Discovery by the Epistasis Project of an epistatic interaction between the GSTM3 gene and the HHEX/IDE/KIF11 locus in the risk of Alzheimer’s disease

*Human Genetics, School of Molecular Medical Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
bCentre for Paediatric Epidemiology and Biostatistics, Institute of Child Health, University College London, London, UK
cDepartment of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
dDepartment of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
eDepartment of Psychiatry, Donders Institute for Brain, Cognition and Behavior, and Department of Human Genetics, Radboud University Nijmegen, Medical Centre, Nijmegen, The Netherlands
fDementia Research Group, School of Clinical Sciences, University of Bristol, Frenchay Hospital, Frenchay Bristol, UK
gNeurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Marqués de Valdecilla University Hospital, Santander, Spain
hWellcome Trust Sanger Institute, Hinxton, Cambridge, UK
iDepartment of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
jDepartment of Psychiatry, University of Bonn, Bonn, Germany
kRoyal Derby Hospital, Derby, UK
lNuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
mHuman Genetics, School of Molecular Medical Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
nLaboratory, Neurology Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Ma Claret, Barcelona, Spain

Abstract

Despite recent discoveries in the genetics of sporadic Alzheimer’s disease, there remains substantial “hidden heritability.” It is thought that some of this missing heritability may be because of gene–gene, i.e., epistatic, interactions. We examined potential epistasis between 110 candidate polymorphisms in 1757 cases of Alzheimer’s disease and 6294 control subjects of the Epistasis Project, divided between a discovery and a replication dataset. We found an epistatic interaction, between rs7483 in GSTM3 and rs1111875 in the HHEX/IDE/KIF11 gene cluster, with a closely similar, significant result in both datasets. The synergy factor (SF) in the combined dataset was 1.79, 95% confidence interval [CI], 1.35–2.36; \(p = 0.00004 \). Consistent interaction was also found in 7 out of the 8 additional subsets that we examined post hoc: i.e., it was shown in both North Europe and North Spain, in both men and women, in both those with and without the \(\varepsilon 4 \) allele of apolipoprotein E, and in people older than 75 years (SF, 2.27; 95% CI, 1.60–3.20; \(p < 0.00001 \)), but not in those younger than 75 years (SF, 1.91; 95% CI, 1.35–2.36; \(p = 0.84 \)). The association with Alzheimer’s disease was purely epistatic with neither polymorphism showing an independent effect: odds ratio, 1.0; \(p > 0.7 \). Indeed, each factor was associated with protection in the absence of the other factor, but with risk in its presence. In conclusion, this epistatic interaction showed a high degree of consistency when stratifying by sex, the \(\varepsilon 4 \) allele of apolipoprotein E genotype, and geographic region.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The etiology of sporadic, late-onset Alzheimer’s disease (AD) is much more complex than that of the familial, early-onset condition.
which displays dominant Mendelian inheritance. The former depends on both genetic and environmental factors. Uncovering those factors is made difficult by the small effect size each exhibits. For many years, only the ε4 allele of apolipoprotein E (APOE-ε4) was known as a susceptibility allele for sporadic AD. Recently, other reproducible gene candidates, such as PICALM, CLU, CR1, and BIN1 (Harold et al., 2009; Lambert et al., 2009; Seshadri et al., 2010), have been identified through genome-wide association studies (GWAS). However, their small effect sizes (odds ratios < 1.5) mean that there still remains much heritability to uncover (Manolio et al., 2009). This is believed to be primarily because of the genetically complex and heterogeneous nature of the disorder, with interactions between multiple genetic mutations and polymorphisms, as well as between those and other, nongenetic, factors (Bertram and Tanzi, 2004).

The term, epistasis, was originally coined approximately 100 years ago by William Bateson to represent the masking of one allelic locus by another (Bateson, 1910). Although it has sometimes been used in a wider sense, we use the term here conventionally, i.e., when an increased risk is only seen in the presence of 2 genetic factors and not seen when they act apart. Such interactions may be one cause of the hidden heritability mentioned above. In such cases, studies that examine single loci individually, such as GWAS, will fail to detect an effect. Examples of epistasis in genetic studies on Alzheimer’s disease have been reviewed by Combarros et al. (2009a).

Though GWAS have proven effective in detecting single-locus effects, such an unbiased approach might not be appropriate for the study of epistasis. A typical GWAS may examine perhaps 500,000 loci but the number of potential 2-way interactions between those 500,000 loci is more than 100 billion (1011). In order therefore to reduce the number of potential interactions to a manageable figure, a hypothesis-driven approach might be required.

The approach we adopted is shown in Fig. 1 (Study design). We first carried out a systematic review of claims of epistasis in sporadic AD (Combarros et al., 2009a). From that investigation, we selected 31 genes, involved in 32 interactions, with biological plausibility and previous evidence of association with AD. We have previously replicated several of those interactions (Combarros et al., 2009b, 2010; Heun et al., 2012; Kölsch et al., 2012; Lehmann et al., 2012). In this study, we looked instead for potential binary interactions not previously examined. To do that, we used a discovery dataset of 1366 AD cases and 1184 controls and a replication set of 391 AD cases and 5111 controls, both drawn from the Epistasis Project (Fig. 1).

We discovered and replicated an interaction between two single nucleotide polymorphisms (SNPs), rs7483 and rs1111875. Rs7483 is in the GSTM3 gene, encoding glutathione S-transferase μ3, involved in the detoxification of products of oxidative stress in the brain (Mannervik and Danielson, 1988). Rs1111875 is in the gene cluster of the hematopoietically expressed homebox (HHEX), the insulin-degrading enzyme (IDE), and the kinesin family member 11 (KIF11). Associations with AD have previously been reported in this region (Carrasquillo et al., 2010).

2. Methods

2.1. Subjects

The Epistasis Project aims to study interactions between genetic loci that affect the risk of AD. It is a collaboration of 7 AD research groups: Bonn, Bristol, Nottingham, Oviedo, Oxford (OPTIMA), Rotterdam, and Santander. Sample characteristics by geographic region are given in Supplementary Table 1. All AD cases were diagnosed “definite” or “probable” by Consortium to Establish A Registry for Alzheimer’s Disease (CERAD) (Mirra et al., 1993) or National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) (McKhan et al., 1984) criteria. AD cases were sporadic, i.e., possible autosomal dominant cases were excluded, based on family history. The median ages (interquartile ranges) of cases were 79.0 (73.0–85.2) and of controls were 76.9 (71.3–83.0). Full details of our sample sets and genotyping methods are given elsewhere (Combarros et al., 2009b). Rs7483 and rs1111875 were directly genotyped, not imputed. Research ethics approval was obtained by each of the participating groups (Supplementary Table 2). All participants of the study gave informed written consent.

2.2. Selection and screening of candidate interactions

Fig. 1 describes our study design in detail. Major features included: a systematic literature review of epistasis in sporadic AD

(Combarros et al., 2009a); the selection of 110 polymorphisms in 31 genes with previous evidence of interactions; the screening of potential interactions in a discovery dataset, followed by the replication of the highlighted interaction in a separate set, and further subset analysis to confirm the interaction (Fig. 1).

2.3. Statistical analysis

For screening the –epistasis module in the PLINK (version 1.07) whole-genome analysis toolkit was used, with the recommended filtering threshold of $p < 10^{-8}$ (Purcell et al., 2007). For all further analyses (Fig. 1), we used logistic regression models in R Version 2.12.1 (R Development Core Team, 2008), controlling for age, study center, sex, and APOE-4 genotype in all analyses. The best fitting model was selected using Akaike’s Information Criterion. Analyses were carried out first in the 6-center discovery set (Fig. 1), then in the Rotterdam replication set. We analyzed each center independently as well as the 2 geographical regions of North Europe (Bonn, Bristol, Nottingham, Oxford, and Rotterdam) and North Spain (Oviedo and Santander). In addition we also examined the interaction (identified in our screen, see section 3.1) when stratified by age, sex, or APOE-4 genotype and the 3-way interactions of these 2 SNPs with age, sex, and APOE-4.

Heterogeneity among centers and overdispersion was controlled for as described elsewhere (Combarros et al., 2010). Epistasis was established using synergy factor (SF) analysis: this approach measures the size and significance of an interaction (Cortina-Borja et al., 2009). It is calculated as the ratio of the observed odds ratio for both factors combined to the predicted odds ratio assuming independent effects of each factor. A brief explanation of SF analysis is given in Box 1 of Combarros et al. (2009a); a full explanation is given in Cortina-Borja et al. (2009). Power calculations were based on the observed SF values, using the method described previously (Cortina-Borja et al., 2009). Allelic frequencies between North Spain and North Europe were compared using Fisher’s exact test. All tests of significance and power calculations were 2-sided.

2.4. Exploring functional mutations

In an attempt to understand the functional basis of the interaction, we established the linkage disequilibrium block in which the SNPs were operating using SNAP Proxy (Johnson et al., 2008). SNPnexus and F-SNP were used to prioritize functional proxies within these loci (Chelala et al., 2009; Lee and Shatky, 2008). We also used publically available expression data for quantitative trait loci to identify polymorphisms regulating the expression of interacting genes and FunCoup to explore any evidence of biological interaction (Alexeyenko and Sonnhammer, 2009; Dixon et al., 2007; Myers et al., 2007).

3. Results

3.1. Screening for interactions

A single 2-way interaction, between rs7483 in GSTM3 and rs1111875 in the HHEX/IDE/KIF11 gene cluster, was highlighted by the –epistasis module in PLINK among the 110 candidate polymorphisms in the 6-center discovery cohort as being below the filtering threshold, i.e., 1×10^{-4}; odds ratio, 0.67; $p = 3.16 \times 10^{-5}$. This threshold was used to identify potential interactions that possibly merit further study. The minor allele frequency of rs7483 (A allele) was 25% in North Europe and 26.5% in North Spain, while that of rs1111875 (A allele) was 41% in North Europe and 37% in North Spain (Supplementary Table 3). Genotype distributions in all 7 centers are given in Supplementary Table 4.

Analysis with R allowed for the specification of the interaction model used in the logistic regression calculations, as well as for controlling for covariates. Of the 4 combinations of minor or major allele-dominant pairings for the 2 SNPs, the best fit by Akaike’s Information Criterion and the greatest significance was observed with a minor allele-dominant model for both SNPs (SF, 1.88; 95% confidence interval [CI], 1.27–2.79; $p = 0.0016$) in the discovery set (Table 1).

Calculating the interaction in the Rotterdam replication set produced consistent results, with the same model showing the best fit. This was further reinforced when all 7 centers were combined (Table 1). Examining the odds ratio of each factor separately showed that neither SNP was independently associated with AD, i.e., all odds ratios were very close to 1.0 (Table 2).

The 3-way interaction of the 2 SNPs with age as a continuous variable was significant ($p = 0.002$), as was that with age ≤ 75 years ($p = 0.02$), but not that with age > 80 years ($p = 0.06$) (the median ages of cases and controls were 79.0 and 76.9 years, respectively). There were no 3-way interactions with sex or APOE-4 ($p = 0.38$ and 0.86, respectively).

3.2. Post hoc stratification

Because the 2-way interaction between rs7483 in GSTM3 and rs1111875 in the HHEX/IDE/KIF11 gene cluster (Table 1) would not survive strict Bonferroni correction for all potential binary interactions ($n = 5995$), we conducted subset analysis to confirm the generality of the result. In the combined dataset (Table 3), significant results were found in men and women, and also in those with at least 1 copy of APOE-4 (APOE-4+) and those without (APOE-4−). In contrast, stratification by age produced a clear difference: highly significant results were seen in people older than the age of 75 years ($p < 0.00001$), but not in those younger than 75 ($p = 0.84$) (Table 3). Further analysis was therefore restricted to people older than 75 years (Tables 4–6).

3.3. Consistent effects between regions and centers

The results from the 2 geographic regions, North Europe and North Spain, were consistent (Table 4), as were those of the 7 centers (Table 5). All 7 SFs pointed in the same direction (SF > 1) including the 4 sets with low power (13%–24%) to replicate the interaction (Table 5). Additionally, the 2 sets with >50% power to detect the interaction reached significance (Rotterdam: SF, 2.03; 95% CI, 1.26–3.26; $p = 0.0036$; and Santander: SF, 3.58; 95% CI, 1.39–9.22; $p = 0.009$). There was heterogeneity in the SF values between centers which is unsurprising, given the low power (<25%, Table 5) in more than half of the centers. However, we controlled for this heterogeneity in all combined analyses.

3.4. The epistatic effect

The 2 interacting risk factors were the GSTM3 rs7483 A allele and the HHEX/IDE/KIF11 rs1111875 GG genotype. As a further test for
epistasis, we examined the effect of each factor in the presence versus the absence of the interacting factor. Each factor was associated with an increased risk in the presence of the other factor and was protective in its absence (Table 6). Results obtained in the discovery and replication sets (data not shown) were consistent with those in the combined dataset (Table 6).

4. Discussion

4.1. Interpretation of results

We have identified an interaction associated with AD risk, between rs7483 in GSTM3 and rs111875 in the HHEX/IDE/KIF11 gene cluster, in our discovery and replication datasets (Table 1). Not only have we shown the interaction in our total dataset (1757 AD, 6292 controls), but to demonstrate the generality and robustness of the interaction, we also found it in post hoc analyses of an additional 7 out of 8 subsets. It was shown throughout the European populations we used, both in North Europe and in North Spain (Tables 4 and 5). It was seen in both men and women, and both in those with and without the APOE4 allele (Table 3). It appeared, however, to be limited to people older than the age of 75 (Tables 3 and 4), consistent with the significant 3-way interaction between the 2 SNPs and age (section 3.4.). This older subset had slightly greater power to detect the interaction (with an SF of 2.3): 98.8% power compared with 89% power in those younger than 75 years. Nevertheless, the marked contrast in results in those older than 75 years (SF > 0.6; chr10 coordinates 94,192,885–94,472,056) encompassing HHEX. Rs111875 falls 7.5 kb downstream of HHEX in a conserved domain. A GWAS signal for type 2 diabetes has been tracked to 2 linked SNPs in this region (rs111875 and rs5015480, \(r^2 = 0.97 \)), although the functional mutation is yet to be described (Sladek et al., 2007; Zeggini et al., 2007). Of the 9 SNPs in high LD with rs111875 (\(r^2 > 0.8 \)), none fall within a gene or a predicted functional region.

Upstream of rs111875, there is an extended LD block of 299 kb (\(r^2 > 0.5 \); chr10 coordinates 94,192,885–94,491,751) which contains 2 additional genes (IDE and KIF11) which might hold functional variants (Fig. 2). However, our attempts to prioritize candidate SNPs using functional prediction (F-SNP and SNPnexus) have offered little insight. Interestingly, rs111875 is in modest LD (\(r^2 = 0.47 \)) with the intronic IDE SNP, rs6583817, which has shown association with AD, increased IDE mRNA levels in AD cerebellum and reduced levels of serum β-amyloid 40. Luciferase reporter assays suggested the minor allele increases IDE expression in a neuroblastoma cell line (Carrasquillo et al., 2010).

In a further attempt to establish which gene within this locus tracks with rs111875, we have also used expression data for quantitatice trait loci from two previous studies. Unfortunately, one study did not measure the expression of IDE, HHEX, or KIF11 (Myers et al., 2007). Although the data of the other study, Dixon et al.,

Table 2
<table>
<thead>
<tr>
<th>SNP</th>
<th>Dataset</th>
<th>Adjustedodds ratio</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs7483</td>
<td>Discovery</td>
<td>0.96</td>
<td>0.80–1.16</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>Replication</td>
<td>0.97</td>
<td>0.80–1.19</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>Combined</td>
<td>0.98</td>
<td>0.86–1.12</td>
<td>0.81</td>
</tr>
<tr>
<td>rs111875</td>
<td>Discovery</td>
<td>1.01</td>
<td>0.83–1.23</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>Replication</td>
<td>1.02</td>
<td>0.83–1.26</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Combined</td>
<td>1.00</td>
<td>0.87–1.14</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Key: AD, Alzheimer’s disease; APOE4, the ε4 allele of apolipoprotein E; CI, confidence interval; SF, single nucleotide polymorphism.

Table 3
<table>
<thead>
<tr>
<th>Subset</th>
<th>Adjusted(r^2) SF</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>1.64</td>
<td>1.01–2.68</td>
<td>0.046</td>
</tr>
<tr>
<td>Women</td>
<td>1.95</td>
<td>1.38–2.76</td>
<td>0.00016</td>
</tr>
<tr>
<td>APOE4−</td>
<td>1.63</td>
<td>1.01–2.64</td>
<td>0.046</td>
</tr>
<tr>
<td>APOE4+</td>
<td>1.79</td>
<td>1.27–2.51</td>
<td>0.0009</td>
</tr>
<tr>
<td>≥75 y</td>
<td>2.27</td>
<td>1.60–3.20</td>
<td><0.0001</td>
</tr>
<tr>
<td><75 y</td>
<td>1.06</td>
<td>0.59–1.91</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Key: APOE4, the ε4 allele of apolipoprotein E; CI, confidence interval; SF, synergy factor.

Table 4
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Adjusted(r^2) SF</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery</td>
<td>2.96</td>
<td>1.72–5.08</td>
<td>0.00009</td>
</tr>
<tr>
<td>Replication</td>
<td>2.03</td>
<td>1.26–3.26</td>
<td>0.0036</td>
</tr>
<tr>
<td>North Europe</td>
<td>2.19</td>
<td>1.46–3.26</td>
<td>0.0004</td>
</tr>
<tr>
<td>North Spain</td>
<td>2.80</td>
<td>1.22–6.41</td>
<td>0.015</td>
</tr>
<tr>
<td>Combined</td>
<td>2.27</td>
<td>1.60–3.20</td>
<td><0.00001</td>
</tr>
</tbody>
</table>

North Europe’ comprises Bonn, Bristol, Nottingham, Oxford, and Rotterdam; ‘North Spain’ comprises Oviedo and Santander. See Supplementary Table 3 for the numbers from North Europe and North Spain.

Key: APOE4, the ε4 allele of apolipoprotein E; CI, confidence interval; SF, synergy factor.

Table 5
<table>
<thead>
<tr>
<th>Centre</th>
<th>Numbers (≥75 y)</th>
<th>Adjusted(r^2) synergy factor (95% CI, p)</th>
<th>Power(^{h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonn</td>
<td>55</td>
<td>1.92 (0.29–12.6, 0.50)</td>
<td>24%</td>
</tr>
<tr>
<td>Bristol</td>
<td>36</td>
<td>5.51 (0.82–36.8, 0.08)</td>
<td>15%</td>
</tr>
<tr>
<td>Nottingham</td>
<td>41</td>
<td>2.49 (0.27–23.1, 0.43)</td>
<td>13%</td>
</tr>
<tr>
<td>OPTIMA</td>
<td>140</td>
<td>2.81 (0.91–8.61, 0.07)</td>
<td>45%</td>
</tr>
<tr>
<td>Oviedo</td>
<td>27</td>
<td>1.05 (0.13–8.14, 0.96)</td>
<td>15%</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>2917</td>
<td>2.03 (1.26–3.26, 0.004)</td>
<td>95%</td>
</tr>
<tr>
<td>Santander</td>
<td>262</td>
<td>3.58 (1.39–9.22, 0.009)</td>
<td>58%</td>
</tr>
<tr>
<td>Combined</td>
<td>3478</td>
<td>2.27 (1.60–3.20, 0.00001)</td>
<td>99.8%</td>
</tr>
</tbody>
</table>

Key: AD, Alzheimer’s disease; APOE4, the ε4 allele of apolipoprotein E; CI, confidence interval; OPTIMA, Oxford Project To Investigate Memory and Ageing.

\(^{h} \) Power to detect a synergy factor of 2.27 at \(p < 0.05 \).
tagged the expression of IDE, HHEX, and KIF11, none of these were significantly associated with SNPs in this locus (Dixon et al., 2007).

Attempts to look at functional interaction between IDE/HHEX/KIF11 and known AD candidate genes (using FunCoup; Alexeyenko and Sonhammer, 2009) also failed to elevate the candidacy of any 1 gene.

Though IDE might seem to be the obvious candidate because of its established role in the degradation of β-amyloid, the other 2 genes merit some attention. HHEX has been associated with poor forebrain neurodevelopment in HHEX/(−/−) mutants (Martinez Barbera et al., 2000). A recent meta-analysis implicated rs1111875, which is 3′ of the HHEX gene, in the risk of type 2 diabetes, although the function of this SNP is yet to be assessed (Wang et al., 2011).

Type 2 diabetes is itself a risk factor for AD. Members of the kinesin family (KIF) have been implicated in microtubule axonal transport of amyloid precursor protein (APP) from the latter’s synthesis sites in the neuronal cell body to the terminus. This activity is afforded by APP binding to the light chain of the KIF protein. Mutant KIF proteins have been studied in mice and a reduced capacity for APP microtubule binding, and thus for transport, was identified (Feuk et al., 2005; Kamal et al., 2000).

Consequently, at present it is not possible to select any particular gene within this extended LD block as the definitive candidate, despite using a number of bioinformatic approaches; at the moment the evidence supports any or all of these genes being implicated when rs1111875 is used as a tag.

4.3. GSTM3 rs7483

Rs7483 is located in the GSTM3 gene and affects transcription of that gene (Maes et al., 2010). The GSTM3 protein has long been shown to be related to detoxification of the effects of oxidative stress (Mannervik and Danielson, 1988), particularly in the brain (Aksenov, 2001). Detoxification of a variety of carcinogens takes place in the cytosol of cells via the activity of glutathione S-transferase (GST) enzymes. Polymorphisms in the genes for these enzymes have been linked to certain carcinomas in a variety of populations (Yengi et al., 1996). One report has identified the presence of GSTM1 on the inner membrane of mitochondria in humans (Gallagher et al., 2006). Based on this study, it has been suggested that GST enzymes might play a role in the detoxification of carcinogens and reactive oxygen species (ROS) in the cytosol and the mitochondria. Consequently, risk alleles at GST loci may also demonstrate altered function and therefore increase the risk of damage from ROS (Datta et al., 2007).

| Table 6 |
| Odds ratios of AD for rs7483 AA + AG versus GG and rs1111875 GG versus GA + AA in the presence or absence of each other, in people 75 years of age and older |

<table>
<thead>
<tr>
<th>Odds ratio of AD for:</th>
<th>In the subset:</th>
<th>Numbers</th>
<th>Adjusted* odds ratio of AD (95% CI, p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs7483 AG + AA versus GG</td>
<td>rs1111875 GG</td>
<td>AG + AA: 584</td>
<td>AG + AA: 222</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GC: 705</td>
<td>GC: 175</td>
</tr>
<tr>
<td>rs1111875 GG versus AG + AA</td>
<td>rs7483 AG + AA</td>
<td>AG + AA: 1164</td>
<td>AG + AA: 315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GC: 1180</td>
<td>GC: 429</td>
</tr>
<tr>
<td></td>
<td>rs7483 AG + AA</td>
<td>GC: 584</td>
<td>GC: 222</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AG + AA: 1164</td>
<td>AG + AA: 315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GC: 705</td>
<td>GC: 175</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AG + AA: 1180</td>
<td>AG + AA: 429</td>
</tr>
</tbody>
</table>

Key: AD, Alzheimer’s disease; APOE-ε4, the ε4 allele of apolipoprotein E; CI, confidence interval.

* Controlling for age, study center, sex, and APOE-ε4 genotype.

Fig. 2. Linkage disequilibrium (LD) architecture of the locus containing HHEX/KIF11/IDE. Rs1111875, located downstream of HHEX, is in high LD (r² > 0.8) with single-nucleotide polymorphisms (SNPs) surrounding HHEX. Upstream of rs1111875 is a large block of modest linkage (r² > 0.5) encompassing KIF11 and IDE, after which LD is broken down by high recombination (dashed vertical lines). Image generated with SNAP proxy server (Maes et al., 2010).
Additionally, increased oxidative stress has been shown to occur with the aging process, and to be particularly prominent in the proteins of AD patient brain tissues (Aksenov, 2001). This is consistent with our finding being limited to people older than the age of 75. The oxidative stress hypothesis for AD affords that axonal transport of mitochondria is functionally impaired, resulting in the production of ROS (Pappolla et al., 1992). Finally, it has been observed that GSTM3 is also expressed in distinct patterns in the brain tissue of AD patients, which is particularly noticeable in the plaques and tangles that are diagnostic of AD and in the activated microglia surrounding those plaques (Tchaltikovskaya et al., 2005). This last observation suggests that inflammation might also be involved in this interaction.

5. Conclusions

We have confirmed an interaction between the HHEX/IDE/KIF11 locus (rs1111875) and GSTM3 (rs7483) that is associated with AD risk through replication in 2 cohorts and through post hoc stratification by sex, APOE-ε4, and geographic region. Post hoc analyses also suggested that the effect was mainly or solely in people older than 75 years. Although we were unable to pinpoint 1 gene in particular, our data suggest that the effect was mainly in people older than the age of 75. This suggests a potential functional interaction. However, we cannot rule out other possible mechanisms, e.g., inflammation.

Attempts at further replication of these results in European or other ethnic groups should be limited to large datasets, i.e., with at least 1000 cases and 1000 controls. Such datasets would have at least 91% power to replicate the above interaction, assuming similar allele frequencies as in this study, and a synergy factor of 1.8, whereas datasets with only 200 cases and 200 controls, for instance, would have only 38% power.

Disclosure statement

The authors declare that there are no conflicts of interest.

Research ethics approval was obtained by each of the participating groups (Supplementary Table 2). All participants of the study gave written informed consent.

Acknowledgments

The authors thank the Moulton Charitable Foundation for a grant to fund the Epistasis Project, to all those who have provided support for the individual clinical studies, and to the Alzheimer’s Research UK, and the Thomas Willis Oxford Brain Collection for tissue for DNA extraction. G.K.W. was partly funded by the NIHR Biomedical Research Centre Programme, Oxford. UCL Institute of Child Health receives funding from the Department of Health’s NIHR Biomedical Research Centres funding scheme. The Centre for Paediatric Epidemiology and Biostatistics also benefits from funding support from the Medical Research Council in its capacity as the MRC Centre of Epidemiology for Child Health (G0400546). The Rotterdam Study is supported by Erasmus Medical Center and Erasmus University, Rotterdam, The Netherlands Organization for Scientific Research (NWO), Netherlands Organization for the Health Research and Development (ZonMW), the Research Institute for Diseases in the Elderly (RIJE), The Netherlands Genomics Initiative, the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII) and the Municipality of Rotterdam. The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation of Scientific Research NWO Investments (number 175.010.2005.011, 911-03-012). The contribution of inhabitants, general practitioners, and pharmacists of the Ommoord district to the Rotterdam Study is gratefully acknowledged. The group at Nottingham is funded by Alzheimer’s Research UK and the Big Lottery fund. J.M.B. was funded by a Medical Molecular Sciences PhD studentship.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.neurobiolaging.2012.08.010.

References

