Mucosal tolerance by
oral and intranasal administration has been achieved with
several different myelin antigens in distinct EAE models
(e.g. [4–7]). Three main mechanisms of mucosal T-cell
tolerance induction have been described; anergy, deletion
and active suppression. When anergy (non-responsiveness
of autoreactive T cells)[8,9] or deletion[10] are the de-
sired mechanisms of peripheral T-cell tolerance induction,
the autoantigen needs to be known. This obstacle can be
circumvented when active bystander suppression is induced
[4,6,11,12]. A local Th2/Th3 (e.g.[13]) environment or a
suppressive CD8+ T-cell subset[14,15] can suppress the
inflammatory autoimmune response.

In the Lewis rat, EAE can be induced by immunization
with guinea pig spinal cord homogenate, myelin basic pro-
tein (MBP) or proteolipid protein peptide (PLP) emulsified
in complete Freund’s adjuvant (CFA). The dominant en-
cephalitogenic epitope of MBP in the Lewis rat is MBP72–85
[16,17]. EAE induced with this peptide is mediated by
CD4+ T cells. A second MBP epitope encephalitogenic for
Lewis rats has been mapped to residues 86–98[18,19]. How-
ever, this peptide is only weakly encephalitogenic, requiring
higher doses to elicit clinical signs[20]. Several groups
have reported that intranasal administration of autoantigens
or peptides derived from self as well as foreign antigens
can also induce peripheral T-cell tolerance[7,21–25]. How-
ever, to our knowledge, intranasal tolerance induction has
not been reported yet in MBP72–85 induced EAE in Lewis
rats.

Mucosal administration of autoantigens is very effective
in preventing induction of autoimmune disease in animal
models, but in the human situation chronic disease needs to
be treated. In some experimental autoimmune models, it is
possible to treat ongoing disease[4,26]. The efficacy of these
treatments is crucially dependent on dosing and scheduling
[27]. For several autoimmune diseases in human, therapy
by oral administration of antigen has been attempted. Al-
though some clinical trials were promising, no clear posi-
tive results were obtained (e.g.[28–30]). For MS, one of the
problems is the fact that the autoantigen is still unknown, a
problem that does not exist in animal models. Another major
problem is the source, the purity and the amount of antigen
that needs to be obtained. In the human MS trial, bovine
myelin was used. From animal studies it is known that het-
erogenous antigen mixtures such as myelin are less effec-
tive in inducing oral tolerance than single protein antigens
such as purified MBP[26]. In addition, very high doses are
required in oral tolerance induction, partially due to break-
down of antigen in the stomach. In order to overcome a
number of these problems, we used genetically modified lac-
tobacilli that produce the antigen locally in the gut. The use
of these recombinant lactobacilli is probably safer than pu-
rified human or animal myelin, because there is no risk of
administering viruses or prions co-isolated with myelin. A

panel of recombinantLactobacillusstrains was constructed
which produce myelin proteins and peptides, including hu-
man MBP, guinea pig MBP (gpMBP) and PLP139–151[31].
cDNAs of a number of encephalitogenic myelin proteins
and peptides were cloned, because encephalitogenic anti-
gens have been demonstrated to be efficient tolerogens (e.g.
[8,22]).

Lactobacilli are Gram-positive lactic acid bacteria which
are frequently used in dairy products because of their
health promoting effects such as the non-specific enhance-
ment of the immune response (adjuvanticity), control of
intestinal infections, control of serum cholesterol levels
and anti-carcinogenic activity[32]. Oral or intranasal ad-
ministration of these diverse species of lactic acid bacte-
ria with the generally regarded as safe (GRAS) status is
cost-effective and simple[33]. Since individualLactobacil-
lus strains are clearly distinct in various properties, strain
selection is very important. We have chosenLactobacil-
lus caseifor recombinant autoantigen expression, because
this strain possibly favors tolerance induction in the gut by
inducing TGF-� and IL-10 expression[34], while the bac-
terium itself is not immunogenic and does not enhance the
humoral immune response to exogenous protein antigen in
a non-specific manner[35].

The aim of the current study was to determine whether
mucosal administration of recombinant lactobacilli express-
ing myelin antigens could reduce EAE. Our data show that
Lactobacillusrecombinants can prevent EAE by oral and in-
tranasal administration, and that in this particular model, in-
tranasal administration of purified gpMBP can also enhance
EAE.

2. Materials and methods

2.1. Animals

Female Lewis rats of approximately 175 g were obtained
from Charles River/The Broekman Institute, Someren, The
Netherlands. All animals were kept under filtertop hoods in
a DII facility with free access to pelleted food and acidified
water (pH 2.8). Experiments were performed according to
regulations in the Dutch laws on animal experimentation and
on the use of genetically modified microorganisms.

2.2. Recombinant lactobacilli

For the induction of tolerance by oral or intranasal
administration of recombinant lactobacilli in Lewis rats
two groups of vectors were used, the pLP402 series and
the pLP403 series (Table 1). All pLP402 vectors secrete
heterologous protein, whereas the pLP403 vectors retain
the heterologous protein intracellularly. The basicEs-
cherichia coli/Lactobacillus shuttle vectors and the gen-
eral construction method have been described by Maassen
et al. [31]. All pLP400/u vectors express a fusion protein
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Table 1
Recombinant lactobacilli expressing heterologous antigens for the induc-
tion of mucosal tolerancea

Localization of
heterologous
antigen

Code vector Heterologous protein/peptide

Secreted pLP402-gpMBP gpMBP

pLP402-gpMBP/u gpMBP fused to�-gluc
pLP402-MBP72/u MBP72–85 fused to�-gluc
pLP402/u �-gluc

Intracellular pLP403-MBP72/u MBP72–85 fused to�-gluc

a A panel of vectors for the expression of myelin antigens in lactobacilli
was constructed. The expression of the heterologous antigens is driven by
the regulatableamypromoter. The panel consists of vectors which express
peptide and protein antigens, fused to the marker enzyme�-glucuronidase
(/u) or not. All pLP402 vectors secrete heterologous protein, whereas the
pLP403 vectors retain the heterologous antigen intracellularly.

with the marker enzyme�-glucuronidase (�-gluc) from
E. coli (Table 1). Vectors were transformed toL. casei
(ATCC 393).

2.3. Culturing of recombinant lactobacilli

For oral administration of recombinant lactobacilli, the
cells were prepared as described below. One liter of mMRS
containing 1% mannitol and erythromycin[31] was inocu-
lated at 1:200 with a stationary phase culture of the recom-
binantLactobacillusstrains and cultured without aeration at
37◦C till an OD690 of 1.0 was reached. For all recombinants
used in this study the highest level of heterologous gene
expression was approximately at the optical density of 1.0.
The cells were harvested and washed twice with PBS and
once with 0.2 M NaHCO3. The cells were resuspended in
NaHCO3 to a volume of 12 ml. A small volume was plated to
calculate the number of colony forming units (CFU) orally
administered.

For the induction of tolerance by intranasal administra-
tion, extracts of recombinant lactobacilli were used. The
cells were grown as described above, harvested and washed
with PBS. The extracts were made by sonicating the cells
in PBS as described before[31]. The soluble fraction was
used for intranasal administration.

2.4. Intranasal tolerance induction

Rats received either 80�l of Lactobacillus extracts
(≈320�g total protein), synthetic MBP72–85 (QKSQRSQ-
DENPV) (100 or 200�g), purified gpMBP [36] (100
or 200�g) or PBS divided over two nostrils (Table 1).
Intranasal administration of cell extracts of lactobacilli
containing heterologous antigens took place at days−15,
−10 and −5. All vectors and their relevant characteris-
tics used for induction of tolerance have been summarized
in Table 1. At day 0, EAE was induced with MBP72–85
[37].

2.5. Oral tolerance induction

Rats intragastrically received cells of one strain of recom-
binant lactobacilli or NaHCO3 buffer as a control, daily for
20 days (from days−10 to 9). The cells were prepared as
described above. The rats received approximately 2× 1011

lactobacilli in 2 ml with a gastric syringe. At day 0, EAE
was induced with MBP72–85.

2.6. EAE induction in Lewis rats

EAE was induced by s.c. immunization in the hind foot-
pads with a total of 70�g MBP72–85(Table 1) emulsified in
Difco’s incomplete adjuvant with 4 mg/mlMycobacterium
tuberculosis H37Ra(Difco, Detroit, MI). Clinical disease
was monitored daily from day 6 onward by weighing the
rats, and by grading symptoms of paralysis using an inter-
nationally accepted clinical scoring scale ranging from 0
(no signs) to 5 (death) due to EAE (see[38]). In Figs. 1
and 2, the term cumulative EAE score has been used as a
measure for the severity of the disease. It was calculated by
adding up all the scores per animal over the first 21 days af-
ter EAE induction, in other words, calculating the complete
area under the curve, representing the total disease load.
The cumulative EAE score of each animal was calculated
as a percentage of the mean cumulative EAE score of the
control group within the same experiment, which was set
at 100%. Because every animal was compared to its own
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Fig. 1. Exacerbation versus inhibition of EAE in Lewis rats by intranasal
administration of MBP protein or peptide. At days−15, −10 and−5
Lewis rats intranasally received 100 or 200�g MBP peptide 72–85 (filled
bars) or gpMBP protein (slashed bars). At day 0, EAE was induced with
MBP72–85. The cumulative EAE score of each animal was determined
by adding up all EAE scores and was expressed as a percentage of
the mean cumulative EAE score of the control group which received
intranasally PBS only within the same experiment. The cumulative EAE
score per treatment over three experiments was determined by calculating
the mean cumulative EAE score of all animals which had received the
same treatment. Disease incidence indicates the number of animals which
had a score of 0.5 or higher related to the number of animals per treatment.
The mean max score is the mean of the highest score of each animal
during the disease course.∗P < 0.05 compared to control group which
nasally received PBS (open bars).
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Fig. 2. Reduction of EAE after intranasal administration ofLactobacillus
extracts containing myelin antigens in Lewis rats. At days−15, −10 and
−5, Lewis rats intranasally received 80�l Lactobacillusextract containing
approximately 320�g protein. TheLactobacillus contained expressed
heterologous myelin antigen fused to�-gluc (filled bars) or�-gluc only
(open bars). At day 0, EAE was induced with MBP72–85. The cumulative
EAE score was calculated as inFig. 1 and expressed as a percentage of
the mean cumulative EAE score of the control group which intranasally
received PBS only. The results of two experiments are shown. For disease
incidence and mean max score, see legendFig. 1. ∗P < 0.05 compared
to both control groups (open bars),∗∗P < 0.01 compared to both control
groups (open bars).

positive control, we were able to combine experiments in
spite of small variations between the control groups.

2.7. ELISA

Serum was collected every 7 days and tested in ELISA
for the presence of antibodies against myelin proteins and
peptides as a measure of T- and B-cell stimulation and tol-
erance induction. Plates were coated with 5�g/ml antigen
in PBS (50�l per well) overnight at 4◦C. Non-specific anti-
body binding was blocked by incubation with 0.2% gelatin
in PBS (50�l per well) for 1 h at 25◦C. Subsequently the
plates were incubated with dilutions of serum of treated
animals and preimmune sera to correct for background re-
activity for 1 h at room temperature. For the detection of
serum IgG antibodies specific for the diverse myelin anti-
gens in rat, alkaline phosphatase-labeled goat anti-rat IgG
(Sigma Chemical Co., La Jolla, CA) was used. At several
time points after addition of the substrate paranitrophenyl
phosphate, the absorbance was read at 405 nm.

2.8. Immunoblot analysis

Proteins in cell extracts were separated by SDS–polyacry-
lamide gel electrophoresis (PAGE) (7.5, 10 or 14% acry-
lamide, 400 mM Tris pH 8.8) and run in a 25 mM Tris,
192 mM glycine buffer (pH 8.3) at 200V for 45 min. Pro-
tein was transferred electrophoretically onto nitrocellulose
using a Bio-Rad Miniprotean II blotting unit (Bio-Rad

Laboratories, Hercules, CA). Immunoblots were incu-
bated with optimally diluted rabbit anti-gpMBP or rabbit
anti-�-glucuronidase antiserum. Antibodies against gpMBP
and�-glucuronidase were induced by immunization of New
Zealand White rabbits with gpMBP and�-glucuronidase
in complete adjuvant containingM. tuberculosis H37Ra
(Difco Laboratories). The second incubation step was per-
formed with swine anti-rabbit Ig-HRP (Dako A/S, Glostrup,
Denmark). The immunoblots were incubated with ECL
detection reagents (Amersham Life Science Ltd., Buck-
inghamshire, UK). A light sensitive film (Kodak X-omat)
was exposed to the blots for a variety of time periods be-
fore development. In all immunoblots, guinea pig MBP
or �-glucuronidase (Sigma Chemical Co.) were used as
references for the immuno-reagents.

The amount of soluble heterologous proteins was calcu-
lated by comparison of the relative intensity of bands of
several dilutions of extracts of transformants with a refer-
ence of purified�-glucuronidase or purified gpMBP in im-
munoblot analysis making use of Bio-1D V6.32 Software
(Vilber Lourmat, Marne la Vallée, France).

2.9. Statistics

The term cumulative EAE score is used as measure for
the severity of the disease. It was calculated by adding up
all the scores per animal over the first 21 days after EAE in-
duction. In other words, the cumulative EAE score is the to-
tal area under the curve. The cumulative EAE score of each
animal was calculated in percentages of the mean cumula-
tive EAE score of the control group which received PBS
intranasally or NaHCO3 orally only within the same experi-
ment. The cumulative EAE score per treatment over several
experiments was determined by calculating the mean cumu-
lative EAE score of all animals that had received the same
treatment and is expressed as a percentage of the control
group which is set at 100%. In order to determine whether
differences between groups reached significance, statistical
analysis was performed using a single factor ANOVA, fol-
lowed by calculating the least significant difference.

3. Results

3.1. Exacerbation versus inhibition of EAE by intranasal
administration of MBP protein or peptide

To investigate whether it was possible to induce tolerance
in Lewis rats by intranasal administration of myelin anti-
gen, gpMBP and the immunodominant synthetic peptide
MBP72–85 were administered intranasally before induction
of EAE. The protein and the peptide were administered in
two doses of 100 or 200�g at 15, 10 and 5 days before
induction of EAE with MBP72–85(Fig. 1). Intranasal admin-
istration of the MBP peptide 72–85 partially ameliorated
EAE in a dose dependent manner. When 100�g peptide
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was administered per application, the cumulative EAE score
was reduced with 56%. A significant reduction of EAE with
85% compared to the control group was found when 200�g
MBP72–85was given intranasally (P < 0.05). This is the first
time that mucosal tolerance induction was demonstrated in
this EAE model using MBP72–85as disease inducing antigen
in rats. In contrast, when the whole MBP protein was ad-
ministered intranasally, an enhancement of EAE was found.
The increase of the cumulative EAE score was comparable
for both doses applied (100�g = 171%, 200�g = 155%),
and this was significant for the 100�g dose (P < 0.05).

3.2. Intranasal tolerance induction by Lactobacillus
extracts containing myelin antigens

Prior to intranasal application of the soluble fraction of
recombinant lactobacilli extracts containing myelin antigens
for tolerance induction, proper expression of myelin anti-
gens by the recombinants was analyzed. TheLactobacillus
recombinants containing the constructs pLP402-MBP72/u
and pLP402-gpMBP/u secrete MBP72–85 peptide and
gpMBP protein fused to the marker enzyme�-gluc, re-
spectively. TheLactobacillus recombinant containing the
construct pLP402/u, which secretes�-gluc only, was used
as a negative control (Table 1).

Expression of these heterologous proteins byL. caseiwas
confirmed by immunoblotting with anti-�-glucuronidase
antibody ([31], results not shown). The heterologous
protein gpMBP fused to�-gluc was also detected with
anti-gpMBP antibody [31]. The expression of fusion
protein MBP72–85/�-gluc was also demonstrated with
anti-MBP72–85 antibody (results not shown). The soluble
fraction of extracts of recombinant lactobacilli was admin-
istered intranasally three times, at days−15, −10 and−5
prior to EAE induction with MBP72–85 on day 0 (Fig. 2).
Intranasal application ofLactobacillusextracts of the con-
trol recombinant pLP402/u did not affect the EAE course,
as expected. Intranasal pretreatment withLactobacillusex-
tracts of pLP402-gpMBP/u reduced the mean cumulative
EAE score significantly (about 40%) when compared to ei-
ther of both control groups (PBS and lactobacilli expressing
�-gluc only) (bothP < 0.05). WhenLactobacillusextracts
containing MBP72–85 were applied intranasally, EAE was
even further reduced. In this case, the mean cumulative EAE
score was reduced with almost 80% (P < 0.01) compared
to the PBS treated group (Fig. 2).

3.3. Oral tolerance induction by recombinant lactobacilli
expressing MBP72–85 intracellularly or extracellularly

Three recombinantLactobacillusstrains were used to test
whether oral administration of live lactobacilli expressing
myelin antigens could prevent EAE. The strains previously
used in the intranasal tolerance induction experiments,
pLP402-MBP72/u (secretion of MBP72–85 fused to�-gluc)
and the control strain pLP402/u (secretion of�-gluc), were

used again. In addition, the strains with pLP402-gpMBP,
which secretes gpMBP protein and pLP403-MBP72/u,
which intracellularly retains the MBP72–85 peptide fused
to �-gluc, were used (Table 1). Approximately 2× 1011

cells were orally administered per animal daily from days
−10 to 10. At day 0, rats were immunized with MBP72–85
to induce EAE. When lactobacilli expressing�-gluc only
(pLP402/u) were administered orally, only three out of
five rats developed EAE, but no significant difference was
found in day of onset, mean maximum score or mean cu-
mulative EAE score, when compared to the control group
who had received buffer (NaHCO3) orally (disease inci-
dence 100%) (Fig. 3). Oral administration of lactobacilli
secreting gpMBP (pLP402-gpMBP) had no effect on EAE.
However, EAE was significantly inhibited when lactobacilli
secreting the MBP peptide 72–85 (pLP402-MBP72/u) was
administered (Fig. 3). This treatment reduced the mean cu-
mulative EAE score with 65% compared to the NaHCO3

 

Fig. 3. Oral tolerance induction in Lewis rats by recombinant lactobacilli
expressing MBP72–85 intracellularly or extracellularly. Groups of five
rats received orally 2× 1011 live recombinant lactobacilli expressing
myelin antigens for 20 days (days−10 to 10). The vectors used were
designed for intracellular expression or secretion of the heterologous
antigen. EAE was induced with MBP72–85 at day 0. The mean EAE score
in arbitrary units per experimental group is shown as a function of time
after EAE induction. The cumulative EAE score (area under the curve)
was calculated as inFig. 1 and used for statistical analysis. TheP-values
shown represent theP-value of the statistical analysis of the relevant
experimental group compared to the control group which received no
lactobacilli orally. (*) means the group which receivedL. caseiexpressing
MBP72–85 intracellular, also was significantly different from the group
which receivedL. caseiexpressing gpMBP (P < 0.05).
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buffer control group (P < 0.05). An even further reduc-
tion was achieved by oral administration of lactobacilli
recombinants with retain the MBP72–85 peptide intracellu-
larly (pLP403-MBP72/u). The mean cumulative EAE score
was reduced by 84% compared to the buffer control group
(P < 0.01). This reduction was also significant compared
to the group orally treated with pLP402-gpMBP (P < 0.05)
(Fig. 3).

3.4. Antibody responses after intranasal tolerance
induction

In all rat experiments the animals were immunized
with MBP72–85 to induce EAE. In none of the animals
an anti-MBP72–85 antibody response could be detected,
despite the fact that T-cell priming was effective as ev-
idenced by a 100% disease incidence in control groups.
In animals not treated for tolerance induction which were
immunized with MBP72–85, no MBP specific antibodies
could be detected. This gave us the opportunity to inves-
tigate whether intranasal application of gpMBP-induced
gpMBP-specific systemic antibodies. Only in animals with
an enhanced cumulative EAE score after intranasal treat-
ment with gpMBP, IgG antibodies specific for gpMBP
could be detected in serum 14 days after EAE induction.
This implies that intranasal administration of gpMBP in-
duces a specific antibody response. No gpMBP-specific an-
tibody responses could be detected in any of the rats which
mucosally received lactobacilli expressing MBP or MBP
peptide.

4. Discussion

4.1. Novel findings of this study

There have been several studies in which recombinant
lactobacilli have shown their promise as a vaccine carrier
[39–42] and as a candidate therapeutic for the treatment of
allergic disorders[43]. This study is the first demonstra-
tion of interference in EAE, a Th1-cell driven autoimmune
disease of the central nervous system by mucosally admin-
istered recombinant lactobacilli producing relevant myelin
autoantigens. In this study, we have demonstrated that
intranasal as well as oral administration of recombinant
lactobacilli expressing myelin antigens could effectively
reduce EAE. In this rat model where EAE was induced
by MBP72–85, mucosal tolerance induction has not been
demonstrated before. Several other groups have shown that
mucosal administration of an autoantigen can enhance clin-
ical signs[27,44,45]. Here, we show in a different model,
nasal administration of purified gpMBP in MBP72–85 in-
duced EAE, that enhancement of disease can also occur.
In EAE, such augmentation of disease only has been seen
with MBP isolated from spinal cord, which could sug-
gest that impurities, such as other encephalitogenic myelin

proteins, are the cause of this effect[46]. The use of re-
combinant proteins could prevent this problem. As demon-
strated in this study, expression of such proteins/peptides
by lactobacilli might even further reduce clinical signs
and provide a therapy at significantly reduced cost when
compared to oral administration of synthetic or purified
compounds.

4.2. gpMBP is less effective than MBP72–85 in reducing
MBP72–85 induced EAE

Intranasal administration of gpMBP (fused to�-gluc)
expressed by lactobacilli did reduce EAE significantly, but
less effectively than when lactobacilli expressing MBP72–85
fused to �-gluc were used. Highly similar results were
obtained by oral administration of lactobacilli express-
ing gpMBP or MBP72–85, although in those experiments
gpMBP was not fused to�-gluc. In contrast to the ex-
periments performed with purified gpMBP and synthetic
peptide (Fig. 1), approximately equimolar amounts of re-
combinant gpMBP and MBP72–85 both fused to�-gluc
were administered (Fig. 3). This was deduced from im-
munoblots that showed roughly equal amounts of�-gluc
per unit weight of totalLactobacillusprotein. Consequently,
the same is true for the heterologous antigen. This was
the case for all secretory vectors. Therefore, the difference
in inhibition of EAE between lactobacilli with secretory
vectors cannot be explained by a difference in the molar
number of epitopes delivered. Conformational differences
between recombinant MBP72–85 and gpMBP both fused to
�-gluc may affect intracellular proteolytic processing, and
subsequently T-cell reactivity. Differences in susceptibility
to extracellular proteases can also play a role.

4.3. Presentation of recombinant myelin antigens to the
mucosal immune system

According to the general dogma, mucosal administra-
tion of soluble antigens leads to systemic T-cell tolerance
whereas particulate antigens can induce local and systemic
humoral and cellular responses (e.g.[26,47]). Therefore,
we expected that oral administration of lactobacilli secret-
ing soluble antigens would be more effective in reducing
EAE than lactobacilli that retain the antigen intracellularly.
Contrary to this expectation, lactobacilli that expressed
MBP72–85 fused to the marker enzyme�-gluc exclusively
intracellularly appeared to reduce EAE more effectively
than lactobacilli secreting the peptide-fusion protein. This
could simply be the result of the higher expression level
of the intracellularly expressed heterologous protein (ap-
proximately 3 times higher than secretory MBP72–85 fused
to �-gluc). Interpretation of these findings is hampered by
the general lack of insight into behavior ofLactobacillus
strains in the gut, as well as cellular uptake and pro-
cessing of lactobacilli and their intracellular or secreted
antigens.
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4.4. Lactobacilli promote tolerance induction

In the intranasal administration experiments lower doses
of recombinant antigen were able to prevent EAE than those
required to prevent EAE with synthetic peptide (100�g)
(Fig. 1). Significant reduction of EAE was demonstrated
with Lactobacillusextracts containing approximately 1�g
MBP72–85 (Fig. 2). Application of lactobacilli extracts con-
taining∼10�g gpMBP showed reduction of EAE, whereas
100�g purified MBP augmented the clinical signs (Fig. 1
versusFig. 2). This indicates that the presence ofLacto-
bacillus antigens might have further reduced EAE, even
though administration of only lactobacilli in itself did not
have any effect on the disease course (Fig. 2, lactobacilli
expressing�-gluc). However, when lactobacilli expressing
�-gluc were administered orally, we did observe a reduction
of EAE although this was not significant. That this is due
to the administration of the lactobacilli by itself is unlikely,
because in a previous study we demonstrated that wild type
administration ofL. caseidid not influence EAE disease
course[48]. In addition, also lactobacilli expressing the het-
erologous protein MBP can be regarded as vector control,
because these recombinant lactobacilli did not effect EAE
disease course either. Although an effect of�-gluc on EAE
is very unlikely it cannot be excluded, in spite of the fact
that it has never been seen in nasal rat experiments nor in
nasal and oral mouse EAE experiments (data not shown).

Our data might suggest that lactobacilli may have addi-
tional beneficial effects also in the oral tolerance experi-
ments on the reduction of EAE. Lewis rats which were fed
lactobacilli containing approximately 25�g MBP72–85 for
20 days showed significantly reduced signs of EAE. The
cumulative amount of MBP72–85 peptide was still 10-fold
lower than the doses used to suppress MBP68–88 induced
EAE with MBP68–88 (four times 1.25 mg peptide)[49].
However, this claim requires additional experiments with
mg doses of peptide. If confirmed, such effects of lacto-
bacilli could be based on the protection of protein by the
lactobacilli against degradation, and the particulate nature
of lactobacilli versus the soluble nature of peptides.

4.5. Mucosal administration of low antigen doses can
enhance disease in rats

Comparable doses of MBP72–85 peptide reduced
MBP72–85 induced EAE to the same degree as was demon-
strated in gpMBP-induced EAE[22]. In contrast, EAE
induced by MBP72–85 was enhanced by intranasal admin-
istration of gpMBP, although it has been demonstrated that
it is possible to induce oral tolerance with intact protein
(MBP and PLP) in peptide (PLP140–159) induced EAE[11].

It is known that the dose and administration regimen is
crucial for the induction of mucosal tolerance. Oral admin-
istration of low doses can enhance disease, as was demon-
strated by Meyer et al.[27]. Also feeding of very low doses
of OVA appears to prime rather than tolerize the immune

response, resulting in enhanced delayed type hypersensi-
tivity responses[50]. Based on molarity, an approximately
15-fold lower number of the MBP72–85epitope was present
in intranasally administered gpMBP, as compared to the syn-
thetic MBP72–85 peptide administered. In our experiments
the amount of intranasally administered gpMBP equaled
6.7 and 13.3�g MBP72–85 peptide, indicating that much
lower doses were administered than the 100�g synthetic
MBP72–85 peptide which not even completely prevented
EAE induction after intranasal administration. However,
this dose-related explanation is not consistent with the find-
ings that low doses (five times 6�g gpMBP) can prevent
disease in a different EAE model (induced with gpMBP)
in the Lewis rat[7]. Possibly, the fact that gpMBP contains
more T- and B-cell epitopes influences its tolerizing proper-
ties. Also other myelin components which were retained in
the purified MBP fraction could have affected the immune
response. Benson et al.[26] have demonstrated that a het-
erogenous antigen preparation such as myelin is less effec-
tive in inducing tolerance than single antigens (e.g. MBP).

4.6. Intranasal administration of gpMBP-induced
gpMBP-specific antibody responses in rats

Intranasal administration of gpMBP resulted in enhanced
cumulative EAE score of Lewis rats subsequently immu-
nized with MBP72–85 for the induction of EAE. IgG anti-
body responses were determined as a reflection of T- and
B-cell reactivity. Only in animals with an enhanced cumula-
tive EAE score, MBP specific antibodies could be detected.
However, no peptide specific antibody response could be
detected in any of the rats after s.c. immunization with
MBP72–85, which contains a T-cell epitope. This is in accor-
dance with reports that collectively indicate that MBP72–85
does not contain a complete B-cell epitope for the Lewis
rat [20,51,52]. Consequently, the MBP specific antibody
response detected after intranasal administration of whole
gpMBP and s.c. immunization with MBP72–85 is probably
only due to the intranasally applied MBP. This indicates
that gpMBP-specific antibodies induced by intranasally
administered gpMBP correlate with enhancement of EAE.

4.7. Concluding remarks

This study provided proof of principle that EAE can be
reduced by intranasal as well as oral administration of re-
combinant lactobacilli expressing myelin antigens. Efficacy
of this novel approach may be further improved by optimiz-
ing antigen expression levels, bacterial dosing and timing of
mucosal administration. The crucial importance of proper
dosing and antigen choice in mucosal tolerance induction
is emphasized by the enhancement of EAE which we ob-
served upon intranasal administration of gpMBP in Lewis
rats. Although the mechanisms of peripheral T-cell toler-
ance induced by mucosal administration ofLactobacillus
recombinants remain to be elucidated, there is accumulating
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evidence that, dependent on the strain used, lactobacilli are
able to modulate the immune response in distinct fashions
(e.g.[32,34,35,42,53]). For instance, in a previous study we
have shown that wild typeLactobacillusstrains adminis-
tered orally differentially affect cytokine profiles in the gut.
This finding has been further extended by Christensen et al.,
who have shown that lactobacilli can differentially induce
cytokines and MHC surface markers in dendritic cells in
vitro [54]. A new model of DC maturation and function was
recently proposed, in which immature DC induce T-cell an-
ergy by means of their low MHC, low costimulation and low
cytokine production. These authors define a new popula-
tion of semi-mature DC which develop upon stimulation by
factors such as TNF� and intranasally applied ovalbumin.
These semi-mature DC are claimed to suppress immune
responses indirectly, by inducing CD4+ regulatory T cells
which produce IL-10, by virtue of their high MHC, high cos-
timulation, but low IL-12, IL-6 and TNF� production. Ma-
ture DC induce T-cell immunity through high MHC-peptide,
costimulation, and cytokine production[55]. Lutz and
Schuler[55] suggest that lactobacilli of the gut flora are one
of the signals that induce the semi-mature state of DCs based
on the study of Christensen et al.[54]. We previously showed
that theL. caseistrain used in the current study, induced
IL-10 in the gut upon oral administration, as well as low
TNF� and low IL-1�. In the same experiment, mice were
intraperitoneally immunized with a T-cell dependent anti-
gen.L. caseidid not enhance the specific antibody response
against this antigen, but did induce a high IgG1/IgG2a ratio
which could be a reflection of a Th2 response. Although
very speculative, according to the proposed DC maturation
scheme[55], L. casei indeed might be a strain inducing
regulatory T cells as mechanism of tolerance. Independent
of the mechanism of action, this study shows that recom-
binant lactobacilli expressing autoantigens may be suitable
as mucosal therapeutic in autoimmune disease in general,
such as multiple sclerosis, rheumatoid arthritis and uveitis.
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