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Mitochondrial deficiencies with unknown causes have been observed in schizophrenia (SZ)
and bipolar disorder (BD) in imaging and postmortem studies. Polymorphisms and somatic
mutations in mitochondrial DNA (mtDNA) were investigated as potential causes with next
generation sequencing of mtDNA (mtDNA-Seq) and genotyping arrays in subjects with SZ,
BD, major depressive disorder (MDD), and controls. The common deletion of 4,977 bp in
mtDNA was compared between SZ and controls in 11 different vulnerable brain regions and
in blood samples, and in dorsolateral prefrontal cortex (DLPFC) of BD, SZ, and controls. In
a separate analysis, association of mitochondria SNPs (mtSNPs) with SZ and BD in Euro-
pean ancestry individuals (n=6,040) was tested using Genetic Association Information
Network (GAIN) and Wellcome Trust Case Control Consortium 2 (WTCCC2) datasets. The
common deletion levels were highly variable across brain regions, with a 40-fold increase
in some regions (nucleus accumbens, caudate nucleus and amygdala), increased with age,
and showed little change in blood samples from the same subjects.The common deletion
levels were increased in the DLPFC for BD compared to controls, but not in SZ. Full mtDNA
genome resequencing of 23 subjects, showed seven novel homoplasmic mutations, five
were novel synonymous coding mutations. By logistic regression analysis there were no
significant mtSNPs associated with BD or SZ after genome wide correction. However,
nominal association of mtSNPs (p < 0.05) to SZ and BD were found in the hypervariable
region of mtDNA toT195C andT16519C.The results confirm prior reports that certain brain
regions accumulate somatic mutations at higher levels than blood. The study in mtDNA
of common polymorphisms, somatic mutations, and rare mutations in larger populations
may lead to a better understanding of the pathophysiology of psychiatric disorders.
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INTRODUCTION
Mitochondria are subcellular organelles enriched in energetic tis-
sues, such as muscle and brain, and located in the cytoplasm.
Although there are over 1500 human mitochondrial genes (Wal-
lace, 2005), only a small fraction of these are directly encoded
by the mitochondrial DNA (mtDNA) genome. Human mtDNA,
which is inherited in a matrilineal pattern (Giles et al., 1980),
is a double stranded circular molecule of approximately 16,569
nucleotides (Wallace, 2005) containing 37 genes that encode two
ribosomal RNAs, 22 transfer RNAs, and 13 polypeptides (Wallace,
2005). The current study is of mutations and single nucleotide
polymorphisms (SNPs) found only in mtDNA in psychiatric
conditions.

One possible indication of a mitochondrial disorder (Wallace
et al., 1988; Wallace, 1994; McMahon et al., 1995) is matrilineal
inheritance. For neuropsychiatric disorders, higher rates of dis-
ease are observed in offspring of maternal probands compared
to offspring of paternal probands in SZ (Goldstein et al., 1992;
Wolyniec et al., 1992; Verge et al., 2011) and bipolar disorder (BD;
McMahon et al., 1995). Additionally, previous studies have also
shown that mtDNA mutations and variations can play a role of
susceptibility to both BD and SZ (Rollins et al., 2009; Bertolin
et al., 2011; Kato et al., 2011; Verge et al., 2011), suggesting a direct
role for the mitochondrial genome in neuropsychiatric disorders
(Shao et al., 2008). Imaging studies also support the hypothesis
that mtDNA alterations lead to neurotransmitter and metabolic
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changers in BD and SZ (Dager et al., 2004; Stork and Renshaw,
2005). Failure to find a pattern of maternal inheritance in SZ
and BD (DeLisi et al., 2000), as well as evidence for the role of
paternal inheritance have also been reported in family studies
(Kornberg et al., 2000). Researchers have previously speculated
that parent-of-origin effects might reflect subtle ascertainment
biases, imprinting, X-linked genetic factors, vertical transmission
of infectious agents, and in utero or other early maternal influences
on offspring (McMahon et al., 2000).

Somatic mutations that arise during aging in brain and varia-
tion in length of mtDNA have been reported for select regions of
the mtDNA genome (Cortopassi and Arnheim, 1990, 1992; Cor-
topassi et al., 1992; Soong et al., 1992; Cortopassi and Hutchin,
1994; Hutchin and Cortopassi, 1995). mtDNA is particularly sus-
ceptible to a higher rate of somatic deletions because mtDNA
is not protected by histones and lacks the complete set of DNA
repair machinery associated with nuclear DNA. Mutation rates
are higher in mtDNA compared to nuclear DNA, and mutation
rates are particularly high in non-coding regions of the mtDNA
in human brain such as the hypervariable region of the mtDNA
genome (Jazin et al., 1996; Cavelier et al., 2000). The accumulation
of mtDNA mutations is tissue-specific, believed to be proportional
to metabolic rate (Shoffner and Wallace, 1995) and could be a
result of increased reactive oxygen species (ROS) in mitochon-
dria. Oxidative stress and accumulation of ROS have also been
observed in BD and SZ, suggesting a role for mitochondrial dys-
function in those disorders (Ben-Shachar, 2002; Rezin et al., 2009;
Wood et al., 2009; Bitanihirwe and Woo, 2011; Pickrell et al., 2011;
Verge et al., 2011).

Previously, our group and others have studied the mtDNA asso-
ciation with SZ and BD cases in a small number of subjects, and
these case-control analyses of mtDNA SNPs have focused on rare
mutations or haplogroup-defining SNPs and have not found com-
pelling evidence for association (Shao et al., 2008; Rollins et al.,
2009), although a recently large mitochondria SNP (mtSNP) study
reported no excess prevalence of SZ in major European hap-
logroups (Mosquera-Miguel et al., 2012). In our previous study
we used a re-sequencing array to study mtDNA in the dorsolateral
prefrontal cortex (DLPFC) of SZ, BD, and major depressive dis-
order (MDD) patients and observed an increase of synonymous
substitutions in SZ (Rollins et al., 2009). Recently, another group
also used a re-sequencing array to study mtDNA in blood sam-
ples from patients with SZ and BD but did not find additional
evidence that mtDNA contributes significantly to the maternal
component of SZ and BD predisposition (Bertolin et al., 2011).
To date, few studies have examined somatic mutations in multi-
ple regions, and most studies have concentrated on DLPFC only
(Shao et al., 2008). However, other regions have been shown to
be particularly susceptible to mitochondrial alterations in oxida-
tive phosphorylation such as the striatum and the substantia nigra
(SN; Pickrell et al., 2011; Surmeier et al., 2011).

The relationships between a common somatic mtDNA varia-
tion, a 4977 bp deletion (Cortopassi et al., 1992; Soong et al., 1992),
and age, sex, and diagnosis (Shao et al., 2008) was also tested in
several brain regions and blood (cohorts 1 and 2). We hypothe-
sized that psychiatric disorders (BD, MDD, and SZ) would have
increased common deletion compared to controls after adjusting

for the strong effect of age. The present study surveyed mtDNA
SNPs in a total of 11 brain regions and in blood DNA sam-
ples by next generation sequencing to determine the influence
of genetic variation in psychiatric disorders (cohort 3). Finally,
mtDNA SNPs from the Affymetrix 6.0 SNP chip were tested in
blood for association with SZ, BD, or both, using the Genetic Asso-
ciation Information Network (GAIN; SZ, BD, and controls) and
Wellcome Trust Case Control Consortium 2 (WTCCC2) controls
comprising a cohort of 6,040 EA cases and controls. The controls
from GAIN and WTCCC2 were combined, and duplicate control
subjects in GAIN were excluded in this analysis.

MATERIALS AND METHODS
POST-MORTEM BRAIN SAMPLES
Informed consent was obtained from the next of kin for each sub-
ject and the study was reviewed and approved by the University of
California, Irvine (UCI) Institutional Review Board. Three brain
tissue cohorts were processed. Cohort 1 consisted of 11 subjects (6
controls, and 5 cases with schizophrenia) with 11 brains regions
per subject (121 samples in total; Table 1), this cohort was used
for the mitochondrial common deletion assay. Cohort 2 was com-
prised of 76 DLPFC samples from BD, MDD, SZ, and controls
subjects (Table 1) that was used for the common deletion assay
with no overlap between cohort 1 and 2 subjects. Cohort 3 was
comprised of 23 DLPFC samples (four BD, five MDD, four SZ,
and 10 controls) that were used for mitochondrial whole genome
sequencing. Five of the 10 control subjects from cohort 3 were
re-sequenced in 10 additional brain regions, and three were also
re-sequenced in blood (74 samples in total; Table 1). Cohorts 1
and 3 shared five controls in common.

BRAIN DISSECTIONS
For cohort 1, DNA was extracted from the following tissues: ante-
rior cingulate cortex (ACC), amygdala (AMY), caudate nucleus
(CAUN), cerebellum (CB), DLPFC, hippocampus (HIPP), nucleus
accumbens (NACC), orbitofrontal cortex (OFC), putamen (PUT),
SN, and thalamus (THAL) for 11 subjects and whole blood was
obtained for three of those subjects. Briefly, prefrontal cortex sam-
ples were dissected from orbital gyrus (OFC) and the dorsal lateral
prefrontal cortex at the level of the anterior end of the corpus cal-
losum. The ACC was sampled just above the most anterior part of
the corpus callosum. Three striatal structures (CAUN, putamen,
and NACC) were dissected from the same coronal slice at a level
where the three structures were visible anterior to the anterior
commissure. The amygdala was sampled from the temporal lobe,
ventral to the putamen just anterior of the hippocampus. The
whole hippocampus and parahippocampal gyrus were dissected
from the subsequent posterior coronal slices as a block and sam-
pled together. The SN and the whole thalamus (from the lateral
ventricle to the medial lemniscus and from the internal capsule
to the midline of the brain), were individually dissected from the
same coronal slice. Finally, a cortical sample of the lateral left cere-
bellum was dissected for processing and quality control. DNA was
extracted from 25 mg of dissected brain tissue using a DNeasy
Blood and Tissue Kit (Qiagen), according to the manufacturer’s
protocol. For cohort 2 DNA was extracted from 76 DLPFC samples
using the phenol phase of a Trizol protocol and precipitated with
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Table 1 | Clinical and demographic characteristics for cohorts 1, 2, and

3/cohort 1 (n=11) diagnosis and age.

Diagnosis Sex (male/female) Age (mean ± SD)

COHORT 1

SZ 2/3 53±7

Control* 2/4 57±27

Total 4/7

COHORT 2

BD 9/3 50±17

MDD 11/4 51±15

SZ 11/3 44±10

Control 29/6 53±12

Total 60/16

COHORT 3

BD 3/1 57±8

MDD 4/1 41±14

SZ 2/2 41±9

Control* 7/3 52±23

Total 16/7

The 4,977 bp mtDNA common deletion percentage was measured in 11 brain

regions. Cohort 2 was used in the assay for mtDNA common deletion (4,977 bp)

of 76 DLPFC samples. Cohort 3 was used for Illumina re-sequencing of mtDNA

in 23 DLPFC samples. Five control subjects were completely re-sequenced in 11

brain regions, three subjects also had blood re-sequenced (ages 53, 64, and 103

years old).

*Five overlapping control subjects from Cohort 1 shown in Table S1 in Supple-

mentary Material were included in this cohort.

ethanol (Shao et al., 2008). Cohort 2 samples were assayed for the
common deletion using copy number standards to quantitatively
validate previous findings.

MITOCHONDRIAL COMMON DELETION QUANTIFICATION
Primers were designed targeting the deleted or non-deleted region
around the region of the deletion spanning mt8224–13501. As
described previously (Shao et al., 2008), these primers allow the
specific amplification of the deleted and non-deleted version of
the mtDNA. A 300 bp amplicon was detected by quantitative poly-
merase chain reaction (qPCR) only in the presence of the common
deletion, which occurs from mt8470 to 13447, by using a forward
primer that binds to the flanking region. Primers for the 325 bp
non-deleted amplicon spanned mt13176–13501 and the ampli-
con was detected only in the absence of the common deletion.
Eight linearly diluted copy number standards were created from
clones of the deletion or non-deletion amplicon and each clone
was sequenced verified for presence of the correct insert.

Quantitative polymerase chain reaction was performed using
the 7900 Sequence Detection System (Applied Biosystems) with
cloned standards that ranged from 1,000,000 to 100 copies/µl,
and the SYBR Green chemistry (Applied Biosystems). Two sep-
arate reactions were run for the deleted and non-deleted amplicon
detection. The ABI Prism 7900 Sequence Detection System default
thermal cycler program was used for each reaction: 10 min of pre-
incubation at 95˚C followed by 40 cycles of 15 s at 95˚C and 1 min
at 60˚C. Individual real-time PCR reactions were performed in

duplicate in a total volume of 12.5 µl in 384-well plates (Applied
Biosystems) containing 6.25 µl SYBR Green (Applied Biosystems),
2.5 µl DNA (10 ng/µl), or 2.5 µl standards, 0.25 µl forward and
reverse primers (10 pmol/µl), and 3.25 µl H2O. The cycle thresh-
old (CT) was manually set at the level that reflected the best
kinetic PCR parameters. Using the copy number standard curve,
CT values were used to calculate copy number for the deleted
and non-deleted amplicons: percent common deletion= (deletion
copy number)/(deletion copy number+ non-deletion copy num-
ber)× 100 (Shao et al., 2008). This equation estimates the per-
centage of common deletion normalized to the total number of
mitochondrial copies present in a given sample. Common deletion
levels showed a normal distribution across brain regions therefore
we adopted parametric comparisons for region, age, and diagno-
sis effects. The common deletion amplicons were confirmed by
gel electrophoresis to make sure only one fragment was amplified
and by direct sequencing to assure specificity. The mitochondrial
common deletion was assayed in two cohorts of subjects (cohorts
1 and 2). For cohort 1, the effect of age was estimated by linear
regression and repeated measures ANOVA was used to analyze the
effects of 11 brain regions (the within subjects measure), sex, and
diagnosis on age-adjusted residuals. For cohort 2, the DLPFC data
was analyzed by ANCOVA, with age as a covariate and sex and
diagnosis as factors (Statistica 9.1, Tulsa, OK, USA).

CLONING COMMON DELETION AND WILDTYPE AMPLICONS
Non-deleted and deletion-specific fragments were amplified by
PCR and gel purified according to the QIAquick Gel Extrac-
tion Kit protocol (Qiagen) and TA cloned using the Original TA
Cloning Kit (Invitrogen). The ligation reaction consisted of 1 µl
PCR product (2.60 ng), 1 µl 10× ligation buffer, 2 µl PCR 2.1
vector (25ng/µl), 5 µl H2O, and 1 µl T4 DNA ligase run at 14˚C
overnight. Two µl of each ligation reaction was pipetted into a
50 µl vial of frozen One Shot competent cells (Invitrogen) per
sample and heat shocked for 30 s at 42˚C. After cooling the vials
on ice, S.O.C. medium (Invitrogen) was added to each vial and 10–
50 µl from each transformation vial was spread on LB agar plates
containing 60 µg/ml X-gal and 50 µg/ml of kanamycin (Teknova).
Plates were incubated overnight at 37˚C and white colonies were
selected and grown overnight at 37˚C in a 2–5 ml LB broth tube
containing 50 µg/ml kanamycin (Teknova). The plasmid contain-
ing the amplicon was extracted using a PureLink Quick Plasmid
MiniPrep Kit (Qiagen). The plasmid was amplified and the sam-
ples were run on a 1% agarose gel and sequenced to confirm the
presence of the correct amplicons. To further validate the qPCR
amplicons, randomly selected qPCR amplicon reactions from the
deletion and non-deletion assay plates were sequenced (Genewiz,
Inc.; Ann Arbor, MI, USA). QPCR products for sequencing were
run on a 1% agarose gel, purified using a QIAquick Gel Extraction
Kit (Qiagen), and 10 ng DNA was mixed with 5 µl forward dele-
tion or non-deletion specific forward primers (5 µM) in a total
volume of 15 µl for capillary sequencing.

MITOCHONDRIAL WHOLE GENOME SEQUENCING FOR HOMOPLASMIC
MUTATIONS
Mutations were identified in 11 brain regions and blood (cohort
1) and in a separate cohort (cohort 3) of a single brain region
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(DLPFC) in subjects with SZ, BD, MDD, and controls by Illu-
mina GAII sequencing. DNA (50 ng) was used to amplify the
entire mitochondrial genome in two overlapping fragments of
9,289 bp (I) and 7,626 bp (II) in length. The primer sequences used
to amplify fragment (I) are 5′-AACCAAACCCCAAAGACACC-
3′ and 5′-GCCAATAATGACGTGAAGTCC-3′. The primer
sequences for fragment (II) are 5′-TCCCACTCCTAAACACA
TCC-3′ and 5′-TTTATGGGGTGATGTGAGCC-3′. PCR reactions,
50 µl using TaKaRa LA Taq polymerase, were performed with
the following cycling conditions: 95˚C 2 min; 35 cycles of 95˚C
20 s, 59˚C 30 s, 68˚C 10 min; 68˚C 20 min. PCR reactions were
electrophoresed on 0.8% TAE agarose gels at 120 V. Fragments
were gel extracted using the QIAquick gel extraction kit (Qia-
gen) and eluted in 30 µl elution buffer. Eluted samples were
measured using the SpectraMax Plus 384 microplate spectropho-
tometer (Molecular Devices). The parallel DNA sequencing was
performed using the Illumina Genome Analyzer II at Ambry
Genetics Corporation (Aliso Viejo, CA, USA) according to the
manufacturer’s protocol. Briefly, pooled, amplified mtDNA sam-
ples (fragments I and II) were sonicated and fragment ends were
repaired and phosphorylated using Klenow T4 DNA polymerase
and T4 polynucleotide kinase. An A base was added to the 3′

end of the blunted fragments and the resulting fragments were
ligated to custom index adapters. The ligated products were size
selected by gel purification and then PCR amplified. Using the
Agilent Bioanalyzer (Santa Clara, CA, USA), each library size and
concentration was determined so that samples were combined
at equal molar ratios and multiplexed at 16 libraries per lane
in a flow cell. This approach allows the purification of mtDNA
from genomic DNA but has the disadvantage of excluding deleted
mtDNA molecules.

ALIGNMENT TO THE REFERENCE AND CONSENSUS SEQUENCE
Illumina GAII single reads were aligned to the mitochondrial
revised Cambridge Reference Sequence (rCRS; GenBank acces-
sion number NC_012920; Andrews et al., 1999) using Illumina’s
Efficient Local Alignment of Nucleotide Data (ELAND) algorithm
(Bentley et al., 2008). The consensus sequence was built using
the reads aligned with ELAND using in-house software devel-
oped at the Institute for Genomics and Bioinformatics of the
University of California, Irvine. A read was considered as suc-
cessfully aligned to a given position of the reference sequence if
the number of mismatches between the read sequence and the
reference sequence was strictly lower than three. Reads with more
than two mismatches with the reference sequence were rejected
and considered as not aligned to the reference sequence. For each
sample, around 90% of the reads were successfully aligned with
the NC_012920 reference sequence for the entire human mtDNA
genome. A phylogenetic tree was constructed from the consensus
sequences according to PhyloTree1 Build 12 (van Oven and Kayser,
2009).

The Illumina sequencing data was screened for novel or rare
homoplasmic variants using the following criteria: (1) coverage
for a position was greater than 500×, the called allele was not the

1http://www.phylotree.org

reference allele, (2) the% call at the variant position was >96%,
and (3) the mutation had a reported incidence less than 1% in
PhyloTree Build 12 (van Oven and Kayser, 2009), or in a total of
5,102 downloaded sequences from GenBank,or the mtDB-Human
Mitochondrial Genome Database (Ingman and Gyllensten, 2006).
The mutation data was further screened at MitoMap (Ruiz-Pesini
et al., 2007) for submitted and unpublished mutations and dis-
ease associations. We further validated the observed variants by
comparing for the same subjects different brain regions and also
confirmed new or novel mutations by allele-specific PCR and by
the dye-terminator sequencing method.

ASSOCIATION STUDY OF mtSNPs
The GAIN datasets were obtained from the database of Geno-
types and Phenotype (dbGaP). Data access was granted by the
GAIN Data Access Committee for analysis of an approved project
“Genetic Variation in Mitochondria in Schizophrenia and Bipolar
Disorder.” The WTCCC2 cohort was obtained by Fabio Maccia-
rdi and Sara Lupoli. A certain number of control samples were
shared between the GAIN cohorts; we made sure that there was
no overlap between the cohorts and that only unique control
subjects were included in the final analysis. Further, we used
a common control group consisting of pooled WTCCC2 and
GAIN samples to compare against BD and SZ subjects from
GAIN. The subjects from GAIN chosen for inclusion in the analy-
sis were controls (general research consent use, GRU), subjects
with schizophrenia and related conditions (SARC), and bipolar
subjects (bipolar disorder only, BDO; bipolar and related disor-
ders, BARD), demographic details and distribution per cohort
are showed in Table S1 in Supplementary Material. In order to
minimize population specific mtDNA variants that would con-
found case-control analysis, African Americans were not included
in the mtDNA analysis and individuals of European ancestry (EA)
were analyzed. Affymetrix 6.0 SNP CEL files were extracted for
465 mtSNPs using Affymetrix Power Tools scripts (available upon
request from author) and annotated at NetAffx2. In brief, median
normalization for perfect match probes was used with a Birdseed
(version 2) algorithm on 465 mtSNPs annotated from NetAffx
(Korn et al., 2008). The output was forced for allele call only. After
the mitochondria allele calls were determined for 465 SNPs and
annotated with NetAffx, these 465 mtSNPs were pruned to 362
SNPs by removing SNPs with a no call rate >5% and individ-
ual subjects with <95% call rates. A genetic distance hierarchical
clustering was performed to see whether site of origin (GAIN vs.
WTCCC2) of control DNA potentially stratified the data, how-
ever this effect did not appear. Multidimensional scaling (MDS)
analysis and logistic regression were calculated in PLINK with
mtSNPs (Purcell et al., 2007) using four MDS covariates. The
logistic regression results were compared with the Ingman data-
base of mtSNP frequencies to remove outlier nominally significant
associations due to obvious miscalls with the Affymetrix genotyp-
ing platform. There has not been a previous association study
of mtDNA SNPs in psychiatry that has the same power as the
present study; we calculated a 99% power to detect a 5% allelic
difference.

2https://www.affymetrix.com/analysis/netaffx
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RESULTS
COMMON DELETION IN HUMAN BRAIN INCREASES WITH AGE
We measured the levels of the common 4977 bp deletion across all
brain regions in cohort 1. We observed, in a multivariate analysis,
that age was significantly correlated with common deletions levels,
R2 for age and common deletion calculated for 11 brain regions
can be seen in Table S2 in Supplementary Material (p= 0.024).
The most significant individual brain regional correlations with
age were observed in the NACC, CAUN, and AMY (Figures 1A–
C) for cohort 1; the additional figures for the other brain regions
can be seen in Figure S1 in Supplementary Material. Common
deletion percentages for individual regions were significantly cor-
related with age in seven regions, while four regions did not show
significant Pearson correlations (Table S3 in Supplementary Mate-
rial). The regional correlation matrix of the common deletion
shows nominally significant (p < 0.05) relationships of the com-
mon deletion between brain regions for 31 pair wise correlations
of 55 pairs. Thus, slightly over half of these paired brain regions
show significant correlations for accumulation of the common
deletion with age.

The highest levels of the common deletion were observed
in regions that have origins in the mesencephalon (SN) and
telencephalon (CAUN). Overall, common deletion levels were
greatest in mesencephalon (SN) > telencephalon (CAUN,
putamen, NACC, cortical regions) > diencephalon (thala-
mus) ( rhomboencephalon (cerebellum). An ongoing study that
includes over 500 samples will be used to independently retest
these correlations of the common deletion across all brain regions.
The OFC showed the highest number of significant correlations
to all other brain regions of common deletion, in fact was signifi-
cantly correlated to all other 10 regions (Table S3 in Supplementary
Material).

A repeated measures ANCOVA was also performed for the
common deletion with age as a covariate, region as a repeated
measure factor, and sex and diagnosis as between-subjects factors
for cohort 1. There was a significant overall effect of region [F(9,
63)= 6.49; p= 1.7× 10−06], while sex [F(1, 6)= 0.39; p= 0.55],
and diagnosis [F(1, 6)= 3.73; p= 0.10] factors were not sig-
nificant, and interaction terms were not statistically significant
(Figure 2). The significant region effect was further examined
by post hoc comparisons of the mean percentage of common
deletion per brain region and p-values were corrected for mul-
tiple comparisons using Tukey’s Honest Significant Difference test
for each regional-comparison (AMY, ACC, CAUN, CB, DLPFC,
HIPP, NACC, OFC, PUT, SN, and THAL). The two regions with
the highest levels of common deletion were the CAUN and SN,
with a 39- to 40-fold increase compared to the CB, which had the
lowest common deletion level (Figure S2 in Supplementary Mate-
rial) which is consistent with earlier reports (Corral-Debrinski
et al., 1992; Soong et al., 1992; Meissner et al., 2008). These three
regional differences account for most of the significant post hoc
differences observed, while the remaining regions were not signif-
icantly different when corrected for multiple comparisons (Table
S4 in Supplementary Material). The mtDNA common deletion
percentage was 0.5± 0.4 SEM for blood (n= 3), but was greatly
increased in the brain for the same subjects, consistent with prior

observation of low common deletion levels in blood and higher
levels in post mitotic tissue.

Results of the common deletion study in DLPFC only (cohort 2)
showed also a significant relationship between age and common
deletion levels (F = 6.7, p= 0.01), (Figure S3 in Supplementary
Material) as well as sex and common deletion (F = 5.5, p= 0.02;
Figure 3A). Our hypothesis that psychiatric disorders (BD, MDD,
and SZ) have increased common deletion was tested in a planned
comparison of the age-adjusted data in DLPFC (cohort 2). The
BD group showed a significant increase in the common deletion
compared to controls (p= 0.022, Figure 3B) by a fold change of
2.4 using age-adjusted least square means, MDD showed a 2.0 fold
increase compared to controls (p= 0.058), while SZ was not signif-
icantly different compared to controls (p= 0.59). These findings
validated previous data for BD and MDD for the same subjects in
cohort 2 (Shao et al., 2008), however in the present study we used
a more accurate method using a standard curve. Thus, we show
increased mtDNA common deletion in BD, no change in SZ or
MDD, compared to controls in DLPFC.

HOMOPLASMIC NOVEL AND RARE VARIANTS IN MtDNA
There were 149 homoplasmic variants that were either novel or
rare found by Illumina re-sequencing (Table S5 in Supplemen-
tary Material): 88% (131/149) were transitions, 11% (17/149)
were transversions (Table S6 in Supplementary Material). Of these
149 homoplasmic variants, seven were novel and not reported in
four databases: dbSNP (Sherry et al., 2001), mtDB (Ingman and
Gyllensten, 2006), PhyloTree (van Oven and Kayser, 2009), and
MITOMAP3. Six of the novel variants were in coding genes, five
were synonymous, one was in a transfer RNA; one was in the
non-coding D-Loop region (Table 2) and these were not found
in an analysis of 5140 human mtDNA genomes (Pereira et al.,
2009). We selected and successfully confirmed by dye-terminator
direct sequencing of the following five variants: C4796T, G4924C,
A6578G, T8945C, and A11026G.

Only one homoplasmic deletion was detected, an AC deletion at
mt523-524, present in 11 brain regions sampled from two control
subjects that have distant haplogroups (L1cb2 and H5, Figure 4).
This mt523-524 AC deletion was previously reported (Han et al.,
2003; Wanrooij et al., 2004). Two homoplasmic insertions were
detected. One control subject had a T insertion at mt455. A sec-
ond common insertion was also observed in the mononucleotide
repeat (poly-C) region known as D310 for Displacement Loop
(D-Loop), which consists of a series of C nucleotides (between
7 and 9) intercalated with a single T at position 310 followed by
another series of C nucleotides (Sanchez-Cespedes et al., 2001),
a hot spot for mutations possibly involved in Alzheimer’s (Wang
et al., 2009), and cancer (Tang et al., 2004). Six subjects (three
controls, two BP, and one SZ) had 309.1C or 309.1CC insertions
in this poly-C tract. Due to the small number of subjects in this
re-sequencing arm of the study, the rates of de novo mutations
were not compared among groups. In summary, there were seven
novel mutations in Cohort 3: four novel mutations in the 10 con-
trol subjects, one novel mutation in the four SZ subjects, one novel

3http://www.mitomap.org
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FIGURE 1 |The highest correlations between the common
deletion and age are shown for cohort 1 subjects. (A) The
correlation between age (x -axis) and mtDNA common deletion
(y -axis) showing the nucleus accumbens (NACC), r =0.97. (B) The

correlation between age (x -axis) and mtDNA common deletion
(y -axis) showing caudate nucleus (CAUN), r =0.98. (C) The
correlation between age (x -axis) and mtDNA common deletion
(y -axis) showing amygdala (AMY), r =0.96.
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FIGURE 2 |There was no overall region × diagnosis (schizophrenia
compared to control) interaction effect on age-adjusted mtDNA common
deletion percentages but regional differences were observed. This figure

shows the least squares mean and standard errors of non-age-adjusted
common deletion percentages per region, plotted by diagnosis in cohort 1
(schizophrenia compared to controls).

mutation in the five MDD subjects, and one novel mutation in the
four BD subjects.

Considering further the rate of novel coding and non-coding
mutations in cohort 3 (23 DLPFC subjects), there was one
novel mutation in the non-coding region of the mitochondrial
genome, resulting in a novel mutation frequency of 3.87× 10−5

(23 genomes× 1121 bp non-coding= 25,783 total non-coding
bp, one mutation/25,783 bp= 3.87× 10−5 or 1:25,783; Table S7
in Supplementary Material). There were six novel mutations in
the coding region for these subjects leading to a 1.69× 10−5

novel mutation frequency (23 genomes× 15,447 bp total coding
sequence= six novel mutations per 35,5281 bp or 1:59,214). These
calculations show that novel mutations occurred more frequently
in the non-coding region of the mitochondria compared to the
coding region.

A total of 142 of the 149 variants were rare (Table S5 in Supple-
mentary Material) with minor allele frequency <1% based upon
mtDB (Ingman and Gyllensten, 2006) and PhyloTree (van Oven
and Kayser, 2009). We observed a higher number of both transi-
tions and transversions per genome for the MDD group compared
to controls and to the other two diagnoses particularly in the non-
coding region, yet had fewer transversions in the coding region,
resulting in a higher ratio of transitions over transversions in the
coding region (Table S8 in Supplementary Material).

PHYLOGENETIC ANALYSIS OF mtDNA FROM BRAIN
We conducted phylogenetic analysis using the consensus sequence
of the whole mitochondrial genome which allowed us to deter-
mine the specific haplogroup for each sample (van Oven and

Kayser, 2009). All brain regions for each individual subject were
correctly grouped together showing the accuracy and consistency
of our sequencing algorithms (Figure 4).The distribution of diag-
noses for each haplogroup built using the entire mtDNA consensus
sequences can be seen in Table S9 in Supplementary Material. We
detected back mutations in the haplogroups shown in Figure 4.
Notably, the mtDNA sequence of individual 58 allowed us to
refine the mutation motif of haplogroup L1c3b2, which thus far
was based on a single mtDNA sequence only (Behar et al., 2008),
viz. sequence 597 from (Howell et al., 2004). When we detected a
homoplasmic mutation or rare variant in one brain region, it was
inevitably found in the remaining 10 brain regions (Figure 4).

mtSNP ASSOCIATION IN PSYCHIATRIC DISORDERS
PLINK logistic regression was run with genotypes for 362 mtSNPs
from 6,040 subjects using MDS covariates. In all analyses, the over-
lap of SZ and BD controls from the GAIN study were removed
before undertaking association or normalization.

The GAIN and WTCCC2 controls were pooled into one com-
mon control group for comparison to BD and SZ subjects from
GAIN. There were no significant mtSNP associations with psychi-
atric disorders after genome-wide correction. However, the logistic
regression analysis showed nominally significant association with
SZ, BD, and pooled analysis for nine different mtSNP alleles that
passed nominal threshold of p < 0.05 for SZ or BD association
(Table 3) without correction for multiple testing. Some of these
nominally associated mtSNPs were located in mutation hotspots
in the hypervariable I (between positions 16001 and 16568) and II
(between positions 1 and 574) regions (Table 4). The remaining

www.frontiersin.org June 2012 | Volume 3 | Article 103 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_and_Psychiatric_Genetics/archive


Sequeira et al. Mitochondrial mutations and polymorphisms in psychiatric disorders

FIGURE 3 | (A) In cohort 2, the main effect of sex was significant (F =5.5,
p=0.02) on common deletion percentage in DLPFC, with females exhibiting
significantly higher percentages of the mitochondrial common deletion
compared to males. The age-adjusted means and standard error bars are

displayed. (B) In cohort 2, the BD group showed a significant increase in the
common deletion compared to controls (p= 0.022) and MDD showed a trend
compared to controls (p=0.058) while schizophrenia compared to controls
was not different (p=0.59).

associated coding mtSNPs were primarily synonymous. MtSNPs
with relatively low no call rates compared to MAF were included
in Table 4. The “no calls” are from the Affymetrix 6.0 SNP chip
analysis, for an individual SNP when the algorithm is unable to
assign an allele call. The listing of additional SNPs that had nom-
inal p-value for association, but had high no call rates is shown

(Table S10 in Supplementary Material). Interestingly, the minor
population allele showed an equal number of risk and protective
associations for psychiatric disorders (Table 4).

The haplogroup-defining SNP (A12308G) and the T195C allele
in D-Loop region were combined in an exploratory post hoc analy-
sis (Table 5) by using a Cochran-Mantel-Haenszel test for repeated
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Table 2 | Novel mitochondrial homoplasmic mutations (7) found in brain of neuropsychiatric patients and controls detected with Illumina

sequencing.

Position Gene Function rCRS

Base

Mutation AA change Syn/

non-syn

Tissue Diagnosis In

Mitomap

Validated by

Sequencing

224 D-loop nc T T > C DLPFC MDD No

5686 tRNA Asn ps A A >T ACC, AMY,

CAUN, CB,

DLPFC, HIPP,

NACC, OFC,

PUT, SN, THAL

C No

6578 COI pp A A > G 225G > G SYN DLPFC C No Yes

7834 COII pp C C >T 83I > I SYN DLPFC SZ No

9126 ATPase 6 pp T T >A 200T >T SYN DLPFC C T > C

10858 ND4 pp T T > C 33I > I SYN DLPFC BD No

11026 ND4 pp A A > G 89L > L SYN DLPFC C No Yes

All attempted direct sequencing validations were successful. Subjects shown with 11 brain regions (cohort 1) and DLPFC (cohort 3) were tested.

2× 2 tests of independence. The SZ group showed less 195C alle-
les than controls (CMH= 10.6, df= 2, p= 0.0011), while similar
test conducted for BD was not significant (CMH= 2.6, df= 2,
p= 0.10); however, the combined SZ+BD CMH was significant
(p= 0.001). These results confirm the under-representation of the
195C allele in SZ, independent of a major ethnic stratification of
SNP A12308G. The 195C allele was associated with a reduced rela-
tive risk in controls by 0.67–0.80 depending on the A12308G allele
call.

In summary, when SZ and BD were compared to combined
controls from GAIN and WTCCC2 datasets, there was weak evi-
dence of association after correction for MDS as well as following
the removal of stratification effect of a major ethnic defining hap-
logroup SNP. The present findings suggest that similar frequencies
of SZ or BD were found at major haplogroup specific EA mtSNPs,
while more sporadically occurring mtSNPs, T195C and T16519C,
in the hypervariable region showed preliminary associations to SZ,
and pooled SZ and BD.

DISCUSSION
COMMON DELETION
We confirmed an increase in brain levels of the 4,977 bp mtDNA
common deletion previously reported in BD, aging, and sex (Kato
et al., 1997; Fuke et al., 2008). There was no difference in the
common deletion in SZ compared to controls which is also con-
sistent with prior reports (Kato et al., 1997; Fuke et al., 2008). The
4,977 bp common deletion accumulated with age in brain com-
pared to blood as previously reported (Corral-Debrinski et al.,
1992; Bender et al., 2006; Kraytsberg et al., 2006). We also showed
that in advanced aging, the levels can remain low in blood while
reaching high levels in brain, particularly in regions such as the
SN, CAUN, and putamen. The mtDNA common deletion is an
example of a somatic mutation that can reach fairly high levels
in some brain regions while remaining relatively absent in other
brain regions (CB and thalamus) and in blood.

The levels of common deletion vary significantly across brain
regions, and are particularly high in mesostriatal and mesolimbic
regions such as the SN, putamen, NACC, CAUN, and amygdala

(Figure 1; Table S2 in Supplementary Material) as shown before
in post-mortem brains (Corral-Debrinski et al., 1992; Soong et al.,
1992; Meissner et al., 2008). Previous reports have also shown
high levels of common deletion in the SN of both aged controls
and Parkinson’s patients (Bender et al., 2006; Kraytsberg et al.,
2006). Similarly, we also observed high levels of common dele-
tion in some striatal-nigral structures, such as the SN, CAUN,
and putamen and to a lesser extent the NACC, innervated and
populated by dopaminergic neurons. Other regions such as the
cerebellum, with unknown dopamine innervations, had a signif-
icantly lower accumulation of the common deletion in the same
subjects (Figure 2). The regional susceptibility to accumulation
of the common deletion might be in both dopamine and gluta-
matergic innervated brain regions, a result of excessive ROS due
to toxic dopamine metabolites, as well as excess calcium ion flow
(Ben-Shachar, 2002; Lin and Beal, 2006; Trushina and McMur-
ray, 2007; Keating, 2008; Pivovarova and Andrews, 2010; Surmeier
et al., 2011). Both dopaminergic and glutamatergic neurotrans-
mitter systems have been consistently shown to be involved in
psychiatric disorders and our findings of higher accumulation
of common deletion levels in heavily dopaminergic and gluta-
matergic regions in BD and MDD supports the involvement of
mitochondrial dysfunction in those disorders as previously sug-
gested (Ben-Shachar, 2002; Rezin et al., 2009; Kato et al., 2011;
Verge et al., 2011). Further studies of the mechanism of protection
and susceptibility to the mtDNA common deletion is required
to understand this diverse regional pattern and the functional
significance in the aging human brain.

A caveat to measurements of homogenized dissected post-
mortem brain regions is the lack of specific cellular phenotypes
for the mtDNA common deletion, although it is unlikely that
cells with deleterious mutations survived with huge burdens of
heteroplasmy. Another issue we could not address in the current
study is sub-regional or layer specific differences mtDNA com-
mon deletion, or the cell specific differences. While it is possible
to use laser capture microdissection to look at separate cells, in
post-mortem brain, for clonal expansion possibility, we did not
initially perform this analysis, as we were interested in the brain
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FIGURE 4 | Phylogenetic tree of the 23 complete mtDNA sequences
generated in this study. Haplogroups are labeled in boxes and follow
PhyloTree Build 12 nomenclature (van Oven and Kayser, 2009).
Mutations are denoted as nucleotide position numbers corresponding
to the rCRS. Mutations are transitions unless an exact base change is
specified. Deletions and insertions are indicated by “d” and “0.1,”
respectively, followed by the base(s) involved. Back mutations (from
the perspective of the ancestral root) are preceded by “@.” Variants

309.1C, 315.1C, 16182C, 16183C, and 16519 were not considered for
tree construction and are therefore not shown. The samples that have
appeared in the study are given numerical labels followed by brain
region abbreviations. As an example, in the first column individual 58,
belonging to haplogroup L1c3b2, was sequenced in 11 brain regions
which all showed the same phylogenetic relationship, indicating a lack
of novel mutations between brain regions from the same
individual.
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Table 3 | mtDNA SNPs from Affymetrix cel files were used to calculate association with MDS covariates.

Case-control SNP affymetrix ID dbSNP RS ID rCRS pos Mutation Risk allele n OR STAT p

BD SNP_A-8574923 rs28357968 3666 G3666A A 4900 1.81 2.328 0.020

BD SNP_A-8574914 rs28357375 15784 T15784C C 4902 1.49 1.982 0.048

SZ SNP_A-8574733 rs2857291 195 T195Cˆ T 4965 0.82 −3.547 0.000

SZ SNP_A-8574778 rs3937033 16519 T16519C C 5039 0.92 −2.131 0.033

SZ+BD SNP_A-8574733 rs2857291 195 T195Cˆ T 5896 0.87 −3.375 0.001

SZ+BD SNP_A-8574923 rs28357968 3666 G3666A A 6037 1.58 2.051 0.040

SZ+BD SNP_A-8574991 rs28380140 9377 A9377Gˆ A 6040 0.46 −2.046 0.041

SZ+BD SNP_A-8574741 rs3088053 11812 A11812Gˆ A 6015 0.86 −2.086 0.037

SZ+BD SNP_A-8574553 rs2853497 12007 G12007Aˆ G 6040 0.77 −2.098 0.036

Case-case

BD vs. SZ SNP_A-8574692 rs2853515 263 A263G A 2094 1.76 2.3 0.021

BD vs. SZ SNP_A-8574530 rs1599988 4216 T4216C C 1994 1.71 2.451 0.014

BD vs. SZ SNP_A-8574778 rs3937033 16519 T16519C T 2098 1.11 2.02 0.043

Nominally significant SNPs for association with pooled groups (BD+SZ), BD, and SZ are shown.

For the additive effects of SNPs, a positive odds ratio (OR) means that the minor allele increases risk for phenotype.

ˆIndicates that the minor allele increases protection against risk.

Table 4 | Annotation of nominally significant SNPs from association with pooled groups (BD+SZ), BD, and SZ are shown.

Case-control Risk allele Posn. Base A G C T Location Amino Change Syn?

BD A 3666 G 58 (R) 2646 ND1 Gly→Gly Yes

BD C 15784 T 85 (R) 2619 Cytb Pro→Pro Yes

SZ T 195 T 11 280 (P) 1574 D-Loop

SZ C 16519 T 1115 752 (P) D-Loop

SZ+BD T 195 T 11 280 (P) 1574 D-Loop

SZ+BD A 3666 G 58 (R) 2646 ND1 Gly→Gly Yes

SZ+BD A 9377 A 2661 43 (P) COIII Trp→Trp Yes

SZ+BD A 11812 A 2616 88 (P) ND4 Leu→Leu Yes

SZ+BD G 12007 G 96 (P) 2608 ND4 Trp→Trp Yes

Case–case

BD vs. SZ A 263 A 6 (R) 1861 D-Loop

BD vs. SZ C 4216 T 244 (R) 2460 ND1 Tyr→His No

BD vs. SZ T 16519 T 1115 752 (R) D-Loop

The position is according to revised Cambridge Reference Sequence (Posn.), and numbers of individuals world-wide from Ingman database for each allele are shown.

The bolded minor allele shows an R for risk or P for protection according to the association results in Table 3. As an example, for T16519C, there is an increase

frequency of T in BD (0.51) compared to SZ (0.4), and decreased frequency of T in SZ compared to C (0.49). The actual case and control counts are shown in Table

S11 in Supplementary Material.

regional distribution of somatic mutations. In the future, with
certain regions that show very high common deletion rates, this
approach could be very fruitful to pursue, although initial studies
capturing cell nuclei are not promising as very few mitochondria
are captured from cell bodies (Mamdani, F., personal communica-
tion). Important details about patients are not specifically known,
for example the exact age of onset, there is only partial information
regarding the decade of life when psychotic symptoms began for
SZ or mood symptoms for BD. The lifetime medication histories
are lengthy, most patients receive at least 5–10 different medica-
tions, and we are not aware of what the cumulative effects of those
medications are on common deletion levels in brain, although we
have proposed to study this relationship. These potential factors

could contribute to our results as false negatives or false positives
in this study.

mtDNA MUTATION IN THE DLPFC
This study found 7 novel and 142 rare homoplasmic mutations
that appeared in 23 mtDNA genomes derived from DLPFC (Table
S5 in Supplementary Material) and in blood samples also ana-
lyzed. Thus, we did not find somatic homoplasmic mutations that
differed in brain compared to blood. In this study we focused
on homoplasmic mutations with high coverage. Although hetero-
plasmy was observed, we are currently in the process of validating
and analyzing our heteroplasmy findings, to be reported in a future
manuscript. Five homoplasmic mutations selected for validation
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Table 5 |The haplogroup defining SNP (A12308G) and theT195C allele

in D-Loop region were tested in a post hoc analysis using a

Cochran–Mantel–Haenszel (CMH) test for repeated 2×2 tests of

independence.

mtDNA allele Group

12308 195 Control (n) SZ (n) BD (n)

A T 2600 761 629

C 417 82 81

G T 701 193 180

C 168 37 40

Total N 3886 1073 930

CMH 10.62 2.69

df 2 2

CMH p-value 0.0011 0.1007

The results for SZ remained significant (p=0.0011) while combined results of SZ

and BD were also significant (not shown, p=0.001).

by direct sequencing were confirmed. However, we did observe
some false positives with this sequencing approach at some hetero-
plasmic loci, such as the previously reported A > C at mtDNA 3492
position, a known sequencing error hotspot (Li et al., 2010) that we
were unable to confirm by Sanger sequencing or by allele-specific
amplification.

Our findings support prior reports that the non-coding hyper-
variable mtDNA regions have more novel mutations than coding
regions (Jazin et al., 1998; Mishmar et al., 2003; Soares et al., 2009).
This is of interest for the etiology of psychiatric disorders based
upon consideration of the partial contribution from mtDNA vari-
ants. Since the rate of introduction of mtDNA variants varies from
2- to 20-fold depending upon coding and non-coding regions of
mtDNA genome, the introduction of mtDNA variants has been
particularly high in the hypervariable region of mtDNA through
the world population (Cavelier et al., 2000). In fact, the T16519C
is the most frequent variant that occurs world-wide, for which we
have found a preliminary association (Soares et al., 2009). The
overall ratio of transition to transversion mutations observed in
the present study, 18, is similar to the ratio for human mtDNA
of 13.75 previously reported (Brown et al., 1982; Tamura and
Nei, 1993; Belle et al., 2005). This preliminary result will require
large samples of fully sequenced mtDNA genomes, comparisons
between the groups of subjects were not significant due to the
small number of total mutations observed per subject.

SCHIZOPHRENIA AND BIPOLAR DISORDER RISK ASSOCIATION mtDNA
SNP ALLELES
In this study we tested the largest sample to date for common
mtSNP association with either SZ or BD (n= 6,040) using a
pool of common controls from GAIN and WTCCC2 and did
not observe any significant disease associated alleles following
genome-wide correction. Prior reports with smaller sample sizes
that have shown trends for association, perhaps did not ade-
quately address population stratification (Kirk et al., 1999; Amar

et al., 2007; Rollins et al., 2009). We previously showed in a small
sample, that T195C was associated with BD risk (Rollins et al.,
2009). However, in the current study of 6,040 subjects, we show
that T195C is protective for SZ, and in the SZ plus BD pooled
analysis. The major haplogroup-defining SNP (A12308G) stratifi-
cation does not affect the outcome of the protective association of
T195C, in this larger sample. These results require replication in
an independent study to rule out the possibility of unknown biases
accounting for these preliminary GWAS results of 6040 individuals
and genotyping by another method to confirm that the presence
of a small number of no calls on the Affymetrix 6 chip did not
cause this false positive. Others have used a haplogroup analy-
sis to determine differential prevalences of SZ (Mosquera-Miguel
et al., 2012) or BD in major haplogroups which might be a more
sensitive method to avoid effects of unbalanced cases and control
ascertainments; however, we chose to look at selected haplogroups
in a post hoc analysis following our case-control logistic regression
analysis covaried with four MDS scores derived from mtSNPs.

While not directly affecting mitochondrial function by altering
the protein sequence, several of the nine mtSNPs in the hypervari-
able region that showed preliminary association, such as 16519,
have the highest world-wide mutation rates (Soares et al., 2009)
and have been previously associated with diseases. T16519C has
been associated with cancer (Navaglia et al., 2006; Bai et al., 2007;
Peng et al., 2011), diabetes (Liao et al., 2008), exercise oxygen
consumption (Murakami et al., 2002), and other common dis-
orders such as migraine (Zaki et al., 2009) in studies of Asian
and European cases and controls. This is the first association
study of mtDNA 16519T and 16519C variants in psychiatric dis-
orders of BD, while a recent report showed a positive trend for SZ
(Mosquera-Miguel et al., 2012).

A recent paper did not find an association of T16519C with
SZ in a Spanish EA haplogroup case-control analysis (Mosquera-
Miguel et al., 2012). This study used primarily Spaniards of self-
reported EA with SZ (n= 942), and a control group consisting
of ethnicity-matched Spanish individuals (N = 1,231). Although
the T16519C, which was studied in only one-half of the sub-
jects was not significant, this SNP had the same magnitude and
direction of change in odds-ratio that we report of 0.92 for SZ
(Mosquera-Miguel et al., 2012). Pooling the T16519C data from
Mosquera-Miguel et al. (2012) data with our SZ data shows a sim-
ple combined OR= 0.87 (95% CI 0.76–0.98, p= 0.027) with a
total SZ cases (n= 1975) and controls (n= 4133) between both
studies. The studies are also in agreement with other haplogroup
markers such as A12308G, which were not more prevalent in SZ
(Mosquera-Miguel et al., 2012). As mentioned, there have been
reports of T16519C association with metabolic disorders, such as
exercise oxygen consumption and diabetes mellitus.

Differences between the current study and Mosquera-Miguel
et al. (2012) are that they examined 25 mtDNA SNPs; a smaller
number of total subjects especially controls, and did not include a
BD case-control analysis. Further, the present study used slightly
different mtDNA analyses, correcting possible mtSNP stratifi-
cation using MDS, preferring this method instead of a formal
haplogroup stratification test. Taken together, however, both stud-
ies with different approaches, reinforce conceptually that with
larger Ns, compared to all prior studies of mtDNA common
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SNPs, in Southern and Northern EA populations, there was not
an overwhelmingly strong association of SZ or BD to common
haplogroup-defining SNPs in the coding region of mtDNA. This
makes the current T195C and T16519C findings more salient as
associated alleles since they are both more sporadically occur-
ring mutations. Importantly, the functionality of both mtSNPs
are unknown, T195C is a back mutation to the original ancestral
allele which was the 195C, which we find to be protective for both
SZ and BD.

CONCLUSION
In conclusion, the large somatic common deletion was the most
variable result in post-mortem brain, highly age-dependent, and
replicates many prior reports (Corral-Debrinski et al., 1992; Soong
et al., 1992; Meissner et al., 2008). We observed the higher levels
of common deletion in mesostriatal and mesolimbic regions such
as the SN, putamen, NACC, CAUN, and amygdala, suggesting that
oxidative stress mechanisms related to dopamine metabolism to
be involved in the accumulation of the common deletion. With
multiple caveats stated above, there seems to be some evidence
(that requires independent replication) of protective and risk alle-
les in the hypervariable region of mtDNA, which mutates at a fast
rate in the human population. We continue to test the hypoth-
esis that accumulation of large somatic mutations in the coding
region is relevant to psychiatric disorders and coupled with spo-
radic mtSNPs in the hypervariable region these two parts of the
molecule may independently exert functional impacts in brain and
mitochondrial function.

We also tested whether single point mutations would be found
in different brain regions from the same brain. We were unable
in this initial study to find evidence for homoplasmic mutations
occurring independently across brain. We found the NGS tech-
nique to work reliably with some notable exceptions, and have
since improved our throughput, by multiplexing 24 samples per
lane on a Hi-Seq Illumina instrument, maintaining excellent cov-
erage with 100 bp single reads. We also found evidence that some
mtDNA variants are associated with SZ and BD protection or sus-
ceptibility at the population level using a large sample of patients
and controls and available genotype data.
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