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The pathophysiology of human airway na~owing is only partly understood. In order to gain 
more insight in the mechanisms of human lung diseases and potential beneficial therapeutic 
agents, adequate models are needed. Animal airway models are of limited value since lung 
diseases such as asthma and chronic obstructive pulmonary disease (COPD) are unique to 
humans and because the mechanisms of airway narrowing differ between species. There- 
fore, it is important to perform studies on human isolated airways. We describe the models 
that have been developed to study airway function in vitro, emphasizing human airway 
preparations. The easily prepared airway strip and ring preparations are described first. 
The potential damage during preparation and the interference with airway structure are 
important drawbacks in these preparations. Lung parenchymal strips, described next, were 
designed in order to study responsiveness of small airways. However, parenchymal strips 
are anatomically complex, and responsiveness is determined by the relative amounts of 
airway and vascular smooth muscle. The lack of reproducibility between species and even 
within one animal limits their usefulness. Airway tube preparations, in which luminal and 
serosal stimulation can be separated, enable us to study the modulatory rote of the airways 
epithelium in vitro. Furthermore, airway compliance can be measured. In the isolated 
perfused lung preparation, relationships between the airways and the vascular system are 
preserved and the interaction between these two systems can be studied. Weight gain due 
to fluid extravasation is a problem in this model which has not been used yet to study 
human lungs in vitro. Next, methodological aspects such as tissue handling and storage, 
recording of responses, removal of the epithelium, and electrical field stimulation are dis- 
cussed in some detail. Although animal airways tissue can be studied immediately after 
removal, human tissue is often obtained with some delay. However, this seems tenable 
since electron microscopy of lung tissue obtained at autopsy showed that recovery of 
the preparation occurs during incubation of carbogenated Krebs-Henseleit (K-H) buffer. 
Dissected airways can be stored overnight in cooled K-H buffer until up to 55 hr after 
resection without losing viability. Commonly used physiological salt solutions which bath 
the tissue contain osmotic molecules, ions important for contractility, glucose as a sub- 
strate, and a bicarbonate-carbon dioxide buffer. In studies of isolated perfused lungs, a 
colloid should be added in order to prevent edema. The responses of isolated airways strips 
and rings are recorded under isometric or isotonic conditions. Smooth muscle contraction 
in vivo, however, is auxotonic; the elastic load on the smooth muscle increases during 
ainvay narrowing. In perfused airway tubes responsiveness is measured under auxotonic 
conditions as a change in perfusion pressure or flow. Next, removal of epithelium from 
isolated airways is discussed. Although mechanical denudation is widely used, more physio- 
logical methods that mimic the epithelial damage found in asthma may well be preferable 
and these methods are described in some detail. Finally, the methodology of electric field 
stimulation (EFS) is described. EFS is delivered via electrodes suspended in the organ 
bath. According to the stimulus parameters chosen, autonomic nerves or smooth muscle 
cells are stimulated. An important side effect of EFS is the generation of oxygen radicals 
in carbogenated K-H buffer which may alter airway tone directly, or oxidize agonists added 
to the organ bath. It is concluded that although our knowledge of the pathophysiology of 
airway disease is rapidly increasing, the role of the bronchial circulation is poorly under- 
stood. Therefore, the development of a method to study the interaction between the ventila- 
tory and the vascular systems in the isolated human lung is a major challenge. 
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Introduction 

The pathophysiology of human airway narrowing 
that characterizes asthma and chronic obstructive pul- 
monary disease (COPD) is only partly understood. In- 
flammation of the lung, especially of the airways, is 
found both in asthma (Djukan~vic et al., 1990) and in 
COPD (Cosio et al., 1980) and may play a pivotal role 
in the development of bronchial hyperresponsiveness 
in asthma (Juniper et al., 1981; Cockcroft, 1988) and 
COPD (Yan et al., 1985; Bahous et al., 1985). In order 
to gain more insight into the underlying processes of 
human lung diseases, animal models have been devel- 
oped. In most of these animal models, the immediate 
(IAR) and the late asthmatic reaction (LAR) can be 
induced by allergen challenge (Michoud et al., 1978; 
Wanner and Abraham, 1982; Hirshman, 1985; Snap- 
per, 1986; Hayes et al., 1992). However, important dif- 
ferences between species exist (Snapper, 1986). There- 
fore, it is impo~ant to study pathophysiological and 
pharmacological aspects of human airway disease in 
human isolated airways. Most in vitro studies of human 
airways have been performed on tissue derived from 
smokers with or without COPD who were operated on 
because of bronchial malignancy. These studies have 
shown that the sensitivity of isolated airways is not 
related to the sensitivity to inhaled histamine or metha- 
choline in nonasthmatic subjects (Vincent et al., 1983; 
Taylor et al., 1985; Cerrina et al,. 1986; de Jongste et 
al., 1987a) indicating that airway hyperresponsiveness 
may not result from an intrinsic abnormaIity of airways 
smooth muscle. In the rarely available airways of asth- 
matic patients increased (Schellenberg and Foster, 
1984; de Jongste et al., 1987b; Bai, 1990) as well as 
decreased (Goldie et al., 1986; Whicker et al., 1988) 
responses to contractile agonists have been reported. 

These apparently contradictory results, that may 
well be due to methodological factors (de Jongste et 
al., 1989), and the lack of correlation between in vitro 
and in vivo measurements illustrate that in vitro data 
should be interpreted with caution. 

Nevertheless, the study of pharmacology of human 
airways in vitro may provide insight into the pathogen- 
esis of human airway disease. For instance, the role 
of the airways epithelium (Flavahan et al., 1985; Ai- 
zawa et al., 1988; Fedan and Frazer, 1992) and the 
nonadrenergic, noncholinergic (NANC) nervous sys- 
tem (Richardson and Btland, 1976; de Jongste et al., 
1987~; Ellis and Undem, 1992) in airway responsive- 
ness have been studied in detail in isolated airways. 
Furthermore, studies in vitro offer the opportunity to 
test the effects or side effects of novel pharmacological 
compounds potentially acting on lung tissue. The relax- 
ant effects of the potassium channel opener cromo- 
kalim (Cortijo et al., 1992), originally developed for the 

treatment of hypertension, and of the phosphodiester- 
ase inhibitors rolipram and SK&F 94120 (Belvisi et al., 
1992a) on human isolated airways are examples of such 
in vitro studies. 

A variety of models for animal and human isolated 
airways in vitro has been described since Williams’ 
(1840) demonstration of the contractile mechanisms in 
isolated lungs. This review will briefly discuss these 
models, their historical backgrounds, their apphca- 
tions, and their restrictions. Furthermore, methodolog- 
ical aspects such as preparation and overnight preser- 
vation, epithelium removal, and electrical field stimula- 
tion are discussed, emphasizing human airways. 

Isolated Airway Preparations 

Airway Strip and Ring Preparations 

In 1912 an isolated large airway preparation was de- 
scribed by Trendelenburg. Isotonic recordings were 
made in bovine tracheal rings with or without cartilage, 
and the bronchodilator effects of caffeine, adrenaline, 
and atropine were demonstrated (Trendelenburg, 
1912). In order to measure the responses of tracheal 
muscle of small animals in vitro, Castillo and De Beer 
(1947) used a chain of lo-12 tracheal rings. By means 
of the additive responses of the rings in the chain prepa- 
ration, they were able to demonstrate bronchoactive 
effects of various drugs. The same principle was ap- 
plied to human central bronchi (Hawkins and Schild, 
1951; Rosa and McDowell, 1951). However, the tra- 
cheal chain is a laborious preparation that requires a 
lot of airway tissue, and each connecting knot is a po- 
tential source of tissue damage and mechanical insta- 
bility. Several years later, spirally cut airway strips 
fromanimals (Patterson, 1958; Constantine, 1965; Pers- 
son and Ekman, 1976) and humans (Persson and 
Ekman, 1976; Brink et al., 1980; Goldie et al., 1982) 
were described. These were easier to prepare, but the 
preparation also caused tissue damage. The develop- 
ment of sensitive transducers made it possible to 
record isotonic shortening or isometric force develop- 
ment in strips or rings of dissected animal (Persson 
and Ekman, 1976; Hooker et al., 1977; Advenier et al., 
1985) and human (Persson and Ekman, 1976; Finney 
et al., 1985; de Jongste et al., 1985; Jongejan et al., 
1988) small airways. In Figure 1, the different airway 
strip and ring preparations are shown schematically. 
Theoretically, airway ring preparations have advan- 
tages over airway strips: the contraction of a ring is 
directly related to airway narrowing and, furthermore, 
the configuration of the smooth muscle bundles is 
largely preserved. A practical advantage is that only a 
small piece of tissue is needed. A disadvantage of the 
airway strips and -ring preparations is the inability to 
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Figure 1. Schematic representation of the airway strip (A), 
airway ring (B), spiralized airway strip (C), and airway chain 
preparation (D). 

stimulate the mucr>sd or the serosal side selectively. 
Figure 2 displays an airway ring preparation in a con- 
ventional double-jacketed organ bath. 

The lung parenchymal strip was developed by Lul- 
ich et al. f1976) as an in vitro preparation to evaluate 
the actions of drugs on peripheral airways. Thin strips 
(approximate dimensions 20 x 3 x 3 mm) were dis- 
sected from a lung lobe and studied in a conventional 
organ bath. The preparation has been widely used in 
studies of both laboratory animal (Drazen et aI. 7 1978; 
Chand et al., 1979; Kleinstiver and Eyre, 1980; Omini 
et al., 1990) and human (Ghelani et al., 19gO; Finney 
et al., 1984; Saga et al., 19&t) lungs. hlarked differ- 
ences in responsiveness to various agents of the 
smooth muscfe of central airway strips and lung paren- 
chymal strips were found, and it was assumed that the 
dug-induced effects in parenchymal strips reflected 
the responses of smooth muscle of small airways pres- 
ent in the bronchioles and alveolar ducts (Lulich et al., 
1976; Drazen et al., 1978; Chand et al., 1979: Ghelani 
et al., 1980; Finney et at,, 1984). However, since the 
responses of parenchymal strip preparations to sympa- 
thomimetic drugs were not consistent between species 
and even within a single animal, the involvement of 
nonairway com~nents such as vascular smooth mus- 
cle ~Mir~h~ and Eyre, 1980; Goldie et al,, 1980) and, 
probably, interstitial contractile ceils (Kapanci et al., 
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Figure 2. Schematic representation of an airway ring prepa- 
ration mounted in a double-jacketed, glass organ bath. A, 
airway preparation; 3, buffer supply; C, carbogen supply ; 
E, piatiwm electrodes; H, stainless steel hookes; T, isotonic 
transducer; W, warm (37%) water supply. 

1974) was suggested. Indeed, Bertram et al. (1983) 
showed that the type and size of responses of human 
~aren~hym~i strips to the sympathi~omimeti~ drugs se- 
rotonin and noradrenaline depended on the relative 
amounts of blood vessels and larger airways present 
in the airway preparation. Thus, noradrenaline will in- 
duce a contractile response in parenchymal strips con- 
taining more than twice as much vascufar smuoth mus- 

cle as airway smooth muscle, and noradrenaline will 
induce a relaxation when this ratio is lower than two- 
fold (Figure 3). These relative amounts of the contrac- 
tile components were determined with stereological 
analysis, a method that enables estimates of different 
parameters in a 3-dimensional body (Weibel, f979), 
and a large variability in composition was shown be- 
tween strips obtained from the same lung (Bertram et 
al., 1983). Similarly, the disparity of responses in dif- 
ferent species can be explained by differences in com- 
position; a slice of rat lung will comprise larger airways 
and blood vessels than would a similarly sized slice of 
human lung (Eyre and Mirbahar, 1981; Goldie et al., 
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Figure 3. Relationship between the ratio of the volume densi- 
ties of blood vessel wail to airway wall in tissue (V, (BVwatU 
T)/V, (AWYw~l~), and responses of human isolated lung 
parenchyma strips to noradrenaline (v = 0.65, p < 0.05). 
(Reproduced with permission of Bertram et al., 1983.) 

1984). It appears, therefore, that the anatomical com- 
plexity of the parenchymal strip restricts its value as 
a method to study small airway pharmacology. 

holuted Perfused Airways 

The airway epitheIium may modulate airway re- 
sponsiveness through 1) the release of relaxing factors 
(Farmer and Hay, 1991), 2) the breakdown of agonists 
(Advenier et al., 1988; Devillier et al., 1988), and 3) 
acting as a physical barrier (Munakata and Mitzner, 
1991). In human airway strips and rings, however, only 
a 1.5 to 2.5fold increase in sensitivity to contracting 
agonists is found after mechanical removal of the epi- 
thelium (Raeburn et al., 1986a; Aizawa et al., 1988; 
Jongejan et al., 1991) probably because the stimulus 
reaches the smooth muscle not only via the mucosal 
side but also via the serosal side and the cut surface. 
Therefore, models have been developed that allow in- 
dependent stimulation of rodent-intact tracheas and pig 
and human bronchial segments from the serosal and 
the mucosal side selectively. These airway “tube 
preparations” were perfused under conditions of con- 
stant flow (Munakata et al., 1988; Mitchell et al., 1989; 
Yang et al., 1991; Fedan and Frazer, 1992) or constant 
pressure (Mitchell et al., 1989; Sparrow and Mitchell, 
1991; Omari et al., 1993), and responsiveness was mea- 
sured as a change in perfusion pressure or flow, respec- 
tively. In these intact perfused airway preparations, 
the sensitivity to luminaliy applied contractile and re- 
laxing agonists was much lower (over 30-fold) than 
that to serosally applied agonists. These differences 

were abolished after mechanical rubbing of the epithe- 
hum, indicating that the effect was caused by the pres- 
ence of epithelium. 

We developed a similar model to investigate 
the modulatory role of the epithelium in human peri- 
pheral airways (Hulsmann et al., 1992). Human iso- 
lated peripheral airway tubes were perfused with 
Krebs-Henseleit solution at a constant pressure of 6 
cm Hz0 (Figure 4), and responsiveness was measured 
as a change in flow. Accurate and reproducible mea- 
surements of sensitivity to metacholine were obtained. 
With this method we demonstrated a much greater 
modulatory role of the epithelium in human perfused 
peripheral airways than in peripheral airway strips 
(Hulsmann et al., 1993a). Apart from studying the mod- 
ulatory role of the epithelium, airway tube preparations 
have been used to study other factors that determine 
airway narrowing such as preload and airway compli- 
ance. The effect of preload on airway narrowing has 
been studied in rabbit, pig, and human isolated air- 
ways. The transmural pressure in closed airway seg- 
ments was varied between - 10 and + 30 cm HzO, and 
the pressure change to field stimulation was recorded. 
It appeared that both the presence of cartilage and the 
transmural pressure determine the preload (and hence 
force) of the smooth muscle (Moreno and Pare, 1989; 
Sparrow et al., 1992; Figure 5). 

Gunst and Stropp (1988) determined pressure-vol- 
ume relationships in canine bronchi by measuring 
bronchial transmural pressure changes during inflation 
and deflation of the airway preparation with K-H solu- 
tion. The compliance of contracted airways was lower 
than that of relaxed airways. Large airways contracted 
with acetylcholine ( 10e3 M) developed pressures >30 
cm Hz0 only near their maximal volumes, whereas 
small airways developed similar pressures at a much 
wider volume range (Figure 6). Furthermore, small air- 
ways were able to constrict to closure but large airways 
constricted only to 30% of maximal volume. These dif- 
ferences are probably due largely to differences in ori- 
entation of the smooth muscle tissue and in the amount 
of cartilage between large and small airways (Gunst 
and Stropp, 1988). 

isolated Perfused Lungs 

The lung is supplied by both the pulmonary circula- 
tion and the trachea-bronchial circulation. The tra- 
cheo-bronchial circulation may be important in the 
pathogenesis of asthma because of its involvement in 
the influx of inflammatory cells into the airways, in the 
development of airway wall edema, and in the clear- 
ance of bronchoactive mediators and inhaled drugs 
(Persson, 1986; Deffebach et al., 1987; Deffebach and 
Widdicombe, 1991; Widdicombe, 1992). In addition, 
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Figure4. Schematic presentation 
of the human perfused airway 
preparation. The transmural 
pressure is maintained at 6 cm 
H&k 3, buffer supply; C, stain- 
Iess steel cannula; 0, organ bath; 
S, airway segment; T, electro- 
magnetic transducer. (Repro- 
duced with permission of Huls- 
mann et at., 1992.) 
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Figure 5. Relationship between transmural pressure and re- 
sponse to EFS of bronchial segments from pig (3 mm i.d.) 
and human (4 mm i.d.) lung. Closed segments were activated 
by electricat field stimulation (20 Hz, 0.5 ms, 60 V), and the 
increase in pressure was recorded via a transducer attached 
to a T-piece at one end of the preparation. The transmural 
pressure was changed by introducing different vofumes of 
K-H sofution into the segment. Means -t SEM, n = 3-4 
animals. (Reproduced with permission of Sparrow et al., 
1992.) 

hyperemia and hy~e~ermeability of bronchial vessets 
mfly increase ai~~w resistance and airway responsive- 
ness to bronchoconstricting agents (Persson, 1986; 
Lockhart et al., 1992). These aspects cannot be studied 
in isolated airways smooth muscle prep~atio~s. In iso- 
lated whole-lung preparations, however, relationships 
between airways and the vascular systems are pre- 
served. 

Models of dog, rat, rabbit, and guinea pig perfused 
and ventilated lungs have been described (Evans and 
Starling, 1934; West et al., 1964; Maloney et al., 1968; 
Levey and Gast, 1955; Hauge, 1972; Niemeier and 
Bingham, 1972; Ryrfeidt and Nilsson, I978). After an- 
esthesia, anima& are tracheotomized, and a cannuIa is 
inserted into their trachea and connected to a ventila- 
tor. Then the thorax is opened, and heparin sodium is 
injected into either the right ventricle or intravenously. 
The pulmonary artery and pulmon~y vein or the left 
atrium are cannuiated, and the blood is fhrshed from 
the pulmonary circufation with K-H solution at 37°C. 
The lungs are either left in situ (Wang et al., 1992) or 
removed from the thorax and placed in a water vapor- 
saturated glass or perspex chamber warmed to 37°C. 
During the experiment the lungs are perfused via the 
pufmonary artery with oxygenated K-W buffer (37°C) 
containing 4%~5% bovine albumin or with whole blood 
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Figure 6. Maximal pressures developed by small (n = 6) 
and large (n = 7) bronchi. Closed circles represent passive 
pressure obtained 1 min after inflation. Open circles repre- 
sent pressures obtained after contraction with acetyIcholine 
(1Qe3 M). (Reproduced with permission of Gunst et al., 
1988.) 

under either constant pressure or constant flow condi- 
tions. In most studies the preparation is ventilated with 
preheated and humidi~~d gas by creating a rythmi~~ly 
varying negative pressure ( - 3 to - 12 cm Hz@ in the 
thorax chamber. Alternatively, positive pressure venti- 
lation has been used (Levey and Gast, 1964; Hauge, 
1967; McDonald and Heffner, 1991; Jensen et al., 
1992). Weight gain during the experiment, indicating 
extravasation of the perfusate, is continuously moni- 
tored or measured before and after the experiment. In 
Figure 3 the expe~m~ntal set-up of an isolated perfused 
and ventilated guinea pig lung is displayed. 

The absence of perfusion of the bronchial circula- 
tion and lymphatic drainage are considered as major 
drawbacks in these preparations. However, after per- 
fusion of the pulmonary artery with ff uorescein isothio- 

cyanate (FITC-D, MW 150,000) Kroll et al. (1987) 
found abundant presence of FITC-D in tracheobron- 
chial tissue. This indicates functioning anastomoses 
between the pulmonary and the bronchial circulation, 
and this increases the validity of this model. In order 
to ensure oxygenation of medium-sized and large air- 
ways, Kriill et al. (1986) ventilated the isolated lung 
with supranormal O2 tension. 

The nonfun~tioning lymphatic system, fluid extrav- 
asation, and the use of an artificial perfusion medium 
may lead to a weight gain during perfusion (Fisher et 
al., 1980; Krdll et al., 1986). Nevertheless, prepara- 
tions can be used for several hours during which the 
lung function remains stable (Kroll et al., 1986). The 
model can be used for the measurement of lung resis- 
tance (Rt) and dynamic compliance (CD,,; Kriill et al., 
1986) and for metabolic and pharmacological studies. 
Furthermore, Wang et al. (1992) showed that it is possi- 
bb to measure capillary transit time in isolated rabbit 
lungs by fluorescence video microscopy. No studies in 
perfused ventilated human lungs have been described, 
probably because a fresh whole-lung preparation is 
rarely available. 

It might be possible to develop a model for the perfu- 
sion and ventilation of human lung lobes or segments. 
However, the fact that the blood supply of a given ven- 
tilatory unit comes from several vascular units (Wei- 
bel, 1991) may provide a major problem in preparations 
of human lung segments. 

Preparation and Overnight Storage 
Animal airways tissue can be usually studied imme- 

diately after removal. Human airway tissue, however, 
is often obtained with some delay because pathological 
examinations have to be performed. In case of autopsy 
there may be even many hours of delay. In a study 
by Ferguson and Richardson (1978) lung tissue was 
obtained at autopsy within 5 hr of death. Electron mi- 
croscopy of epithelium and smooth muscle cells 
showed swelling of mito~hond~a and endoplasmatic 
reticulum, condensation of cell nuclei and blebs in the 
cell membrane. In addition, in the smooth mu&e cells 
disorganization and clumping of the contractile lila- 
ments was seen (Ferguson and Richardson, 1978). 
These changes were largely reversible after incubation 
of the tissue in organ baths containing carbogenated 
K-H buffer solution. Although this may indicate recov- 
ery of the preparation from the anoxic period, only 
brief functional studies were performed by the authors. 

Bronchial tissue obtained at thoracotomies seems 
preferable because the anoxic damage and autolysis 
can be largely avoided when the tissue is submerged 
in cooled (0 to 4°C) K-H buffer solution immediately 
after surgical resection. de Jongste et al. (1985) de- 
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Figure 7. Exper-imentai set-up for studies in isolated perfused iungs. C&produced with permissioa af K&iii et al., BE%) 

scribed a technique for preparation and storage of 
human hmg tissue. After washing to remove blood, 
bronchi are identi~ed on the cut surface of the excised 
lung tissue and cannulated with polyethylene tubes. 
Air is gently inflated to ascertain that an airway, and 
not a blood vessel, is cannulated. The airway is care- 
fully separated from the su~ounding tissue guided by 
the cannula. Thereafter, blood vessels, lymphatic: tis- 
sue, and p~e~~hy~ are removed from the ai~ay 
with iris scissors under a binocular prepa~tion micro- 
scope (de Jongste et al., 1985). The airway tubes can 
be cut into helical or transversal strips or rings. 

Tissue preparations can be stored overnight in 
cooled (4°C) Ringer-s solution (Hawkins and Schild, 
195x1 or, preferabiy, cooled, and carbogenated K-H 
solution (Brink et al., 1980; de Jongste et ai., 1985; 
Raeburn et al., 1986b). With K-H buffer, the response 
to methacholine remains unchanged until up to 55 hr 
after resection (de Jongste et al., 19%). To prevent 
bacterial overgro~h, we note antibiotics, for example, 
p~n~~il~~~ (3 x fQp5 g/L) and tobramycin (5 x 10-j 
g/L) should be added. 

F~~s~~l~~~~~l Sait Solutions 

In vitro studies are performed in glass or Plexiglass 
organ baths filled with a physiological salt solution. 

Plexiglass organ baths can be a problem because inter- 
action of several drugs with synthetics has been de- 
scribed ~Krieglstei~ et al., 1972). 

A physiologica salt solution is a solution of inor- 
ganic salts in which an isolated organ or tissue survives 
for some time and displays most of its normal func- 
tions. The critical ions in any salt solution are sodium, 
potassium, calcium, and bicarbonate. $odium and 
chloride are the main osmotic ions; potassium, cat- 
cium, sodium, and magnesium are important for con- 
tractility. Bicarbonate is part of a bicarbonate-carbon 
dioxide buffer system. Ringer (1883) was the first to 
use a physiological salt soXution in his studies on the 
frog heart. The first sait solution for mammalian tissues 
was devised for the heart by Locke (1901). He in- 
creased the salt concentration of Ringer’s solution to 
increase the osmotic pressure and he added glucose 
@.I%) to improve the survival time of the heart. Tyr- 
ode (191Q) added phosphate to improve buffering and 
magnesium to maintain contractility of the smooth 
muscfe preparation. The disadvantage of Tyrode’s so- 
lution is its tendency to become alkaline and to precipi- 
tate calcium carbonate. In the solution of Krebs and 
Henseleit {19?2), a higher concentration of bicarbonate 
is used, similar to that found in plasma. The solution 
should be gassed with carbogen (95% O2 f 5% COa) to 
achieve a pH of 7.4. For studies on tissue respiration, 
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Krebs (1950) replaced part of the sodium chloride with 
sodium salts of fumaric-, pyruvic-, lactic-, or glutaric 
acid as additional substrates apart from glucose. The 
K-H solution is most widely used. In studies of per- 
fused isolated organs, a colloid should be added to the 
physiological salt solution in order to prevent edema. 
Several colloids have been used including dextrans 
(Gronwall, 1957), polyvinylpyrrolidone (PVP; Ross, 
1972) and bovine serum albumin (Schimassek, 1962). 
Most investigators use albumin, however, disadvan- 
tages of albumin are its tendency to lower the pH, to 
bind calcium ions, and to froth when aerated (Burton, 
1975). 

Although most physiological salt solutions are 
gassed with carbogen (95% 02, 5% CO*), perfused 
mammalian organs may need more oxygen than can be 
provided in this way. Oxygen transport can be in- 
creased by using erythrocytes or fluorocarbons (Slovi- 
ter et al., 1969; Goodman et al., 1973; Hartmann et al., 
1984). Fluorocarbons are inert organic substances in 
which the hydrogen atoms are replaced by fluorine. 
They have the capacity to carry more oxygen than can 
be carried in human whole blood (Burton, 1975). In 
the perfused ventilated lung, however, addition of an 
oxygen carrier may not be necessary because during 
ventilation of the preparation with supranormal O2 ten- 
sion, tissue hypoxia does not seem to be a problem 
(Kroll et al., 1986). 

Recording of Responses 

Isometric, Isotonic and Auxotonic Recording 

Mechanical muscle activity can be measured under 
isotonic, isometric, and auxotonic conditions. Under 
isotonic conditions, changes in length are recorded in 
a muscle to which a constant predetermined load is 
applied [Figure 8(a)]. Isometric recordings can be made 
by measuring changes in force of contraction in a mus- 
cle preparation which has a constant predetermined 
length [Figure 8(b)]. When changes in length and 
changes in force are measured simultaneously in a mus- 
cle preparation where the applied load increases while 
the muscle shortens, this is called auxofonic (auxanein 
(Gr.) = to increase) [Figure 8(c)]. In the early days of 
research of smooth muscle contractility in vitro, iso- 
tonic recording techniques were standard: The prepa- 
ration was connected to the short arm of a lever, the 
long arm of which recorded changes in muscle length 
on a slowly moving kymograph. When isometric trans- 
ducers became available length-tension relationships 
in canine tracheal smooth muscle were examined (Ste- 
phens and Van Niekerk, 1977; Figure 9). The prepara- 
tions were stepwise stretched, and the resulting pas- 
sive load and the total contractile force after EFS were 
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Figure 8. Recording of tension and length changes of smooth 
muscle obtained under isotonic (A), isometric (B), and auxo- 
tonic (C) conditions. 

recorded. The active load causing isotonic shortening 
can be derived by subtraction of resting load from total 
force generated. The active force development in air- 
way preparations increases with length until an optimal 
length (LO or L,,,) is reached. The passive tension 
at I,,,, is only 5% to 10% of the active tension. The 
horizontal difference between the active and the total 
tension (arrows in Figure 9) represents the smooth 
muscle shortening under isotonic conditions. When the 
muscle is stretched beyond L,,, , the maximum, active 

Figure 9. Length-tension relationships of airway smooth 
muscle. The active tension curve is obtained by subtracting 
passive tension from total tension. The isometric curve is 
also shown. The arrows indicate isotonic smooth muscle 
shortening at different lengths. (Modified from Stephens and 
Van Niekerk, 1977.) 
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tension will decrease. At all muscle lengths, force de- 
velopment in isometric experiments is higher, indicat- 
ing that in isotonic contraction the smooth muscle does 
not contract fully (Stephens and Van Niekerk, 1977). 
This incomplete contraction may be due to thickening 
of the muscle-hindering diffusion of the neurotransmit- 
ter and folding of contractile elements impairing opti- 
mal functioning (Michelson and Shelkovnikov, 1976; 
Stephens and Van Niekerk, 1977). At function residual 
capacity (FRC) in vivo, the tracheal smooth muscle 
may be stretched to around L,,, (Moreno et al., 1986). 
The experiments of Stephens and Van Niekerk (1977) 
imply that, for optimal results, isolated airway prepara- 
tions should be stretched to approximately L,,, by 
either applying a weight (isotonic measurements) or 
increasing baseline length (isometric measurements). 

In the rabbit bronchus, Armour et al. (1988) found 
a correlation between the maximal isometric force gen- 
eration in response to carbachol and the amount of 
airway smooth muscle present in the airway prepara- 
tion. In contrast, the maximal isotonic shortening was 
not related to the smooth muscle content of the prepa- 
ration, and it was concluded that isometric measure- 
ments are preferable because they represent changes 
in smooth muscle contraction in response to an agonist 
more accurate (Armour et al., 1988). 

In human small airways, however, only small differ- 
ences were found between both methods, perhaps be- 
cause the experiments were performed under near opti- 
mal tension and length conditions (de Jongste et al., 
1987d). Although both recording techniques allow ac- 
curate and reproducible measurements of force genera- 
tion, airway smooth muscle contraction in vivo is nei- 
ther isometric nor isotonic, but auxotonic: during nar- 
rowing the load against which the smooth muscle 
shortens increases due to an elastic load provided by 
the surrounding structures (Moreno et al., 1986; Spar- 
row et al., 1992). This situation has been simulated in 
a study performed by Ishida et al. (1990) who measured 
the effect of elastic loads on smooth muscle shortening 
in pig isolated airways. It was shown that, at small 
loads, contractile responses were more or less isotonic, 
whereas, at large loads, minimal shortening was found 
indicating a isometric response (Ishida et al., 1990). 
Thus the size of the elastic load on the airway provided 
by the airway wall and the surrounding tissue deter- 
mines the degree to which a contraction is isometric 
or isotonic. 

Pressure or Flow Recording 

The responses of perfused airway tube preparations 
are measured by recording changes in flow rate or per- 
fusion pressure, depending on whether experiments 
are done under constant pressure or constant flow con- 

ditions, respectively. The configuration of the airway 
is left intact and the mode of contraction is more physi- 
ological than that in an airway strip preparation. How- 
ever, in the constant flow model, the transmural pres- 
sure increases during contraction and this will influ- 
ence the load on the muscle in an elastic (auxotonic) 
way. In the constant pressure model, airway closure 
may occur at higher doses of a contracting agonist 
(Mitchell et al., 1989), and this precludes accurate de- 
termination of the pharmacological sensitivity (E&) 
of the preparation. 

In human peripheral airways perfused at a constant 
pressure, we were able to avoid airway closure by 
stretching the airway preparations to 140% of their ini- 
tial length (Hulsmann et al., 1992). 

Other Methods to Record Airway Responses 

Other techniques to record airway responses have 
been developed and are briefly described below. These 
methods, however, are not commonly used, and their 
value remains to be established. 

High-resolution ultrasonic imaging. In order to visu- 
alize airways smooth muscle contraction in vitro, Ii- 
zuka et al. (1992) introduced an ultrasonic catheter in 
porcine and human isolated bronchi. The ultrasound 
technique produced a three-layer image of the bron- 
chial wall corresponding to the mucosa, cartilage, and 
adventitia. The muscle could not be distinguished from 
the mucosa. Dose-dependent responses to acetylcho- 
line could be obtained, and it was found that human 
bronchus contracts elliptically, not circularly (Iizuka 
et al., 1992). Because the diameter of the transducer 
is 1.7 mm, the technique can be only used in airways 
of at least this size. 

Sonomicrometry. Okazawa et al. (1990) measured 
length changes of canine trachealis muscles in vivo 
with sonomicrometry. This technique uses the transit 
time of ultrasound traveling between two piezoelectric 
crystals as a measure for the linear distance between 
these crystals. Small (1 mm) piezoelectric transducers 
were placed in the posterior tracheal wall in parallel 
with the muscle fibers. Length changes during mechan- 
ical ventilation and pressure-volume curves could be 
obtained. This method may be applicable in isolated 
large airways as well. 

High-resolution computed tomography. With this 
technique, airways of l-2 mm diameter can be visual- 
ized (Todo et al., 1986), and this method has been used 
to study carbachol-induced changes in airway dimen- 
sions in excised canine lung lobes (McNamara et al., 
1992). The degree of airway narrowing could be accu- 
rately quantified, and it was shown that airway narrow- 
ing after carbachol is greatest in intermediate-sized air- 
ways (internal diameter: 2-6 mm). 
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Photoelectric recording. Schabert et al. (1980) de- 
veloped a photoelectric method to record changes in 
blood vessel diameter. A beam of parallel infrared light 
is directed at right angles to the blood vessel. The light 
passing the side of the vessel is a measure of the outer 
vessel diameter and is detected by a photocell. A de- 
crease in vessel diameter causes an increase in photo- 
cell current. In isolated airways, photoelectric meth- 
ods have been only used to study respiratory ciliary 
activity (Yager et al., 1980; Tamaoki et al., 1989). 

Between-patient and 
Within-patient Variability 

With the above-mentioned recording techniques, 
accurate and reproducible measurement of parameters 
such as tissue sensitivity (E&), maximal contraction, 
or relaxation and intrinsic (baseline) tone is possible 
in human airway strips, rings, and tubes (de Jongste 
et al., 1985; Jongejan et al., 1988; Hulsmann et al., 
1992). However, for some purposes an in vitro model 
should be able to detect between-patient differences. 
de Jongste et al. (1985) showed that, despite large with- 
in-patient variability, significant between-patient dif- 
ferences in airway strips could be shown for ECso and 
maximal response. In airway tubes, between-patient 
differences in EC& and intrinsic tone accounted for 
more than 90% of the total variability (Hulsmann et 
al., 1992). 

The finding of smaller within-patients variability in 
airway tubes compared to airway strips may indicate 
that within-patient variability in airway strips are 
largely due to disturbance of the airway structure dur- 
ing the cutting of the strips. 

Intrinsic Tone 

Isolated airway preparations may exhibit an intrin- 
sic muscle tone. In guinea pig airways, this tone ap- 
pears to be dependent on prostanoids and not on intrin- 
sic innervation (Orehek et al., 1975). In human air- 
ways, however, the role of prostanoids is unclear since 
both enhancement (Ito et al., 1985) and reduction (Ito 
et al., 1989) of intrinsic tone have been described after 
inhibition of cyclooxygenase. In addition, peptido- 
leukotrienes may be involved because inhibition of 
5-lipoxygenase decreased intrinsic tone (Ito et al., 
1989). Mansour and Daniel (1986) expressed the re- 
sponses of guinea pig tracheas on a scale between max- 
imal relaxation and maximal tension in response to car- 
bachol. It appeared that the responses to exogenous 
arachidonate were dependent on the intrinsic tone of 
the airway preparation. When this intrinsic tone was 
low, contraction was found; when it was high, relaxa- 

tion was found. Their findings emphasize the impor- 
tance of the expression of responses on a scale that 
displays the maximal active contractile range (MACR) 
in order to be able to compare responses of different 
airway preparations. Monitoring intrinsic tone is also 
relevant when EFS is used. With high intrinsic tone, 
EFS may predominantly give relaxations, whereas 
with low tone, contraction will result. 

We routinely determine maximal contraction to ex- 
ogenous cholinergic stimulation at the beginning of ex- 
periments, and maximal relaxation to B-adrenoceptor 
stimulation and calcium free buffer after completion of 
the experiments. Alternatively, a supramaximal dose 
of theophylline, sodium nitroprusside, or papaverine 
can be used to obtain maximal relaxation. 

Removal of the Epithelium 

Classically, the modulatory role of the airway epi- 
thelium is evaluated in paired observations of intact 
and epithelium-denuded isolated airway preparations. 
The epithelium is commonly removed by “gentle rub- 
bing” with a wet gauze, and its effectiveness is verified 
histologically (Flavahan et al., 1985; Aizawa et al., 
1988; Jongejan et al., 1991). 

In guinea pig tracheas the effectiveness of epithe- 
lium removal can be also verified functionally by add- 
ing arachidonic acid which causes smooth muscle con- 
traction in epithelium-denuded tracheas, whereas in- 
tact tracheas respond with relaxation (Nijkamp and 
Folkerts, 1987). This procedure has not been tested in 
human airways. 

With mechanical rubbing, it is possible to remove 
over 95% of the epithelium leaving the basal membrane 
and the smooth muscle histologically intact. However, 
Franconi et al. (1990) showed that mechanical rubbing 
of the epithelium may lead to release of granules con- 
taining tryptase from mast cells present in the lamina 
propria. 

In dog airways, tryptase causes hyperresponsive- 
ness, probably due to an effect on Ca*+ -channels (Sek- 
izawa et al., 1989). This mechanism may explain at 
least part of the hyperresponsiveness reported in epi- 
thelium-denuded airways. Furthermore, epithelial 
damage and denudation in asthma is not caused by me- 
chanical rubbing but, probably, by the release of the 
basic proteins such major basic protein (MBP) and eo- 
sinophil peroxidase (EPO) and oxygen radicals re- 
leased from inflammatory cells present in the inflamed 
airway (Frigas and Gleich, 1986; Barnes, 1989; 
Montefort et al., 1992). Deposits of EPO were found 
in areas of mucosal injury in asthmatics (Bousquet et 
al., 1992). Human MBP causes epithelial damage (Mo- 
tojima et al., 1989) and hyperresponsiveness in vitro 
(Flavahan et al., 1988) and in vivo (Gundel et al., 1991). 
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Oxygen radicals increase the permeability of cultured 
epitheiium (Welsh et al., 1985) as well as epithelium in 
the guinea pig trachea (Jeppsson et al., 1989), and the 
responsiveness of human airways is enhanced after 
damaging the epithelium with hydrogen peroxide (Hul- 
smann et al., 1993a). In a model of asthma it may be 
more appropriate to use these aggressive substances 
rather than mechanical rubbing to induce epithelial 
damage. 

Apart from basic proteins and oxygen radicals, sev- 
eral other methods for damaging and removal of epithe- 
lium in vitro have been described. 

Franconi et al. (1990) removed epithelium from ani- 
mal and human airways by perfusing the preparations 
during OS-2 hr with pronase (protease type XIV; 1 
mg/mL). Where the epithelium was effectively re- 
moved, the integrity of mast cells in the lamina propria 
and the smooth muscle was not affected. 

Interferon-y, produced by intraepithelial T-lym- 
phocytes (Ebert, 1990) enhances tight junction perme- 
ability in a human intestinal epitheiial cell line (Madara 
and Stafford, 1989) but has not been examined in air- 
way epithelium. 

Perfusion of rat arteries with a hypotonic Tyrode 
solution (Pelissier et al., 1992) or the nonionic, nonde- 
naturing detergent CHAPS (3-[(3-cholamidopropyl)-di- 
methyl-ammoniol-I-propanesulfonate; Tesfamariam et 
al., 1985; Yang et al., 1989) resulted in a disruption of 
endothelial cells, and this method may be applicable for 
endothelial cell removal in airways as well. It appears, 

therefore, that there are alternatives for the mechanical 
removal of airway endothelium. These alternatives 
have the advantage that they may mimic the damage 
that is found in asthma (basic proteins and oxygen radi- 
cals) or that they produce less artifacts (pronase). 

Electrical Stimulation 
Basically, there are two methods of electrical stimu- 

lation of isolated organ preparations: contact stimula- 
tion using electrodes that are attached to the tissue and 
field stimulation via electrodes that are not in direct 
contact with the tissue. Also, one electrode may be in 
contact with the tissue, while the other, often a ring, 
is not (hybrid stimulation). Electric field stimulation 
is most commonly used to study neural responses in 
smooth muscle preparations including isolated air- 
ways. The technique is relatively simple platinum- or 
silver-silver chloride sheet electrodes are suspended 
close to, but not in contact with, the tissue, in an organ 
bath containing K-H solution (Figure 2). A stimulator 
generates rectangular pulses of short duration (0. I-I 
msec) at a constant current. Voltage- and frequency- 
response curves can be obtained and the interval be- 
tween stimuli and pulse width can be varied (Figure 
10). 

EFS was introduced by Paton in 1955 who demon- 
strated that single electrical pulses (l-25 V, 0.5 msec) 
elicited brief twitches (1 set) in the guinea pig isolated 
ileum (Paton, 1955). Since the twitch was abolished by 

Figure 10. Effect of change in pulse-voltage, -frequency, and -width on the contraction and relaxation responses of human 
bronchial strips. (A) Effect of voltage (O-50 V} with constant frequency (30 Hz) and pulse width (0.3 msec). (B) Effect of 
frequency (O-50 Hz) with constant voltage (30 V) and pulse width (0.3 msec). (C) Effect of pulse width (0.2-0.75 msec) with 
constant voltage (30 V) and frequency (30 Hz). Pulse trains of 30 sec. Contractions and relaxations are expressed as a 
percentage of the maximal response in a given strip. Mean values + SEM of four to five experiments are shown. (Reproduced 
with permission of de Jongste et al., 1987e.) 
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atropine, prolonged by eserine, and was insensitive to 
hexamethonium, he concluded that postganglionic 
nerve fibers were excited by EFS. In later studies it 
was confirmed that with appropriate stimulation pa- 
rameters, nerve fibers can be activated selectively 
without stimulating the smooth muscle directly (Pater- 
son, 1965; Duckles and Silverman, 1980). In human 
airways, EFS causes a fast, nerve-mediated choliner- 
gic contraction followed by a slow nonadrenergic, non- 
cholinergic inhibitory nerve-mediated (GNANC) re- 
laxation (Richardson and B&and, 1976; Davis et al., 
1982; Taylor et al., 1984; de Jongste et al., 198%). In 
addition, de Jongste et al. (1987~) found a rapid non- 
neural contraction and a sustained nonneural contrac- 
tion resulting from synthesis of cycle-oxygenase me- 
tabolites and leukotriene-like substances by fresh 
human airway tissue, respectively (Figure 11). These 
nonneural contractions may interfere with neural re- 
sponses and should be taken into account as a con- 
founding factor. In guinea pig airways vasoactive intes- 
tinal peptide (VIP) and nitric oxide (NO) may be the 
neurotransmitters of the nonadrenergic inhibitory 
nerves (Li and Rand, 1991; Lei et al., 1993), whereas 
in human bronchi the response may be due mainly to 
NO (Belvisi et al., 1992b; Ellis and Undem, 1992). 

Although EFS is a useful tool to evoke neural re- 
sponses in isolated airway tissues, the technique has 
an important side effect. During EFS with commonly 

used stimulation parameters activated oxygen mole- 
cules may be generated in carbogenated K-H buffer. 
These activated oxygen molecules have been shown 
to relax smooth muscle preparations directly (Green- 
berg et al., 1986) and may oxidize contractile drugs 
(Wyse, 1977; Hulsmann et al., 1993b). The inactivation 
of histamine by EFS may even occur at a frequency 
of 2 Hz (50 V, pulse duration 0.3 ms; Hulsmann et al., 
1993b). 

Conclusions and Directions for Future 
Research 

In the present overview, we discussed models that 
have been developed over the years to study the effects 
of drugs, inflammatory mediators, autonomic nerves, 
and epithelial cells on the responsiveness of airway 
smooth muscle in vitro. These models range from the 
simple bronchial strip preparation to the complex ven- 
tilated and perfused lung preparation. Although these 
models have substantially contributed to the progress 
in our understanding of the pathophysiology of asthma 
and COPD, the precise relationships between airway 
inflammation, bronchial hyperresponsiveness, and air- 
way narrowing is still not clear. The relative contribu- 
tions of inflammatory cells and their products, of auto- 
nomic nerves and of the trachea-bronchial circulation 
to airway disease should be further investigated. With 
the currently available in vitro models, however, the 
role of the bronchial circulation in airway disease can- 
not be elucidated. Efforts should now be made to de- 
velop models in which the normal relationships be- 
tween the ventilatory and the circulatory unit is pre- 
served in vitro. The study of isolated perfused and 
ventilated lung tissue may be an important step in this 
direction, and it might be possible to develop such a 
model for the human lung. 

Figure 11. Schematic representation of time course, peak 
latency, and amplitudes of the four phases that constitute the 
response of fresh human bronchus to electrical field stimula- 
tion (EFS) in vitro. Phases are numbered according to peak 
latency after EFS: 1, cholinergic nerve-mediated, rapid con- 
traction; 3, nonadrenergic inhibitory nerve-mediated relaxa- 
tion; 2 and 4, nonneural contraction due to the release of 
cyclooxygenase and lipoxygenase metabolites, respectively. 
(Reproduced with permission of de Jongste et al., 1987c.) 
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