
This thesis deals with the application of Bayesian econometrics for 
macroeconomic modelling. In particular, this thesis aims to answer
three questions: 1) How did Bayesian econometrics evolve over time? 2) 
How can output growth forecasts be improved? 3) How can inflation 
forecasts be improved? These questions are answered in three
consecutive chapters of this thesis.
 
Chapter 2 describes the history of Bayesian econometrics since the early 
1960s. It quantifies the increasing popularity of Bayesian econometrics 
by analyzing the publication and citation records of papers in ten
econometrics journals. These numbers give insight into the roots of 
Bayesian econometrics and a prediction about its future. Additionally, 
this chapter examines the connections among the topics and authors
of the papers in the data set using the bibliometric mapping technique.
Given the importance of time varying patterns suggested by these
analyses, the following two chapters aim to improve models for
forecasting GPD growth and inflation taking into account the time
varying behavior of the series.
 
Chapter 3 starts with a basic exposition of the technical issues that a 
Bayesian econometrician faces in terms of modeling and inference when 
she is interested in forecasting US real GDP growth by using a time varying 
parameter model using simulation based Bayesian inference. It then
proposes models for the US real GDP growth series in level and volatility 
dimensions. New Keynesian Phillips Curve models used for inflation fore-
casting typically rely on traditional ways of cleaning data before analysis. 
However, this may lead to poor performance. Therefore, motivated to fill 
in this gap in the literature and improve model performance, Chapter 4 
proposes models for the NKPC model for the US in a Bayesian way.
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Chapter 1

Introduction and Outline

1.1 Introduction

Knowing the history of your topic of interest is important: It teaches what happened in

the past, helps to understand the present, and allows one to look ahead in the future.

Given my interest in the development of Bayesian econometrics, this thesis starts with a

description of its history since the early 1960s.

My aim is to quantify the increasing popularity of Bayesian econometrics by perform-

ing a data analysis in the sense of measuring both publication and citation records in

major journals. This will give a concrete idea about where Bayesian econometrics came

from and in which journals its papers appeared. With this information, one will be able to

predict some future patterns. Indeed, the analysis indicates that Bayesian econometrics

has a bright future.

I also look at how the topics and authors of the papers in the data set are connected

to each other using the bibliometric mapping technique. This analysis gives insight in the

most important topics examined in the Bayesian econometrics literature. Among these,

I find that a topic like unobserved components models and time varying patterns has

shown tremendous progress. Finally, I explore some issues and debates about Bayesian

econometrics.

Given that the analysis of time varying patterns has become an important topic, I

explore this issue in the following two chapters. The subject of Chapter 3 is twofold.

First, I give a basic exposition of the technical issues that a Bayesian econometrician

faces in terms of modeling and inference when she is interested in forecasting US real

GDP growth by using a time varying parameter model using simulation based Bayesian

inference. Having observed particular time varying patterns in the level and volatility

of the series, I propose a time varying parameter model that incorporates both level
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shifts and stochastic volatility components. I further try to explain the GDP growth

series using survey data on expectations. Doing posterior and predictive analyses, the

forecasting performances of several models are compared. The results of this chapter may

become an input for more policy oriented models on growth and stability.

In addition to output growth stability, price stability is also an important policy ob-

jective. Both households and businesses are interested in the behavior of prices over time

and follow the decisions of policymakers in order to be able to make sound decisions.

Moreover, policymakers are interested in making inflation forecasts to be able to make

sound policy decisions and guide households and businesses. Therefore, inflation forecast-

ing is important for everybody. I deal with this topic in Chapter 4. In this chapter, I

explore forecasting of US inflation via the class of New Keynesian Phillips Curve (NKPC)

models using original data. I propose various extended versions of the NKPC models and

make a comparative study based on posterior and predictive analyses. I also show results

from using models that are misspecified and from using survey inflation expectations data.

The latter is done since most macroeconomic series do not contain strong data evidence

on typical patterns and using survey data may help strengthening the information in the

likelihood. The results indicate that inflation forecasts are better described by the pro-

posed class of extended NKPC models and this information may be useful for policies

such as inflation targeting.

Section 1.2 summarizes the contributions of this thesis. Section 1.3 presents an outline

of the thesis and summarizes each chapter.

1.2 Contributions

The contributions of this thesis may be classified into two groups. The first group refers

to the quantitative analysis of the developments in Bayesian econometrics reported in

Chapter 2. New empirical analysis on the publication patterns of Bayesian econometrics

give valuable information on its positive development. In terms of more methodology,

I make use of recent methods from connectivity analysis in this chapter. Network and

connectivity maps are used to find the connectivity among subjects in Bayesian econo-

metrics where distance-based and graph-based maps are used in bibliometric research. I

make use of the VOSviewer program, available at http://www.vosviewer.com and their

software to address proximity, see Waltman et al. (2010); Van Eck and Waltman (2010).

In distance-based maps, the strength of relationships between topics is reflected in the

distance between their locations in the map: the closer they are, the stronger the topics

are related. In addition to this, there are various ways to display a map, one of which is
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the label view. In the visualization, Bayesian econometrics topics are depicted by a label

and a circle. The bigger the label and the circle around it, the more important the topic

is. Other ways I use to display a map are the density view and the cluster density view

in which the color of a topic depends on its density, i.e., the number and importance of

topics surrounding it.

The second group of contributions is made in Chapters 3 and 4, and refers to the use

of state of the art techniques and new sources of prior and data information in order to

obtain new empirical results on growth and inflation in US macroeconomic series. For

posterior analyses, Gibbs sampling with Metropolis-Hastings steps and data augmentation

are used in models where new specifications are given on time varying conditional means

and variances incorporating information from survey data.

More specifically, to be able to carry out our inferences on unobserved variables of

interest (conditional on the model parameters and the information set), I make use of

state space modeling. For this purpose, I use the Kalman filtering and smoothing tech-

niques. Kalman filtering is a recursive procedure in which an optimal estimate of the

state vector is obtained given all the current information. After reaching the end of the

series, future observations can optimally be predicted. Smoothing is a backward recursion

which obtains the optimal estimates of the state vector at each time period by using the

whole sample. One advantage of the filtering and smoothing techniques is that they have

computational advantages, i.e., there exist efficient computing algorithms to get results

about NKPC models under the assumption of Calvo pricing and its hybrid version. These

models are extended to model both the low and high frequency components of the se-

ries explicitly. The time varying behavior (time varying mean, level shifts in the mean,

stochastic volatility) of inflation and real marginal cost series are modeled to extend the

basic growth models in Chapter 3 and the basic Phillips Curve models in Chapter 4.

Furthermore, I use survey data to model the GDP growth in Chapter 3 and I use inflation

expectations in the hybrid NKPC model of Chapter 4.

1.3 Outline and Summary

This thesis consists of three chapters. Having gained insight into Bayesian econometrics

from its birth until recently in the second chapter, the thesis continues with two chapters

proposing models for two series using the techniques which are suggested from the analysis

in Chapter 2.

Chapter 2 is based on the paper Baştürk, Çakmaklı, Ceyhan and Van Dijk, (2013a),

which is about the history of Bayesian econometrics since 1960s until 1 April 2014. The
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popularity of empirical probability assessments in economics has its roots in the early

steps of Bayesian econometrics in the 1960s after the likelihood based inference reported

in the Cowles Foundations Monographs 10 and 14. Many of the papers in these mono-

graphs applied R.A. Fisher’s likelihood approach to a system of simultaneous equations.

However, during the first half of the 1970s, this research area experienced breaks. There

appeared the issue of modelling data with high persistence and time varying volatility,

vector autoregression models and new simulation methods based on Importance Sampling

and Markov Chain Monte Carlo were developed. As a result, the econometrics literature

saw the birth of new research areas with important methodological and practical conse-

quences for economic analysis, forecasting and decision strategies.

After a brief description of the first Bayesian steps into econometrics in the 1960s and

early 70s, publication and citation patterns are analyzed in ten major econometric journals

until 1 April 2014. For the analysis of publication patterns, the number of pages written

on Bayesian econometrics are recorded as a percentage of total number of pages for each

year for all journals. The results indicate that journals which contain both theoretical

and applied papers, such as Journal of Econometrics, Journal of Business and Economic

Statistics and Journal of Applied Econometrics, publish the large majority of high quality

Bayesian econometric papers in contrast to theoretical journals like Econometrica and the

Review of Economic Studies. These latter journals published, however, some high quality

papers that had a substantial impact on Bayesian research. Moreover, I observe that

beginning in the 1990s, there is an increasing trend in the publication patterns due to the

increase in the computational power.

Next, a visualization technique is used to connect papers and authors around im-

portant theoretical and empirical themes such as forecasting, macro models, marketing

models, model uncertainty and sampling algorithms. The distance between topics depends

on the number of times that the keywords and names appear together or in relation to all

keywords and names cited together. The information distilled from this analysis shows

also names of authors who contribute substantially to particular themes. This is followed

by a discussion of those topics that pose interesting challenges for discussion amongst

Bayesian econometricians, namely the computational revolution, unobserved component

and flexible model structures, choice models, IV models,the issue of identification and

prior information, dynamic models and forecasting. Three issues are summarized where

Bayesian and frequentist econometricians differ: Identification, the value of prior informa-

tion and model evaluation; dynamic inference and nonstationarity; and vector autoregres-

sive versus structural modeling. A major topic of debate amongst Bayesian econometri-
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cians is listed as objective versus subjective econometrics, and communication problems

and bridges between statistics and econometrics are summarized.

The chapter ends with a list of four important themes that will be a challenge for

the twenty-first century Bayesian econometrics: Sampling methods which are suitable

for parallelization and GPU calculations, complex economic models which can account

for nonlinearities, analysis of implied model features such as risk and instability and

incorporating model incompleteness in econometric analysis. I further predict that the

popularity of Bayesian econometrics will continue to increase over time.

Chapter 3 is based on Basturk, Ceyhan and Van Dijk (2014). This chapter proposes

models for the US real GDP growth series that can be used for forecasting. Time varying

patterns in US growth are analyzed using various univariate model structures, starting

from a naive model structure where all features change every period to a model where

the slow variation in the conditional mean and changes in the conditional variance are

specified together with their interaction, including survey data on expected growth in

order to strengthen the information in the model. Results indicate that incorporating time

variation in mean growth rates as well as volatility of mean growth rates are important for

improving the predictive performances of standard growth models. Furthermore, using

data information on growth expectations is important for forecasting growth in specific

periods, such as the 2000s and around 2008.

Chapter 4 is based on the paper Baştürk, Çakmaklı, Ceyhan and Van Dijk, (2013b).

This chapter proposes extensions to the NKPC model, which shows the relationship be-

tween inflation and economic activity, and can be used for inflation forecasting. In this

chapter, I show that mechanical removal or modeling of simple low frequency movements

in the data may yield poor predictive results which depend on the model specification

used. Therefore, I model the changing time series properties of US inflation and economic

activity, measured as marginal costs, within a set of extended NKPC models, allowing

for level shifts and stochastic volatility in inflation and log marginal costs, and applied to

quarterly U.S. data over the period 1960-I until 2014-I. I incorporate forward and back-

ward looking expectation components for inflation and evaluate their relative importance.

Finally, I model the unobserved inflation expectations using the University of Michigan

survey data.

For all models considered, simulation based Bayesian techniques are used for the em-

pirical analysis. Choice among the proposed models depends on the criteria predictive

likelihood and Mean Squared Forecast Error (MSFE). The results suggest that the NKPC

models which incorporate structural time series features and an inflation expectation term

and use survey data for inflation expectations capture the time variation in the inflation
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and real marginal cost series well. The proposed models perform better than the basic

NKPC models using demeaned and/or detrended data as well as the standard stochastic

volatility model of Stock and Watson (2007) and extended BVAR models. No credible

evidence is found on endogeneity and long run stability between inflation and marginal

costs. The backward looking term in the hybrid NKPC model dominates the forward

looking term. Levels and volatilities of inflation are estimated more precisely using rich

NKPC models. Tails of the complete predictive distributions indicate an increase in the

probability of deflation in recent years.



Chapter 2

Historical Developments in Bayesian

Econometrics after Cowles

Foundation Monographs 10, 14

Chapter 2 is based on Baştürk, Çakmaklı, Ceyhan and Van Dijk, (2013a).

2.1 Introduction

Bayesian econometrics is now widely used for inference, forecasting and decision analy-

sis in economics, in particular, in the fields of macroeconomics, finance and marketing.

Three practical examples are: International corporations that sell their goods abroad

want to know the risk of foreign exchange rate exposure that they incur at the time they

repatriate the proceeds of their sales, see Bos, Mahieu and Van Dijk, (2000); in modern

macroeconomics the risk of a liquidity trap, defined as low inflation, low growth and an

interest rate close to the zero lower bound, is relevant for an adequate economic policy for

several countries; evaluating the effect of a new pricing policy is highly relevant in decision

strategies of supermarket chains. Particular references and more examples are given in

textbooks like Geweke (2005); Rossi et al. (2005) and Koop et al. (2007). This widespread

interest in and the use of empirical probability assessments of important economic issues

has come a long way from the early steps of Bayesian econometrics in the 1960s following

the likelihood based inference reported in the brilliant Cowles Foundations monographs

10 and 14, see Koopmans (1950) and Hood and Koopmans (1953). Papers in these

monographs applied the likelihood approach introduced by R.A. Fisher (Fisher, 1912,

1922) to, predominantly, a system of simultaneous equations where immediate feedback
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mechanisms or, otherwise stated, a set of jointly endogenous variables posed substantial

methodological challenges to estimate systems of equations. In the early and middle part

of the 1970s there were several shocks to this line of research. Data series exhibited novel

features like strong persistence and time varying volatility; new modeling like the vector

autoregressive approach was developed and novel simulation based inferential techniques

based on Importance Sampling and Markov Chain Monte Carlo were introduced. This

opened a wide set of new research lines that had substantial methodological and prac-

tical consequences for economic analysis, forecasting and decision strategies. Structural

economic models based on dynamic stochastic general equilibrium concepts, unobserved

component models allowing for time varying parameters and using data augmentation,

simulation methods and increased focus on the complete forecast distribution and in par-

ticular on the tails of the distribution like in Value-at-Risk are only a few examples in

this respect.

In the present chapter we sketch historical developments of Bayesian econometrics

from the early 1960s until 2014 by collecting and analyzing the publication and citation

patterns on Bayesian econometric papers in ten major econometric journals until the end

of March 2014. The number of pages written on Bayesian econometrics were recorded

as a percentage of total number of pages for each year for all journals. The results in-

dicate that journals which contain both theoretical and applied papers, such as Journal

of Econometrics, Journal of Business and Economic Statistics and Journal of Applied

Econometrics, publish the large majority of high quality Bayesian econometric papers in

contrast to theoretical journals like Econometrica and the Review of Economic Studies.

These latter journals published, however, some high quality papers that had a substan-

tial impact on Bayesian research. The journals Econometric Reviews and Econometric

Theory published key invited papers and/or special issues that received wide attention,

while Marketing Science shows an ever increasing number of papers since the middle 90s.

The International Economic Review and the Review of Economics and Statistics show a

moderate time varying increase. It is noteworthy that since the early 90s there exists an

upward movement in publication patterns in most journals probably due to the effect of

the ‘Computational Revolution’.

Next, a visualization technique is used to connect papers and authors around impor-

tant themes in theoretical and empirical econometrics. The proximity of topics that we

consider is defined by the number of times that the keywords or names appear together

or in relation to all keywords and names cited together. The results show the intercon-

nectedness of several topics of interest. Macroeconomics and finance literature is related

to simulation and filtering methods as well as methods dealing with model uncertainty.
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Macro models used for policy purposes are related to identification issues. Marketing

models are linked to flexible model and prior structures such as hierarchical Bayes and

Dirichlet processes. The information distilled from this analysis shows also names of au-

thors who contribute substantially to particular themes. This is followed by a discussion

of those topics that pose interesting challenges for discussion amongst Bayesian econome-

tricians. The effects of the computational revolution on Bayesian econometrics, advances

in several fields, such as flexible and unobserved component model structures, dynamic

models and forecasting, the issue of identification and prior information, as well as three

main debates between Bayesian and frequentist econometricians are presented. There is

probably not a subject area in the literature where everything goes smoothly. Bayesian

econometrics is no exception. We only summarize major debates and issues encountered

in the Bayesian econometrics literature in the latter part of the twentieth century. The

chapter ends with a list of important themes that are predicted to be a challenge for the

twenty-first century Bayesian econometrics. These refer to big data, model complexity,

parallel computing and model incompleteness.

Influential papers in Bayesian econometrics have been analyzed in Poirier (1989, 1992),

which provide quantitative evidence of the impact of the Bayesian viewpoint as measured

by the percentage of pages devoted to Bayesian topics in leading journals. We contribute

to this literature by extending the bibliographical data with more recent papers and

additional leading journals. Our contribution differs from the literature in several ways.

First, regarding the influential papers in the field, we consider an alternative measure,

the number of citations of each paper in addition to the percentage of pages devoted to

Bayesian topics. The impact of papers are found to be different according to the criteria

chosen for this purpose. Second, we define the set of influential papers in the field relying

on the references in Geweke, Koop and Van Dijk, (2011), who provide an up-to-date

set of references in the field with their respective subfields, such as macroeconomics and

computational advances. Third, we consider the clustering of papers in the field without

defining a measure for their influence. This analysis is based on online bibliographic

databases, and the results are not affected by the subjective definition of influential papers

in the field of Bayesian econometrics.

The chapter is organized as follows: In Section 2.2 some first Bayesian steps into the

field of econometrics are listed. Section 2.3 analyzes the publication and citation patterns

of the papers in our database. Section 2.4 visualizes the connectivity of the topics in those

papers, linking these to the key topics of interest during the period 1962–2014. Section

2.5 is devoted to several issues and debates that are pivotal in the history of Bayesian

econometrics. Section 2.6 contains the authors’ expectations about the future of Bayesian
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econometrics and concludes. We note that many more interesting Bayesian empirical

papers exist and are published in major economics journals. These are, however, outside

the scope of the present chapter.

2.2 Cowles Foundation Research and Early Bayesian

Econometric Steps

The Cowles Foundation Monographs 10 and 14, published in 1950 and 1953, respectively,

laid the foundations for modern inference in econometrics after the famous Haavelmo pa-

per (Haavelmo, 1944) on the probability approach to econometrics. Although Haavelmo

listed two interpretations of probability: the ‘frequentist’ concept and the ‘a priori confi-

dence’ one, see Haavelmo (1944) pp. 48, the first one was used henceforth in econometrics.

The focus in Monographs 10 and 14 was on developing the method of maximum likelihood

for systems of simultaneous equations. Identification issues, full information maximum

likelihood, limited information maximum likelihood, the corresponding numerical opti-

mization methods to find the maximum and also some basic time series problems were

analyzed. Among the contributors to this area are Koopmans (1945), Anderson (1947),

Anderson and Rubin (1949), Hurwicz (1950), Chernoff and Divinsky (1953) and Chernoff

(1954).

Much of this research followed the likelihood approach from R.A. Fisher. Although

Fisher rejected Bayesianism, he had an alternative: so-called fiducial inference (see Fisher

(1973) and Aldrich (1995) for a review), which was Fisher’s attempt to use inverse prob-

ability and to analyze the shape of the likelihood without stochastic prior information.

This has been characterized by Savage as: ‘A bold attempt to make the Bayesian omelette

without breaking the Bayesian eggs’ (Savage, 1961).

The frequentist interpretation of estimators obtained by using the likelihood approach

became known as the ‘classical approach’ in econometrics. As argued, in Cowles Foun-

dation Monograph 23, by Rothenberg, this classical approach has some very restrictive

assumptions, see Rothenberg (1973). First, for efficiency, accuracy, and credibility one

usually makes use of the Crámer-Rao lower bound of the variance of the estimator. This

holds only for unbiased estimators and is in most cases only asymptotically valid. Sec-

ond, one makes use of prior conditioning information as exact restrictions, which is often

unrealistic and overly restrictive. Third, this ignores completely the decision aspect of

inference.
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Given all the work on the implementation of the likelihood approach to econometrics

and the recognition of its limitations, it is very natural that the Bayesian approach would

follow.1 Among early contributions to this literature are three important books. The

first one is Raiffa and Schlaifer (1961) who introduced the concept of conjugate analysis

as a way to construct informative prior information on model parameters. The idea is

that the model was already in existence in the period before the data were observed or

alternatively that the model was in existence for related data sets in other countries or for

a different set of agents with similar features. A second book was Schlaifer (1959), later

summarized in Pratt et al. (1995), where practical decision problems were explained and

analyzed. Here a connection with the field of finance and business was made. Thirdly,

there came the very influential ‘Bible’ of analytical results in Bayesian econometrics by

Zellner (1971). All econometric models that were in use at that time were analyzed in

this classic book from a Bayesian perspective. Analogies and differences between the

classical and Bayesian approach were discussed, often using a weak or non-informative

prior approach.

Following these early Bayesian steps, there were several issues that attracted attention

in the literature. We document four of these issues in this section.

Rothenberg’s problem and natural conjugate priors

The natural conjugate family gives an analytically tractable and convenient family of prior

densities for the case of the standard linear regression model. This density is known as

the normal-inverted gamma density and it allows to update prior information using Bayes

theorem in a simple way: The posterior mean of the regression parameters is a weighted

average of prior mean and data mean with weights that are given as the relative accuracy

of prior and data mean, respectively.

However, for a system of regression equations the corresponding conjugate prior has

an important restriction on the prior variances of the regression equations parameters.

This can be shown as follows. Consider the system

Y = XΠ+ V, (2.1)

where Y and X are appropriate data matrices from T observations and Π is a pa-

rameter matrix and the columns of V are NID(0,Σ) where NID denotes the independent

1Note that in post World War-II econometrics one has, apart from the likelihood approach, the
(dynamic) regression methods and GMM as major schools of econometric inference. We only refer to the
likelihood approach in the present chapter.
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normal distribution. As shown in Rothenberg (1963), the likelihood of (Π,Σ|Y,X) can

be written as

f(Π,Σ|Y,X) ∝ |Σ|−T
2 exp

(
−1

2
tr Σ−1

(
(Π− P )′ (X ′X) (Π− P ) + TS

))
(2.2)

where P and S are the maximum likelihood estimators: P = (X ′X)−1X ′Y, S =
1
T
(Y −XP )′(Y −XP ).

A prior density that belongs to the conjugate family and that is proportional and of

the same functional form as the likelihood in (2.2) implies that the variance of πij is given

as

Var(πij) = σiiajj, (2.3)

where σii is the ith diagonal element of Σ and ajj is the jth diagonal element of (X ′X)−1.

It follows that one has the restriction

Var(πri)

Var(πsi)
=

Var(πrj)

Var(πsj)
, (2.4)

that is, the variances of the parameters in the rth equation have to be proportional to

the variances of the corresponding parameters in the sth equation. There is no a priori

economic reason why this mathematical restriction should be the case. This creates a

problem for inference in systems of equations, like Seemingly Unrelated Regression Equa-

tions (SURE) and Vector AutoRegressive (VAR) models, and it is known as ‘Rothenberg’s

problem’, see Rothenberg (1963, 1973).

In further research Drèze and Richard followed a path to limit this restriction by

either concentrating the analysis on a single equation within a system of equations which

is known as the Bayesian limited information approach, see Drèze (1976) and Bauwens

and Van Dijk, (1990) for details, or by extending the natural conjugate family for a system

of equations, see Drèze and Richard (1983). However cavalier these approaches were, the

restriction on the natural conjugate prior family is a severe one and different attempts in

research were started to free the analysis from analytical restrictions.

Monte Carlo gives freedom from analytical restrictions and allows for evalua-

tion of uncertainty of policy effectiveness

Monte Carlo simulation has freed the Bayesian approach from very restrictive model

structures: It allows Bayesians to apply their inference to a wide range of complex mod-
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Figure 2.1: Examples of complex (non-elliptical) posterior distributions

els in many scientific disciplines. Figure 2.1 shows examples of complex (non-elliptical)

posterior distributions in models for realistic problems in economics. The posterior dis-

tributions occur in finance (modeling daily stock returns), macroeconomics (modeling the

joint behavior of variables with a long run equilibrium relationship), and microeconomics

(modeling the effect of education on income), see Hoogerheide, Opschoor and Van Dijk,

(2012) and Baştürk, Hoogerheide and Van Dijk, (2013c).

Using novel simulation methods one can obtain reliable and accurate estimates of the

properties of interest of such posterior distributions. Importance Sampling, introduced

into statistics and econometrics by Kloek and Van Dijk, (1975) and later published as

Kloek and Van Dijk, (1978), or the independence chain Metropolis-Hastings algorithm,

Metropolis et al. (1953) and Hastings (1970), can be used.

Apart from this need to free the Bayesian approach from restrictive priors, there also

existed interest in evaluating uncertainty of policy effectiveness. An important example

was to obtain the posterior distribution of the multiplier in a system of simultaneous

equations, see Brainard (1967). Here one faces the issue that this multiplier is usually

a ratio or more general a rational function of structural parameters. The Monte Carlo

method approach gives here an easy operational approach to obtain the finite sample

distribution, see e.g. Van Dijk, and Kloek (1980).

Testing, signifying nothing, sequential testing and credibility of the final cho-

sen model

The focus on statistical testing in econometrics in the past fifty years has not yielded

substantial confidence in obtained results. The focus on statistical testing regularly means

that the researcher does not raise the issue whether the results matter from an economic

point of view. Statistically significant but economically almost meaningless is something
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that decision makers will not accept as a sound basis for policy analysis, see McCloskey

and Ziliak (1996) and The Economist (2004). A more fundamental statistical weakness of

the ‘classical approach’ is the testing of many different hypotheses in econometric models

by a sequential testing procedure. In the analysis it is usually not taken into account

that the distribution of the second test depends on the outcome of the first one and

so on for further tests. In the end a model is ‘accepted’ without stating a measure of

‘credibility’ of the final result. A natural Bayesian solution is to give weights to particular

model features by using Bayesian model averaging and pursue forecasting with a weighted

average of model structures. This line of research is shown in, e.g. Wright (2008) and

Strachan and Van Dijk, (2013).

Conditional probability statements on features of interest

Another fundamental problem with the classical approach is the difficulty of dealing with

the issue of conditional probability statements which is a concept that is widely used in

practice. Given a set of data decision makers are usually interested in the probability of an

unknown feature of a problem at hand. The earlier listed examples are clear indications:

how to hedge currency risk for international corporations given data on exchange rate

behavior; what monetary policy to be used in the face of a liquidity trap given data for

countries like Japan and the European Union; and which advertising policy given scanner

data about customer behavior are relevant. The simulation based Bayesian approach is

very suitable for such conditional probability statements.

These issues will be dealt with in more detail in section 2.5.

2.3 Exploratory Data Analysis

In this section we analyze the advance of Bayesian econometrics since the middle of the

1970s from a descriptive point of view. Specifically, we analyze how Bayesian econometrics

got in the mainstream and high quality econometric journals using the publication and

citation patterns of 999 papers in leading journals during the period between 1978 and

2014 (March). We select these papers on the basis of their contributions to theoretical

or applied topics in Bayesian econometrics and denote them by ‘Bayesian papers’. The

list of leading journals consists of 10 journals: Econometrica (Ectra), Econometric Re-

views (ER), Econometric Theory (ET), International Economic Review (IER), Journal of

Applied Econometrics (JAE), Journal of Business and Economic Statistics (JBES), Jour-

nal of Econometrics (JE), Marketing Science (MS), Review of Economic Studies (RES)

and Review of Economics and Statistics (ReStat). Our analysis extends the one from
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Poirier (1992) by including more journals and a longer period. We also make use of cita-

tion patterns. Detailed statistics of the papers considered in this section are provided in

Appendix 2.A, Tables A.1, A.2, A.3 and A.4.

2.3.1 Publication Patterns

The first criterion we use to analyze the advances in Bayesian econometrics is the percent-

ages of Bayesian pages in the leading econometrics and quantitative economics journals

that were listed above.

The top panel in Figure 2.2 presents the annual percentages of the pages allocated

to Bayesian papers for each journal. These percentages are usually below 30%, with

exceptions in ER, ET and MS. There are only two journal issues which have more than

40% Bayesian content. The ER issue in 1984 has four Bayesian papers constituting 44.93%

of the total number of pages with as most influential paper the one by Doan et al. (1984).

The 2007 issue of ER also has a high percentage of Bayesian pages, where 56.83% of the

issue is devoted to 18 Bayesian papers, including An and Schorfheide (2007) as one of the

longest papers.

Special issues yield the highest values reported in the top panel of Figure 2.2. These

are the ER issues in 1984, 1999, 2007; the ET issue of 1994 (on Bayes methods and unit

roots); the JE issue in 1991, and to a lesser extent the ones in 1985, 2004, and 2012.

The bottom panel in Figure 2.2 presents the average percentage of pages for Bayesian

papers in each journals over 5-year intervals. These average percentages provide general

publication patterns compared to the top panel of Figure 2.2 since the influence of special

journal issues related to Bayesian econometrics is now more limited due to the 5-year

averaging.

The bottom panel of Figure 2.2 shows that the influence of Bayesian econometrics

in terms of the percentage of allocated pages is time varying and journal dependent.

Journals such as Ectra and IER typically have low percentages of Bayesian pages. On the

other hand, JBES, JAE and MS typically have high percentages of Bayesian pages, with a

substantial increase in these percentages after 1990s. The set of journals with a large share

of Bayesian papers show that Bayesian inference is mainly present in applied papers rather

than theoretical papers. Figure 2.2 indicates two main clusters of journals in terms of

their focus on Bayesian econometrics. The first cluster consists of journals with relatively

low average number of percentages of Bayesian pages: Ectra, ET, IER, RES and ReStat.

The average percentages of Bayesian pages in these journals are less than 5%. The second

cluster consists of journals with relatively high average percentages of Bayesian pages:



Figure 2.2: Percentages of pages allocated to Bayesian papers for all journals
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of Bayesian papers for the period between 1978 and 2014 (March). In the bottom panel, the final period consists of 7
years. Abbreviations of journals are as follows: Econometrica (Ectra), Econometric Reviews (ER), Econometric Theory
(ET), International Economic Review (IER), Journal of Applied Econometrics (JAE), Journal of Business and Economic
Statistics (JBES), Journal of Econometrics (JE), Marketing Science (MS), Review of Economic Studies (RES) and Review
of Economics and Statistics (ReStat).



2.3 Exploratory Data Analysis 17

Figure 2.3: Rolling st. deviations for the number of Bayesian pages for all journals
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ER, JAE, JBES, JE and MS. The increased share of Bayesian pages is most visible for

MS, then for ER and JAE, particularly for the period after 1992. To a lesser extent,

this increasing pattern holds for Ectra, IER and RES. This general increasing influence of

Bayesian econometrics after 1990s can be attributed to computational advances making

Bayesian inference easier and the increased number of applied papers using Bayesian

inference.

In summary, a high cluster of published Bayesian papers and a low cluster appear,

where the low cluster refers to the more theoretical journals. Special issues contain more

Bayesian papers and a structural break, indicating an increasing number of Bayesian

papers, occurs since the early 1990s due the use of novel computational techniques.

One final point to note here is the variability in the number of Bayesian pages, which

is partly caused by the special issues: in Figure 2.3, we can indeed see an increase in the

standard deviation when a special issue in Bayesian Econometrics is published such as in

1984, 1999 and 2007 for Econometric Reviews and in 1994 for Econometric Theory.
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2.3.2 Citation Patterns and Impact

We next focus on citation patterns of papers in the ten journals, as an additional criterion

to define the advances in Bayesian econometrics after the 1970s.2

Not surprisingly, the data reveals an increasing pattern in the number of citations for

Bayesian papers thanks to its increasing popularity. Additionally, we observe a clearly

increasing pattern in the number of Bayesian papers cited over the years. These can

be observed in the top and bottom panel of Figure 2.4, respectively. Figure 2.5 is a

comparison of these series. We note three observations which stand out in Figure 2.4,

namely 1994, 1998 and 2007. Looking at the bottom panel in Figure 2.4, we infer that

the reason of the high citation number in 2007 is the high number of papers with modest

citation numbers rather than few influential papers with high citation numbers. In 1998,

there are fewer papers cited. However, the influential paper Kim et al. (1998) with 1459

citations contribute a lot to the high number of citations. Similarly, in 1994 the high

number of citations accompanied by not so many papers reveals that there is at least one

influential paper written in this year, which is indeed Jacquier et al. (1994) with 1347

citations.

The top and bottom left panels in Figure 2.7 present the number of citations for

papers in leading journals during the period between 1978 and (March) 2014. The top

and bottom right panels in the figure show the number of citations for a subset of these

papers, with at least 400 citations over the sample period. We note that three papers are

highly influential in the field with more than 1000 citations: Geweke (1989) (Ectra) with

1303 citations, Kim et al. (1998) (RES) with 1459 citations and Jacquier et al. (1994)

(JBES) with 1347 citations. These papers refer to computational advances and financial

econometrics with a focus on time varying volatility.

The top panel of Figure 2.6 shows that the impact analysis is substantially different

when we compare the citation pattern with the number of Bayesian pages. Although the

journals with a high share of Bayesian pages, ER, JAE, JBES, JE and MS, also have a

high share in the total number of citations, there are two high quality theoretical journals,

Ectra and RES, with a high influence in the field in terms of the citation numbers despite

their relatively low numbers of Bayesian pages. This high impact is more visible when we

focus on papers with more than 400 citations, shown in the figures on the right panel of

Figure 2.6. There are 28 papers satisfying this criteria. Note that ER has a large share in

total citations although its share in terms of the percentage of pages is more time varying.

2The citation numbers are collected using Google Scholar on 13–14 April, 2014, which are available
at http://scholar.google.com/.
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Figure 2.5: Histogram of citation numbers versus number of papers cited for all journals
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The bottom left and bottom right panels in Figure 2.6 show average citations of papers

over 5 year intervals for all cited papers in the journal list and for papers with at least

400 citations, respectively. We first note that the reported average number of citations

are naturally low at the end of the sample period, especially between 2008–2014, since

these papers are relatively new. When these recent papers are not taken into account, an

increasing pattern in the overall number of citations for Bayesian papers is visible: The

total numbers presented in the bottom panel of Figure 2.6 clearly increase between 1978

and 2002. These figures also show that Marketing Science papers started to be cited much

more heavily after 1996 and in general the 1990s bring more citations to each journal in

our data set.

In order to compare the influential papers in terms of their shares of pages and in

terms of the number of citations, we next consider two clusters of journals according to

publication patterns in section 2.3.1 and report the number of citations separately for the

journals in these clusters. Figure 2.7 presents the total number of citations for all papers

in leading journals and for a subset of influential papers with at least 400 citations for

journals classified in cluster 1 and cluster 2. Cluster 1 consists of journals with a relatively

low average number of Bayesian pages: Ectra, ET, IER, ReStat and RES. Cluster 2, on
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the other hand, consists of journals with a relatively high average number of Bayesian

pages: ER, JE, JBES, JAE and MS.

The left panel in Figure 2.7 shows that the journal classification in terms of the per-

centage of pages is informative about their influence in terms of citations. Papers in

cluster 2, journals with a high number of pages devoted to Bayesian econometrics, are

on average cited more than those in cluster 1. Despite this similarity, the right panel

in Figure 2.7 shows that highly influential papers with at least 400 citations are more

evenly distributed across cluster 1 and cluster 2 journals. Particularly, Ectra and RES

have papers that are highly cited.

We conclude that journals which contain both theoretical and applied papers, such

as JAE, JE and JBES, publish the large majority of high quality Bayesian econometric

papers. Theoretical journals, such as Ectra and RES, on the other hand, publish papers

which are highly influential and have a substantial impact on Bayesian research, although

the number of these papers are relatively small. Special issues of journals like Econometric

Reviews and Econometric Theory receive more citations than usual issues.

2.4 Subject Connectivity

This section considers connectivity of subjects in Bayesian econometric papers. The list

of scientific papers in Bayesian econometrics is extensive. We first consider a large set

of papers relying on digital archives in order to analyze subject connectivity. We use a

random sample of 1000 papers and key terms extracted from each paper provided by the

JSTOR digital archive in the field of Bayesian econometrics.3 We next refine this extensive

list of papers by focusing on the influential ones and summarize the connectivity of key

subjects based on this refined set. For each set, the proximities are defined by the number

of times that keywords or key terms appear together and in relation to their pairwise

concurrence.4

We consider two sets of influential papers in the field of Bayesian econometrics. The

first set is taken from Geweke, Koop and Van Dijk, (2011) and has more than 100 citations

according to Google Scholar or Web of Knowledge.5 This selection of papers uses expert

information, since the set of papers is based on the careful selection of the authors by

3http://www.jstor.org/
4The network maps we present are obtained from the VOSviewer program, available at http://www.

vosviewer.com and their software to address proximity, see Waltman et al. (2010); Van Eck and Waltman
(2010).

5http://scholar.google.com/, http://thomsonreuters.com/web-of-science/.
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Geweke, Koop and Van Dijk, (2011). The second set of influential papers are based on

the extension of Poirier (1992) presented in section 2.3.

Figure 2.8 presents the network and connectivity map for the key terms based on

1000 random papers in Bayesian econometrics, published since 1970. This connectivity

analysis is solely based on a random sample of papers that JSTOR provides. Three major

areas emerge from this connectivity analysis and these are presented in different colors in

Figure 2.8. The first cluster of keywords, plotted in dark and light green in the figure,

corresponds to theoretical topics, with related keywords of likelihood, moment, statistics,

assumption and probability. This cluster is naturally linked to all remaining clusters.

The second area, consisting of clusters colored in blue and purple, is centered around

the key terms ‘forecasting’ and ‘price’. This cluster shows that particularly forecasting is

central to the analysis of macroeconomic and financial data, such as (economic) growth,

exchange (rates), (financial) returns and interest (rates). Most common models for these

data include autoregressive models. (Forecast) horizon, regime (changes) and testing

are related and important issues for this area. The third area, shown in light and dark

red in Figure 2.8 has as most prominent key terms ‘market’, ‘choice’, ‘information’ and

‘equilibrium’. Other keywords in this area, such as decision, brand, profit, behavior,

equilibrium and utility signal market equilibrium models as well as choice models.

The connectivity analysis presented so far does not take into account the amount of

influence of each paper, the papers’ original keywords or any extra information on the

subject area. We next consider a refined set of influential papers in Bayesian econometrics,

based on the citations in Geweke, Koop and Van Dijk, (2011). Note that the topics and

the references covered in Geweke, Koop and Van Dijk, (2011) are divided to 9 chapters

according to the subfields: endogeneity & treatment (Chapter 1), heterogeneity (Chap-

ter 2), unobserved components & time series (Chapter 3), flexible structures (Chapter

4), computational advances (Chapter 5), micro & panel data (Chapter 6), macro & in-

ternational economics (Chapter 7), marketing (Chapter 8) and finance (Chapter 9). We

consider keywords of Bayesian papers cited in each chapter, and include the corresponding

subfield as an additional keyword for each paper.

Figure 2.9 shows that the subfields defined in Geweke, Koop and Van Dijk, (2011) are

connected to several keywords. This is an expected outcome since we use the chapter infor-

mation in Geweke, Koop and Van Dijk, (2011) as ‘expert knowledge’ to relate each paper

to a subfield. Besides these subfields, sampling techniques such as the Gibbs sampler,

Markov Chain Monte Carlo (MCMC), Metropolis Hastings (MH) algorithm and impor-

tance sampling have very large weights indicated by the sizes of the circles in Figure 2.9
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and they lie in the middle of the keyword connection map. This indicates that sampling

algorithms are central to research in all subfields of Bayesian econometrics covered here.

An interesting result from Figure 2.9 is the connectivity of Bayesian methods and

economic subfields. Papers in the area of marketing are closely related to flexible model

structures (flexible functional forms), and particularly hierarchical Bayes, Dirichlet pro-

cesses, panel data methods and heterogeneity. Given the increased amount of consumer

data in the marketing field, more complex model structures which can handle heterogene-

ity across consumers are becoming important for this field.

Figure 2.9 also indicates a strong relation between the macroeconomics and finance

literature and Bayesian methods. First, the topic of forecasting is central for macroeco-

nomics and finance as this keyword occurs very frequently and is linked to both areas.

Second, state space models, particle filters, Monte Carlo methods, Kalman filter, predic-

tive likelihood analysis and Bayesian Model Averaging (BMA) are closely related to the

macroeconomics and finance literature. These close relations indicate the need for sophis-

ticated simulation techniques, such as particle filters, for the estimation and forecasting

of complex models used for financial and macroeconomic data. Furthermore, the issue

of (parameter) identification is central for macro models used for policy analysis, such as

the VAR, Impulse Response Functions (IRF), and business cycle models. This relation is

shown in the lower right corner of Figure 2.9.

We finally note that computational advances have a large weight according to Fig-

ure 2.9. This topic is naturally linked to simulation methods, as speeding up computa-

tions is a central topic for the wide applicability of simulation methods. Computational

advances are central especially for finite mixture models, and are in close relation to the

areas of marketing and macro models.

We next select the influential papers in Bayesian econometrics based on the highly

(more than 100 times) cited papers published in leading journals in section 2.3, and

analyze the connectivity of the authors and the keywords of each paper. The connectivity

of keywords and authors of these papers are shown in Figure 2.10 using a heatmap of the

terms’ density estimated by the concurrence of each keyword and author. We note that

we leave some authors, such as Atkinson, Dorfman, Gelfand, Griffith and Trivedi, outside

Figure 2.10 for visualization purposes. Despite a high number of papers by these authors,

our clustering method separates these authors from the central part of the heatmap, most

probably due to the diversity of the keywords in these authors’ papers.

According to Figure 2.10, MCMC is central for Bayesian inference and Bayesian anal-

ysis. Macroeconomic and finance topics, such as stochastic volatility, time series, DSGE

and option pricing, occur frequently in Bayesian econometrics. Marketing and choice mod-
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els also occur frequently since the second dense area in the heatmap is centered around

keywords such as pricing, choice model and advertising.

2.5 Topics, Issues and Debates

In this section we distill topics from section 2.4 where Bayesian econometrics has shown

tremendous progress by itself and also compare it to the frequentist approach. We continue

with a set of issues where Bayesian and Non-Bayesian econometricians disagree on and

finally we list two debates that Bayesian econometricians hold amongst themselves.

2.5.1 Topics

In this subsection we summarize the advances in five topics which are shown to be central

to Bayesian econometrics in section 2.4.

The Computational Revolution

Applicability of Bayesian methods in econometric analysis relies heavily on the feasibil-

ity of the estimation of models. For most econometric models of interest the posterior

distribution is not of a known form like the normal one, and analyzing this distribution

and its corresponding model probability using analytical methods or numerical integra-

tion methods is infeasible. Monte Carlo (MC) methods have been very useful for tackling

these problems. One may characterize this as a ‘Computational Revolution’ for Bayesian

inference leading to statements like ‘Monte Carlo saved Bayes’. The popular Markov

Chain Monte Carlo method, known as Gibbs sampling, contributed in particular to this.

Therefore ‘Gibbs saved Bayes’ is a more appropriate statement.

There are at least three features of MC simulation techniques that make it attractive

for Bayesian inference. First, there exists the traditional one of being able to directly

simulate a nonlinear function of parameters of a model. Obvious examples are: Given a

set of generated draws from parameters of a structural model one can directly evaluate the

distribution of the multiplier to study the uncertainty of policy effectiveness; and given

a set of generated draws from the parameters of a dynamic model one can obtain the

distribution of the eigenvalues to study the stability of that system and the random walk

nature of the process. These are examples of direct simulation of a model feature given

appropriate parameter draws from a model. A second, more methodological feature is

how to obtain these parameter draws from models where the posterior is not of a known

form and it is not known how to generate draws directly from the posterior. Research
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in this topic focuses on indirect sampling methods using approximations to the posterior

density labeled as importance densities or candidate densities. At first, Importance Sam-

pling (IS), see Hammersley and Handscomb (1964), was introduced in Bayesian inference

by Kloek and Van Dijk, (1975) and published in Kloek and Van Dijk, (1978), further

developed by Van Dijk, and Kloek (1980, 1985) and given a complete detailed treatment

in Geweke (1989). The construction of an approximately correct importance function in

high dimensions is not trivial and given that the theory of Markov chain Monte Carlo

(MCMC) was developed by Metropolis et al. (1953) and Hastings (1970), and extended

in several influential papers such as Tierney (1994), this simulation method became the

popular one. A major pioneering advance in this first computational revolution is Gibbs

sampling developed in Geman and Geman (1984) and extended in Tanner and Wong

(1987) and Gelfand and Smith (1990). See Robert and Casella (2004) for a recent and

detailed discussion on the Gibbs sampling method and its extensions. The use of sampling

methods turned out to be crucial for a third feature of Monte Carlo. Limited dependent

variable models including Probit and Tobit models and unobserved component models, in

particular State Space models using the Kalman filter, became popular due to their added

flexibility in describing nonlinear data patterns. However, these models have an integral

in the likelihood that refers to the underlying unobserved continuous data for the limited

dependent variable models and unobserved state for the state space models. Bayesian

simulation methods that were already used for integration in the parameter space can

easily be extended and are the natural technical tools to also integrate these unobserved

data and states.

These three features of Monte Carlo contributed greatly to the development of Bayesian

econometrics, however, Monte Carlo became operational only with the improvements in

the hardware of computing power, i.e. how fast a computer can perform an operation. The

issue of computing power is central in econometric analysis in general, but it is even more

central to Bayesian econometrics when the MC methods are applied. The improvements

in computing power since the 1970s are clearly not negligible, but a more recent improve-

ment has been observed with the introduction of clusters of computers, super computers

and the possibility of performing operations in Graphical Processing Units (GPUs). These

computing power improvements have been immediately adopted in the Bayesian econo-

metrics literature. Using such computing power efficiently, however, mostly requires a

careful engineering or modifications in the posterior sampler. Certain sampling methods,

such as the importance sampler, are naturally suited for efficient use of computational

power, see Cappé et al. (2008) for a discussion. A recent study specifically focusing on

enabling Bayesian estimation using the GPU is Durham and Geweke (2013).
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Flexible structures, unobserved components models and data augmentation

in macroeconomics and finance

Unobserved components models constitute a field in econometrics where Bayesian infer-

ence is heavily used. As an example we focus on the state space models in time series

analysis. The reason for the extensive use of Bayesian methods in this context is that

simulation based Bayesian inference allows for much flexibility in the model structure as

well as in the distributional assumptions. Flexible nonlinear structures can be modeled by

introducing an extra latent space in such a way that the conditional structure of the model

is linear given this unobserved state, see the local level model from Harvey (1990). Then

from an estimation point of view, since the unobserved patterns underlying the behavior

of observables need to be integrated out of the model, Bayesian integration methods can

be used for inference and are very suitable for this class of models. That is, from the in-

ference point of view, Bayesian inference takes the uncertainty of the unobserved patterns

into account while estimating the model parameters. This is an important issue where

the frequentist approach is more restrictive since the unobserved patterns are estimated

conditional on the estimates of the model parameters (one takes the mode of the distri-

bution rather than the whole distribution). Carlin et al. (1992) provide an exposition of

the estimation methodology based on simulation to estimate the unobserved components

and the model parameters jointly. Shortly after, Jacquier et al. (1994) show how an exact

inference, unlike the quasi maximum likelihood approximation, can be obtained for the

stochastic volatility models, a popular class of models in finance for modeling time varying

volatility, using a similar approach. While the basic Bayesian inference principle remains

unchanged, more efficient simulation algorithms are proposed in Carter and Kohn (1994),

Frühwirth-Schnatter (1994), Carter and Kohn (1996), De Jong and Shephard (1995) and

Koopman and Durbin (2000).

Although standard models using unobserved components allow for only continuous

changes, models with discrete changes in parameters allowing for structural changes or

discrete Markov processes are also feasible using Bayesian techniques. Gerlach et al.

(2000) and Giordani and Kohn (2008), among others, provide efficient algorithms for

obtaining Bayesian inference in case of such discrete changes in parameters. Interesting

applications on regime analysis in economics are provided by Paap and Van Dijk, (1998)

and Sims and Zha (2006).

When the observed variables to be modeled using unobserved components do not follow

the standard normal distribution or dependence structures in the model are not linear,

other estimation strategies, denoted as Particle Filter or Sequential Monte Carlo tech-

niques that approximate the target distribution to be estimated well, can be conducted.
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Bayesian inference backed up with advanced simulation algorithms have proved to be very

useful in these circumstances, see for example Gordon et al. (1993), Pitt and Shephard

(1999), Andrieu and Doucet (2002) and Andrieu et al. (2010). This type of inference is

also the key ingredient of the volatility modeling in finance and micro founded macroe-

conomic models, among others, if the researcher does not resort to linear approximations

to estimate the model. This makes it feasible to obtain exact online inference in these

settings providing more accurate outcomes. Omori et al. (2007), Fernandez-Villaverde

and Rubio-Ramirez (2007) and Fernandez-Villaverde and Rubio-Ramirez (2008) are some

examples of this approach.

Choice models, robustness and policy effectiveness

Hierarchical models that refer to choice processes are a prominent research topic in recent

decades due to the, often, unobserved heterogeneity of individual agents in commodity

and labor markets. Flexibility in structure and distribution like the Dirichlet process are

important features of the modeling process. Latent processes such as Probit models are

used to describe unobserved components in models. Panel data are more and more used

with scanner data giving rise to massive computing. Basic papers that deal with these

issues are McCulloch and Tsay (1994); Rossi et al. (1996) and Hansen et al. (2006). More

references are given in Geweke et al. (2011) chapter 8.

Econometric issues in this area are the presence of endogenous regressors, treatment

effect problems, latent variables and many parameters. Shrinkage priors are regularly

used in this class of models. Gibbs-based MCMC sampling are standard but new simu-

lation based Bayesian techniques are developed using Dirichlet processes in order to gain

robustness of results. It is expected that parallel processing will become important in this

area of Bayesian research.

Instrumental variables

One of the prominent issues in econometric analysis is endogeneity arising from the cor-

relation between a right hand side variable in an equation and the disturbance of that

equation, the so-called direct feedback mechanism. A conventional solution to this prob-

lem is the use of instrumental variables (IV), equivalently IV regression models, see e.g.

Sargan (1958), Goldberger (1972), and Bowden and Turkington (1990) for a detailed

review.

Instrumental Variable (IV) regression model is a single equation Simultaneous Equa-

tions Model (SEM). SEMs, incorporating possibly complex feedback mechanisms between
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series, have been analyzed in the Cowles Commission monographs (Koopmans, 1950; Hood

and Koopmans, 1953) and have been widely employed to analyze the behavior of markets,

macroeconomic and other multivariate systems.

Bayesian analysis has been popular in these class of models due to the parameter

identification issues plaguing inference in these models, in line with identification issues

in SEMs in general. Bayesian analysis of the IV regression models are introduced by

Lindley and El-Sayyad (1968), Drèze (1976) and Drèze (1977). Earlier literature suggests

that the posterior densities in these class of models under flat priors may be improper,

see e.g. Zellner, Bauwens and Van Dijk, (1988) and Bauwens and Van Dijk, (1990). An

exception of this result is the case of over-identification where the posterior densities are

shown to be proper under flat priors as shown in Zellner, Ando, Baştürk, Hoogerheide

and Van Dijk, (2014).

Due to the identification issues in IV regression models, the use of alternative prior

structures, such as the Jeffrey’s prior, are proposed in Kleibergen and Van Dijk, (1998)

and Hoogerheide, Kaashoek and Van Dijk, (2007). More recent advances in the Bayesian

estimation of these models are the introduction of semiparametric models by Conley

et al. (2008) and Florens and Simoni (2012) among others, and efficient posterior sampling

algorithms as in Zellner, Ando, Baştürk, Hoogerheide and Van Dijk, (2014). For a detailed

discussion of Bayesian approaches to IV and many examples, we refer to Lancaster (2004)

and Rossi et al. (2005).

Dynamic models and forecasting

Bayesian analysis has become a dominant forecasting and counterfactual analysis tool

in recent decades. There are four main reasons for this phenomenon. First, many of

the complex, otherwise non-estimable, models can be estimated using simulation based

Bayesian methodology. Perhaps, the most important example of these models includes

the class of structural micro founded macroeconomic models, such as Dynamic Stochastic

General Equilibrium models, that are used both for policy analysis and for forecasting, see

for example Smets and Wouters (2003), Smets and Wouters (2007), An and Schorfheide

(2007). Currently, many of the central banks employ such models to obtain short and long

term projections of the economy. An advantage of the Bayesian methodology is that it

provides a solid statistical ground for efficient analysis using these structural models. As

Bayesian inference provides the distribution of many key parameters that play a crucial

role in economic analysis it is often used as a tool for counterfactual analysis. For in-

stance, the questions such as ‘if quantitative easing were not conducted in US, would the

course of the recession differ?’ could be answered by estimating relevant structural mod-
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els. Bayesian analysis provides a statistically coherent tool for employing counterfactual

analysis by forecasting under counterfactuals.

Second, prior distributions can play an integral part of the forecasting especially for

the overparametrized models. Vector Auto Regression models (VAR) are major examples

where Bayesian inference facilitates forecasting using the prior distributions for shrinking

the parameters towards zero and thereby decreasing the dimensionality of the models.

Decreasing the dimension of the overparametrized models using clever prior distributions

has proved to be very useful in many applications. Prominent examples of this approach

constitute Doan et al. (1984), Kadiyala and Karlsson (1997), Banbura et al. (2010).

Third, Bayesian methodology takes the parameter uncertainty into account which may

be of crucial importance in many applications. This enables researchers to obtain the en-

tire predictive distribution rather than point forecasts based on the mode of the parameter

distribution as in the frequentist approach. An important advantage of this feature is that

different parts of the predictive distribution can be analyzed easily. This yields an obvi-

ous advantage for the analysis of various types of risk in finance and macroeconomics. A

recent example is given in Baştürk, Çakmaklı, Ceyhan and Van Dijk, (2013b) where the

probability of deflation is evaluated for the US.

Fourth, the Bayesian methodology provides a natural and statistically solid way to take

model uncertainty into account and to combine models to increase the predictive ability of

many competing models. Bayesian model averaging technique provides one elegant way to

do so, see for example Min and Zellner (1993), Fernandez et al. (2001), Avramov (2002),

Cremers (2002) and Wright (2008). Recent advances in Bayesian model combination also

allows to combine models where the model space is not complete implying that none

of the competing models might be the true model. In that case, optimal combinations

are proposed in Geweke and Amisano (2010) and Geweke and Amisano (2011). For a

recent example where Sequential Monte Carlo is used to obtain density combinations from

different model structures we refer to Billio, Casarin, Ravazzolo and Van Dijk, (2013).

2.5.2 Issues

We next summarize three issues in Bayesian econometrics that non-Bayesian repeatedly

referred to in the literature, and we discuss the advances in Bayesian econometrics re-

garding these issues.
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Identification, the value of prior information and model evaluation

The choice of a reasonable informative prior distribution is a crucial part of the Bayesian

analysis and often subject to criticism by frequentist econometricians. However, sensible

prior distributions provides valuable improvements in inference for many of the economet-

ric issues that are hard to tackle without it. Hence, it is a bless rather than a curse. Prior

distributions play a key role in many aspects such as identification and incorporation of

prior knowledge or evidence from other studies, dimension reduction and forecasting, and

nonparametric Bayesian inference.

In many cases, data are not sufficiently informative about the appropriate parameter

values and may yield similar likelihood values with different parameter combinations,

which is referred to as ‘the weak identification problem’. Weak identification occurs

in models with nearly reduced rank, which occurs in simultaneous equations models,

instrumental variable regression models, dynamic models with cointegration and in factor

models. Weak identification gives usually irregular behavior of the likelihood; see papers

by Bauwens and Van Dijk, (1990), Kleibergen and Van Dijk, (1994), Kleibergen and Van

Dijk, (1998) and Hoogerheide, Kaashoek and Van Dijk, (2007). In such cases, assigning

reasonable priors from other studies or other evidence alleviate the identification problem

since Bayesian inference incorporates prior knowledge with the data information using

the Bayes rule. This is often used in micro founded macroeconomic studies where priors

are constructed using economic theory or from other studies or from micro data such

as households surveys, see for example Del Negro and Schorfheide (2008). Another well

known example of prior information is the use of reasonable regions in the parameter

space, restricted by inequality conditions. Frequentist inference is extremely difficult

using such restrictions. Examples of Bayesian inference where the implied prior on the

range of an economics multiplier or a prior on the length of the period of oscillation of

the business cycle yield plausible restrictions are given in Van Dijk, and Kloek (1980) and

Harvey, Trimbur and Van Dijk, (2007).

One important issue is the existence of the posterior distribution and its moments

in case of weak or noninformative priors and an almost flat likelihood. Many Bayesians

argue that the posterior distribution does not exist in such a case. However, Zellner,

Ando, Baştürk, Hoogerheide and Van Dijk, (2014) shows that this may not be correct

and give very weak conditions for existence of moments of zero and higher order for

the famous weak instrument problem. Priors play an instrumental role in forecasting

especially when the models are overparametrized. Often overparametrized models are

condemned with poor forecasting performance as any additional parameters exploits the

data information further and yielding prediction uncertainty. To tackle this problem
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sensible prior distributions are assigned on parameters shrinking those parameters that

are not informative towards zero and thereby decreasing the dimension of the problem.

In macroeconomic forecasting the priors proposed by Doan et al. (1984) have become a

standard tool among econometricians in academia and in other institutions such as central

banks. In more general cases, many tailored priors are used for shrinkage of the model

parameters towards zero and therefore they are efficiently used in variable selection when

there are many candidate variables to select from. Prominent examples include, George

and McCulloch (1993), Ishwaran and Rao (2005) and Park and Casella (2008) among

others.

Prior distributions are also the key ingredients for flexible modeling strategies in

Bayesian analysis. This is especially of key importance for density estimation. Bayesian

nonparametric analysis is one evolving area where such prior distributions or processes

are heavily used. While some of the theoretical achievements were already accomplished

during 1970s, see Ferguson (1973), Antoniak (1974) for example and Sethuraman (1994)

for a more recent paper, extensive use of such priors were only possible with the advance of

computing power. Indeed with increasing computing power simulation schemes used for

Bayesian nonparametric inference proved to be very useful for such complex analysis, see

for example Escobar and West (1995), Neal (2000) and Walker (2007). Currently, many

applications have emerged in different fields using such flexible prior distributions, see

for example Chib and Hamilton (2002); Hirano (2002); Griffin and Steel (2004); Jensen

(2004); Jensen and Maheu (2010).

Lindley’s paradox - or Bartlett’s or Jeffreys’ paradox; see Lindley (1957) and Bartlett

(1957) - implies that one has to choose very carefully the amount of prior information

compared to the amount of sample information, when comparing alternative hypotheses

on model structures with the intention to let the information from the data in the likeli-

hood dominate that of the prior. Typically a naive or malevolent researcher could ‘force’

the posterior probability of a certain model M, the ‘restricted model’ in case of two nested

models, to tend to go to unity by letting the priors in all alternative models tend to diffuse

priors, thereby decreasing the marginal likelihoods of all alternative models, even if the

particular model M does not make sense and poorly describes the data. In an attempt to

make the posterior model probabilities ‘fair’, one could use predictive likelihoods instead

of marginal likelihoods; see Gelfand and Dey (1994), O’Hagan (1995), and Berger and

Pericchi (1996). However, the use of predictive likelihoods brings several questions and

issues. First, one must choose the training sample and the hold-out sample. Examples

of important questions are: How many observations are included in these samples? Is

one training sample used or does one average over multiple (or all possible) training sam-
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ples? In the latter case, what does one average: e.g., marginal likelihoods, logarithms

of marginal likelihoods, Savage-Dickey Density Ratios or posterior model probabilities?

Second, if one chooses to average results over multiple (or all possible) training samples,

then the computing time that is required for obtaining all Monte Carlo simulation re-

sults for all training samples may be huge. In other words, the Lindley paradox and

the computation of predictive likelihoods enlarge the relevance of simulation methods

that efficiently provide reliable and accurate results in case of non-elliptical credible sets.

A suitable method must deal with large numbers of different non-elliptical shapes in a

feasible computing time. For time series models computing the marginal likelihood for

a random subsample implies that the estimation must be performed for an irregularly

observed time series (with many ‘missing values’), which is typically only feasible using

an appropriate formulation and estimation of a state space model. In future research

computationally efficient and accurate simulation methods need to be developed here.6

Dynamic inference and nonstationarity

Dynamic inference and methods to handle nonstationary data constitute a second Bayesian

topic subject to criticism by frequentist econometricians. As a start we summarize the

perfect duality between Bayesian inference in the parameter space and frequentist infer-

ence in the sample space for the well-known class of the linear regression model y = Xβ+ε.

In both frequentist and Bayesian econometrics, the parameter β has a student-t density.

However, the interpretations are different. A graphical illustration of the difference for

this model is provided in the left panel in Figure 2.11. Table 2.1 presents a summary of

the duality and differences between Bayesian and frequentist inference. In practice one

finds that many empirical researchers are ‘closet’ Bayesians in interpreting the obtained

value of a t-test as indicating possible positive strength of the empirical result. In the

strict frequentist sense one can only reject a null hypothesis if there is sufficient evidence

for it.

This equivalence breaks for dynamic regression models. In inference about station-

ary dynamic models, while Bayesian econometrics suggests student-t density for the pa-

rameters, the frequentist econometrics has finite sample bias problems. This divergence

between the Bayesian and the frequentist inference is also observed for nonstationary

dynamic models, see Sims and Uhlig (1991). In the frequentist case, the inferential state-

ment: ‘No falsification of the Null Hypothesis of a Unit Root leads to the acceptance

6Part of this paragraph is taken from Van Dijk, (2013).



Table 2.1: Duality and differences between Bayesian and frequentist inference

Classical inference Bayesian inference

Parameters β are fixed unknown constants
Parameters β are stochastic variables. One
defines a prior distribution on parameter
space.

Data y are used to estimate β and check
validity of postulated model, by compar-
ing data with (infinitely large, hypotheti-
cal) data set from model.

Data y are used as evidence to update state
of the mind: data transform prior into pos-
terior distribution using the likelihood.

Objective concept of probability: Probabil-
ity is the fraction of occurrences when the
process is repeated infinitely often.

Subjective concept of probability: Proba-
bility is a degree of belief that an event oc-
curs.

One can use the maximum likelihood esti-
mator as an estimator of β.

One uses Bayes’ theorem to obtain the pos-
terior distribution of β. One can use E(β|y)
or minimize a loss function to estimate θ.

R2 is used to compare models.
Model comparison is carried out by using
posterior odds ratio.

Figure 2.11: Frequentist versus Bayesian econometrics

Static inference Dynamic inference
(Sims and Uhlig, 1991)
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of the Unit Root’ yields fragile and often incorrect conclusions, for example, if a break

occurs in the series. That is, several alternatives may be more plausible.

Sims and Uhlig (1991) and Schotman and Van Dijk, (1991b), Schotman and Van Dijk,

(1991a) suggest that Bayesian inference for models with unit root is more sensible, as

well as much easier to handle analytically, than the classical confidence statements. Even

under the assumptions of linearity and Gaussian disturbances, and even if conditioning on

initial conditions is maintained, classical small-sample distribution theory for autoregres-

sions is complicated. Classical asymptotic theory breaks discontinuously at the boundary

of the stationary region. Therefore, the usual simple normal asymptotic approximations

are not available. The likelihood function, however, is well known to be the same in au-

toregressions and non-dynamic regressions, assuming independence of disturbances from

lagged dependent variables. Thus inference satisfying the likelihood principle has the

same character in autoregressions whether or not the data may be non-stationary. The

illustration of the likelihood for this autoregressive model in Sims and Uhlig (1991) is

given in the right panel of Figure 2.11. Phillips (1991) stresses the fragility of Bayesian

inference to the specification of the prior and warns against the mechanical use of a flat

prior. Schotman and Van Dijk, (1991b) present a solution to this problem in a different

parameterizations of this model. Schotman and Van Dijk, (1991a) suggest to use posterior

odds test (for the choice between a unit root model and an AR(1) stationary model). In

the Bayesian approach, a unit root is not a testing problem but a choice problem on the

relative weights of two states of nature: the stationary and the nonstationary case, see

Sims and Uhlig (1991). One can use these weights in evaluating forecasts and impulse

response functions. De Pooter, Ravazzolo, Segers and Van Dijk, (2009) suggest to use the

Schotman-van-Dijk (SVD) prior in this context.

The difference between Bayesian and frequentist econometrics is particularly apparent

for the case of multivariate dynamic models with possible nonstationarity. Kleibergen and

Van Dijk, (1993) propose a Bayesian procedure to inference and show that by using flat

priors, the marginal posteriors of the cointegration vectors are ill-behaved when certain

parameters become non-identified. This problem also plagues standard frequentist infer-

ence. Kleibergen and Van Dijk, (1993) solve this problem by proposing the Jeffrey’s prior.

The key problem with the frequentist approach is that a sequential testing procedure is

used to determine the number of stationary and the number of nonstationary relations,

in other words how many stable and unstable relations exist. In the Bayesian approach

weights can be evaluated for each member of the set of stable and unstable relations.

Forecasts can be made and impulse responses evaluated with a weighted average of such
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relations using marginal and predictive likelihoods, see Wright (2008) and Strachan and

Van Dijk, (2013) for details.

Vector autoregressive versus structural modeling

Given that in the early 1970s oil price shocks and high inflation affected macroeconomic

time series both in levels and volatility, the existing classes of econometric models often

based on Keynesian structures did not fit and forecast well. In the words of Christopher

Sims these models were not ‘realistic’. In his 1980 paper in Econometrica, Sims advo-

cated the use of Vector Autoregressive Models (VAR) to describe better the time series

patterns in the data. One may characterize his work as: Sims against the ‘Econometric

Establishment’. However pragmatic the VAR approach was, there quickly were discus-

sions on the fact that the unrestricted VAR had the curse of parameter dimensionality

or otherwise stated an over-parametrization danger. Several approaches to overcome this

criticism were developed of which we discuss the following ones. One approach is to make

use of shrinkage priors that were of great help in forecasting. This class of priors be-

came known as the Minnesota prior from Doan et al. (1984). A useful alternative is the

dummy based observation prior due to amongst others Kadiyala and Karlsson (1997)).

In the late 1990s structural economic priors Del Negro and Schorfheide (2004) came into

existence parallel to the use of more structural VAR models like the DSGE model from

(Smets and Wouters, 2007) and many other Structural VAR’s. This latter topic has been

discussed before. Nowadays structural VARs with informative priors are used everywhere

in macroeconomics in academia and professional organizations both for forecasting and

policy analysis. Given the recent economic crisis it is clear that this class of models needs

to be developed further to include financial sectors.

2.5.3 Debates

This section summarizes a major debate between Bayesian econometricians, namely the

choice of objective versus subjective econometrics. We then summarize the attempts to

improve communication between statistics and econometrics.

Objective versus subjective econometrics

In general, probabilities are not physical quantities like weight, distance, or heat that one

can measure using physical instruments. As De Finetti (1989) suggested, ‘Probabilities

are a state of the mind’. Therefore, in general Bayesians are subjectivists and probabilities

are personal statements. However, some are more subjectivist/personal than others.
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Table 2.2: Objective versus subjective econometrics

Objective Subjective
Let the model speak: analyze the shape of the likelihood Everything is personal

Scientific evidence dominates Personal probabilities should be solicited

Experts opinion may fail Experts opinions matter
Reach a large public

The alternative, objectivist, viewpoint is based on the idea that experts opinions may

fail, and aims to ‘Let the model speak’ in reporting scientific evidence. This viewpoint,

due to limited inclusion of personal or expert statements, reaches a large public. The

subjective viewpoint, on the other hand, argues that even when experts opinions fail, the

likelihood will show that this prior is not relevant. A brief summary of the differences

between the subjectivist and objectivist viewpoints are provided in table 2.2.

In conclusion, there exist ‘true’ Bayesian econometricians who belong in the right hand

column of table 2.2; Instrumental and pragmatic Bayesian econometricians who belong

more in the left column of table 2.2; Pragmatic Bayesian econometricians and ‘Closet’

Bayesian econometricians those that use regression outcomes and talk about ‘strongly

significant’ t-values and ‘accept’ the null hypothesis. They all apply Bayesian techniques

nowadays!

Communication between Statistics and Econometrics

Statistics and Econometrics has had a difficult relationship, with several switches in the

past 50 years, due to the fact that econometric models are high-dimensional while statis-

ticians prefer a maximum of 3 dimensions. Early statistics was applied to economic time

series while recent statistics is applied more to biology and is becoming very computa-

tional. Econometrics is more model-oriented with a large number of parameters.

There have been attempts to construct bridges between statistics and economet-

rics. Among these are the Seminar on Bayesian Inference in Econometrics and Statis-

tics (SBIES) that was pioneered by Arnold Zellner from 1970 onwards and now actively

steered by Siddharta Chib7, the European Seminar in Bayesian Econometrics (ESOBE)

that started in 2010 by Herman K. van Dijk8 and the Economics, Finance and Business

7apps.olin.wustl.edu/conf/sbies/Home/
8www.esobe.org/
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Section (EFAB) of the International Society of Bayesian Analysis (ISBA) that was started

in 2013 by Mike West.9

2.6 Conclusion

Inspired by the path that Bayesian econometrics has followed for the last half century,

this section presents the authors’ personal expectations of the important topics/subjects

for the future of Bayesian econometrics in the 21st Century. One such prediction is that

‘the second computational simulation revolution’ where efficient information distillation

from ‘big data’ with sophisticated Bayesian methodology using parallelization techniques

is going to play an important role. Another topic that is predicted to gain popularity

is complex economic structures with nonlinearities and complete predictive densities. A

third topic that is expected to have importance in the future is the analysis of implied

model features, such as risk or instability due to diverging ratios, and decision analysis.

Finally, model incompleteness, which refrains from the assumption that the true data

generating process is in the defined model set, is predicted to be important topics in

Bayesian econometrics, see Geweke (2010).

Besides focusing on important topics in Bayesian econometrics, we further predict that

the influence of Bayesian econometrics in the econometrics field will continue to increase

over time. This final prediction is in line with the statement ‘Econometrics should always

and everywhere be Bayesian’ in Sims (2007). We refer to Sims (2007) for a detailed

discussion on this topic and on how Bayesian approaches might become more prevalent

in several areas of economic applications.

We end this chapter with a bit of a game. The citation numbers we analyze for

Bayesian papers can be related to the h-index of authors, a conventional measure for

the impact of published work by scholars, see Hirsch (2005). Nowadays, the h-index

is sometimes used in the career path and promotion stages of young researchers. We

employ a simple simulation study to assess the expected h-index of a ‘random Bayesian’

publishing a predefined number of papers in the leading journals we consider. In order to

assess this expected h-index, we consider a random sample of size J from the 999 papers

in our database and calculate the h-index. The average h-index for 1000 such random

samples is used to approximate the expected h-index for an author with J publications

in leading journals. For a young Bayesian econometrician who is the author of 5 such

publications, we find that the h-index is approximately 4, i.e. very high compared to the

total number of publications of this author, and the expected number of citations for

9bayesian.org/sections/EFaB/bylaws
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this author’s papers is 334. For an author, coming up for tenure, with 12 publications

in leading journals the expected h-index is approximately 9 with an expected number of

citations of 765. For a very established author with 50 publications in these journals,

the expected h-index is approximately 25, with an expected number of citations of 1644.

The papers and the journals considered therefore have a considerable impact in the field,

according to the calculated h-indexes. Conditional upon our data set we conclude that

young Bayesian econometricians have a very good chance to follow an academic career

successfully.
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2.A Bayesian Papers in Leading Journals

Table A.1: Percentages of pages devoted to Bayesian papers in leading journals

Years RES ReStat Ectra IER ET MS ER JE JAE JBES
1978 0.00 0.00 2.92 0.00 − − − 6.27 − −
1979 0.00 0.00 0.25 1.77 − − − 4.76 − −
1980 0.00 0.00 0.00 5.12 − − − 7.17 − −
1981 1.32 0.00 0.00 1.87 − − − 5.70 − −
1982 0.00 0.97 0.75 1.60 − 0.00 12.46 10.69 − −
1983 0.00 0.00 0.00 0.00 − 10.00 1.50 12.31 − 11.14
1984 0.00 1.81 1.40 0.00 − 0.00 44.93 10.97 − 4.32
1985 0.00 1.52 1.11 3.17 0.00 5.61 29.86 15.64 − 6.95
1986 5.54 0.00 0.00 0.00 0.00 0.00 0.00 4.89 4.08 15.80
1987 0.00 1.47 0.00 0.00 0.65 0.00 0.00 0.00 5.40 15.47
1988 0.00 0.00 0.00 2.38 0.00 0.00 0.00 13.57 0.00 5.52
1989 0.00 2.83 2.73 1.58 0.00 0.00 0.00 5.21 3.84 3.17
1990 0.00 1.10 0.00 0.00 0.00 4.66 0.00 3.66 0.00 5.39
1991 1.24 0.00 0.98 2.41 0.00 0.00 0.00 24.91 29.92 27.73
1992 0.00 0.00 1.63 0.00 2.92 0.00 3.49 7.95 5.47 18.62
1993 0.00 0.00 1.83 0.00 0.00 0.00 0.00 20.65 11.79 7.82
1994 0.00 5.07 1.76 0.00 33.13 0.00 10.75 9.47 3.10 24.60
1995 0.00 5.83 0.00 2.36 0.00 1.57 0.00 14.88 0.00 4.87
1996 0.00 0.65 3.35 0.00 8.87 18.53 0.00 13.34 5.34 8.60
1997 0.00 0.00 0.00 1.41 0.00 5.88 0.00 10.91 15.75 9.07
1998 3.79 8.01 0.00 3.32 8.74 3.76 5.48 13.04 10.09 11.37
1999 0.00 2.98 2.90 0.00 0.00 14.38 32.67 5.98 10.45 12.82
2000 0.00 1.41 0.00 0.00 2.11 12.56 0.00 18.05 16.40 26.41
2001 0.00 2.69 4.19 6.88 0.69 0.00 8.04 4.40 7.17 13.59
2002 1.96 0.00 0.75 0.00 4.25 19.71 4.03 9.19 8.81 4.20
2003 0.00 0.00 3.70 4.41 0.00 11.76 2.92 15.65 10.49 20.93
2004 0.00 0.00 5.94 4.61 0.00 12.68 0.00 16.57 6.73 21.22
2005 5.15 1.65 0.00 0.00 2.72 7.25 0.00 11.92 16.23 11.67
2006 2.47 0.00 1.56 0.00 0.00 15.03 31.43 6.14 12.37 11.44
2007 4.14 0.00 4.35 2.27 2.78 16.74 56.83 12.45 1.57 14.40
2008 0.00 0.00 0.00 0.00 3.07 23.15 9.87 10.62 22.73 20.32
2009 0.00 0.00 4.98 8.54 1.06 0.00 4.13 7.28 24.65 10.18
2010 5.85 0.00 0.90 0.00 0.86 22.16 9.44 7.06 24.22 21.97
2011 1.91 1.30 0.00 5.35 1.75 35.17 14.29 6.75 13.57 4.82
2012 0.00 4.49 2.10 4.82 0.00 13.65 6.70 13.44 18.32 13.42
2013 3.51 3.96 1.74 2.18 0.00 12.56 0.00 5.43 21.56 4.97
2014 0.00 0.00 0.00 0.00 0.00 28.34 40.65 5.78 22.61 6.62
1978-2014 0.96 1.18 1.40 1.70 2.45 8.94 9.98 9.91 11.18 12.48

The table presents the percentages of pages devoted to Bayesian papers in the journals for each year and average
percentages for the period 1978-2014. The table is an extension of Table 2 in Poirier (1992). The numbers in red
correspond to years with special issues. Econometric Reviews, Econometric Theory, Journal of Applied Econo-
metrics and Marketing Science did not exist before 1982, 1985, 1986 and 1982, respectively. Average numbers of
Bayesian pages only include years for which the journal existed. Journal abbreviations are as in Figure 2.2.
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Table A.2: Citation information for papers in leading journals

Total RES ReStat IER Ectra ET MS ER JAE JE JBES
All papers
Number of citations 67891 3143 3104 2351 6000 1799 7590 3592 8103 21432 10777
Number of cited papers 969 16 28 29 34 30 121 61 125 329 178
Number of Bayesian papers 1020 16 29 29 34 31 129 82 130 336 206

Papers with at least 100 citations
Number of citations 46895 2748 2392 1581 5147 1164 4922 2711 5340 13361 7293
Number of Bayesian papers 170 6 9 6 13 7 23 4 20 55 26

Papers with at least 400 citations
Number of citations 20460 2086 808 408 3442 425 944 2603 1806 4376 3562
Number of Bayesian papers 31 2 1 1 5 1 2 3 3 8 5

The table presents citation information for each leading journal and for the leading journals jointly. Total number
of cited papers is based on papers which are cited at least once. Journal abbreviations are as in Figure 2.2.

Table A.3: Average number of citations for papers in leading journals for 5-year intervals

Years RES ReStat Ectra IER ET MS ER JAE JBES JE
All papers
1978-1982 2 0 134 10 − 0 6 − 279 −
1983-1987 12 50 22 1 0 108 214 163 181 360
1988-1992 0 91 330 28 0 23 1 145 349 117
1993-1997 0 113 122 18 252 235 7 199 956 727
1998-2002 315 286 274 134 78 440 166 412 1011 411
2003-2007 229 26 205 137 12 406 292 258 1071 342
2008-2014 51 39 80 102 12 219 26 386 315 141
1978-2014 85 84 162 64 60 230 109 279 579 337

Papers with at least 100 citations
1978-1982 0 0 124 0 − 0 0 − 116 −
1983-1987 0 35 0 0 0 94 204 121 79 291
1988-1992 0 75 324 0 0 22 0 88 197 54
1993-1997 0 87 116 0 182 207 0 163 660 618
1998-2002 315 255 259 108 51 381 142 322 746 236
2003-2007 212 26 132 129 0 235 197 166 698 217
2008-2014 16 0 53 57 0 33 0 200 126 30
1978-2014 74 65 139 43 39 149 82 184 361 228

The table presents the average citation numbers of the Bayesian papers in the journals for the 5 year periods for
all papers in leading journals (top panel) and a subset of papers with at least 100 citations (bottom panel). The
table is an extension of Table 2 in Poirier (1992). Note that the period of observation is different for the following
journals: Econometric Theory did not exist before 1985. Therefore the mean for the period 1983-1987 is taken over
the periods 1985-1987. Journal of Applied Econometrics did not exist before 1986. Therefore, the mean over the
years 1983-1987 is equal to the mean for 1986-1987. Econometric Reviews did not exist before 1982. Therefore, the
mean for the period 1978-1982 is equal to the value in 1982. Marketing Science did not exist before 1982. So, the
mean for the period 1978-1982 is equal to the value in 1982. Journal abbreviations are as in Figure 2.2.
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2.B Subject Connectivity

Network, connectivity and heat maps in this chapter have been produced using the com-

puter program VOSviewer, which uses the VOS (Visualisation Of Similarities) mapping

technique that combines the approaches to mapping and clustering of bibliometric net-

works (Waltman et al. (2010),Van Eck and Waltman (2010)). These techniques aim to

shed light on the interpretation of a network. Suppose there are n nodes in a network.

The VOS mapping technique is based on the minimization of the below function with

respect to x1, ..., xn;

V (x1, ..., xn) =
∑
i<j

sijd
2
ij −

∑
i<j

dij (2.5)

where sij is the association strength of nodes i and j sij =
2mcij
cicj

, cij is the number of

links between nodes i and j with cij = cji ≥ 0, ci is the total number of links of node i

ci =
∑

i �=j cij, m is the total number of links in the network m = 1
2

∑
i ci. Moreover, dij

is the distance between nodes i and j dij = ‖xi − xj‖ =
√∑p

k=1(xik − xjk)2 in the case of

mapping, and in the case of clustering

dij =

⎧⎪⎨⎪⎩ 0 if xi = xj

1
γ

if xi �= xj

where γ > 0 is the resolution parameter. As the resolution parameter is higher, the

number of clusters obtained becomes higher.

The network and connectivity map in Figure 2.8 has been created using the cluster

density view of the map, the network and connectivity map in Figure 2.9 has been created

using the label view of the map and the heat map in Figure 2.10 has been created using

the density view of the map.

In the label view, the font size of the labels of the items and of the circles around

them depend on the weight of the items. The greater the weight is and therefore the more

important the item is, the bigger the font size and the circle are. Moreover, in case an
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item belongs to a cluster, its circle is colored in the color of its cluster. If, however, the

items have scores, the colors of their circles depend on their scores: blue if the score is 0,

green if the score is 1 and red if the score is 2. Another way to set the color of the circle

is according to the specification in a map file (red, green and blue).

In the density view, each item has a color, between red and blue, depending on its

density. The item is colored close to red (the color of the highest item density) if it has

a lot of items in its neighbourhood that are close to each other and those neighbouring

items have high weights (importance) while in the opposite case, the color of the circle is

closer to blue (the color of the lowest item density).

Similar to the density view, in the cluster density view, which is available in case the

items are clustered, the color of the circle of an item depends on its density, but the density

is displayed separately depending on the cluster that the item belongs to. Therefore, the

color of the item is close to the color of its cluster. Moreover, items weighted highly count

more heavily than items with low weights.





Chapter 3

Bayesian Forecasting of US Growth

using Basic Time Varying Parameter

Models and Expectations Data

Chapter 3 is based on Basturk, Ceyhan and Van Dijk (2014)

3.1 Introduction

Quarterly economic growth in the USA, measured as the quarterly change in log real

Gross Domestic Product, has shown typical data features in the time period 1947–I until

2013–IV with, as most important ones, a time varying mean and variance. It is important

to model these stylized data features which in turn may serve as inputs for forecasting

growth gaps and/or as indications of the development of economic welfare. These data

features have been analyzed in many papers. A complete literature analysis is beyond the

scope of this chapter, but a summary is given in the next section.

In this chapter these time varying patterns in US growth are analyzed using various

univariate model structures for time variation, starting from naive model structures where

all features change every period to a model where the slow variation in the conditional
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mean and changes in the conditional variance are specified together with their interac-

tion. Use is made of a simulation based Bayesian inferential method to determine the

forecasting performance of the various model specifications. The extension of a basic

growth model with a constant mean to models including time variation in the mean and

variance requires careful investigation of possible identification issues of the parameters

and existence conditions of the posterior under a diffuse prior. The use of diffuse priors

leads to a focus on the likelihood function and it enables a researcher and policy adviser

to evaluate the scientific information contained in model and data. As Hildreth (1963)

argued: ‘Reporting the shape of the likelihood and its properties is an important task for

a Bayesian econometrician.’ For this reason, in section 3.3, these topics are analyzed and

a connection is made with the well known Hierarchical Linear Mixed Model (HLMM), see

Hobert and Casella (1996). Results are illustrated using simulated data.

Macroeconomic data are usually not so informative on detailed data characteristics

and an additional source of information is the use of expectations data on growth, for

instance, from the Survey of Professional Forecasters; see Milani (2011). We make use of

these data in section 3.5.5.

The use and analysis of flexible model structures about the mean and variance of US

economic growth and the use of expectations data allow one to compare empirical results

obtained from alternative models. This gives information on their relative strengths and

weaknesses with respect to posterior accuracy and predictive performance. As stated

above such models may also serve as input for other purposes like estimating a growth

gap.

The contents of this chapter are organized as follows. Some stylized facts on the data

are presented in section 3.2 together with a brief survey of the literature. In section 3.3 the

properties and shapes of the likelihood functions for some naive models for growth with

time varying parameters are analyzed together with the existence conditions of posteriors

under diffuse priors. The proposed model extensions, and the properties of the posterior
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parameter distributions in each model are presented in section 3.4. Empirical results

on prediction are presented in section 3.5 while section 3.6 presents some final remarks

including suggestions for further research.

3.2 Stylized Facts about US Real GDP Growth

As stated in the introduction, modeling quarterly change in the log of the US real GDP

series, which has undergone periodic changes in the level during the post World War

II period, is important for measuring and forecasting actual and potential US growth.

Changes in the pattern of US real GDP growth have been modelled by various authors

in the literature. We present a selective survey of papers that relate to the topic of this

chapter and refer further to the references cited in these papers. McConnell and Perez-

Quiros (2000) suggest that the volatility of US real GDP decreased in early 1980s and

that there is a change in the mean in US real GDP growth that occurred in the first

quarter of 1984. These authors model US GDP growth as a Markov switching model with

two features: (i) the mean and variance follow independent switching processes, (ii) a

two-state process for the mean changes according to the state of the variance. Blanchard

and Simon (2001) report on the decline of US output volatility, suggesting a decline in the

standard deviation of output fluctuations over time, from about 1.5 % a quarter in the

early 1950s to less than 0.5 % in the late 1990s. Blanchard and Simon (2001) shows that

this decline is not continuous since volatility increases from the late 1960s to the mid-1980s,

and this is followed by a sharp decline in late 1980s. Their paper mentions two possible

ways of modeling the output volatility: (i) a declining trend with interruptions in 1970s

and early 1980s, and (ii) a downward shift in mid-1980s. Clarida et al. (2000) consider

two sub-periods for different output volatility: (i) 1960Q1-1979Q2 (pre-Volcker) and (ii)

1979Q3-1996Q4 (Volcker and Greenspan). Kim et al. (2004) suggest that the decline in

the volatility of the US real GDP growth beginning in the early 1980s is concentrated

in the cyclical component rather than in the trend component. Penelope and Summers
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(2009) find a decline in the US GDP volatility beginning in late 1984, using a model

in which the mean and variance of GDP growth are influenced by latent state variables

following independent Markov chain processes. Kim and Nelson (1999a) use a Bayesian

approach to identify a change in the mean at an unknown change point in a Markov-

switching model of the business cycle. Their paper suggests a decline in the variance of

shocks and a change in the mean in 1984–1. It also finds a narrowing gap between growth

rates during recessions and booms. Several other authors studied US growth data but as

indicated earlier a detailed analysis is beyond the scope of this chapter. The lesson from

this literature analysis is to seriously consider and model time varying parameter models

in order to model the observed low and high frequencies in the data.

Before the modeling step, it is useful to perform an exploratory data analysis on the

data series that are extended over a longer period than the earlier studies listed above.

An important stylized fact observed from Figure 3.1 about US real GDP growth is that

the mean of the series is changing during the post WWII period, albeit not continuously

like a random walk where at each period of time a shift in the series is observed. Instead,

we observe occasional and discrete shifts in the mean of the series around data points like

1965 and 1984.

The mean of quarterly (annual) growth stays around 0.95% (3.8%) until the first break

1965–I at which time an downward move to a mean quarterly (annual) growth rate to

around 0.83% (3.2%) is shown. This level is preserved until the second break date around

1984–I at which time another negative shock decreases the mean quarterly (annual) growth

rate to approximately 0.68% (2.7%). We note that these estimates of growth are sensitive

to the selection of the change point. Mean growth level at the beginning of the sample

is much lower if observations prior to 1953 are disregarded. Furthermore, if the second

change point is set later than 1984–I, the decline in mean growth in the last period is
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Figure 3.1: Quarterly US GDP growth for the period between 1947–I and 2013–IV
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Note: The figure shows GDP growth data (in percentages) and sample means over three sub-periods:
1947Q1–1964Q4, 1965Q1–1984Q4 and 1985Q1–2013Q4. The area bands are constructed as the area
of two standard deviations around the sample mean, based on the sample standard deviation for each
sub-periods.

more pronounced, hence it is important to assess break dates from data instead of this a

priori definition1.

A second stylized feature that the data suggests is that the volatility of the real GDP

growth series is changing in particular in the mid 1960s and mid 1980s. Basic findings

regarding the volatility of the series are shown in Figure 3.1, which suggests that the

volatilities in different sub-periods of the real GDP growth series is not the same, but show

a declining behaviour in later years, especially after mid 1980s (the Great Moderation)2.

Therefore, a second contribution would be adding the stochastic volatility assumption

taking into account the fact that the volatility of the series is not constant, but changing

over time.

Given that the information in macroeconomic series is usually not very strong about

the typical data features of low and high frequencies, use is made of expectations data.

These data are obtained from the Survey of Professional Forecasters (SPF), conducted

1Given the range of their data, which spans the time period 1953Q2-1999Q2, McConnell and Perez-
Quiros (2000) conclude that the US real GDP series is stable. In our analysis,however, with an expanded
data set, we reach a different conclusion.

2Indeed, for different sub-periods, we find that the sample standard deviations are 1.23,1.00 and 0.62,
which are close to the volatility values reported in Blanchard and Simon (2001) using rolling estimation
windows.
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Figure 3.2: One quarter ahead US GDP growth expectations from SPF for the period
between 1969–I and 2013–IV
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by Federal Reserve Bank of Philadelphia and are shown in Figure 3.23. For the analysis,

expected GDP growth for the next quarter is used for the period between 1969–I and 2013–

IV. Prior to 1992, SPF data provides expected GNP growth. This difference in the survey

results are corrected by adding the difference between GNP and GDP growth to data for

each quarter before 1992. Given that these data follow the actual growth data reasonably

well, in particular in recession periods, it may be expected that this information will

strengthen the information in the likelihood function and as a consequence the empirical

results.

3.3 Basic Model Structures with Time Varying Mean

This section presents basic univariate models which allow for changes in the mean of the

series. Possible identification issues are discussed in relation to relevant model parame-

ters. The existence conditions for posterior distributions are analyzed under diffuse and

informative priors.

3Expectations data is available from http://www.philadelphiafed.org/research-and-data/

real-time-center/survey-of-professional-forecasters/.
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In section 3.3.1, it is shown that time variation is not straightforward to incorporate

even when a simple model for the data mean is considered. Identification and exis-

tence conditions need to be examined carefully. Specifically, one cannot completely free

this standard model from assumptions on the long run expected mean: an intuitive and

tractable as well as flexible structure must be assumed on the long run expected mean

parameter. In section 3.3.2, we show that two alternative models, a simple local level

model and the hierarchical linear mixed model, provide intuitive and flexible structures

for the long run mean. We show that these alternative models have common properties

in terms of identification, and a careful definition of priors enables Bayesian inference of

these alternative models. We conclude, however, that these alternative models should

be extended to incorporate macroeconomic data features of low and high frequencies by

defining a realistic time series structure for the time varying means.

3.3.1 Basic models for time varying means

Consider a simple model allowing for time varying means for a univariate time series yt,

t = 1, . . . , T :

yt = μt + εt, εt ∼ NID(0, σ2
ε ), (3.1)

where μt is a scalar, time-varying parameter and σ2
ε > 0.

Equation (3.1) is a general time-varying form of a standard model for the data mean,

where the time variation in this mean, μt, is not linked to any specific model or assump-

tions. As the basic case one has μt = μ, ∀t and this is the well known constant mean model.

Given a flat prior the marginal posterior density of the constant mean, μ, is proportional

to the likelihood function and has the usual bell shaped curve with the posterior mean

equal to the sample mean. This latter estimate is also used for forecasting. In this sec-
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tion, we consider different specifications for the time variation in the mean, and illustrate

identification issues and existence conditions of the posterior for each specification.

The likelihood of the model in (3.1) is:

�(y|μ, σ2
ε ) =

T∏
t=1

�(yt|μt, σ
2
ε ) =

T∏
t=1

φ(yt;μt, σ
2
ε ) ∝

(
σ2
ε

)−T/2 T∏
t=1

exp

(
−(yt − μt)

2

2σ2
ε

)
, (3.2)

where the φ(x;μ, σ2) denotes the normal density function with mean μ and variance σ2. In

order to construct this likelihood, we make use of (3.1) which indicates that observations

are independent of each other, given the model parameters, and that the observation at

time t depends on the time-invariant parameter σ2
ε and the time varying parameter μt at

time t.

Non existence of the posterior in the general time-varying mean model under

a flat prior

We show first that the model in (3.1) leads to an unbounded likelihood function without

further restrictions on the time varying parameters μt. For this purpose, consider the

parameter points where μt = yt, ∀t and let σ2
ε → 0. The likelihood with these parameter

settings is:

lim
σ2
ε→0

�(y|μ = y, σ2
ε ) ∝ lim

σ2
ε→0

((
σ2
ε

)−T/2 T∏
t=1

exp

(
−(yt − μt)

2

2σ2
ε

))
(3.3)

= lim
σ2
ε→0

((
σ2
ε

)−T/2(
exp

(
− 0

2σ2
ε

))T
)

= ∞. (3.4)

For a similar result for a model with time varying variances, we refer to De Pooter et al.

(2009). Hence, under flat priors on the parameters, the posterior in (3.1) does not exist.

The reason for this result is that we are in a situation of overfitting and lack of degrees

of freedom: There are T observations and one has T + 1 parameters to estimate. A

mechanical way to deal with this degree of freedom problem is to assume that one has
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several sub periods where the mean growth is constant, albeit different in each sub period,

and that one knows a priori the switching points in the mean growth. Given at least three

observations where the mean is constant, the posterior is proper under a flat prior, see

also De Pooter et al. (2009). However, this is a too mechanical solution of the existence

problem since in most cases one does not have such precise information on switch points.

A different way of dealing with the existence issue is to impose a probability distribution

for the time varying parameters, as in a local level model or a random coefficients model.

In the remainder of this section, we show that such restrictions can be employed in a

Bayesian setting with adequate prior distributions for the mean parameter.

3.3.2 Shapes of likelihood functions for alternative model struc-

tures

A Simple Local Level Model (SLLM)

In order to impose identifying restrictions on the model in (3.1), we first consider a simple

local level model for the time-varying means, μt such that:

yt = μt + εt, εt ∼ NID(0, σ2
ε ), (3.5)

μt = μ� + ηt, ηt ∼ NID(0, σ2
η), (3.6)

where μ� is a scalar, σ2
ε > 0, σ2

η > 0 and E(εt, ηk) = 0, ∀t, k.
The model in (3.5) and (3.6) imposes a shrinkage structure on the time varying pa-

rameters μt towards a constant value μ� and the posterior is proper but a new problem

arises. The two variances of the disturbances defined in this model are not identified in

this model under flat priors. This result is also known as a label switching problem, see

Frühwirth-Schnatter (2006). To show this, we obtain the reduced form model by inserting
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(3.6) in (3.5):

yt = μ� + εt + ηt = μ� + υt, υt ∼ NID(0, σ2
ε + σ2

η), (3.7)

where the corresponding likelihood function is:

�(y|μ�, σ2
ε , σ

2
η) =

(
2π(σ2

ε + σ2
η)
)−T/2 T∏

t=1

exp

(
− (yt − μ�)2

2(σ2
ε + σ2

η)

)
. (3.8)

Assuming flat priors for μ�, σ2
ε and σ2

η, the marginal posterior of the variance param-

eters can be calculated as follows:

p(σ2
ε , σ

2
η|y) =

∫
p(μ�, σ2

ε , σ
2
η|y)dμ� (3.9)

∝
∫ (

σ2
ε + σ2

η

)−T/2 T∏
t=1

exp

(
− (yt − μ�)2

2(σ2
ε + σ2

η)

)
dμ� (3.10)

=

∫ (
σ2
ε + σ2

η

)−T/2 T∏
t=1

exp

(
−y2t − 2ytμ

� + (μ�)2

2(σ2
ε + σ2

η)

)
dμ� (3.11)

=

∫ (
σ2
ε + σ2

η

)−T/2
exp

(
−
∑

y2t − 2T ȳμ� + T (μ�)2

2(σ2
ε + σ2

η)

)
dμ� (3.12)

=
(
σ2
ε + σ2

η

)−T/2
exp

(
−
∑

y2t − T ȳ2

2(σ2
ε + σ2

η)

)∫
exp

(
−T (μ� − ȳ)2

2(σ2
ε + σ2

η)

)
dμ� (3.13)

where the last equation shows that μ� has a conditional normal distribution with sample

mean and variance (σ2
ε + σ2

η)/T . Using this property, (3.13) becomes:

p(σ2
ε , σ

2
η|y) ∝

(
σ2
ε + σ2

η

)−(T−1)/2
exp

(
−
∑T

t=1 (yt − ȳ)2

2(σ2
ε + σ2

η)

)
, (3.14)

i.e. the joint posterior is of an unknown form, posterior for the sum of variance terms

(σ2
ε + σ2

η) is an inverted Gamma density, and the conditional posteriors p(σ2
ε |σ2

η, y) and

p(σ2
η|σ2

ε , y) are identical.
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Figure 3.3: Marginal posterior of the variance parameters for simulated data from the local
level model in (3.5) and (3.6) for different values of σ2

ε and σ2
η satisfying the restriction

(σ2
ε + σ2

η) = 1.

From (3.5) and (3.6), it can be seen that the conditional posteriors of the variance

parameters are inverted Gamma densities, given flat priors for all model parameters.

Similarly, the conditional posterior of μ� is a normal density from (3.6). Standard Gibbs

sampling using these conditionals is possible despite the identification issue for the two

variance parameters.

An illustration of the marginal posterior of the variance parameters in (3.14) is given

in Figure 3.3 for simulated data with T = 10 and (σ2
ε + σ2

η) = 1 for different values of σ2
ε

and σ2
η satisfying this restriction. Note that the posterior distribution exists under a flat

prior on the parameters, but the two variance terms are not identified separately, hence

the marginal posterior density has a ridge in Figure 3.3.

The identification or label switching problem in the SLLM can be avoided in several

ways. A simple one is to impose the inequality condition that σ2
η is greater then σ2

ε and to

use proper prior distributions for σ2
ε and σ2

η. An alternative solution is to define a proper

prior distribution on the so-called ‘signal-to-noise ratio’, defined by q = σ2
η/σ

2
ε . Rewriting
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the likelihood in (3.8) with this change of parameters we obtain:

�(y|μ�, σ2
ε , q) =

(
2π(1 + q)σ2

ε

)−T/2 T∏
t=1

exp

(
− (yt − μ�)2

2(1 + q)σ2
ε

)
. (3.15)

A ‘regularizing prior’ for the model can be obtained, e.g. with a normal prior for

the signal-to-noise ratio, q ∼ N[0,∞)(0, σ
2
q ) and flat priors for μ� and σ2

ε . Combining the

likelihood in (3.15) with these priors, the marginal posterior of the variance parameters

are:

p(σ2
ε , q|y) ∝

∫ (
(1 + q)σ2

ε

)−T/2
(σ2

q )
−1/2 exp

(
− q2

2σ2
q

) T∏
t=1

exp

(
− (yt − μ�)2

2(1 + q)σ2
ε

)
dμ�,

(3.16)

where the integration steps for μ� can be followed as in (3.9)–(3.13), and the marginal

posterior of the variance parameters is:

p(σ2
ε , q|y) ∝

(
(1 + q)σ2

ε

)−(T−1)/2
(σ2

q )
−1/2 exp

(−q2/(2σ2
q )
) T∏

t=1

exp

(
− (yt − ȳ)2

2(1 + q)σ2
ε

)
,

(3.17)

i.e. the regularizing prior only adds the factor exp
(−q2/(2σ2

q )
)
to the posterior density

in (3.14). Figure 3.4 illustrates the marginal posterior density of σ2
ε and σ2

η in (3.17)

with q ∼ N[0,∞)(0, 0.5) for simulated data with T = 10 observations, where the marginal

posterior has a clear peak and no ridge is visible. Notice that the definition of a prior

for the signal-to-noise ratio relates to the properties of the SLLM. In the extreme case

of q = 0, there is no time variation in this model. On the other hand, when q → ∞, all

variation in the data are captured by the state equation disturbances. 4

A Hierarchical Linear Mixed Model (HLMM)

An equivalent simplification of the general time varying parameter model in (3.1) is

4In the empirical analysis, we implicitly use this ratio of variances to specify proper and regularizing
priors for the variance parameters.
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Figure 3.4: Marginal posterior of the variance parameters for simulated data from the
local level model in (3.5) and (3.6) for different values of σ2

ε and σ2
η, under the prior

q ∼ N[0,∞)(0, 0.5) and flat priors for the rest of the parameters.

achieved by interpreting the SLLM as a random coefficients model that is known as the

Hierarchical Linear Mixed Model, see for instance Hobert and Casella (1996). The HLMM

defines the model restrictions by specifying priors for the time-varying parameters.

We illustrate the HLMM model by defining normal prior hyperparameters μ� and σ2
η

and using a normal prior for the time-varying mean:

μt|μ�, σ2
η ∼ NID(μ�, σ2

η). (3.18)

It is easily seen that the HLMM model with the prior distribution in (3.18) and flat priors

for the rest of the parameters is equivalent to the simple local level model in (3.5) and

(3.6). Therefore, the identification issue, and the possibility of avoiding the identification

issue using a proper prior for the signal-to-noise ratio are valid for this model as well.

Given the results on the basic models for time-varying means, the SLLM and HLMM,

the next step is to incorporate data features which are more complex than the simple

shrinkage mean considered so far. Specifically, incorporating macroeconomic data features

of low and high frequencies should be incorporated in a meaningful and tractable way in
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order to model the time series features of time varying means. In section 3.4 we present

a set of alternative extended models and the corresponding prior distributions which aim

to avoid the identification issue in the basic time-varying models.

3.4 Prior and Posteriors of Extended Model Struc-

tures

In this section, we present alternative models for US GDP growth, where different forms

of time variation in long run growth are defined. In addition, the standard growth model

is extended using data on growth expectations. The extended models are based on the

conventional AR(1) model used for US GDP growth.

The standard AR(1) model is defined as follows

yt = μ+ υt t = 1, ..., T (3.19)

υt = ρυt−1 + εt εt
iid∼ N(0, σεt) (3.20)

where yt for t = 1, . . . , T is the GDP growth at time t, ρ is the autocorrelation coefficient,

εt and υt are the disturbances and σεt > 0. The parameter μ in this model provides the

expected long run growth rate.

Inserting (3.20) in (3.19), we obtain the following AR(1) model for GDP growth:

yt − μ = ρ(yt−1 − μ) + εt εt
iid∼ N(0, σεt) (3.21)

which provides a model for growth in deviation from its expected mean. Note that when

ρ = 1 one has an identification problem since μ is not identified in this case. From

the exploratory data analysis, it can be seen that this event is unlikely for this dataset.

Otherwise, the approach of Schotman and Van Dijk, (1991b) and Schotman and Van Dijk,

(1991a) can be used.
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A straightforward extension of this model, which allows for time-variation in the long-

run means is the well known local level time series model with μt = μt−1 + ηt, see Harvey

(1989, ch. 2). Despite its general specification in terms of time-varying means, this local

level model implies an I(1) process for growth data, which is unlikely to hold. Therefore,

we propose alternative model structures with different time variation in parameters that

do not assume an I(1) process for growth.

3.4.1 Level shifts

The first extension of the model in (3.21), denoted by ‘LS’, introduces changes in long-run

growth through ‘occasional’ shifts over time:

yt − μt = ρ(yt−1 − μt−1) + εt (3.22)

μt = μt−1 + κtη1,t (3.23)

for t = 1, . . . , T observations where μt is the time-varying long run growth, with initial

value μ0 ∼ N(μ̂0, σμ0), κt has a Binomial distribution with parameter pκ, εt ∼ NID(0, σ2
ε ),

η1,t ∼ NID(0, σ2
η1
) and E(εt, η1,k) = 0, ∀t, k. In this model, changes in levels depend on

pκ, hence only a single additional parameter is introduced in the model. Occasional and

large level shifts correspond to low values of pκ together with high values of ση1 . When

pκ is 1, the model becomes standard local level model.

3.4.2 Stochastic volatility

The second extension of the model in (3.21), denoted by ‘SV’, introduces time variation

in the volatility of growth through a stochastic volatility component in the observation

equation in (3.22). For this extension we define time-varying variances such that εt ∼
N(0, σ2

εt) with σεt = exp(ht/2), and the time varying stochastic volatility component is
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incorporated in the model through an additional state equation:

ht = ht−1 + η2,t (3.24)

where η2,t ∼ NID(0, σ2
η2
). Note that parameter σ2

η2
can be estimated from data, but the

empirical identification of this variance parameter is not trivial.

3.4.3 Survey data on growth expectations

The final extension to the standard growth model is the inclusion of growth expectations

data, denoted by ‘EXP’, as an explanatory variable in the model. Since the growth

model is defined in deviations from (possibly time-varying) means, we consider a model

specification where the growth expectations are also modeled in deviation from expected

means. For this purpose, the observation equation in the generalized model in (3.22) is

rewritten as follows:

yt − μt = ρ(yt−1 − μt−1) + β(St − μt) + εt, εt ∼ N(0, σ2
εt), (3.25)

where St denotes the expected growth from survey data for time t, obtained in the previous

period t − 1. In this model, mean growth can be defined as a constant mean or as the

level shift specification in (3.23). Similarly, a constant volatility or SV model in (3.24)

can be adopted depending on the definition of σ2
εt .

3.4.4 Bayesian inference for proposed models

Given the above alternative model extensions, conventional priors can be used for each

model parameter and posterior samplers are based on Gibbs sampling for the parameters.

The conventional priors refer to normal or flat priors for the mean μ or the auto-

correlation coefficient ρ, and inverse gamma priors for the variance parameters. The



3.5 Empirical Results 69

conditional posterior densities of these parameters then follow normal and inverse gamma

distributions.

For the models with level shifts, conditional on other model parameters and level shifts

κt, draws from unobserved states are obtained using the Kalman Filtering and Smoothing

algorithm, see Carter and Kohn (1994) and Frühwirth-Schnatter (1994). Conditional on

the unobserved states, draws from level shifts are obtained using the algorithm proposed

by Gerlach et al. (2000), see also Giordani and Kohn (2008) for details.

Finally, for models with a stochastic volatility component, draws from the unobserved

variable ht can be obtained using the Kalman filter and smoother, similar to the unob-

served states μt. However, since the SV model is based on the logarithmic transformation

of the variance, the resulting conditional density follows a log-χ2 distribution. Noticing

the properties of log-χ2 distribution, Kim et al. (1998) and Omori et al. (2007) approxi-

mate this distribution using a mixture of Gaussian distributions. Hence, conditional on

these mixture components the system remains Gaussian allowing for standard inference

outlined above. For details, see Omori et al. (2007).

For a detailed description of the all the sampling steps, we refer to Chapter 4 of this

thesis.

3.5 Empirical Results

In this section we apply the standard and extended growth models to quarterly US GDP

growth for the period between 1947–I and 2013–IV. As described in section 3.4, five

different model structures are considered for US GDP data:

AR autocorreltion/serial correlation in errors

LL local level model for GDP growth levels, i.e. GDP growth level is subject to contin-

uous changes over time
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LS level shifts in GDP growth, i.e. GDP growth level is subject to occasional changes

over time

SV stochastic volatility in GDP growth, i.e. GDP growth volatility changes over time

EXP growth model incorporating growth expectations from professional forecasters as an

additional explanatory variable

where one or more of these structures are combined in alternative models.

3.5.1 Prior definitions

The priors for the parameters of alternative model structures are defined independently,

as outlined in section 3.4. For models with serial correlation (AR), a flat prior is defined

for the correlation coefficient: ρ ∼ U(0, 1). For standard growth models with no changes

in GDP growth level, a flat prior is defined for mean GDP growth μ ∼ U(−∞,∞). For

models incorporating GDP growth expectations, a flat prior is defined for the effect of

expectations, i.e. β ∼ U(−∞,∞).

For models with constant error variance for GDP growth variance, we define proper

but uninformative priors: σ2
ε ∼ IG(T/2, σ2/2× T/2), where IG(a, b) denotes the inverse

Gamma distribution with shape a and scale b, T = 267 is the number of observations and

σ2 is the data variance. This data based prior implies that the prior is equivalent to T/2

observations, hence we expect the data with T observations to dominate the prior.

In addition, for models with level changes in GDP growth (LL, LS), we define inverse

Gamma priors: σ2
υ ∼ IG(T/2, σ2/20× T/2). Note that the a priori mean of this variance

is 10 times smaller than the a priori mean of the observation variance defined above. This

specification is based on the intuition that GDP growth levels, if modeled as time varying

components, should not have drastic changes over time but capture longer run GDP

growth levels. Despite this definition, the prior we define is still relatively uninformative
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compared to the information in the likelihood: it is equivalent to T/2 observations only

and the data information is likely to dominate this prior.

For models with occasional level changes in GDP growth (LS) we set a prior level

change probability of 0.04, indicating around 5 a priori expected changes in gdp levels

during the sample period. For models with the stochastic volatility component and oc-

casional level changes in GDP growth, we set a prior level change probability of 0.02.

This lower prior probability for a level change is intended to empirically identify more

accurately the mean and variance changes at the same time.

3.5.2 Estimation results

In this subsection, we report estimation results from eight alternative models combining

one or more of the AR, SV, LL and LS model structures.5 Table 3.1 presents parameter

estimates from all compared models based on 10000 draws where we consider the first

5000 draws as burn-in draws.

Despite the differences in model structures, Table 3.1 shows that parameter estimates

from alternative models are similar across all models we consider. For models with con-

stant mean, mean quarterly growth is around 0.8, which is in line with the visual inspection

of the data. For models with serial correlation, the posterior mean for the correlation coef-

ficient is around 0.3, i.e. correlation levels seem to be far from the nonidentification region

ρ = 1. Two unique models in these alternative models are LL and AR-LL models, which

imply a unit root in GDP growth. Despite this counter-intuitive assumption, results of

the LL and AR-LL models are roughly in line with the constant mean models in terms of

parameter estimates.

Table 3.1 shows that models which allow for time variation in means, with LL and LS

components, in general lead to smaller observation variances compared to the constant

mean models (AR and AR-SV). This result is intuitive since part of the data variation is

5Extended models incorporating growth expectations are analyzed separately since the sample size is
much smaller due to the range of the data on growth expectations.



Table 3.1: Estimation results from alternative models

model μ ρ σ2
ε σ2

υ

models without level changes
constant mean 0.793 - 0.885 -

(0.059) - (0.072) -
AR 0.792 0.380 0.775 -

(0.089) (0.056) (0.064) -
AR-SV* 0.804 0.377 0.356 -

(0.044) (0.056) (0.241) -

models with frequent level changes
LL - - 0.569 0.054

- - (0.038) (0.006)
AR-LL - 0.251 0.562 0.087

- (0.077) (0.042) (0.034)

models with occasional level changes
LS - - 0.743 0.024

- - (0.055) (0.003)
AR-LS - 0.368 0.685 0.023

- (0.055) (0.049) (0.003)
AR-LS-SV* - 0.321 0.305 0.064

- (0.078) (0.238) (0.012)

Note: The table reports posterior means and standard deviations (in parentheses) of model parameters.
σ2
ε and σ2

υ are the observation and state variances, respectively. (*) indicates that the observation variance
is time varying in these models. For these models we report mean observation variance and standard
deviation for the sample period. Results are based on 10000 draws of which 5000 are burn-in draws.
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explained by the changing means in models with the time variation in mean growth. Fur-

thermore, estimated state variances are very small compared to the observation variance,

indicating rather smooth changes in growth levels over time.

We next report estimated growth means for the five models with time variation in

means, namely LL, AR-LL, LS, AR-LS and AR-LS-SV models. Figure 3.5 presents these

estimates together with the 95% HPDI for estimated mean growth. All models imply

changing growth means over time. In line with the model definitions, AR-LL and LL

models lead to more volatile growth levels over time while AR-LS and AR-LS-SV models

lead to less volatile growth levels. All models imply relatively high growth levels at the

beginning of the sample and relatively low growth levels towards the end of the sample.

These results confirm stylized facts reported in section 3.2 although we find more than

two periods of level changes in AR-LS and AR-LS-SV models, as shown in Figure 3.6.

Finally, we note that incorporating the stochastic volatility component in the model

seems to be important. Estimated volatility levels from the two models with SV compo-

nent, AR-SV and AR-LS-SV, are given in Figure 3.7. Both models indicate substantial

changes in volatility over time. Estimated volatility also confirms the stylized facts cov-

ered in section 3.2: the period of the 50s and the beginning of the 60s are characterized by

relatively high volatility in growth and the volatility level decreases towards the end of the

sample period, apart from the recession of 2000 and the recent crisis. Comparing the two

panels in Figure 3.7, it can be seen that allowing for time variation in means (AR-LS-SV)

leads to much lower volatility levels compared to the counterpart model with constant

means (AR-SV) at the beginning of the sample. In other words, the volatile period of 50s

is explained both by the changing means and changing volatility in AR-LS-SV model.

3.5.3 Prediction results

In order to assess the predictive performance of the compared models in section 3.5.2,

we consider 1 quarter ahead forecasts of GDP growth for the period between 1997–I and



Figure 3.5: GDP growth level estimates from alternative models with time varying growth
means
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Note: The figure presents mean posterior levels for GDP growth (×100) for compared models for the
whole sample period. Results are based on 10000 draws of which 5000 are burn-in draws.



Figure 3.6: Estimated level shifts for models with occasional level shifts (AR-LS and
AR-LS-SV)
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Figure 3.7: Estimated mean volatility for models with stochastic volatility (AR-SV and
AR-LS-SV)
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Table 3.2: 1 period ahead MSFE and cumulative predictive likelihoods

model MSFE Cumulative Pred. Lik.
models without level changes
constant mean 0.5170 -76.2513
AR 0.3916 -69.4748
AR-SV 0.3990 -72.6564

models with frequent level changes
LL 0.5347 -72.6307
AR-LL 0.5035 -70.9595

models with occasional level changes
LS 0.4748 -70.9052
AR-LS 0.3905 -66.0502
AR-LS-SV 0.3888 -57.7819

2013–IV. We compare the predictive performance of models using the average MSFE

and cumulative predictive likelihood for the prediction period. These results are given in

Table 3.2 and Figure 3.8.

Table 3.2 and Figure 3.8 show that predictive performances of alternative models are

quite different, despite the similar parameter estimates reported in section 3.5.2.

Figure 3.8: Cumulative predictive likelihoods for the prediction sample from alternative
models
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First, the serial correlation component is found to be important for the predictive

performance of growth models since the standard AR model, the AR-LL and AR-LS

models perform better in terms of MSFE and predictive likelihoods compared to their

counterparts without the AR component, namely the constant mean model, LL model

and LS model.

Second, models with frequent level shifts, the LL and AR-LL models, do not perform

well compared to models with occasional level shifts, LS and AR-LS, in terms of the

predictive likelihoods. According to these predictive performances, models allowing for

occasional level shifts, i.e. slowly varying long-run growth levels, are more appropriate to

forecast growth.

Third, models with occasional level shifts (AR-LS and AR-LS-SV) perform better

than the standard growth model with serial correlation, hence changes in growth levels

should definitely be accounted for.

Finally, a comparison of the prediction results for AR-LS and AR-LS-SV models in

Table 3.8 indicate that adding a stochastic volatility component improves the predictive

performance of the growth model substantially, particularly according to the predictive

likelihoods.

From these results, we conclude that the most appropriate model for predicting growth

is the AR-LS-SV model, which takes into account the slowly changing levels of growth,

serial correlation in disturbances and changing disturbance variances over time.

3.5.4 Prior predictive likelihood analysis

The predictive performance comparisons in section 3.5.3 are naturally affected by the prior

choices for parameters, especially since the existence and identification issues illustrated in

section 3.3 require proper priors for part of the model parameters in the alternative models

we consider. In this subsection, we report the effect of the selected priors on prediction
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Table 3.3: Prior predictive analysis: 1 period ahead MSFE and cumulative predictive
likelihoods

model MSFE Cumulative Pred. Lik.
constant mean 34.131 -2297.532
AR 11.696 -813.025
AR-SV 0.482 -58.386

models with frequent level changes
LL 0.495 -70.142
AR-LL 0.606 -77.464

models with occasional level changes
LS 0.499 -66.682
AR-LS 0.503 -62.260
AR-LS-SV 0.486 -58.141

results. An important point is whether the superior performance of the AR-LS-SV can

be attributed solely to prior definitions.

The effect of the priors are analyzed using a prior-predictive likelihood analysis. For

this purpose, we do not update model parameters using data, but instead use parame-

ter draws from prior densities, i.e. Gibbs sampling steps are performed for each model

without updating the model parameters. For models with level changes and stochastic

volatility, unobserved levels are updated using the data since these variables are not model

parameters but unobserved states. For all considered models, MSFE and cumulative pre-

dictive likelihoods resulting from the prior-predictive likelihood analysis are presented in

Table 3.3.

According to the prior-predictive analysis in Table 3.3, the AR-SV model is the ‘best’

alternative model in comparison to the preferred model, AR-LS-SV. MSFE and predictive

likelihoods of these models are very similar without the likelihood information. Hence the

superior predictive performance of the AR-LS-SV model in section 3.5.3 is not solely

attributed to the prior definitions.
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The ‘least preferred’ models according to the prior-predictive likelihoods are the con-

stant mean model and the standard AR model. This result is expected for two reasons.

First, uninformative prior densities for these models lead to very wide prediction inter-

vals.6 Second, in models with level changes and stochastic volatility, unobserved states

are updated using the data even though model parameters are not updated. Hence these

models make use of data information to update unobserved states regardless of the prior

definition.

Table 3.3 also shows that the models with occasional level shifts (LS, AR-LS, AR-LS-

SV) are not necessarily favored by the prior as the AR-SV model, without mean changes,

leads to better prior-predictive results than most models with occasional level shifts. The

conclusion on the necessity to include occasional level shifts in section 3.5.3 does not seem

to be the result of the employed prior densities. Similarly, models with AR components

are also not necessarily favored by the prior definitions.

Comparing the AR-LS and AR-LS-SV models in Table 3.3, we conclude that the priors

favor the model stochastic volatility component. Despite this result, the prior domination

seems to be less than the data domination particularly for predictive likelihoods: The

improvement in predictive likelihoods of the AR-LS-SV model is much more pronounced

in Table 3.2 compared to the prior-predictive likelihood comparison in Table 3.3. Further-

more, the priors favor the simple AR-SV model substantially, according to the MSFE and

cumulative predictive likelihoods. Despite this finding, the preferred model, AR-LS-SV,

is found to perform better than the simple AR-SV model in the predictive analysis in

section 3.5.3.

6One important point is the flat prior we use for the standard growth models with no change in
levels. For the prior predictive analysis, we truncate this prior density between [−10, 10] since none of
the posterior draws lie outside this region.
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Table 3.4: Estimation results from alternative models for US growth between 1969–I and
2013–III

model μ ρ β σ2
ε σ2

υ

models without level changes
AR 0.804 0.377 - 0.356 -

(0.044) (0.056) - (0.241) -
AR-EXP 0.679 0.131 0.456 0.570 -

(0.488) (0.079) (0.133) (0.059) -

models with occasional level changes
AR-LS-SV* - 0.280 - 0.294 0.036

- (0.097) - (0.144) (0.006)
AR-LS-SV-EXP* - 0.118 0.106 0.288 0.035

- (0.083) (0.039) (0.138) (0.005)

Note: For all models, sample is determined as the period for which expectation data is available. Results
are based on 10000 draws of which 5000 are burn-in draws.

3.5.5 Results using growth expectations

In this subsection, we consider growth models incorporating growth expectations as a

final addition to the proposed growth models. We note that the expectation data is only

available for the period between 1969–I and 2013–IV. Therefore, for a fair comparison

of models, alternative models are estimated for this smaller sample period. Similarly,

prediction comparisons, in terms of MSFE and predictive likelihoods, are also based on

the time period for which expectation data is available.

Table 3.4 presents estimation results for 4 models, the constant mean, AR, AR-EXP,

AR-LS-SV and AR-LS-SV-EXP models. For both models with expectations, AR-EXP

and AR-LS-SV-EXP, 95% HPDI for parameter β is found to be on the positive region,

i.e. expectations are found to drive GDP growth (in deviation from the long-run mean).

Furthermore, posterior means for the serial correlation parameter, ρ, is lower when ex-

pectations are incorporated in the models hence part of the persistence in growth rates

are captured by the persistence in expectations.
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Table 3.5: Prediction results from alternative models for US growth between 1969–I and
2013–III

model MSFE Cumulative Pred. Lik.
models without level changes
AR 0.360 -76.78
AR-EXP 0.367 -77.52
models with occasional level changes
AR-LS-SV 0.371 -65.16
AR-LS-SV-EXP 0.375 -64.54

Note: For all models, sample is determined as the period for which expectation data is available. Forecast
sample includes data between 1994–IV and 2013–IV. Results are based on 10000 draws of which 5000 are
burn-in draws.

Figure 3.9 presents estimated levels, break probabilities and mean volatilities for AR-

LS-SV and AR-LS-SV-EXP models, i.e. models with time varying levels. Comparing the

graphs top panel in Figure 3.9, it can be seen that including growth expectations in the

model leads to smoother estimated long-run levels since part of the variation in growth

is captured by the variation in growth expectations. Despite this finding, the middle and

bottom panels in Figure 3.9 shows that estimated break probabilities and volatility of

growth follow similar patterns regardless of the inclusion of expectations in the model.

For a detailed comparison of the models with and without growth expectations, we

consider the predictive performances of the four models in Table 3.4, using 1 quarter ahead

MSFE and cumulative predictive likelihoods. The predictive performances are reported

in Table 3.5 for the forecast period 1994–IV and 2013–IV.

The results in Table 3.5, which are based on a smaller sample period compared to

section 3.5.3, confirm that modeling occasional shifts (AR-LS-SV or AR-LS-SV-EXP)

in mean growth improve the predictive power of standard growth models. Secondly,

according to the MSFE values reported in Table 3.5, adding expectations to AR or AR-

LS models causes a slight deterioration in point forecasts. However, according to the

cumulative predictive likelihoods, expectations clearly improve predictive power of these



Figure 3.9: Estimation results for the AR-LS-SV model and AR-LS-SV-EXP models

-3

-2

-1

0

1

2

3

4

1970 1975 1980 1985 1990 1995 2000 2005 2010

AR-LS-SV
GDP growth
90% interval

-3

-2

-1

0

1

2

3

4

1970 1975 1980 1985 1990 1995 2000 2005 2010

AR-LS-SV-EXP
GDP growth
90% interval

-4

-2

0

2

4

0.0

0.2

0.4

0.6

0.8

1.0

1970 1975 1980 1985 1990 1995 2000 2005 2010

GDP growth
AR-LS-SV break probability

-4

-2

0

2

4

0.0

0.2

0.4

0.6

0.8

1.0

1970 1975 1980 1985 1990 1995 2000 2005 2010

GDP growth
AR-LS-SV-EXP break probability

-4

-2

0

2

4

0.0

0.4

0.8

1.2

1.6

1970 1975 1980 1985 1990 1995 2000 2005 2010

GDP growth
AR-LS-SV mean volatility

-4

-2

0

2

4

0.0

0.4

0.8

1.2

1.6

1970 1975 1980 1985 1990 1995 2000 2005 2010

GDP growth
AR-LS-SV-EXP mean volatility

Note: The figure presents estimated levels, break probabilities and mean volatility for GDP growth
(in percentages) for the sample period 1969Q2–2013Q4, the period for which growth expectations are
available. Results are based on 10000 draws of which 5000 are burn-in draws.
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Figure 3.10: Cumulative predictive likelihoods from alternative models for US growth
between 1969–I and 2013–III
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Note: For all models, sample is determined as the period for which expectation data is available. Forecast
sample includes data between 1994–IV and 2013–IV. Results are based on 10000 draws of which 5000 are
burn-in draws.

models. Hence, if the purpose is to obtain density forecasts of growth, incorporating

expectations in the model structure is important.

The evolution of predictive likelihoods for all compared models through the forecast

sample period are shown in Figure 3.10. The model incorporating expectations, AR-LS-

SV-EXP, leads to improvements in predictive likelihoods in two important periods in the

sample: the period between 2000 and 2004, and between 2008 and 2009, i.e. the recession

in early 2000s and the recent Great recession. We therefore conclude that incorporating

expectations in growth models can be useful especially in turbulent times, even if the

performance of the models point forecasts (measured by MSFE) does not improve with

the addition of expectation data.

3.6 Final Remarks

We analyzed time varying patterns in US growth using various univariate model struc-

tures, starting from a naive model structure where all features change every period to a
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model where the slow variation in the conditional mean and changes in the conditional

variance are specified together with their interaction, including survey data on expected

growth in order to strengthen the information in the model. Our results indicate that

incorporating time variation in mean growth rates as well as volatility of mean growth

rates are important for improving the predictive performances of standard growth models.

Furthermore, using data information on growth expectations is important for forecasting

growth in specific periods, such as the 2000s and around 2008.

The empirical analysis leads to several topics for further research in relation to in-

corporating time varying patterns and growth expectations in growth models. First, the

approach of this chapter can be extended to analyze the difference between actual and

potential growth, the so-called growth gap and also to analyze features of the business

cycle like the dating procedure of Pagan and Harding (2005). Second, instead of ‘select-

ing’ a specific model, the proposed models with time variation or with GDP expectations

can be ‘combined’, as in Billio et al. (2013) to combine the weights of the expectations

data and the model information over time, with possibly an improvement of the overall

predictive performance of the growth model. Finally, the proposed models can be applied

to GDP growth of countries other than the US in order to analyze international evidence

on the predictive gains from changing growth levels, variances and incorporating growth

expectations in standard growth models. This requires extending our work and including

a panel data model.



Chapter 4

Posterior-Predictive Evidence on US

Inflation using Extended New

Keynesian Phillips Curve Models

with non-filtered Data

Chapter 4 is based on Baştürk, Çakmaklı, Ceyhan and Van Dijk, (2013b).

4.1 Introduction

Modeling the relation between inflation and fluctuations in economic activity has been

one of the building blocks of macroeconomic policy analysis. Often, the analysis of this

relation, denoted as New Keynesian Phillips Curve (NKPC) models, is conducted using

the short-run variations in inflation and economic activity. The conventional method for

extracting this short run variation in the observed series is to demean and detrend the data

prior to analysis, see Gaĺı and Gertler (1999). However, mechanical removal of the low

frequency movements in the data may lead to misspecification in the models, as suggested

in Ferroni (2011) and Canova (2012) for DSGE models. The existence of complex low
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frequency movements, such as structural breaks and level shifts in the observed series,

in particular, in the inflation series, is well documented in the literature, see McConnell

and Perez-Quiros (2000) and Stock and Watson (2008). Distinct periods with different

patterns can be observed for the non-filtered inflation series. The period between the

early 1970s and the early 1980s is often labeled as a high inflationary period compared

to earlier and later periods. A similar type of statement holds for economic activity. The

real marginal cost series, often used as a proxy for economic activity, see Gaĺı and Gertler

(1999), follows a negative trend which is amplified in the recent decades. Note that in

the literature, there are papers which use the output gap variable instead of real marginal

cost as a proxy for economic activity. However, as Rudd and Whelan (2007) suggests, the

coefficient of output gap turns out to have the wrong sign. Moreover, the construction of

the output gap variable using the potential output is not trivial. Therefore, in this study

we use the real marginal cost. The importance of joint analysis of such high and low

frequency movements in macroeconomic data has recently been documented, see Ferroni

(2011), Delle Monache and Harvey (2011), Canova (2012), and Faust and Wright (2013).

In this chapter we aim to contribute to this literature in four ways. We illustrate

and discuss possible effects that simple prior filtering of the low frequencies in the data

may have on posterior and predictive inference using a basic NKPC model. The issue

is that the observed inflation and marginal cost data have more complex low frequency

structures than just a simple constant mean and/or a basic linear or HP trend. We show

that this misspecification affects posterior inference of the structural NKPC parameters

and gives poor forecasting results depending on the model specification. In appendix 4.A,

we present extensive evidence on this feature using a set of simulated and real data and a

range of NKPC model structures. Obviously, in well specified models and in series with

relatively constant means and linear trends the misspecification effects are not severe.

However, from the outset, the use of mechanical filters without properly examining the

frequency features of the data is not advisable.
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We extend the basic NKPC model by specifying structural time series models which

allow for stochastic trends, structural breaks and stochastic volatility in inflation and log

marginal costs and integrate these with the basic model. The more complex model struc-

ture enables the identification of the relation between macroeconomic variables inherent

in the NKPC model, together with possible long and short run dynamics in each series.

Next, we enrich the extended NKPC models to include both forward and backward

looking expectation components. There is a debate in the literature on the relative weights

of these two components in explaining and forecasting inflation patterns in the U.S.. Our

combined model structure can provide valuable information on that point.

As a final contribution we make use of survey data on inflation expectations from

the University of Michigan Research Center, which provides quarterly one year ahead

inflation expectations. It is well known that the class of NKPC models including complex

time series features and basic expectation mechanisms is not easy to estimate given the

usually weak data information and the few available weak instrumental variables. The

proposed richer expectation mechanism and making use of survey data strengthen the

likelihood information and are expected to make inference more efficient and forecasting

more accurate.

Several alternatives to structural time series models for efficiently combining the

NKPC model with explicit low frequency movements in the data are available. One

alternative is to focus only on the high frequencies by rewriting the likelihood in the fre-

quency domain and maximizing the (log)likelihood only over a portion of fluctuations,

see e.g. Christiano and Vigfusson (2003). Another alternative is to utilize multiple prior

filters, to capture possibly incorrectly specified low frequency components, see Canova

and Ferroni (2011). Here we focus on explicitly modeling the low frequency movements

to improve the predictive performances of the structural form models while we keep the

theoretical model at a simple tractable level.
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We apply the proposed set of models to quarterly U.S. data over the period 1960-I

until 2012-I. For all models considered, posterior and predictive results are obtained using

a simulation based Bayesian approach. Our results indicate that NKPC structures with

three additional components (structural time series features, expectation mechanisms and

inflation survey data) capture time variation in the low and high frequency movements of

both inflation and marginal cost data. For the inflation series, the extended model iden-

tifies distinct periods with different inflation levels and volatilities. In terms of marginal

costs, the local linear trend specification accommodates the smoothly changing trend

observed in the series, specifically after 2000. We also find improved forecasting perfor-

mance of the extended NKPC models when these are compared with basic NKPC models

with demeaned and/or detrended data and with the standard stochastic volatility model

proposed by Stock and Watson (2007) and, further, with an extended Bayesian Vector

Autoregressive (BVAR) model which accounts for changing levels, trends and volatility

in the data. The model comparison is based on predictive likelihood and Mean Squared

Forecast Error (MSFE) comparisons. The Bayesian approach we adopt has additional

appealing features for the models considered. In terms of inflation predictions, several

measures of interest, such as deflation probabilities obtained from the lower tail of the

complete predictive densities, are obtained as a by-product of Bayesian inference. Further-

more, for the most general model with good fit and forecasting features, weak endogeneity

and almost non-existence of a stable long-run relationship between inflation and marginal

costs can easily be assessed using the posterior draws of the trends and levels.

The structure of this chapter is as follows: Section 4.2 presents the three extensions

to the standard NKPC model structure. Section 4.3 provides the application of the

proposed models and the standard NKPC model on U.S. inflation and marginal cost

data. Section 4.4 concludes. Additional illustrations, results, details of the posterior

sampling algorithms and references are provided in the appendix 4.E and appendix 4.F.
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4.2 Extended New Keynesian Phillips Curve Models

We start with a standard NKPC model based on a priori filtered data. Next, we extend

this model with a structural time series model in order to deal with low and high fre-

quencies that are present in U.S. inflation and the low frequency property in the U.S. log

marginal cost series. Thirdly, we extend the latter NKPC model by introducing a Hybrid

NKPC model (HNKPC) with both backward and forward looking inflation expectations

making use of observed inflation expectations from survey data.

The standard NKPC can be derived by the approximation of the equilibrium condi-

tions of the firms under staggered price setting using the Calvo formulation, see Calvo

(1983). The Calvo model implies that a fraction of firms optimize their prices while the

remaining fraction, i.e. non-optimizing firms, keep their prices unchanged. Assuming zero

inflation at the steady state the basic NKPC model derived from the firm’s price setting

is given as
π̃t = λz̃t + γfEt(π̃t+1) + ε1,t,

z̃t = φ1z̃t−1 + φ2z̃t−2 + ε2,t,
(4.1)

where π̃t is the filtered inflation and z̃t is the filtered (log) real marginal cost, (ε1,t, ε2,t)
′ ∼

NID (0,Σ), λ is the slope of the Phillips curve, γf is the weight given to the forward

looking inflation, and standard stationary restrictions hold for (φ1, φ2).

One way to estimate this model is to replace the expectation term with actual inflation

values relying on rational expectations. Another option is to use survey data on expected

inflation as ‘observed’ expectations. Still, direct substitution of survey data for expected

inflation does not exploit the full model structure. In our modeling strategy, we use the full

data generating process for real marginal costs together with the Phillips curve relation to

form inflation expectations.1 Iterating the model forward and computing future expected

inflation, model (4.1) implies that inflation can be expressed as the sum of the current

and future discounted stream of the real marginal costs. Given the AR(2) dynamics for

1We also estimate the model by inserting the survey expectations directly in model (4.1). The results
are provided in the appendix 4.K.
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the long run deviation of the marginal costs, one can compute this sum and obtain a

closed-form solution of model (4.1). The NKPC model takes the form of an instrumental

variable model with nonlinear parameters in the inflation equation2

π̃t = λ
1−(φ1+φ2γf )γf

z̃t +
φ2γfλ

1−(φ1+φ2γf )γf
z̃t−1 + ε1,t

z̃t = φ1z̃t−1 + φ2z̃t−2 + ε2,t.
(4.2)

One way to estimate the structural parameters is by estimating the parameters of

the unrestricted reduced form model using a uniform prior and solve for the structural

form parameters, see the appendix 4.B and Kleibergen and Mavroeidis (2011) for details.

However, this parameter transformation involves a complex Jacobian determinant that

may seriously obscure posterior inference on the structural parameters. Hence we opt for

estimating structural parameters directly.

Extended NKPC models: low frequency components, non-filtered data

We depart from the standard NKPC model by avoiding a priori data filtering and empha-

size that data filtering is an integral part of modeling from an econometric point of view.

Specifically, we make use of models with time varying levels as well as volatility for cap-

turing both the low and high frequency changes in the U.S. inflation and marginal costs.

Furthermore, estimating data filters together with other model parameters concerns the

uncertainty related to long run specifications. Modeling the data filters explicitly takes

this uncertainty into account while the use of filtered data does not. Finally, prior data

filtering also has important effects on the predictive performance of the models as shown

in section 4.3.

There exists a substantial literature on the connection between actual inflation and

target inflation and the firms’ pricing behavior. We summarize the major issues here.

In full equilibrium DSGE models with explicit monetary policy modeling, the mean level

of the inflation is related to the target inflation rate. In these specifications, the target

inflation rate is either assumed to be constant or is allowed to change to accommodate

2The model in (4.2) can be written as a triangular simultaneous equations model (SEM).
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variation in inflation level. Prominent examples include Woodford (2003) and Sargent

et al. (2006), who fix the target inflation and Erceg and Levin (2003), Schorfheide (2005),

Ireland (2007) and Liu et al. (2011), who allow for discrete or continuous changes in the

target inflation level.

In our partial equilibrium NKPC models, the specification of the steady state inflation

level and the firms’ decision process are of key importance for the final model structure.

In the standard NKPC models as in Gaĺı and Gertler (1999), assuming zero steady state

inflation and keeping the prices fixed for the non-optimizing firms results in the standard

form of NKPC as in model (4.1). Ascari (2004) and Ascari and Sbordone (2013), extend

these models to allow for constant positive trend inflation and they analyze the implica-

tions of the trend inflation on the NKPC structure. Cogley and Sbordone (2008) take

one-step further and derive the NKPC model with time-varying trend inflation modeled

as a driftless random walk. Adding a trend inflation to standard NKPC assumptions,

while preserving the assumption that non-optimizing firms keep their prices fixed causes

the resulting NKPC coefficients to depend on the trend inflation. Thus, the interpretation

of the coefficients differs from the standard model in these extended models.

Other assumptions on non-optimizing firm’s pricing behaviour include indexation on

past inflation (i.e. non-optimizing firms change their prices based on past inflation), see

Smets and Wouters (2003) and Christiano et al. (2005). Alternatively, Smets and Wouters

(2007) and Liu et al. (2011) make use of steady state inflation. As discussed in Ascari

(2004) and Levin and Yun (2007) the structure of the NKPC remains as in model (4.1)

with constant parameters if the non-optimizing firms adjust their price by the steady state

inflation. Indeed, this is the route taken in Yun (1996), Jeanne (1998) and Schorfheide

(2005). Moreover, Nason and Smith (2008) provide empirical evidence in favor of stable

structural parameters. In our extended NKPC models with non-filtered data we follow

this assumption and keep the structural parameters constant focusing on short and long

run inflation levels.
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The proposed joint modeling of data filters and other model parameters is also moti-

vated by the stylized facts for the non-filtered U.S. inflation and log marginal cost data,

shown in Figure 4.1 over the period between 1960-I and 2012-I.3 The left panel displays

distinct periods with differing inflation patterns. The period between the early 1970s and

the early 1980s can be labeled as a high inflationary period with high volatility compared

with the remaining periods. Existing evidence shows that the decline in inflation level

and volatility is due to credible monetary policy that stabilized inflationary expectations

since the early eighties, see McConnell and Perez-Quiros (2000) and Stock and Watson

(2007). One way to model this changing inflation behavior is to allow for regime changes

in parameters, see Sims and Zha (2006) and Cogley and Sbordone (2008). We consider

two cases for the inflation process. In the first case, we assume continuous level shifts in

inflation using a random walk process

cπ,t+1 = cπ,t + η1,t+1, η1,t ∼ NID(0, σ2
η1
). (4.3)

Figure 4.1: Inflation, inflation expectations and log real marginal cost (×100) series over
the period 1960-I until 2012-I
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Alternatively, we consider an inflation level subject to occasional and discrete shifts.

Such level shifts are modeled as follows

cπ,t+1 = cπ,t + κtη1,t+1, η1,t ∼ NID(0, σ2
η1
), (4.4)

3Inflation is computed as the continuously compounded growth rate of the implicit GDP deflator
and for the real marginal cost series we use labor share in non-farm business sector obtained from
http://research.stlouisfed.org/fred2/, see Gaĺı and Gertler (1999) for details. The right panel in Figure 4.1
displays real marginal costs, in natural logarithms and multiplied by 100.
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where κt is a binary variable taking the value of 1 with probability pκ if there is level shift

and the value 0 with probability 1− pκ if the level does not change. This model structure

allows for level shifts to depend on pκ while preserving a parsimonious model structure

with only a single additional parameter. Occasional and large level shifts correspond to

low values of pκ together with high values of ση1 . When pκ is 1, the model becomes the

local level model of (4.3). We use both specifications (4.3) and (4.4) in the empirical

analysis.

The real marginal costs, shown in the right panel of Figure 4.1, does not exhibit

discrete changes as observed in the inflation series. These data instead have a continuously

changing pattern around a negative trend, which can be attributed to technology shocks.

Since this trend is more prominent in the second half of the sample period, we allow for

a changing trend using a local linear trend specification

cz,t+1 = μz,t + cz,t + η2,t+1, η2,t ∼ NID(0, σ2
η2
)

μz,t+1 = μz,t + η3,t+1, η3,t ∼ NID(0, σ2
η3
).

(4.5)

This specification is flexible enough to encompass many types of filters used for de-

trending, see Delle Monache and Harvey (2011) and Canova (2012) for a similar speci-

fication in the more general context of DSGE models. When σ2
η3

= 0, the level of the

real marginal costs follow a random walk with a drift, μz. Additionally, when σ2
η2

= 0, a

deterministic trend is obtained. Note that, setting only σ2
η2

= 0 but allowing σ2
η3

to be

positive results in an integrated random walk process which can approximate nonlinear

trends including the Hodrick-Prescott (HP) trend.
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Together with the level specifications of the inflation and real marginal costs, the

NKPC model in (4.2) using (4.4) and (4.5) takes the following form

πt − cπ,t = λ
1−(φ1+φ2γf )γf

(zt − cz,t) +
φ2γfλ

1−(φ1+φ2γf )γf
(zt−1 − cz,t−1) + ε1,t,

zt − cz,t = φ1 (zt−1 − cz,t−1) + φ2 (zt−2 − cz,t−2) + ε2,t,

cπ,t+1 = cπ,t + κtη1,t+1,

cz,t+1 = μz,t + cz,t + η2,t+1,

μz,t+1 = μz,t + η3,t+1,

(4.6)

where (ε1,t, ε2,t)
′ ∼ NID

(
0,
(

σ2
ε1

ρσε1σε2

ρσε1σε2 σ2
ε2

))
, (η1,t, η2,t, η3,t)

′ ∼ NID

(
0,

(
σ2
η1

0 0

0 σ2
η2

0

0 0 σ2
η3

))
and the disturbances (ε1,t, ε2,t)

′ and (η1,t, η2,t, η3,t)
′ are independent for all t.

Adding stochastic volatility as high frequency component

A further refinement in the NKPC model can be achieved allowing for time variation

in the variances of the disturbances. This extension is particularly appealing for the

inflation series, as the inflation variance changes over time substantially, see e.g. Stock

and Watson (2007) for a reduced form model with a stochastic volatility component. The

following state equation extends the NKPC model with a stochastic volatility process for

inflation

ht+1 = ht + η4,t+1, η4,t+1 ∼ NID(0, σ2
η4
), (4.7)

where we specify a time-varying volatility, σε1,t = exp(ht/2), in the first equation in (4.6).

We follow Stock and Watson (2007) by fixing the value of σ2
η4

prior to analysis to facilitate

inference. We set ση4 = 0.5, which seems to work well for U.S. inflation.

An important estimation challenge in this extended model is the close relation be-

tween the changing inflation levels and volatilities. These changing data patterns can

be captured by either of these model components which makes it hard to identify these

components unless one makes strong prior restrictions. We fix the value of σ2
η4

prior to

analysis to facilitate inference and in order to impose smoothness in the volatility process.

It is straightforward to extend the analysis with a more flexible, strong, stochastic prior so
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that the parameter σ2
η4

is estimated together with the rest of the parameters. We report

on this in section 4.

Hybrid NKPC: forward and backward expectations using survey data

The specification of the HNKPC can be derived using an assumption on the firm’s be-

havior, where a fraction ω of the firms, that are unable to reset their prices, adjust their

price by the lagged inflation rate. The HNKPC model takes then the form of

π̃t = λH z̃t + γH
f Et(π̃t+1) + γH

b π̃t−1 + ε1,t,

z̃t = φ1z̃t−1 + φ2z̃t−2 + ε2,t,
(4.8)

where parameters of the HNKPC model, indicated by a superscript H are functions of

the price stickiness parameter, a discount factor and the fraction of firms with backward

looking pricing behavior. We note that the HNKPC has the same forward looking inflation

expectation term in the model as the NKPC but the HNKPC has both a backward and

forward looking component due to the specification of the lagged inflation deviation.

As in the NKPC case, we opt for using the full information approach by exploiting

the information in the data generating process for real marginal costs.4 Iterating the

first equation forward and solving for the expected inflation, the HNKPC implies the

triangular simultaneous equations model which is nonlinear in parameters

π̃t = λH

(1−γH
b γH

f )(1−(φ1+φ2γH
f )γH

f )
z̃t +

φ2γH
f λH

(1−γH
b γH

f )(1−(φ1+φ2γH
f )γH

f )
z̃t−1

+
γH
b γH

f

(1−γH
b γH

f )

∑∞
k=1(γ

H
f )kEt(π̃t+k) +

γH
b

(1−γH
b γH

f )
π̃t−1 + 1

(1−γH
b γH

f )
ε1,t

z̃t = φ1z̃t−1 + φ2z̃t−2 + ε2,t.

(4.9)

Unlike the NKPC solution, this system has a lagged inflation term and an infinite

sum of inflation expectations. A closed form solution for the latter expression only exists

under certain assumptions such as rational expectations.

We do not follow this route but proceed differently. Consider Et(π̃t+k) = Et(πt+k) −
Et(cπ,t+k) which is the difference between expected future inflation and the expected future

4We also estimate the model by inserting the survey expectations directly in model (4.8). The results
are provided in appendix 4.K.
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value of the low frequency component of inflation that we modeled in (4.4) as a process

that is similar to a random walk but subject to occasional and discrete level shifts and it

has a bounded variance. One can interpret this difference as the difference between short

and long run inflation expectations. As a next step we substitute the observed survey data

on next period’s expected inflation, denoted by μt, for the expected inflation in period

t+ 1, i.e. μt = Et(πt+1) and we assume the following partial adjustment mechanism

μt − cπ,t+1 = β(μt−1 − cπ,t) + η5,t+1, (4.10)

where |β| < 1 and η5,t+1 is iid and Et(η5,t+1) = 0. Iterating this equation forward and

taking expectations one obtains Et(μt+k−1 − cπ,t+k) = βk−1(μt − cπ,t+1). That is, the

partial adjustment mechanism described in (4.10) implies that the further one gets into the

future the smaller will be the difference between short and long run inflation expectations.

Estimates of β will indicate the empirical speed of adjustment. For instance, for a value

of the posterior mean of β equal to 0.5 it follows that within a few periods one has almost

complete adjustment. Given the restriction on β one can solve (4.10) for μt and obtain

μt−1 = cπ,t +
∑∞

j=0 β
jη5,t−j. That is, the observed survey inflation expectations are equal

to the long run unobserved inflation pattern and an infinite moving average of errors

with declining weights that are determined by the adjustment mechanism given in (4.10).

This adaptive mechanism has a Bayesian learning and updating interpretation on the

difference between short and long run expected inflation. Using this mechanism, the term∑∞
k=1(γ

H
f )kEt(π̃t+k) in (4.9) can be rewritten and the HNKPC model becomes

πt − cπ,t =
λH

(1−γH
b γH

f )(1−(φ1+φ2γH
f )γH

f )
(zt − cz,t) +

φ2γH
f λH

(1−γH
b γH

f )(1−(φ1+φ2γH
f )γH

f )
(zt−1 − cz,t−1) ,

+
γH
b γH

f

(1−γH
b γH

f )

γH
f

1−γH
f β

(μt − cπ,t) +
γH
b

(1−γH
b γH

f )
(πt−1 − cπ,t−1) + 1

(1−γH
b γH

f )
ε1,t,

zt − cz,t = φ1 (zt−1 − cz,t−1) + φ2 (zt−2 − cz,t−2) + ε2,t.

(4.11)
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We emphasize that alternative models on inflation expectations exist, see Mankiw et al.

(2003). For instance, a skew density for η5,t allows systematic under- or overoptimism.

This is an interesting topic, but outside the scope of this chapter.5

Note that the model-implied expectation is for GDP inflation while the overlaid data is

CPI inflation expectations. For this reason we subtract the average difference between CPI

and GDP inflation from the survey data.6 Furthermore, since the survey data provide four-

steps-ahead (one-year) expectations, we divide the survey data by 4, assuming constant

expectations over the year.

The NKPC model in (4.6) is a special case of (4.11) when γH
b = 0. Then the model

becomes purely forward looking. Similar to the NKPC model, we consider three case of the

HNKPC model with different specifications for inflation: (i) continuous level changes; (ii)

discrete occasional level changes; and (iii) discrete occasional level changes and stochastic

volatility.

4.3 Posterior and Predictive Evidence

In this section we present posterior and predictive evidence on several features of the

extended NKPC models using U.S. data on inflation and marginal costs. We note that the

MCMC sampler for the full conditional posterior distribution is based on Gibbs sampling

with a Metropolis-Hastings step and data augmentation, combining the methodologies in

Geman and Geman (1984); Tanner and Wong (1987); Gerlach et al. (2000) and Çakmaklı

et al. (2011). The posterior sampler, the prior distributions and a prior sensitivity analysis

using prior-predictive likelihoods are given in appendix 4.J. We compare the results with

those obtained from alternative reduced form models like BVAR models and the stochastic

volatility model from Stock and Watson (2007). Specifically, we estimate two NKPC

5Alternatively, survey expectations may be measured with an error. In this case one can specify unob-
served inflation expectations anchored around observed survey expectations. We consider this possibility
and report these estimation results in appendix 4.L. Such extensions do not seem to alter the results.

6We thank an anonymous referee for pointing this out. Our approach of recalculating the inflation
expectations is similar to Del Negro and Schorfheide (2013).
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models with demeaned inflation series and with detrended real marginal costs using a

linear trend or the HP filter, which are labeled NKPC-LT and NKPC-HP, respectively. In

six extended NKPC models we make use of structural time series models to specify low and

high frequencies. The first three of these models allow for continuous changes in the level

of inflation (NKPC-TV), in addition discrete occasional level shifts (NKPC-TV-LS), and

in further addition stochastic volatility for inflation (NKPC-TV-LS-SV). The final three

models use the HNKPC framework with forward and backward looking expectations and

using survey data. The corresponding extensions are denoted as HNKPC-TV, HNKPC-

TV-LS and HNKPC-TV-LS-SV. All six models use the local linear trend specification in

(4.6) for the real marginal costs. A summary of the eight models used in this chapter is

given in Table 4.1.

Table 4.1: Standard and extended NKPC models
���������������������

low/high
frequencies

model structure

NKPC HNKPC

Inf: constant level NKPC-LT HNKPC-LT*

RMC: linear trend

Inf: constant level NKPC-HP HNKPC-HP*

RMC: Hodrick-Prescott filter

Inf: time varying levels NKPC-TV HNKPC-TV

RMC: local linear trend (4.2)-(4.3)-(4.5) (4.3)-(4.5)-(4.10)-(4.11)

Inf: time varying levels and
switching

NKPC-TV-LS HNKPC-TV-LS

RMC: local linear trend (4.2)-(4.4)-(4.5) (4.4)-(4.5)-(4.10)-(4.11)

Inf: ... and stochastic volatility NKPC-TV-LS-SV HNKPC-TV-LS-SV

RMC: local linear trend (4.2)-(4.4)-(4.5)-(4.7) (4.4)-(4.5)-(4.7)-(4.10)-(4.11)

Results for the models indicated by (*) are provided in the appendix. ‘Inf’ (‘RMC’) stands for Inflation (Real
Marginal Cost).

Posterior evidence

We display the estimation results in Table 4.2 and focus on four features: slope of

the Phillips Curve; weight of forward and backward inflation expectations; degree of

endogeneity and persistence in survey expectations. First, the slope of the NKPC (λ(H))
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is estimated around 0.07 and 0.09 which is slightly higher than the conventional estimates

of the Phillips curve slope, that indicate an almost flat curve, see e.g. Gaĺı and Gertler

(1999); Gaĺı et al. (2005); Nason and Smith (2008). When we model the levels of the

series explicitly, λ(H) drops to values around 0.05 for both NKPC and HNKPC models.

A possible explanation for this difference is the departure from the zero steady state

inflation assumed in the traditional NKPC models. As shown in Ascari (2004) and Ascari

and Ropele (2007) among others, when firms that cannot re-optimize their prices keep

their prices fixed, trend inflation can affect the slope of the NKPC. In this case, this slope

is a decreasing function of the trend inflation. Still, in both NKPC and HNKPC models,

the estimated slopes are substantially different from zero as point 0 is outside the 95%

Highest Posterior Density Interval (HPDI) for most cases.

Table 4.2: Posterior results of alternative NKPC models

Model λ(H) γ
(H)
f γH

b β ρ φ1 φ2

NKPC-LT 0.07 (0.03) 0.36 (0.24) − − -0.01 (0.02) 0.84 (0.05) 0.08 (0.05)
NKPC-HP 0.10 (0.05) 0.43 (0.27) − − -0.05 (0.04) 0.66 (0.05) -0.01 (0.05)

NKPC-TV 0.06 (0.03) 0.39 (0.25) − − -0.09 (0.06) 0.82 (0.05) 0.06 (0.05)
NKPC-TV-LS 0.05 (0.02) 0.36 (0.24) − − -0.06 (0.05) 0.82 (0.05) 0.07 (0.05)
NKPC-TV-LS-SV 0.06 (0.02) 0.32 (0.23) − − -0.02 (0.07) 0.87 (0.05) 0.10 (0.05)

HNKPC-TV 0.04 (0.02) 0.01 (0.01) 0.42 (0.12) 0.52 (0.29) 0.01 (0.06) 0.81 (0.05) 0.07 (0.05)
HNKPC-TV-LS 0.04 (0.02) 0.01 (0.01) 0.47 (0.10) 0.50 (0.19) 0.02 (0.01) 0.81 (0.06) 0.16 (0.07)
HNKPC-TV-LS-SV 0.06 (0.02) 0.03 (0.05) 0.21 (0.11) 0.56 (0.21) -0.01 (0.01) 0.87 (0.05) 0.10 (0.05)

The table presents posterior means and standard deviations (in parentheses) of parameters for the competing NKPC type
models estimated for quarterly inflation and real marginal costs over the period 1960-I until 2012-I. λ (λH) and γf (γH

f ) are

the slope of the Phillips curve and the coefficient of inflation expectations in NKPC (HNKPC) model in (4.2) ((4.11)). γH
b

is the coefficient of the backward looking component in the HNKPC model in (4.11). H superscript denotes the parameters
of the hybrid models while these parameters without H superscript correspond to the NKPC model counterparts. β is the
autoregressive parameter for the deviation of the short run expectations from the long run, as defined in (4.10). ρ is the
correlation coefficient of the residuals ε1 and ε2. φ1 and φ2 are the autoregressive parameters for the real marginal cost
specification in model (4.2). Posterior results are based on 40000 simulations of which the first 20000 are discarded for
burn-in. Model abbreviations are as in Table 4.1.

Second, with respect to inflation expectations, the coefficient of the short-run inflation

expectations in Table 4.2, γ
(H)
f , is much lower than the conventional estimates, which are

above 0.9 in most cases. A potential reason for this finding is the methodology used.

Conventional Bayesian analyses often impose dogmatic priors on this parameter unlike

our uninformative prior specification. When we consider the NKPC model with the

subjective discount factor γf , the (implied) prior for the discount factor (either directly
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or through other parameter’s priors in the steady state relations) is either fixed to the

values around 0.99, see Smets and Wouters (2003) for example, or it is tightly centered

around 0.99, see for example Schorfheide (2005); An and Schorfheide (2007). We also

notice a relatively higher posterior standard deviation for this parameter, hence another

potential cause of this finding is the relatively low information content in the data about

this parameter. This is in accordance with the discussion in the appendix 4.B on the

shape of the likelihood in these macro-models. Note that the more conventional values of

this parameter are still inside the 95% HPDI.

Another reason might be the fact that, even if the models are estimated without a

restriction, in most cases inflation expectations are replaced by the real leading value of

the inflation relying on the rational expectations hypothesis, see e.g. Gaĺı and Gertler

(1999) and Sims (2002). However, we opt for explicitly solving for expectations resulting

in a highly nonlinear system of simultaneous equations.

A striking result from Table 4.2 is the relative importance of the forward and backward

looking components of the HNKPC, measured by parameters γH
f and γH

b . On the one

hand, the evidence in Gaĺı et al. (2005) suggests a dominant forward looking effect. Cog-

ley and Sbordone (2008) document that the forward looking component of the HNKPC

model dominates once the trend variation in inflation is taken into account. Similarly,

Benati (2008) shows that under stable monetary regimes with clearly defined nominal

anchors, inflation appears to be (nearly) forward looking. On the other hand, many stud-

ies including Fuhrer and Moore (1995); Rudd and Whelan (2005) document a dominant

backward looking effect. Our results favor the latter view since the effect of the backward

looking component of inflation estimated by the HNKPC models in the bottom panel of

Table 4.2 are substantially higher than those of the forward looking components. More

specifically, Table 4.2 shows that the HNKPC and NKPC model results differ in terms

of the forward looking components’ coefficient γ
(H)
f . From an economic point of view,

these results maybe driven by the model assumptions on firm behavior that differs from
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those of Cogley and Sbordone (2008) and Benati (2008). From an econometric point of

view, as in the NKPC case, the specification of the prior distribution is crucial. In many

analyses, the implied prior on these parameters suggests a support of the distribution

in the interval [0.5,1] ([0,0.5]) for γH
f (γH

b ), see Smets and Wouters (2003, 2007); Benati

(2008); Del Negro and Schorfheide (2008) and Del Negro and Schorfheide (2013). Hence,

the difference may be partly due to the presence of only one weak instrument (second

order lagged marginal costs), see Nason and Smith (2008) for further empirical results

and a discussion on this topic.

Third, the contemporaneous correlation between the observation disturbances deter-

mines the degree of endogeneity of the log real marginal costs in the NKPC. The estimates

of this correlation parameter, ρ, are displayed in the fifth column of Table 4.2. Posterior

means of ρ from all NKPC models are negative and close to 0, with high standard devia-

tions and point 0 is inside the 95% HPDI. For the HNKPC models, posterior means of ρ

are mostly positive with an even smaller magnitude. Therefore, the endogeneity problem

does not seem to be severe and single equation inference may yield credible results for

inflation and marginal costs. Still, we refrain from doing so since one neglects several

cross-equation restrictions in that case.

Fourth, the β parameter, which indicates the adaptation of the short run survey

expectations to the long run inflation, has posterior means given in the fifth column of

Table 4.2. All HNKPC models indicate relatively quick adjustment, as the posterior

means are around 0.5.

Estimated Levels, Volatilities and Breaks

We present estimated levels, trends, inflation volatilities and break probabilities for

the proposed HNKPC models in Figures H.1, 4.3 and 4.4, respectively. Estimates for the

NKPC counterparts are similar, and are provided in appendix 4.E.

The top-left panel of Figure H.1 shows estimated levels for the HNKPC-TV-LS-SV

model. We first stress that models that only allow for discrete and occasional level shifts
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Figure 4.2: Level, trend and slope estimates from the HNKPC-TV-LS-SV model
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Note: The top-left panel exhibits estimated inflation levels, cπ,t in model (4.6). The top-right and bottom panels show
estimated (log) real marginal cost levels and the slopes, cz,t and μz,t in model (4.6), respectively. Grey shaded areas
correspond to the 95% HPDI. Model abbreviations are as in Table 4.1. However, for notational convenience we use the
abbreviation ‘(H)PC’ instead of the abbreviation ‘(H)NKPC’ in the figures. Results are based on 40000 simulations of
which the first 20000 are discarded for burn-in.

lead to smoother inflation levels compared to the model that allows for continuous level

changes. Detailed results on this issue are provided in appendix 4.F. In DSGE models,

mean inflation is generally connected to the inflation target in the central bank’s policy

rule. Hence movements in trend inflation reflect to a large extent changes in the monetary

policy target (see also Schorfheide (2005); Cogley and Sbordone (2008)). Adding stochas-

tic volatility to the model with level shifts creates more frequent discrete changes in the

Figure 4.3: Estimated inflation volatility from the (H)NKPC-TV-LS-SV models
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Note: The dashed and solid lines show the posterior mean of the time varying inflation volatility and the observed inflation
level. The shaded areas are the 90% HPDI of inflation volatility estimated by the equivalent models without the stochastic
volatility components. Results are based on 40000 simulations of which the first 20000 are discarded for burn-in.
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Figure 4.4: Estimated level shift probabilities for the NKPC and HNKPC models
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Note: The solid and dotted lines are the posterior means of the estimated level shift probabilities from the (H)NKPC-TV-
LS model and the (H)NKPC-TV-LS models, respectively. The dashed line is the observed inflation level. Results are based
on 40000 simulations with the first 20000 discarded for burn-in.

inflation level, possibly reflecting the uncertainty in monetary policy target captured by

volatility changes. Estimated marginal cost levels for the HNKPC-TV-LS-SV are given

in the top-right panel of Figure H.1 and indicate a slightly nonlinear trend during the

sample period.

Figure 4.3 presents estimated volatility levels for the (H)NKPC model with level shifts

and the stochastic volatility component. The stochastic volatility pattern coincides nicely

with data features of the Great Moderation. The decline in inflation level and volatility

after the 1980s is linked to credible monetary policy that stabilized inflationary expec-

tations at a low level via commitment to a nominal anchor since the early eighties, see

Ahmed et al. (2004); Stock and Watson (2007). The effect of this is also seen in the infla-

tion levels presented in Figure H.1. This period of low volatility is replaced by a volatile

period after 2005 and during the recent financial crisis. A slight difference between NKPC

and HNKPC models occurs during the volatility peaks around 1975. High volatility is

distributed more evenly in the HNKPC model with stochastic volatility, whereas for the

NKPC counterpart, high volatility is concentrated around 1975. Peak points of estimated

volatilities coincide with rapid and substantial changes in inflation.

Estimated break probabilities for the NKPC and HNKPC models with and without

the stochastic volatility component are presented in Figure 4.4. The estimated level shift

probabilities for the NKPC-TV-LS model identify four major shifts in the inflation level
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around 1966, 1973, 1982 and 2005. Note that the estimated shift probabilities in the

NKPC-TV-LS-SV model demonstrate the complementarity of level shifts and changing

volatility. The probabilities follow a similar pattern with the NKPC-TV-LS model but

the periods subject to level shifts are much longer. During the highly volatile periods of

the 1970s, the model produces clear signals of changing inflation levels, as high volatility

causes rapid changes in inflation. Accordingly, low volatility periods are characterized by

mild but significant changes in inflation. This shows the complementarity of the stochastic

volatility component and level shifts.

Predictive Performance

Predictive performances of the models are reported using predictive likelihoods, MS-

FEs and predictive densities which enable us to report the deflation probabilities.

The first metric we consider is the predictive likelihoods of all models in order to

compare the density forecasts of the models. The one-step ahead predictive likelihood of

the observation at t0 + 1, yt0+1, conditional on the previous observations y1:t0 , is

f(yt0+1|y1:t0) =
∫

p(yt0+1|Xt0+1, θ)p(Xt0+1, θ|y1:t0)dXt0+1dθ, (4.12)

which can be computed by first generating {Xt0+1}Mm=1 for M posterior draws, using

the corresponding state equations. Next, the predictive likelihood of the observation at

t0 + 1 can be approximated by 1
M

∑M
m=1 p(yt0+1|Xm

t0+1, θ
m), where p(yt0+1|Xm

t0+1, θ
m
1:t0

) is a

multivariate normal density and M is a sufficiently large number.

We base the MSFE and predictive likelihood comparisons on the inflation predictions.

For the general case of h ≥ 1 period ahead forecasts, the predictive density of inflation at

time t is calculated conditional on the inflation and marginal cost data up to time t, the

estimated mean marginal cost values for the periods t+ 1, . . . , t+ h and, if h > 1, on the

estimated mean inflation levels for the periods t + 1, . . . , t + h − 1. For all models using

survey expectations, predictive likelihoods are also conditioned on the observed survey

expectations up to time t.
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A feature of the predictive likelihoods is that these can be evaluated by p(yt0+1:T ) =∏T
t=t0

f(yt+1|y1:t), which provides a tool to analyze the contribution of each observation at

time period t, see Geweke and Amisano (2010). For the models with a priori demeaned and

detrended data predictive likelihoods do not take into account the parameter uncertainty

arising from this a priori step. We choose to calculate the predictive likelihoods this way,

which is a fair replication of the literature.

Accurate point predictions of inflation are of key importance to economic agents such

as investors and central banks. Therefore, we consider MSFE, computed as the mean of

the sum of squares of the prediction errors. Point forecasts for inflation are defined as the

mean of the predictive distribution, which is consistent with a quadratic loss function. We

report MSFE for one and four period ahead forecasts in order to examine the forecasting

ability of the models for longer horizons.

As a third performance criteria, we report the deflation risk indicated by each model,

computed as the lower tail probability of the one step ahead predictive distributions.

Apart from the models considered so far, we include alternative reduced form models

that are proven to have good predictive abilities. The first model is the unobserved com-

ponents model proposed by Stock and Watson (2007), henceforth denoted as SW2007.

This model captures the unobserved trend in inflation where both inflation and trend

volatility follow a stochastic process, see SW2007 for details. The second model is an un-

restricted Bayesian VAR (BVAR-SV) model with two lags and with stochastic volatility

for inflation. BVAR models are one of the workhorse models used for forecasting macroe-

conomic series. For the sake of brevity, we do not provide details of this class of models

and refer to Del Negro and Schorfheide (2013). We use the proposed ‘TV’ model exten-

sion in the BVAR-SV model, which allows for continuous changes in the level of inflation

and a smoothly changing trend for the marginal costs. Both SW2007 and BVAR-TV-SV

models are strong competitors for the models we propose. In all considered models, the
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data based prior distributions given in appendix 4.E, calculated using the full sample

data, are used.

Predictive likelihoods and MSFE of the alternative models are presented in Table K.2.

The likelihood contribution of each observation and the corresponding cumulative predic-

tive likelihoods are displayed in Figure 4.5. We present the log predictive likelihoods of the

competing models in the first column of Table K.2. These values together with Figure 4.5

indicate three groups of models in terms of their predictive performances. The first group

of models include the conventional NKPC models with demeaned and detrended data

(NKPC-LT and NKPC-HP). The second group consists of the NKPC models with time

variation in inflation levels (NKPC-TV, NKPC-TV-LS) together with BVAR-TV-SV and

the SW2007 model. The models in the second group have much superior performance

in terms of the predictive likelihood values. A second increase in the predictive likeli-

hood values can be observed when we consider the models in the third group, namely

the HNKPC models (HNKPC-TV, HNKPC-TV-LS, HNKPC-TV-LS-SV) and the NKPC

model together with discrete level shifts and stochastic volatility for inflation (NKPC-

TV-LS-SV).

Table 4.3: Predictive performance of NKPC models and reduced form alternatives

Model Cumulative MSFE MSFE
(Log) Pred. Likelihood 1 period ahead 4 period ahead

SW2007 -78.03 0.17 0.25
BVAR-TV-SV -97.98 0.10 0.25

NKPC-LT -139.33 0.35 0.36
NKPC-HP -157.19 0.46 0.37

NKPC-TV -46.16 0.14 0.26
NKPC-TV-LS -61.97 0.14 0.28
NKPC-TV-LS-SV -33.48 0.13 0.21

HNKPC-TV -36.38 0.12 0.28
HNKPC-TV-LS -35.05 0.11 0.24
HNKPC-TV-LS-SV -18.15 0.09 0.18

Note: The table reports the predictive performances of all competing models for the prediction sample over the period 1973-
II until 2012-I. ‘Cumulative (Log) Pred. Likelihood’ stands for the sum of the natural logarithms of predictive likelihoods.
‘MSFE’ stands for the Mean Squared Forecast Error. Results are based on 10000 simulations of which the first 5000 are
discarded for burn-in. ‘SW2007’ stands for the model proposed by Stock and Watson (2007), and ‘BVAR-TV-SV’ stands
for the Bayesian VAR model with time varying levels and trends and a stochastic volatility component for the inflation
equation. Remaining abbreviations are as in Table 4.1.
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Figure 4.5: Predictive likelihoods from competing models
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Note: The figure displays the evolution of the (log) predictive likelihoods for the computing models over the period
1973-II until 2012-I. Model abbreviations are as in Table 4.1. Results are based on 5000 simulations of which the first 10000
are discarded for burn-in.

A similar clustering of models is observed when we compare model performances using

the one period ahead MSFE with the exception of the BVAR-TV-SV model. BVAR-TV-

SV model performs considerably better in terms of point prediction compatible with the

HNKPC models.

Three main conclusions can be drawn from these findings. First, the conventional

NKPC models with demeaned and detrended data (NKPC-LT and NKPC-HP) perform

worse than the competing models both in terms of MSFE and in terms of the cumulative

predictive likelihood metric. The difference between HNKPC and NKPC models in terms

of point forecasts is less pronounced compared to the increase in precision when switching

from models using demeaned and detrended data to the models that use the raw data.

Hence it is important to estimate levels and trends together with the structural model

parameters.

Second, the difference between the NKPCmodel with level shifts and stochastic volatil-

ity and the basic NKPC models is substantial. The former model delivers more accurate

point predictions considering MSFE and predictive likelihood values. Thus, it is impor-

tant to incorporate both high and low frequency movements in structural models. This

performance increases further in the HNKPC models, which incorporate the survey data

and the backward looking component.
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Third, structural models perform at least as well as the strong reduced form candi-

dates, the SW2007 and BVAR-TV-SV models. These findings are crucial since structural

models deliver both structural macroeconomic information and predictive performance,

whereas the reduced form models are solely designed for improving the predictive perfor-

mance.

The evolution of the model performance over the forecast sample is shown in Fig-

ure 4.5. An important finding from the figure is the increasing predictive performance

of the HNKPC models and the models with stochastic volatility components after mid

1980s. This period is characterized by a decrease in inflation volatility during the Great

Moderation, which the stochastic volatility component captures accurately. Moreover, the

effect of the level shifts can be observed when we compare the NKPC-TV-LS-SV model

with the SW2007 model. Much of the difference in the performance of these models can

be attributed to the changes in inflation levels. This shows that the inflation process

exhibits several regime changes.

The last metric we use for model comparison considers the implied deflationary risk.

The left panel in Figure I.1 shows the entire density of the inflation predictions for the

HNKPC-LS-SV model where the levels and trends are estimated together with the struc-

tural parameters. The mean predicted inflation is represented by the solid line, and the

width of the predictive distribution is indicated by the white area under the inflation den-

sity. As expected, inflation predictions are concentrated around high (low) values during

the high (low) inflationary periods. The uncertainty around the inflation predictions are

also high for these periods, together with the periods when inflation is subject to a tran-

sition to low values around 1980s. When the observed inflation values are close to the

zero bound, the predictive densities indicate deflationary risk.

The right panel in Figure I.1 displays this deflationary risk, which is of key importance

especially for policy making. The figure shows that NKPC models with a priori demeaned

and detrended data do not signal any pronounced deflation risk except for the low deflation
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Figure 4.6: Predicted inflation densities from HNKPC-LS-SV model and deflation prob-
abilities implied by different Phillips curve models

Note: The left figure presents one period ahead predictive distribution of inflation from the HNKPC-LS-SV model, over the
period 1973-II until 2012-I. The right figure presents deflation probabilities computed using these predictive distributions
of inflation over the same period. Model abbreviations are as in Table 4.1. Results are based on 5000 simulations of which
the first 10000 are discarded for burn-in.

probabilities during mid 1970s and mid 1980s. However, extended NKPC and HNKPC

models exploiting the high and low frequency movements produce clear signals of deflation

risk and deflationary pressure during the recent recession.

Note that actual deflation only occurs around 2009 in this sample period and the mod-

els signal deflationary risk slightly later than this period. This result can be explained

by the agents’ learning process. As indicated in Schorfheide (2005), if agents learn about

the monetary policy changes later than the inflation level changes, the perceived target

inflation in general equilibrium happens only gradually. In Schorfheide (2005), this is

incorporated as Bayesian learning of the agents which is in line with the econometric

assumption underlying our models. As the modelled state-space updating incorporates

Bayesian learning, changes in the inflation level occur gradually and deflationary risk

signals are delayed. Our models are still able to capture this deflationary pressure suc-

cessfully.

We conclude this section with two remarks. First, the models we considered so far

rely on the implicit assumption of the absence of a long-run cointegrating relationship.

We assess whether this assumption is plausible for the U.S. data considering the HPC-
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TV-LS-SV model, and find credible evidence that the existence of such a cointegrating

relationship is very unlikely. Second, the proposed models extend the standard NKPC

model in several ways. However, the superiority of the most extensive model, HNKPC-

TV-LS-SV, is based on all proposed model extensions jointly. Details on these results are

provided in appendix 4.M and appendix 4.K.

4.4 Conclusion

NKPC models constitute an integral part of macroeconomic models used for forecasting

and policy analysis. These models are often estimated after demeaning and/or detrending

the data. In this chapter it is shown that mechanical removal of the low frequency

movements in the data may lead to poor forecasts. Potential structural breaks and level

shifts as well as changing volatility in the observed series require more complex models,

which can handle these time variation together with the standard NKPC parameters.

We have proposed a set of models where levels and trends of the series together with the

volatility process are integrated with a structural NKPC model. Furthermore, we consider

richer expectational mechanisms for the inflation series in enlarged Hybrid-NKPC models

using survey data for inflation expectations.

The proposed models capture time variation in the low frequency movements of both

inflation and marginal cost data. For the inflation series we identify three distinct periods

with high and low inflation. The high inflationary period corresponds to 1970s, following

a low inflationary period of 1960s. The last period starting with 1980s is characterized

by low inflation levels corresponding to an annual inflation level around 2%. When this

model is blended with the stochastic volatility component, the level shifts can be identified

even more precisely.

The use of macroeconomic information in the structural models together with the re-

maining high and low frequency movements in the data improves the predictive ability

also compared to celebrated reduced form models, including the Bayesian VAR and the
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stochastic volatility model, see Stock and Watson (2007). Furthermore, modeling infla-

tion expectations using survey data and adding stochastic volatility to the NKPC model

structure improves in sample fit and out of sample predictive performance substantially.

We also analyze deflation probabilities indicated by each competing model. The complete

predictive densities, most notably from the enlarged models, indicate an increase in the

probability of deflation in the U.S. in recent years.

Modeling forward and backward looking components of inflation has important effects

on empirical results. Endogeneity and persistence do not appear to be very important

empirical issues in NKPC model structures. Finally, we analyze the existence of a long-

run relation between the low frequency movements of both series. No credible evidence

is found on such a long run stable cointegrating relation for the U.S. series.

Given that incorporating low and high frequency movements explicitly in macroeco-

nomic models provides additional insights for both policy analysis and more accurate

predictions, we plan to enlarge the proposed model to a more general DSGE framework

in future work. Another interesting possibility of future research is to combine different

NKPC models using their predictive performances, which seem to be time varying.
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In section 4.A we present the effects of misspecified levels on posterior results in a

standard New Keynesian Phillips Curve (NKPC). This analysis provides a straightforward

motivation for the extended NKPC and HNKPC models in the chapter. Specifically, we

show that a priori demeaning and detrending of the data, without considering the short

and long-run data properties obscure inference in these standard models.

In section 4.B we elaborate and compare the inference of the NKPC model using

structural form and unrestricted reduced form. This section illustrates the difficulty of

inferring the unrestricted reduced form parameters and to obtain the main parameters of

interest, the structural parameters, using these. This difficulty is based on the non-linear

parameter transformations required to link the structural and the reduced form models.

Through simulation examples, we show that flat prior distributions used in one of the

model representations can be very informative in the other model representation. This

section motivates the structural parameter estimation approach we follow throughout the

chapter. In section 4.C, we solve for the expectation term in the NKPC model and derive

the restricted reduced form of the model.

Sections 4.E and 4.F provide the details of the posterior sampling algorithms for the

extended NKPC and HNKPC models proposed in the main text of the chapter. In these

sections, the state space representations of the extended models and the appropriate

sampling scheme are explained in detail. We further report the exact prior parameters

used for the results in the chapter and present a sketch of a prior sensitivity analysis based

on prior-predictive likelihood comparisons.

Sections 4.G, 4.H and 4.I provide posterior and predictive results for the extended

NKPC and HNKPCmodels which are not included in the chapter due to space constraints.

In section 4.G we present additional posterior and predictive results for the extended

NKPC models. Main conclusions from these models are similar to the extended HNKPC

model results discussed in the chapter. Nonetheless, we provide these results for clarity

and the ease of comparison. In section 4.H we present additional results for the HNKPC
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models which are in line with the main conclusions of the chapter. Section 4.I presents the

entire distribution of the inflation predictions for extended NKPC and HNKPC models

we propose.

Section 4.J presents the results of the prior-predictive likelihood analysis for the pro-

posed models. The main conclusion of this section is that the adopted priors in the

chapter do not dominate the results. The data information is the main factor favoring

the extended models we propose.

Section 4.K presents the posterior and predictive results of the alternative NKPC and

HNKPCmodels, considered for robustness checks, in detail. Several alternative models are

compared with the extended models in the chapter. We show that our main conclusions

on the improved model performance through modeling the trends and levels in the data,

and the use of survey data hold. We further disentangle the predictive gains from these

two sources of extensions.

In section 4.L we present a further alternative HNKPC model to the proposed HNKPC

models in this chapter. This model aims at accounting for the possibility of measurement

errors in survey expectations. The results obtained from this alternative model are very

similar to the corresponding results in the chapter, thus, we conclude that the effect of

the measurement errors in survey expectations is negligible.

Section 4.M presents a straightforward cointegration analysis for inflation and marginal

cost series, based on the time-varying NKPC model structure. This analysis is performed

to justify an implicit assumption in the proposed models namely the assumption that

there is no stable long-run relationship between the inflation and marginal cost series.

The results of this cointegration analysis are in line with the implicit assumption we

make in the proposed NKPC model structures.
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4.A Effect of Misspecified Level Shifts on Posterior

Estimates of Inflation Persistence

The linear NKPC captures the relation between real marginal cost z̃t and inflation π̃t. We

illustrate in this section that model misspecification resulting from ignoring level shifts

in inflation data leads to overestimation of persistence in the inflation equation within a

linear NKPC.

The linear NKPC model can be written as

π̃t = λz̃t + γbπ̃t−1 + ε1,t,

z̃t = φ1z̃t−1 + φ2z̃t−2 + ε2,t,
(4.A.1)

with (ε1,t, ε2,t)
′ ∼ NID(0,Σ). This model is a triangular simultaneous equations model

and can also be interpreted as an instrumental variable model with two instruments. We

specify an AR(2) model for the marginal costs in order to mimic for the cyclical behavior

of the observed series, see Basistha and Nelson (2007); Kleibergen and Mavroeidis (2011)

for a similar specification. The AR(2) parameters are restricted to the stationary region

|φ1|+ φ2 < 1, |φ2| < 1, and the lagged adjustment parameter in the inflation equation is

restricted as 0 ≤ γb < 1. The structural parameter λ, the slope of the Phillips curve, is

restricted as 0 ≤ λ < 1 which is in line with previous evidence on the slope of the NKPC.

Since NKPC in (4.A.1) specifies the relation between the short-run stationary fluctu-

ations in real marginal costs and inflation, π̃t and z̃t can be interpreted as the transitory

components of inflation and marginal costs, in deviation from their long-run components.

In fact, the observed non-filtered data can be decomposed into permanent and transitory

components in a straightforward way as

πt = π̃t + cπ,t,

zt = z̃t + cz,t,
(4.A.2)
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where πt and zt are the inflation and marginal cost data, respectively, and cπ,t and cz,t are

the permanent components of the series.

In our simulation experiment, we model the steady state inflation as a constant level

subject to regime shifts in order to mimic the high inflationary period during the 1970s.

For modelling the permanent component of the real marginal cost series, we use a trend

specification mimicking the declining real marginal cost levels in the U.S. over the sample

starting from the 1960s. This specification can be formulated as follows

cπ,t = cπ,t−1 + κtηt−1, cz,t = cz,t−1 + μz,t−1,

μz,t = μz,t−1, ηt ∼ NID(0, ω2),
(4.A.3)

where κt is a binary variable indicating a level shift in the level series, cπ,t and cz,t indicate

the level value of inflation and real marginal costs, respectively, in period t and μz,t is the

slope of the trend in the real marginal cost series. By excluding the stochastic component

for the slope and the trend of the real marginal costs in (4.A.3), we specify a deterministic

trend for this series.

We simulate three sets of data from the model in (4.A.1)–(4.A.3). For the first set,

the inflation series show no level shifts, i.e. κt = 0, ∀t. For the other two sets of data,

we impose different level shifts with moderate (ω2 = 2.5) and large (ω2 = 5) changes

in the level values, respectively. For each specification we simulate 100 datasets with

T = 200 observations, where two level shifts occur in periods t = 50 and t = 150. The

observation error variance is set to ( 1 0.01
0.01 0.01 ), which leads to a correlation of 0.1 between

the disturbances, and parameter λ is set to 0.1. Note that parameters φ1 = 0.1 and

φ2 = 0.5 are chosen such that the transitory component of the series is stationary.

In order to capture the effect of model misspecification on posterior inference, when

computing the transitory component, we ignore level shifts in the simulated inflation

series and simply demean the series. For the marginal cost series, we remove the linear

trend prior to the analysis and only focus on the effect of misspecification in the inflation
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series. This implies that for the simulated data with no level shifts, the model is correctly

specified and the posterior results should be close to the true values. For each simulated

data set we estimate the model in (4.A.1) using flat priors on restricted parameter regions:

p(φ1, φ2, γb, λ) ∝

⎧⎪⎨⎪⎩1, if |φ1|+ φ2 < 1, |φ2| < 1, 0 ≤ γb < 1, 0 ≤ λ < 1

0, otherwise
. (4.A.4)

Given that model (4.A.1) is equivalent to an instrumental variables model with 2

instruments, it can be shown that the likelihood function for such a model combined with

the flat prior on a large space yields a posterior distribution that exists but it has no first

or higher moments. Due to the bounded region condition on the parameters, where the

structural parameter λ is restricted to the unit interval, all moments exist. For details,

we refer to Zellner, Ando, Baştürk, Hoogerheide and Van Dijk, (2014). We mention

this existence result since it provides an econometric explanation why it is often difficult

to estimate a structural model for macro-economic data such as (4.A.1). Indeed, the

rather flat posterior surface plagues the inference, in particular, when φ2 is close to zero.

Posterior moments are in our case computed by means of standard Metropolis-Hastings

method on φ1 and φ2 and λ and γb. Other Monte Carlo methods like Gibbs sampling are

also feasible in this case.

Figure A.1 presents the overestimation results from 100 different simulations for each

setting we consider. We report the average overestimation in posterior γb estimates and

95% highest posterior density intervals (HPDI) for this overestimation.

The persistence parameter γb is overestimated in all cases except for the correctly

specified model. The degree of overestimation becomes larger with a larger shift in the

level of inflation. Note that the average 95% HPDI of overestimation becomes tighter for

data with extreme changes in levels. Hence the effect of model misspecification on the

persistence estimates is more pronounced if the regime shifts are extreme.
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Figure A.1: Overestimation illustration for the backward looking NKPC model
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Note: The figure presents overestimation probability of parameter γb for simulated data from the NKPC model with
different structural breaks structures. We report average quantiles of overestimation based on 100 simulation replications
for each parameter setting.

In summary, our simulation experiments using NKPC show that when the shifts in the

inflation level are not modelled, inference on model persistence parameters may be severely

biased due to the model misspecification. This will also hold for predictive estimates.

We note that we focused on misspecification effects on persistence measures when level

shifts in the series are ignored. Similar experiments can be set up for the NKPC with

weak identification (or weak instruments) by setting φ2 ≈ 0. The effect of misspecification

on posterior and predictive estimates in the case of weak identification is a topic outside

the scope of the present chapter. We refer to Kleibergen and Mavroeidis (2011) for details

on Bayesian estimation in case of weak identification.

4.B Structural and Reduced Form Inference of the

NKPC Model

This section presents the unrestricted reduced form inference (URF) of the NKPC model,

and the inference of the corresponding structural form (SF) model parameters. The

structural form (SF) representation for the basic NKPC model derived from the firm’s
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price setting for filtered data is given as

π̃t = λz̃t + γfEt(π̃t+1) + ε1,t,

z̃t = φ1z̃t−1 + φ2z̃t−2 + ε2,t,
(4.B.1)

where (ε1,t, ε2,t)
′ ∼ NID (0,Σ) and standard stationary restrictions hold for φ1, φ2.

We show that the posterior draws from the structural form parameters can be obtained

using the reduced form representation of (4.B.1):

π̃t = α1z̃t−1 + α2z̃t−2 + ε1,t,

z̃t = φ1z̃t−1 + φ2z̃t−2 + ε2,t,
(4.B.2)

where (ε1,t, ε2,t)
′ ∼ NID (0,Σ), and the restricted reduced form (RRF) representation is

obtained by introducing the following restrictions on parameters in (4.B.1):

α1 =
λ(φ1+γfφ2)

1−γf (φ1+γfφ2)
, α2 =

λφ2

1−γf (φ1+γfφ2)
. (4.B.3)

Finally, the model in (4.B.1) is related to an Instrumental Variables (IV) model with

exact identification. Bayesian estimation of the unrestricted reduced form model in (4.B.2)

is straightforward under flat or conjugate priors. Given the posterior draws of reduced

form parameters, posterior draws of structural form parameters in (4.B.1) can be obtained

using the transformation in (4.B.3). This nonlinear transformation, however, causes diffi-

culties in setting the priors in an adequate way. The determinant of the Jacobian of this

nonlinear transformation is | J |= λφ2
2

(1−γf (φ1+γfφ2))
2 , where the Jacobian is non-zero and

finite if γf (φ1 + γfφ2) �= 1, φ2 �= 0 and λ �= 0.7

Figure B.1 illustrates the nonlinear transformation for the SF and RRF representa-

tions, for a grid of parameter values from SF representations, and plot the corresponding

RRF parameter values, and vice versa. The top panel in Figure B.1 shows the trans-

7We only consider the transformation from {λ, γf , φ1, φ2} to {α1, α2, φ1, φ2}, i.e. variance parameters
in the transformed model are left as free parameters.
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formations from SF to RRF. Reduced form parameters α1 and α2 tend to infinity when

persistence in inflation and marginal cost series are high, i.e. when the structural form

parameters λ and φ1 + φ2 tend to 1. The bottom panel in Figure B.1 shows the RRF

to SF transformations. The corresponding SF parameters lead to an irregular shape, for

example, when the instrument zt−2 has no explanatory power with φ2 = 0 or when α2 = 0.

Figure B.1: Nonlinear parameter transformations
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Note: The top panel presents the implied unrestricted reduced form parameters in (4.B.2) given structural form param-
eters in (4.B.1). The bottom panel presents implied structural form parameters in (4.B.1) given unrestricted reduced form
parameters in (4.B.2). Parameter transformations are obtained using the RRF restrictions in (4.B.3).
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4.C Structural Form and Restricted Reduced Form

Derivations for the NKPC and HNKPC Models

4.C.1 Structural Form Derivations for the NKPC Model

In this section we derive the structural form equations for the NKPC model.Consider the

NKPC model in deviation from (possibly time-varying) levels:

π̃t = λz̃t + γfEt (π̃t+1) + ε1,t, (4.C.1)

z̃t = φ1z̃t−1 + φ2z̃t−2 + ε2,t, (4.C.2)

where (ε1,t, ε2,t)
′ ∼ NID (0,Σ) and the unobserved variables π̃t and z̃t are the infla-

tion and (log) real marginal cost in deviation from levels at time t, respectively. For

stationarity in real marginal cost (in deviation from levels) standard stationarity restric-

tions should hold for φ1, φ2. Note that in (4.C.1), to clarify the expectation assump-

tion in this model, the term E (π̃t+1) is explicitly written as the conditional expectation

Et (π̃t+1) = E (π̃t+1|It) where It denotes the information available at time t.

In order to obtain the structural form representation of this model used in the esti-

mation, the expectation term Et (π̃t+1) in (4.C.1) has to be solved8. The solution of the

expectation mechanism in (4.C.1) is obtained by induction.

First, we replace the expectation term in (4.C.1) using the same equation, iterated by

one period:

π̃t = λz̃t + γfEt (λz̃t+1 + γfEt+1 (π̃t+2) + ε1,t+1) + ε1,t, (4.C.3)

= λz̃t + λγfEt (z̃t+1) + γ2
fEt (π̃t+2) + ε1,t, (4.C.4)

8Alternatively, one can replace the inflation expectations with survey data directly. We do not opt for
this solution but consider alternative models with this possibility.
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where the second equality follows from the law of iterated expectations and the as-

sumption that Et (ε1,t+1) = 0.

Iterating (4.C.1) for k periods we obtain:

π̃t = λz̃t + λ

k∑
j=1

γj
fEt (z̃t+j) + γk+1

f Et (π̃t+k+1) + ε1,t. (4.C.5)

The limiting equation from this iteration is:

π̃t = λz̃t + λ

∞∑
k=1

γk
fEt (z̃t+k) + lim

k→∞
γk+1
f Et (π̃t+k+1) + ε1,t

= λz̃t + λγf

∞∑
k=0

γk
fEt (z̃t+k+1) + ε1,t, (4.C.6)

where the last equality holds under the assumption that |γf | < 1.

The iterative solution to the inflation expectations in (4.C.6) depends on the infinite

sum of marginal costs in (4.C.6). In order to solve for this infinite sum, we use the

marginal cost equation (4.C.2) of the NKPC model. Rearranging (4.C.6) and inserting

(4.C.2) in (4.C.6) we obtain:
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π̃t − ε1,t = λz̃t + λγf

∞∑
k=0

γk
fEt (φ1z̃t+k + φ2z̃t+k−1 + ε2,t+k+1) ,

= λz̃t + φ1λγf

∞∑
k=0

γk
fEt (z̃t+k) + φ2λγf

∞∑
k=0

γk
fEt (z̃t+k−1) ,

= λz̃t + φ2λγf z̃t−1 + φ1λγf

∞∑
k=0

γk
fEt (z̃t+k) + φ2λγf

∞∑
k=1

γk
fEt (z̃t+k−1) ,

= λz̃t + φ2λγf z̃t−1 + φ1λγf

∞∑
k=0

γk
fEt (z̃t+k) + φ2λγ

2
f

∞∑
k=0

γk
fEt (z̃t+k) ,

= λz̃t + φ2λγf z̃t−1 + λ
(
φ1γf + φ2γ

2
f

) ∞∑
k=0

γk
fEt (z̃t+k) ,

= λz̃t + φ2λγf z̃t−1 + λ
(
φ1γf + φ2γ

2
f

)(
Et (z̃t) +

∞∑
k=1

γk
fEt (z̃t+k)

)
,

= λz̃t + φ2λγf z̃t−1 + λ
(
φ1γf + φ2γ

2
f

)(
E (z̃t|z̃1, ..., z̃t) +

∞∑
k=1

γk
fEt (z̃t+k)

)
,

= λz̃t + φ2λγf z̃t−1 + λ
(
φ1γf + φ2γ

2
f

)(
z̃t + γf

∞∑
k=0

γk
fEt (z̃t+k+1)

)
,

= λz̃t + φ2λγf z̃t−1 +
(
φ1γf + φ2γ

2
f

)
(π̃t − ε1,t) ,

where the last equality follows from (4.C.6).

Hence the solution for the infinite sum of inflation expectations in (4.C.1) leads to the

following structural inflation equation:

π̃t =
λ

1− (φ1 + φ2γf ) γf
z̃t +

φ2λγf
1− (φ1 + φ2γf ) γf

z̃t−1 + ε1,t, (4.C.7)

where, together with the explicit level specifications of the inflation and labor share

series, the extended NKPC model takes the form of equation (4.E.3).
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The restricted reduced form of the model can be derived by replacing z̃t in (4.C.7)

using (4.C.2):

π̃t =
λφ1 + φ2λγf

1− (φ1 + φ2γf ) γf
z̃t−1 +

λφ2

1− (φ1 + φ2γf ) γf
z̃t−2 + ηt, (4.C.8)

where ηt = λ/(1− (φ1 + φ2γf ) γf )ε2,t + ε1,t.

4.C.2 Structural Form Derivations for the HNKPC Model

In this section we derive the structural form equations of the HNKPC model. Consider

the HNKPC model in deviation from (possibly time varying) levels:

π̃t = λH z̃t + γH
f Et(π̃t+1) + γH

b π̃t−1 + ε1,t, (4.C.9)

z̃t = φ1z̃t−1 + φ2z̃t−2 + ε2,t. (4.C.10)

where, similar to the NKPC model, the term E (π̃t+1) is explicitly written as the

conditional expectation Et (π̃t+1) = E (π̃t+1|It) where It denotes the information available

at time t.

Similar to the NKPC model, we replace the expectation term in (4.C.9) using the

same equation, iterated 1 period ahead:

π̃t = λH z̃t + γH
f Et

(
λH z̃t+1 + γH

f Et+1 (π̃t+2) + γH
b π̃t + ε1,t+1

)
+ γH

b π̃t−1 + ε1,t, (4.C.11)

= λH z̃t + γH
f λHEt (z̃t+1) + (γH

f )2Et (π̃t+2) + γH
f γH

b Et (π̃t) + γH
b π̃t−1 + ε1,t, (4.C.12)

where we again use the law of iterated expectations and the assumption on residuals:

Et(ε1,t+1)=0.

Iterating (4.C.9) k periods ahead we obtain:
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π̃t = λH z̃t + λH

k∑
j=1

(
γH
f

)j
Et (z̃t+j) +

(
γH
f

)k+1
Et (π̃t+k+1) + γH

b

∞∑
j=2

(
γH
f

)j
π̃t+j−1

+ γH
b π̃t−1 + γH

b γH
f π̃t + ε1,t. (4.C.13)

Assuming |γH
f | < 1 and using the property Et (z̃t) = z̃t the limiting equation from this

iterative solution is:

π̃t = λH

∞∑
k=0

(
γH
f

)k
Et (z̃t+k) + γH

b π̃t−1 + γH
b γH

f π̃t + γH
b

∞∑
k=2

(
γH
f

)k
π̃t+k−1 + ε1,t

=
λH

1− γH
b γH

f

∞∑
k=0

(
γH
f

)k
Et (z̃t+k) +

γH
b

1− γH
b γH

f

π̃t−1 +
γH
b γH

f

1− γH
b γH

f

∞∑
k=1

(
γH
f

)k
Et (π̃t+k)

+
1

1− γH
b γH

f

ε1,t. (4.C.14)

Similar to the NKPC model, the infinite sum of marginal cost expectations in (4.C.14)

is solved using the marginal cost equation of the model in (4.C.10):

∞∑
k=0

(
γH
f

)k
Et (z̃t+k) = z̃t + φ1

∞∑
k=1

(
γH
f

)k
Et (z̃t+k−1) + φ2

∞∑
k=1

(
γH
f

)k
Et (z̃t+k−2)

+
∞∑
k=1

(
γH
f

)k
Et (εt+k)

= z̃t + γH
f φ1z̃t + γH

f φ2z̃t−1 +
(
γH
f

)2
φ2z̃t + φ1

∞∑
k=2

(
γH
f

)k
Et (z̃t+k−1)

+φ2

∞∑
k=3

(
γH
f

)k
Et (z̃t+k−2)

= z̃t + γH
f φ2z̃t−1 +

(
φ1γ

H
f + φ2

(
γH
f

)2) ∞∑
k=0

(
γH
f

)k
Et (z̃t+k)

=
1

1− (θ1 + θ2γH
f

)
γH
f

z̃t +
γH
f φ2

1− (θ1 + θ2γH
f

)
γH
f

z̃t−1. (4.C.15)
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Inserting (4.C.15) in (4.C.14), we obtain the structural form of the inflation equation

in the HNKPC model:

π̃t =
λH(

1− γH
b γH

f

) (
1−
(
φ1γH

f + φ2

(
γH
f

)2)) z̃t+
λHγH

f φ2(
1− γH

b γH
f

) (
1−
(
φ1γH

f + φ2

(
γH
f

)2)) z̃t−1 + γH
b

1− γH
b γH

f

π̃t−1+

γH
b γH

f

1− γH
b γH

f

∞∑
k=1

(
γH
f

)k
Ẽt (π̃t+k) +

1

1− γH
b γH

f

ε1,t, (4.C.16)

i.e. we obtain (4.9) as the structural form of the HNKPC model. Unlike the NKPC

model, this solution still includes the infinite sum of inflation expectations. A closed form

solution for the latter expression only exists under certain assumptions such as rational

expectations. We refrain from these assumptions but instead model inflation expectations

in this model using unobserved components, as outlined in section 4.L.

4.D Derivations for the NKPC Equations Using the

Calvo Formulation

In this section, we present the derivations of the standard NKPC model, i.e. the relation

between inflation and log real marginal cost in deviation from their respective steady

state levels, using the staggered price setting in the Calvo formulation (Calvo, 1983), as

outlined in Gali (2008). In this staggered price setting, at each time period t, (1 − θ)

fraction of firms can reoptimize their prices while θ fraction of firms cannot change the

prices, with θ ∈ [0, 1]. Firms which can optimize their prices have identical cost functions

and they set their optimal prices to maximize the expected sum of discounted real profits

subject to the demand function:
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max
P �
t

Et

{ ∞∑
j=0

θjγj
f

(
P �
t

Pt+j

Yi,t+j − TCt+j (Yi,t+j)

)}
(4.D.1)

s.t. Yi,t+j =

(
P �
t

Pt+j

)−ε
Yt+j (4.D.2)

where the constraint in the optimization stems from the demand curve and ε ∈ (0, 1] is

the elasticity of substitution between goods for the households. Furthermore, γf ∈ [0, 1)

is the discount factor, Pt+j and Yt+j denote the aggregate price and aggregate output at

time t+ j, respectively, and Yi,t+j and TCt+j(Yi,t+j) denote the output and the total cost

(as a function of the output) of firm i at time t+ j, respectively.

Inserting (4.D.2) in (4.D.1), the constrained optimization is equivalent to the following

maximization:

max
P �
t

Et

{ ∞∑
j=0

θjγj
f

((
P �
t

Pt+j

)1−ε
Yt+j − TCt+j

((
P �
t

Pt+j

)−ε
Yt+j

))}
, (4.D.3)

where the firms optimizing prices take the aggregate output and price levels as given.

The first order condition for the maximization in (4.D.3) is:

P �
t =

ε

1− ε

Et

{∑∞
j=0 θ

jγj
f

(
1

Pt+j

)−ε
Yt+jzt+j

((
P �
t

Pt+j

)−ε
Yt+j

)}
Et

{∑∞
j=0 θ

jγj
f

(
1

Pt+j

)1−ε
Yt+j

} , (4.D.4)

where zt+j(.) is the marginal cost level of the firm i at time t+ j.

Since the NKPC model explains the relation between inflation and real marginal cost

levels, the next step is to rewrite (4.D.4) in terms of the ratios of prices rather than price

levels. Dividing both sides of (4.D.4) by Pt we obtain:



130

P �
t

Pt

=
ε

1− ε

Et

{∑∞
j=0 θ

jγj
f (πt,t+j)

ε Yt+jzt+j

}
Et

{∑∞
j=0 θ

jγj
f (πt,t+j)

ε−1 Yt+j

} , (4.D.5)

where πt,t+j = Pt+j/Pt =
∏j

k=1 πt+k−1,t+k denotes the ratio of prices between peri-

ods t + j and t, and we simplify the notation for marginal costs, zt+j, by removing its

dependence on variables.

The next step in deriving the NKPC model is to write (4.D.5) in deviations from the

steady state levels. At the steady state output, marginal cost and (one period ahead)

inflation are assumed to be constant and these steady state values are denoted by Ȳ ,

z̄ and π̄, respectively. We further assume zero steady state inflation, i.e. π̄ = 1. From

(4.D.5), the relation between the steady state variables are derived as follows:

P̄�

P̄
=

ε

1− ε

Et

{∑∞
j=0 θ

jγj
f π̄

jεȲ z
}

Et

{∑∞
j=0 θ

jγj
f π̄

j(ε−1)Ȳ
} =

ε

1− ε
z, (4.D.6)

where we use the steady state relation for inflation: π̄t,t+j =
∏j

k=1 πt+k−1,t+k =∏j
k=1 π̄ = π̄j.

Deviations of variables from the respective steady states are denoted by Ỹ , z̃ and π̃.9

For this purpose, we write all individual components in (4.D.5) using the transformation

xt = x̄ex̃t :

9Note that this log-linearization implies that z̄ is the deviation of log real marginal costs from their
steady state value. Therefore in most empirical analyses in the literature log real marginal costs are used.
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P̄ �eP̃
�
t

P̄ eP̃t
=

ε

1− ε

Et

{∑∞
j=0 θ

jγj
f

(
π̄jeπ̃t,t+j

)ε
Ȳ eỸt+jzez̃t+j

}
Et

{∑∞
j=0 θ

jγj
f (π̄

jeπ̃t,t+j)ε−1 Ȳ eỸt+j

} (4.D.7)

=
εz

1− ε

Et

{∑∞
j=0 θ

jγj
f π̄

jεeεπ̃t,t+j+Ỹt+j+z̃t+j

}
Et

{∑∞
j=0 θ

jγj
f π̄

j(ε−1)e(ε−1)π̃t,t+j+Ỹt+j

} . (4.D.8)

Using the steady state relation in (4.D.6), and the assumption of zero steady state

inflation, π̄ = 1, equation (4.D.8) simplifies to the following:

Et

{ ∞∑
j=0

θjγj
fe

επ̃t,t+j+Ỹt+j+z̃t+j−P̃ �
t

}
= Et

{ ∞∑
j=0

θjγj
fe

(ε−1)π̃t,t+j+Ỹt+j−P̃t

}
. (4.D.9)

Next, we simplify (4.D.9) using the approximation property ex ≈ 1 + x:

∞∑
j=0

θjγj
fEt

{
1 + επ̃t,t+j + Ỹt+j + z̃t+j − P̃ �

t

}
=

∞∑
j=0

θjγj
fEt

{
1 + (ε− 1)π̃t,t+j + Ỹt+j − P̃t

}
.

(4.D.10)

Assuming |θγf | < 1 and rearranging (4.D.10) we obtain

P̃ �
t − P̃t = (1− θγf )

∞∑
j=0

θjγj
fEt {z̃t+j + π̃t,t+j} , (4.D.11)

i.e. the difference between short run deviations of the optimizing firm’s price and the

aggregate price depends on current marginal costs, the discounted sums future marginal

cost changes and future inflation.

In order to obtain the NKPC model, the infinite sum of marginal cost and inflation

expectations in (4.D.11) have to be solved. For this purpose, we use the fact that Et(z̃t) =

z̃t and π̃t,t = 0, i.e. contemporaneous marginal cost change is known and price change

within the same period is 0. Using these relations, the infinite sum of expectations can
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be simplified:

P̃ �
t − P̃t = (1− θγf )Et {z̃t + π̃t,t}+ (1− θγf )

∞∑
j=1

θjγj
fEt {z̃t+j + π̃t,t+j} (4.D.12)

= (1− θγf ) z̃t + (1− θγf ) θγf

∞∑
j=0

θjγj
fEt {z̃t+j+1 + π̃t,t+j+1} (4.D.13)

= (1− θγf ) z̃t + θγfEt

{
Et+1

{
(1− θγf )

∞∑
j=0

θjγj
f (z̃t+j+1 + π̃t,t+j+1)

}}
(4.D.14)

where the last equality holds from the law of iterated expectations.

The infinite sum of expectations in (4.D.14) can be solved using (4.D.11). For this

purpose we rearrange this term:

Et+1

{
(1− θγf )

∞∑
j=0

θjγj
f (z̃t+j+1 + π̃t,t+j+1)

}
=

Et+1

{
(1− θγf )

∞∑
j=0

θjγj
f (z̃t+j+1 + π̃t+1,t+j+1 + π̃t,t+1)

}
(4.D.15)

=Et+1

{
(1− θγf )

∞∑
j=0

θjγj
f (z̃t+j+1 + π̃t+1,t+j+1)

}

+ Et+1 {πt,t+1} (4.D.16)

where we use the equality π̃t,t+j = P̃t+j − P̃t = P̃t+j − P̃t+1 + P̃t+1 − P̃t = π̃t+1,t+j + π̃t,t+1.

From (4.D.11), the last sum of expectations is the price difference in the next period:

P̃ �
t+1 − P̃t+1. Therefore (4.D.14) simplifies to:

P̃ �
t − P̃t = (1− θγf ) z̃t + θγfEt

(
P̃ �
t+1 − P̃t+1

)
+ θγfEt {πt,t+1} (4.D.17)

One relation which has not been set until now is the relation between the optimizing

firms’ prices, past prices which are adopted by the non-optimizing firms and the aggregate

price level, where the latter is directly related to the inflation variable, one of the two
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variables in the NKPC model. The Calvo price setting assumes that all the firms that

re-optimize will choose the same price P ∗t . From the definition of the aggregate price level,

we can write10:

Pt =

[∫ 1

0

Pt(i)
1−εdi

] 1
1−ε

=

[∫
S(t)

Pt−1(i)1−εdi+ (1− θ)(P ∗t )
1−ε
] 1

1−ε

=
[
θ(Pt−1)1−ε + (1− θ)(P ∗t )

1−ε] 1
1−ε (4.D.18)

where the first integral is over the continuum of all firms, S(t) ⊂ [0, 1] represents the set

of firms which do not optimize their prices, and it is assumed that the distribution of

prices among firms not adjusting in period t corresponds to the distribution of prices in

period t− 1. Log-linearizing (4.D.18) around zero steady state inflation, we obtain11:

P̃t = θP̃t−1 + (1− θ)P̃ ∗t . (4.D.19)

Hence the the difference between the optimizing firms’ price deviation and aggregate price

deviation is:

P̃ ∗t − P̃t =
P̃t − θP̃t−1

1− θ
− P̃t =

θ

1− θ
(P̃t − P̃t−1) (4.D.20)

and this difference is 0 in the limiting case, θ = 0, if all firms can optimize their prices.

10This relation follows from the price setting assumptions of firms and the underlying elasticity of
substitution between goods. We refer to Gali (2008) for further details.

11We define the log-linearized series, Ỹt, around its steady state Y as Ỹ ≡ lnYt − ln Ȳ . Rearranging,
we can solve this for Yt:

lnYt = ln Ȳ + Ỹt ⇒ Yt = e(ln Ȳ+Ỹt) = eln Ȳ eỸ = Ȳ eỸt ≈ Ȳ (1 + Ỹt)

where the last equality comes from the first order Taylor approximation of eỸt around Ỹt = 0, and Ȳ and
Ỹt denote the steady state level and deviations from the steady state level, respectively.
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Inserting (4.D.20) in (4.D.17) for time t and time t+1, we obtain the NKPC relation

between inflation and marginal costs:

θ

1− θ
π̃t = (1− θγf ) z̃t + θγfEt

(
θ

1− θ
π̃t+1

)
+ θγfEt {πt+1} (4.D.21)

where the notation is simplified such that π̃t = π̃t−1,t denotes the one period ahead inflation

in deviation from its steady state at time t.

Rearranging (4.D.21), we obtain the structural form of the inflation equation in the

NKPC model:

π̃t =
(1− θ) (1− θγf )

θ
z̃t + γfEt (π̃t+1) = λz̃t + γfEt (π̃t+1) . (4.D.22)

4.E Bayesian Inference of the Extended NKPCModel

In this section we summarize the prior specifications, our use of prior predictive likelihoods,

and the posterior sampling algorithms for the extended NKPC and HNKPC models. We

further present a prior sensitivity analysis for the proposed models using a prior-predictive

analysis.

4.E.1 Prior Specification for Parameters

The extended NKPC and HNKPC models contain several additional parameters com-

pared to the standard NKPC model. We classify the model parameters in five groups,

and assign independent priors for each group. The first group includes the common pa-

rameters in the NKPC and HNKPC models, θN = {λ, γf , φ1, φ2,Σ}, in (4.B.1). For the

structural parameters {λ, γf , φ1, φ2} we define flat priors on restricted regions, which also

ensure that the autoregressive parameters, φ1 and φ2, are in the stationary region and
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the (observation) variance priors are of inverse-Wishart type12

p(λ, γf , φ1, φ2|Σ) ∝ constant for |λ| < 1, |γf | < 1, |φ1|+ φ2 < 1, |φ2| < 1,

Σ ∼ IW (1, 20× Σ̃),
(4.E.1)

where IW (ν,Ψ) is the inverse Wishart density with scale Ψ and degrees of freedom ν.

It is possible to use economic theory or steady state relationships to construct priors for

these parameters, see Del Negro and Schorfheide (2008). We do not follow this approach

but let the data information dominate our relatively weak prior information. For the

same reason, we perform a prior-predictive analysis and investigate the sensitivity of our

posterior results with respect to the prior.

Note that the prior specifications of the observation and state covariances are impor-

tant in this class of models and for macroeconomic data. Since the sample size is typically

small, differentiating the short-run variation in series (the observation variances) from the

variation in the long-run (the state variation) can be cumbersome, see Canova (2012). We

therefore impose a data based prior on the observation covariances. We first estimate an

unrestricted reduced form VAR model using demeaned inflation series and (linear) de-

trended (log) real marginal cost series, and base the observation variance prior on this

covariance estimate, Σ̃. This specification imposes smoothness for the estimated levels

and trends, and ensures that the state errors do not capture all variation in the ob-

served variables. Second, prior distributions for the extra model parameters stemming

from the hybrid models, θH = {γH
b , β} are defined as uniform priors on restricted regions

|γH
b | < 1, |β| < 1. Third, we define independent inverse-Gamma priors for the state

variances

ση1 ∼ IG(20, 20× 10−2), ση2 ∼ IG(20, 20× 10−3), ση3 ∼ IG(1, 1× 10−5), (4.E.2)

12We experimented with wider truncated uniform densities for the λ and γf parameters. The prior
truncation does not seem to have a substantial affect on the posterior results.
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where IG(α, αξ) is the inverse-Gamma distribution with shape α and scale αξ. Parameters

α and ξ are the a priori number and variance of dummy observations.

Similar to the standard counterparts, the extended NKPC and HNKPC models may

also suffer from flat likelihood functions. We therefore set weakly informative priors for

the state parameters, such that not all variation in inflation and marginal cost series are

captured by the time-varying trends and levels. For example, the number of prior dummy

observations for ση1 and ση2 is much less than the number of observations to limit the

prior information.

The fourth prior distribution we consider is applicable to the NKPC and HNKPC

models with level shifts. For these models, we consider a fixed level shift probability of

0.04. This choice leads to an a priori expected number of shifts of 8 for 200 observations

in the sample. Alternatively, this parameter can be estimated together with other model

parameters. However, often the limited number of level shifts plague the inference of this

parameter. Hence, we set this value, obtained trough an extensive search over intuitive

values of this parameter, prior to analysis.

Finally, for the stochastic volatility models, we specify an inverse-gamma prior for the

marginal cost variances. For the correlation coefficient, ρ, we take an uninformative prior

p(ρ) ∝ (1− ρ2)−3/2, see Çakmaklı et al. (2011).

4.E.2 Posterior Existence and the Sampling Algorithm

We summarize the Bayesian inference for the proposed models. An important point

regarding the posterior of the structural parameters is the existence of a posterior dis-

tribution and its moments, which depends on the number of instruments and the prior.

Given one relatively weak instrument (the second lag of the marginal cost series) the

posterior will have very fat tails and the existence of the posterior distribution is ensured

through priors defined on a bounded region, see Zellner et al. (2014) for a detailed analysis

of a linear IV model with small numbers of weak instruments.
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The MCMC sampler for the full conditional posterior distribution is based on Gibbs

sampling with a Metropolis-Hastings step and data augmentation, combining the method-

ologies in Geman and Geman (1984); Tanner and Wong (1987); Gerlach et al. (2000) and

Çakmaklı et al. (2011).

Together with the level specifications of the inflation and real marginal cost series the

proposed extended NKPC model takes the following form

πt − cπ,t = λ
1−(φ1+φ2γf )γf

(zt − cz,t) +
φ2γfλ

1−(φ1+φ2γf )γf
(zt−1 − cz,t−1) + ε1,t,

zt − cz,t = φ1 (zt−1 − cz,t−1) + φ2 (zt−2 − cz,t−2) + ε2,t,

cπ,t+1 = cπ,t + κtη1,t+1,

cz,t+1 = μz,t + cz,t + η2,t+1,

μz,t+1 = μz,t + η3,t+1,

(4.E.3)

where (ε1,t, ε2,t)
′ ∼ NID

(
0,
(

σ2
ε1

ρσε1σε2

ρσε1σε2 σ2
ε2

))
, (η1,t, η2,t, η3,t)

′ ∼ NID

(
0,

(
σ2
η1

0 0

0 σ2
η2

0

0 0 σ2
η3

))
and the disturbances (ε1,t, ε2,t)

′ and (η1,t, η2,t, η3,t)
′ are independent for all t.

The NKPC model in (4.E.3) can be cast into the state-space form as follows

Yt = HXt +BUt + εt, εt ∼ N(0, Qt)

Xt = FXt−1 +Rtηt, ηt ∼ N(0, I)
(4.E.4)

where

Yt =

⎛⎜⎝πt

zt

⎞⎟⎠ , Xt =

(
cπ,t, cz,t, μz,t, cz,t−1, cz,t−2

)′
, Ut =

⎛⎜⎜⎜⎜⎝
zt

zt−1

zt−2

⎞⎟⎟⎟⎟⎠ , εt =

⎛⎜⎝ε1,t

ε2,t

⎞⎟⎠ ,

H =

⎛⎜⎝1 −α1 0 −α2 0

0 1 0 −φ1 −φ2

⎞⎟⎠ , B =

⎛⎜⎝α1 α2 0

0 φ1 φ2

⎞⎟⎠ , Qt =

⎛⎜⎝ σ2
ε1,t

ρσε1,tσε2

ρσε1,tσε2 σ2
ε2

⎞⎟⎠ ,
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F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 1 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Rt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κtση1 0 0

0 ση2 0

0 0 ση3

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ηt =

⎛⎜⎜⎜⎜⎝
η1,t

η2,t

η3,t

⎞⎟⎟⎟⎟⎠ ,

where α1 =
λ

1−(φ1+φ2γf )γf
and α2 =

λγfφ2

1−(φ1+φ2γf )γf
.

Once the state-space form of the model is set as in (4.E.4) standard inference tech-

niques in state-space models can be carried out. Let Y1:T = (Y1, Y2, . . . , YT )
′, X1:T =

(X1, X2, . . . , XT )
′, U1:T = (U1, U2, . . . , UT )

′, σ2
ε1,1:T

= (σ2
ε1,1

, σ2
ε1,2

, . . . , σ2
ε1,T

)′ and θ =

(φ1, φ2, γf , λ)
′. For the most general NKPC model with level shifts and stochastic volatil-

ity, the simulation scheme is as follows

1. Initialize the parameters by drawing κt using the prior for level shift probability, pκ,

and by drawing unobserved states Xt, ht for t = 1, 2, . . . , T from standard normal

distribution and conditional on κt for t = 0, 1, . . . , T . Initialize m = 1.

2. Sample θ(m) from p(θ|Y1:T , X1:T , U1:T , R1:T , Q1:T ).

3. Sample X
(m)
t from p(Xt|θ(m), Y1:T , U1:T , R1:T , Q1:T ) for t = 1, 2, . . . , T .

4. Sample h
(m)
t from p(ht|X(m)

1:T , θ(m), Y1:T , U1:T , R1:T , ρ, σ
2
ε2
, σ2

η4
) for t = 1, 2, . . . , T .

5. Sample κ
(m)
t from p(κ

(m)
t |θ(m), Y1:T , h

(m)
1:T , U1:T , R1:T , ρ, σ

2
ε2
) for t = 1, 2, . . . , T .

6. Sample σ
2,(m)
ηi from p(σ

2,(m)
ηi |X(m)

1:T , h
(m)
1:T , κ

(m)
1:T ) for i = 1, 2, 3, 4.

7. Sample ρ(m) from from p(ρ(m)|X(m)
1:T , h

(m)
1:T , Y1:T , U1:T , θ

(m), σ
2,(m−1)
ε2 ).

8. Sample σ
2,(m)
ε2 from from p(σ

2,(m)
ε2 |ρ(m), X

(m)
1:T , h

(m)
1:T , Y1:T , U1:T , θ

(m)).

9. Set m = m+ 1, repeat (2)-(9) until m = M .
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Steps (3)-(5) are common to many models in the Bayesian state-space framework, see

for example Kim and Nelson (1999b); Gerlach et al. (2000); Çakmaklı (2012).

Sampling of θ

Conditional on the states cπ,t, cz,t and ht for t = 1, 2, . . . , T , redefining the variables

such that π̃t = πt − cπ,t, z̃t = zt − cz,t and εt = εt/ exp(ht/2), the measurement equation

in (4.E.4) can be rewritten as

π̃t = λ
1−(φ1+φ2γf )γf

z̃t +
φ2γfλ

1−(φ1+φ2γf )γf
z̃t−1 + εt

z̃t = φ1z̃t−1 + φ2z̃t−2 + ε2,t.
(4.E.5)

Posterior distributions of the structural parameters under flat priors are non-standard

since zt term also is on the right hand side of (4.E.5) and the model is highly non-linear

in parameters. We therefore use two Metropolis Hastings steps to sample these struc-

tural parameters, see Metropolis et al. (1953) and Hastings (1970). For sampling φ1, φ2

conditional on λ, γf and other model parameters, the candidate density is a multivariate

student-t density on the stationary region with a mode and scale with the posterior mode

and scale using only the second equation in (4.E.5) and 1 degrees of freedom. For sam-

pling λ, γf conditional on φ1, φ2 and other model parameters, the candidate is a uniform

density.

Sampling of states, Xt

Conditional on the remaining model parameters, drawing X0:T can be implemented

using standard Bayesian inference. This constitutes running the Kalman filter first and

running a simulation smoother using the filtered values for drawing smoothed states as

in Carter and Kohn (1994) and Frühwirth-Schnatter (1994). We start the recursion for
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t = 1, . . . , T

Xt|t−1 = FXt−1|t−1

Pt|t−1 = FPt−1|t−1F ′ +R′tRt

ηt|t−1 = yt −HXt|t−1 − BUt

ζt|t−1 = HPt|t−1H ′ +Qt

Kt = Pt|t−1H ′ζ ′t|t−1

Xt|t = Xt|t−1 +Ktηt|t−1

Pt|t = Pt|t−1 −KtH
′ζ ′t|t−1,

(4.E.6)

and store Xt|t and Pt|t. The last filtered state XT |T and its covariance matrix PT |T corre-

spond to the smoothed estimates of the mean and the covariance matrix of the states for

period T . Having stored all the filtered values, simulation smoother involves the following

backward recursions for t = T − 1, . . . , 1

η∗t+1|t = Xt+1 − FXt|t

ζ∗t+1|t = FPt|tF ′ +R′t+1Rt+1

Xt|t,Xt+1 = Xt|t + Pt|tF ′ζ∗−1t+1|tη
∗
t+1|t

Pt|t,Pt+1 = Pt|t − Pt|tF ′ζ∗−1t+1|tFPt|t.

(4.E.7)

Intuitively, the simulation smoother updates the states using the same principle as in

the Kalman filter, where at each step filtered values are updated using the smoothed

values obtained from backward recursion. For updating the initial states, using the state

equation X0|t,X1 = F−1X1 and P0|t,P1 = F−1(P1 + R′1R1)F
′−1 can be written for the first

observation. Given the mean Xt|t,Xt+1 and the covariance matrix Pt|t,Pt+1 , the states can

be sampled from Xt ∼ N(Xt|t,Xt+1 , Pt|t,Pt+1) for t = 0, ..., T .

Sampling of inflation volatilities, ht

Conditional on the remaining model parameters, we can draw h0:T using standard

Bayesian inference as in the case of Xt. One important difference, however, stems from

the logarithmic transformation of the variance in the stochastic volatility model. As the
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transformation concerns the error structure, the square of which follows a χ2 distribution,

the system is not Gaussian but follows a log-χ2 distribution. Noticing the properties of log-

χ2 distribution, Kim et al. (1998) and Omori et al. (2007) approximate this distribution

using a mixture of Gaussian distributions. Hence, conditional on these mixture compo-

nents the system remains Gaussian allowing for standard inference outlined above. For

details, see Omori et al. (2007). For the estimation of the volatilities in the BVAR-TV-SV

model we use the extension of the algorithm following Kastner and Frühwirth-Schnatter

(2013) for improving the efficiency of the MCMC algorithm.

Sampling of structural break parameters, κt

Sampling of structural break parameters, κt relies on the conditional posterior of the

binary outcomes, i.e. the posterior value in case of a structural break in period t and

the posterior value of the case of no structural breaks. However, evaluating this posterior

requires one sweep of filtering, which is of order O(T ). As this evaluation should be im-

plemented for each period t the resulting procedure would be of order O(T 2). When the

number of sample size is large this would result in an infeasible scheme. Gerlach et al.

(2000) propose an efficient algorithm for sampling structural break parameters, κt, con-

ditional on the observed data, which is still of order O(T ). We implement this algorithm

for estimation of the structural breaks and refer to Gerlach et al. (2000); Giordani and

Kohn (2008) for details.

Sampling of state error variances, σ2
η

Using standard results from a linear regression model with a conjugate prior for the

variances in (4.E.4), it follows that the conditional posterior distribution of σ2
ηi
, with

i = 1, 2, 3, 4 is an inverted Gamma distribution with scale parameter Φηi +
∑T

t=1 η
2
i,t and

with T + νηi degrees of freedom for i = 2, 3, 4 where Φηi and νηi are the scale and degrees

of freedom parameters of the prior density. For i = 1 the parameters of the inverted

Gamma distribution becomes Φη1 +
∑T

t=1 κtη
2
1,t and

∑T
t=1 κt + νη1 .

Sampling of marginal costs variance and correlation coefficient
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To sample the variance of marginal costs and correlation coefficient, we decompose

the multivariate normal distribution of εt into the conditional distribution of ε2,t given ε1,t

and the marginal distribution of ε1,t, as in Çakmaklı et al. (2011). This results in

T∏
t=1

f(εt) =
T∏
t=1

1

σε1,t

φ

(
ε1,t
σε1,t

)
1

σε2,t

√
(1− ρ2)

φ

(
ε2,t − ρε1,t
σε2,t(1− ρ2)

)
, (4.E.8)

Hence, together with prior for the variance in (4.E.4), variance of the marginal cost

series can be sampled using (4.E.8) by setting up a Metropolis-Hasting step using an

inverted Gamma candidate density with scale parameter
∑T

t=1 ε
2
2,t and with T degrees of

freedom. To sample ρ from its conditional posterior distribution we can again use (4.E.8).

Conditional on the remaining parameters the posterior becomes

(1− ρ2)−
3
2

T∏
t=1

(
1√

(1− ρ2)
φ

(
ε2,t − ρε1,t
σε2,t(1− ρ2)

))
. (4.E.9)

We can easily implement the griddy Gibbs sampler approach of Ritter and Tanner (1992).

Given that ρ ∈ (−1, 1) we can setup a grid in this interval based on the precision we desire

about the value of ρ.

4.E.3 Prior-predictive Likelihood Analysis

In the proposed models, it is important to assess the effects of the specified prior distribu-

tions on the predictive likelihoods. Due to the nonlinear structure of the models, assessing

the amount of prior information on the predictive results is not trivial. We present a prior-

predictive analysis as in Geweke (2010). For each of the extended NKPC and HNKPC

model, we consider 1000 parameter draws from the joint prior distribution and compute

the prior predictive likelihoods for the period between 1973-II and 2012-I. Hence a com-

parison of the resulting prior predictions will indicate which model is preferred by the

priors.
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4.F Bayesian Inference of the Extended HNKPCModel

Posterior inference of the HNKPC models with time varying parameters follow similar to

section 4.E, using the Gibbs sampler with data augmentation. Together with the level

specifications of the inflation and real marginal cost series the proposed extended HNKPC

model takes the following form

πt − cπ,t = λH

(1−γH
b γH

f )(1−(φ1+φ2γH
f )γH

f )
(zt − cz,t) +

φ2γH
f λH

(1−γH
b γH

f )(1−(φ1+φ2γH
f )γH

f )
(zt−1 − cz,t−1) ,

+
γH
b γH

f

(1−γH
b γH

f )

γH
f

1−γH
f β

(μt − cπ,t) +
γH
b

(1−γH
b γH

f )
(πt−1 − cπ,t−1) + 1

(1−γH
b γH

f )
ε1,t,

zt − cz,t = φ1 (zt−1 − cz,t−1) + φ2 (zt−2 − cz,t−2) + ε2,t,

cπ,t+1 = cπ,t + κtη1,t+1,

cz,t+1 = μz,t + cz,t + η2,t+1,

μz,t+1 = μz,t + η3,t+1.

(4.F.1)

This can be cast into the state-space form as in (4.E.4)

Yt = HXt +BUt + εt, εt ∼ N(0, Qt)

Xt = FXt−1 +Rtηt, ηt ∼ N(0, I)
(4.F.2)

using the following definitions

Yt =

⎛⎜⎝πt

zt

⎞⎟⎠ , Xt =

(
cπ,t cz,t μz,t, cz,t−1 cz,t−2 cπ,t−1

)′
, εt =

⎛⎜⎝ε1,t

ε2,t

⎞⎟⎠ ,

Ut =

(
zt zt−1 zt−2 πt−1 μt

)′
, B =

⎛⎜⎝α1 α2 0 α4 α3

0 φ1 φ2 0 0

⎞⎟⎠ ,

H =

⎛⎜⎝1− α3 −α1 0 −α2 0 −α4

0 1 0 −φ1 −φ2 0

⎞⎟⎠ , Qt =

⎛⎜⎝ σ2
ε1,t

ρσε1,tσε2

ρσε1,tσε2 σ2
ε2

⎞⎟⎠ ,
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Ft =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Rt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κtση1 0 0

0 ση2 0

0 0 ση3

0 0 0

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ηt =

⎛⎜⎜⎜⎜⎝
η1,t

η2,t

η3,t

⎞⎟⎟⎟⎟⎠ ,

where parameters α1, α2, α3, α4 are defined as functions of the structural form parameters

α1 =
λH(

1− (φ1 + φ2γH
f )γH

f

) (
1− γH

b γH
f

) , α2 =
λHγH

f φ2(
1− (φ1 + φ2γH

f )γH
f

) (
1− γH

b γH
f

) ,
α3 =

γH
b γH

f(
1− γH

b γH
f

) γH
f(

1− γH
f β
) , α4 =

γH
b(

1− γH
b γH

f

) .
Given this setup, posterior inference can be carried out using the steps outlined in

section 4.E.

4.G Posterior Results for the NKPC Models with

non-filtered Time Series

This section presents additional estimation results for the NKPC models with non-filtered

time series. We summarize the estimated levels, volatilities, breaks and inflation expecta-

tions obtained from the NKPC-TV, NKPC-TV-LS and NKPC-TV-LS-SV models. Fig-

ure G.1 shows the estimated levels from the three NKPC models. Estimated inflation

levels, computed as the posterior mean of the smoothed states, are given in the first row

of Figure G.1. Shaded areas around the posterior means represent the 95% HPDI for the

estimated levels. For all three models, estimated inflation levels nicely track the observed

inflation. Effects of the level specification are reflected in the estimates in various ways.

First, when we model inflation level changes as discrete level shifts rather than continu-
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ous changes, we observe a relatively smoother pattern in estimated inflation levels. This

effect can be seen by comparing the second and first graphs in the first row of Figure G.1.

While estimated inflation level in the first graph follows the observed inflation patterns

closely, estimated inflation level in the second (and third to a less extent) graph mostly

indicates three distinct periods. These periods are the high inflation periods capturing

1970s with a constant inflation level around 1.7% (quarterly inflation) following a low in-

flation period in 1960s, and the period after the beginning of 1980s with a stable inflation

level around 0.5%, see Cecchetti et al. (2007) for similar findings. Second, adding the

stochastic volatility together with level shifts results in discrete level shifts in inflation

which are more frequent than the model with only level shifts.

Figure G.1: Level, trend and slope estimates from the NKPC models
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Note: The top panel exhibits estimated inflation levels. The middle and the bottom panels show estimated real marginal
cost levels and slopes, respectively. Grey shaded areas correspond to the 95% HPDI. NKPC-TV refers to the NKPC model
with time varying levels and trends. NKPC-TV-LS refers to the NKPC model with time varying levels and trends. NKPC-
TV-LS-SV refers to the NKPC model with time varying levels, trends and volatility. HNKPC-TV refers to the Hybrid
NKPC model with time varying levels, trends and inflation expectations. HNKPC-TV-LS refers to the HNKPC model with
time varying levels, trends and inflation expectations. HNKPC-TV-LS-SV refers to the HNKPC model with time varying
levels, trends, inflation expectations and volatility. Results are based on 40000 simulations of which the first 20000 are
discarded for burn-in.
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The second panel in Figure G.1 presents the estimated levels for the real marginal

cost series for all models. A common feature of all these estimates is the smoothness

of the estimated levels. In all models, marginal cost series follows a slightly nonlinear

trend during the sample period. The estimated slopes of these trends for all models are

given in the bottom panel of Figure G.1, together with the 95% HPDIs. Nonlinearity of

the negative trend is reflected in the negative values for the slope of the trend, with an

increasing magnitude at the end of the sample. This change in the slope of the trend is

accompanied by the increasing uncertainty about the slope. The difference between the

models in terms of the estimated marginal cost structures is negligible.

4.H Posterior Results for the HNKPC Models with

non-filtered Time Series

This section presents additional estimation results for the HNKPC models with non-

filtered time series. We summarize the estimated levels, volatilities, breaks and inflation

expectations obtained from the HNKPC-TV, HNKPC-TV-LS and HNKPC-TV-LS-SV

models.

Figure H.1 presents the estimated inflation levels, together with estimated levels and

trends of the marginal cost series.

Figure H.2 presents the estimated inflation expectations together with observed survey

based inflation expectations.
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Figure H.1: Level, trend and slope estimates from the HNKPC models
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Note: The top panel exhibits estimated inflation levels. The middle and the bottom panels show estimated real marginal
cost levels and slopes, respectively. Grey shaded areas correspond to the 95% HPDI. Results are based on 40000 simulations
of which the first 20000 are discarded for burn-in.

Figure H.2: Implied inflation expectations by HNKPC models
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Note: The thick solid lines are the posterior means of inflation expectations from the HNKPC models. The thin solid
lines are the observations of inflation expectations from survey data. Grey shaded areas are the 95% HPDI for estimated
inflation expectations. Results are based on 40000 simulations of which the first 20000 are discarded for burn-in.
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4.I Predicted Inflation Densities from All Proposed

Models

This section presents the entire distribution of the inflation predictions for all NKPC

and HNKPC models. Predicted inflation densities from all proposed models are pre-

sented in Figure I.1. In these figures, the solid lines represent the posterior mean of

predicted inflation, and the white areas under the inflation densities show the inflation

levels with non-zero posterior probability. For all models we propose, inflation predictions

are concentrated around high (low) values during the high (low) inflationary periods. The

uncertainty around the inflation predictions are also high for these periods, together with

the periods when inflation is subject to a transition to low values around 1980s.

When the observed inflation values are close to the zero bound, the predictive densities

indicate disinflationary risk, computed as the fraction of the predictive distribution below

zero.

4.J Prior-predictive Likelihoods of Proposed Models

Due to the complex model structures in the proposed models, it is important to address the

effects of the specified prior distributions on the predictive performances. We therefore

perform the prior-predictive analysis outlined in section 4.E for the extended NKPC

models, for the forecast sample analyzed earlier, covering the period between 1973-II

and 2012-I. Table J.1 presents the average and cumulative prior predictive likelihoods

for the forecast sample. Prior predictive likelihoods, not using the data information and

also using weak prior information, naturally perform worse than the predictive results

reported in Table K.2. Table J.1 also shows that the adopted prior distributions clearly

favor the less parameterized model, NKPC-TV. Moreover, the priors clearly do not favor

models with stochastic volatility components. Most importantly, the ‘best performing

model’ according to the predictive results in Table K.2, HNKPC-TV-LS-SV, is the least



Figure I.1: Predicted inflation densities from NKPC and HNKPC models

PC-TV HPC-TV

PC-TV-LS HPC-TV-LS

PC-TV-LS-SV HPC-TV-LS-SV

Note: The figure presents one period ahead predictive distributions of inflation from the NKPC and HNKPC models,
for the period between the third quarter of 1973 and the first quarter of 2012. Model abbreviations are as in Figure G.1 .
Results are based on 40000 simulations of which the first 20000 are discarded for burn-in.
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favorable one according to the adopted prior distributions using the same forecast sample.

We therefore conclude that data information is dominant, and the superior predictive

performance of the HNKPC-TV-LS-SV model is not driven by the prior distribution.

Table J.1: Prior-predictive results for the NKPC models

Model Average Cumulative
(Log) Pred. Likelihood (Log) Pred. Likelihood

NKPC-TV -1.16 -180.88
NKPC-TV-LS -1.36 -210.91
NKPC-TV-LS-SV -1.45 -224.66
HNKPC-TV -1.28 -199.22
HNKPC-TV-LS -1.27 -197.68
HNKPC-TV-LS-SV -2.04 -318.77

Note: The table reports the prior-predictive performances of all competing models for the prediction sample over the period
1973-II until 2012-I. ‘Average (Cumulative) Log Pred. Likelihood’ stands for the average (sum) of the natural logarithms of
predictive likelihoods. Results are based on 1000 simulations from the joint priors of model parameters. Model abbreviations
are as in Table 1 in the chapter.

4.K Posterior and Predictive Results from Alterna-

tive Models for Robustness Checks

The proposed NKPC and HNKPC models extend the standard models in several ways.

First, both model structures introduce time variation in the long and short run dynamics

of inflation and marginal cost series. Second, the introduction and the iterative solution

of the expectational mechanisms and the survey data in the extended HNKPC models

enables the use of more data information. Furthermore, extended and standard HNKPC

models use the additional information from a backward looking component for the infla-

tion series compared to the HNKPC counterparts. According to the predictive results,

the most comprehensive model, HNKPC-TV-LS-SV is also the best performing model.

However, a deeper analysis is needed in order to see the added predictive gains from each

of these extensions. In this section we consider several alternative models and their predic-

tive performances to separately address the predictive gains from each of these extensions



4.K Posterior and Predictive Results from Alternative Models for
Robustness Checks 151

in the model structure. Table K.1 presents all NKPC and HNKPC model structures we

compare to differentiate these effects.
Table K.1: Standard and extended NKPC models: robustness check

��������������

low/high
frequencies

model
structure iterated expectations solution direct expectations data

NKPC HNKPC NKPC HNKPC

linear trend NKPC-LT n/a � NKPCS-LT HNKPCS-LT

Hodrick-Prescott filter NKPC-HP n/a � NKPCS-HP HNKPCS-HP

time varying levels NKPC-TV HNKPC-TV NKPCS-TV HNKPCS-TV

time varying levels and switching NKPC-TV-LS HNKPC-TV-LS NKPCS-TV-LS HNKPCS-TV-LS

time varying levels and stochastic

volatility

NKPC-TV-SV HNKPC-TV-SV NKPCS-TV-SV HNKPCS-TV-SV

time varying levels, switching and

stochastic volatility

NKPC-TV-LS-SV
HNKPC-TV-LS-

SV

NKPCS-TV-LS-

SV

HNKPCS-TV-LS-

SV

The first two columns present the standard and extended (H)NKPC models presented in the main text of the

chapter, for which expectational mechanisms are solved explicitly. The last two columns present alternative model

structures for (H)NKPC models. For these models, we do not iterate inflation expectations in the models, but

instead replace them with survey data directly. NKPC(S)-LT (NKPC-HP(S)) refers to the NKPC model where the

real marginal cost series is detrended using linear trend (Hodrick-Prescott) filter. For the remaining models real

marginal cost series’ trend is modeled using local linear trend model. NKPC(S)-TV refers to the NKPC model with

time varying inflation levels. NKPC(S)-TV-LS refers to the NKPC model with time varying inflation levels together

with level shifts. NKPC(S)-TV-SV refers to the NKPC model with time varying inflation levels and stochastic

volatility. NKPC(S)-TV-LS-SV refers to the NKPC model with time varying inflation levels together with level

shifts and stochastic volatility. HNKPC(S)-TV refers to the Hybrid NKPC model with time varying levels and

inflation expectations. HNKPC(S)-TV-LS refers to the HNKPC model with time varying levels together with level

shifts and inflation expectations. HNKPC(S)-TV-SV refers to the HNKPC model with time varying levels, inflation

expectations and stochastic volatility. HNKPC(S)-TV-LS-SV refers to the HNKPC model with time varying levels

together with level shifts, inflation expectations and stochastic volatility.

� Iterative solution of these models without using the survey data does not exist.

The first set of alternative models we consider are the standard NKPC and HNKPC

models combined with data from survey expectations, without introducing explicit time

variation in the low frequency structure of data but instead demeaning the inflation se-

ries, and detrending the marginal cost series prior to analysis. These models are given

in the first two rows of the right panel of Table K.1 and are abbreviated by NKPCS-

LT, NKPCS-HP, HNKPCS-LT and HNKPCS-HP, according to linear detrending or HP

detrending prior to analysis. The improved predictive performances of NKPCS-LT and

NKPCS-HP models compared to the standard NKPC counterparts show predictive gains
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from incorporating survey expectations in the models. Furthermore, comparing the pre-

dictive performances of the HNKPCS-LT and HNKPCS-HP models with the time-varying

hybrid models, such as the HNKPC-TV or HNKPC-TV-LS models show the gains from

incorporating time variation alone, since all these models use survey data and the back-

ward looking component for inflation.

The second set of alternative models we consider, on the right panel of Table K.1, are

NKPC models with time-varying levels, where we incorporate the survey expectations in

the model directly rather than solving the model iteratively. These models correspond to

(4.B.1) where the expectation term is replaced by survey expectations. We denote these

models by NKPCS-TV, NKPCS-TV-LS and NKPCS-TV-LS-SV, for the time-varying

levels, time-varying levels with regimes shifts in inflation and time-varying levels with

regime shifts and stochastic volatility component in inflation, respectively. Comparing

the predictive results of these models to the HNKPC counterparts provide the predictive

gains solely from the HNKPC extension, i.e. they separate the gains from incorporating

the backward looking inflation component in the model from the other model extensions.

The third set of alternative models we consider are the HNKPC models using the

survey expectations directly, without solving for the expectational mechanisms. We de-

note these models by HNKPCS-TV, HNKPCS-TV-LS and HNKPCS-TV-LS-SV, for the

time-varying levels, time-varying levels with regimes shifts in inflation and time-varying

levels with regime shifts and stochastic volatility component, respectively. Comparing

the predictive performance of these models with the proposed HNKPC models clarifies

the predictive gains from solving for the inflation expectations iteratively in the hybrid

models.

The final set of alternative models aim to pinpoint predictive gains from introducing

level shifts in inflation in the models with a stochastic volatility component. The compar-

ison of the predictive results of models with time-varying levels and stochastic volatility,

(H)NKPC-TV-SV, and with level shifts and stochastic volatility, (H)NKPC-TV-LS-SV,
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highlights predictive gains solely from introducing level shifts when changes in inflation

volatility are taken into account.

One period ahead MSFE and log marginal likelihoods of these models, together with

the standard (H)NKPC models and the models proposed in the chapter, are given in

Table K.2. The prediction results are based on the forecast sample, which covers the

period between the second quarter of 1973 and the first quarter of 2012. Comparing the

first block and the first two rows of the second block in Table K.2, we see that the gains

from using survey data inflation are substantial even in the standard NKPC models. In

terms of predictive gains, the biggest improvement in predictive likelihoods and the MSFE

are achieved with this contribution in the models. However, the predictive performances

of these improved models are still far from the more involved models. Hence the gains from

the proposed models do not only stem from the inclusion of the survey data information

alone.

We also report the predictive gains resulting specifically from introducing time-variation

in the inflation and marginal cost series, by comparing the results of the HNKPCS-LT and

HNKPCS-HP models with the HNKPC-TV or HNKPC-TV-LS models in the table. The

more involved models with time variation clearly perform better according to the predic-

tive results. Especially the difference in marginal likelihoods of these models enables us

to conclude that incorporating time variation in the data is also important.

As a third possible reason for predictive gains, we focus on the models with back-

ward looking components. One way to separate the added value from this component is

to consider the second block of Table K.2. The prediction results from the NKPC and

HNKPC models in this block are very similar, with slight improvements in the hybrid

models, where the backward looking component is incorporated. Another way to see the

effect of the backward looking component is to compare the NKPCS-TV, NKPCS-TV-LS

and NKPCS-TV-LS-SV models with HNKPCS-TV, HNKPCS-TV-LS and HNKPCS-TV-

LS-SV models, respectively. In all these comparisons, the models without the backward
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looking component performs slightly better (worse) in terms of MSFE (marginal likeli-

hood), hence the backward looking component does not seem to improve predictive results

in general and the improvements in the hybrid models mainly stem from incorporating

the survey expectations.

From the considered alternative models, time-varying level models with a stochastic

volatility component using survey data directly (NKPCS-TV-LS-SV and HNKPCS-TV-

LS-SV) clearly perform best. In terms of the predictive likelihoods, these models are also

comparable to the ‘best performing’ model we propose.

A final source of possible predictive gains in the proposed models is the iterative

solution of inflation expectations. This comparison is based on the comparison of the

models in the third (fourth) block and the fifth (sixth) block of Table K.2, where only the

third (fourth) block uses the iterative solution. According to the MSFE, predictive results

deteriorate slightly when we solve the system. We find this result rather counterintuitive

since the iterative solution is based on the complete model structure. As we show briefly,

despite this slight increase in the predictive performances, models without the iterative

solutions suffer from identification issues.

We next focus on changes in parameter estimates for the alternative models proposed

in this section. Table K.3 presents the parameter estimates for all alternative models.

Despite the predictive gains from these alternative models, parameter estimates are rather

different from those obtained from the proposed models. Specifically for the hybrid models

considered, uncertainty in posterior distributions increase substantially if the iterative

model solution is not used. Furthermore, posterior densities of some parameters are

quite irregular in most of these models which use expectations data directly. Figure K.1

shows this irregularity for the HNKPCS-TV model, parameters λ(H), γ
(H)
b and γ

(H)
f . The

bimodality problem in posterior densities is most apperant in the NKPC slope, λ
(H)
b .

Furthermore, the backward looking component γ
(H)
b is spread over a wide region with

multiple modes. Similar results hold for the remaining alternative models which make
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Table K.2: Predictive performance of additional NKPC models

Model (Log) Marg. MSFE
Likelihood 1 period ahead

NKPC-LT -139.327 0.353

NKPC-HP -157.195 0.458

NKPCS-LT -79.141 0.105

NKPCS-HP -85.397 0.130

HNKPCS-LT -81.047 0.105

HNKPCS-HP -85.200 0.119

NKPC-TV -46.162 0.142

NKPC-TV-LS -61.972 0.138

NKPC-TV-SV -22.761 0.134
NKPC-TV-LS-SV -33.476 0.126

HNKPC-TV -36.385 0.123

HNKPC-TV-LS -35.052 0.105

HNKPC-TV-SV -19.695 0.106
HNKPC-TV-LS-SV -18.150 0.091

NKPCS-TV -34.407 0.129

NKPCS-TV-LS -32.004 0.099

NKPCS-TV-LS-SV -15.390 0.092

HNKPCS-TV -40.465 0.176

HNKPCS-TV-LS -38.082 0.297

HNKPCS-TV-LS-SV -12.977 0.139

BVAR (constant) -166.226 0.085

BVAR-TV-SV -97.980 0.100

SW2007 -78.033 0.168
Note: The table reports the predictive performances of alternative models for the period between the second quarter of
1973 and the first quarter of 2012. ‘(Log) Marg. Likelihood’ stands for the natural logarithm of the marginal likelihoods.
‘MSFE’ stands for the Mean Squared Forecast Error. Marginal likelihood values in the first column are calculated as the
sum of the predictive likelihood values in the prediction sample. Results are based on 10000 simulations of which the first
5000 are discarded for burn-in. Model abbreviations are based on Table K.1. BVAR (constant) denotes the BVAR model
with 2 lags and with constant parameters. ‘BVAR-TV-SV’ denotes the ‘BVAR’ model with 2 lags, time varying levels for
both series and stochastic volatility for inflation. SW2007 stands for the model proposed by Stock and Watson (2007).

use of the survey expectations data directly. We therefore conclude that replacing the

expectational term in the (H)NKPC models with survey expectations deteriorate posterior

inference compared to the iterative solution of these expectational terms.

To conclude, predictive gains obtained from including the survey expectations in the

models are substantial and incorporating the low and high frequency data movements in

the model is crucial. These two conclusions are in line with Faust and Wright (2013), who

consider a large set of alternative models for inflation forecasting, including unrestricted

reduced form models, and compare their forecast performances based on MSFE. Our

model incorporates both these features in the NKPC model structure. Third, once survey
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Figure K.1: Posterior density of λ(H), γ
(H)
b and γ

(H)
f from the HNKPCS-TV model
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Note: The figure presents posterior densities of parameters from the HNKPCS-TV model. Model abbreviations are based
on Table K.1. Results are based on 40000 simulations of which the first 20000 are discarded for burn-in.

data and time variation are included in the model, there are still additional predictive

gains from the backward looking component in the hybrid models.

4.L Modelling Inflation Expectations using Unobserved

Components

The HNKPC models implicitly assume that survey based inflation expectations capture

‘real’ inflation expectations for the next period accurately. However, survey expectations

are likely to reflect real inflation expectations with a measurement error. In this sec-

tion we extend the HNKPC model by including a latent variable for unobserved inflation

expectations, aiming to account for the possibility of measurement errors in survey ex-

pectations. Specifically, we propose an adaptive rule under which inflation expectations

partially adjust to survey expectations at each period:

St+1 = μt+1 + βS(St − μt) + ηS,t+1, (4.L.1)

where |βS| < 1 and μt is the survey observation for inflation expectation at time t. This

adaptive rule implies that unobserved inflation expectations converge to the survey based



158

expectations in the long run. Given the restriction on parameter βS, one can solve (4.L.1)

for St and obtain St = μt+
∑∞

j=0 β
j
SηS,t−j. This specification allows for the interpretation

that expected inflation is equal to the survey values with a measurement error that is

specified as an infinite moving average with declining weights.

We next consider the HNKPC model given the specified adaptive rule for the un-

observed inflation expectations. Notice that we can factorize the expectation term in

equation (9) in the main text of the chapter, Et (π̃t+k), into two parts related to the

measurement error and the relation between survey based expectations and long run ex-

pectations, as Et (π̃t+k) = Et (St+k−1 − μt+k−1) +Et (μt+k−1 − cπ,t+k). Then the weighted

sum of expectations in equation (9) in the chapter becomes

∞∑
k=1

γk
fEt (π̃t+k) =

∞∑
k=1

γk
fEt (St+k−1 − μt+k−1) +

∞∑
k=1

γk
fEt (μt+k−1 − cπ,t+k) . (4.L.2)

The first part of the summation,
∑∞

k=1 γ
k
fEt (St+k−1 − μt+k−1), is related to the mea-

surement error and can be computed from (4.L.1). For the second part of the summation,∑∞
k=1 γ

k
fEt (μt+k−1 − cπ,t+k), we specify a similar partial adjustment process as the pro-

cess specified in the chapter μt − cπ,t+1 = βμ(μt−1 − cπ,t) + ημ,t+1. The partial adjustment

mechanism implies that the further one gets into the future the smaller will be the dif-

ference between short and long run inflation expectations. Estimates of βμ will indicate

the empirical speed of adjustment. For instance, for a value of the posterior mean of βμ

equal to 0.5 it follows that within a few periods one has almost complete adjustment.

Replacing the infinite sum of expectations of inflation deviations using the two speci-

fications for the measurement error and for the deviation of the survey expectations from
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the long run inflation expectations in (4.L.2), the HNKPC model becomes

πt − cπ,t = λH

(1−γH
b γH

f )(1−(φ1+φ2γH
f )γH

f )
(zt − cz,t) +

φ2γH
f λH

(1−γH
b γH

f )(1−(φ1+φ2γH
f )γH

f )
(zt−1 − cz,t−1)

+
γH
b γH

f

(1−γH
b γH

f )

(
γH
f

1−γH
f βS

(St − μt) +
γH
f

1−γH
f βμ

(μt − cπ,t)
)

+
γH
b

(1−γH
b γH

f )
(πt−1 − cπ,t−1) + 1

(1−γH
b γH

f )
ε1,t,

zt − cz,t = φ1 (zt−1 − cz,t−1) + φ2 (zt−2 − cz,t−2) + ε2,t.

(4.L.3)

Notice that if the speed of adjustment for both specifications are equal, i.e. βS = βμ,

then the HNKPC reduces to

πt − cπ,t = λH

(1−γH
b γH

f )(1−(φ1+φ2γH
f )γH

f )
(zt − cz,t) +

φ2γH
f λH

(1−γH
b γH

f )(1−(φ1+φ2γH
f )γH

f )
(zt−1 − cz,t−1)

+
γH
b γH

f

(1−γH
b γH

f )

γH
f

1−γH
f βS

(St − cπ,t) +
γH
b

(1−γH
b γH

f )
(πt−1 − cπ,t−1) + 1

(1−γH
b γH

f )
ε1,t,

zt − cz,t = φ1 (zt−1 − cz,t−1) + φ2 (zt−2 − cz,t−2) + ε2,t.

(4.L.4)

We next compare the models specified in (4.L.3) and in (4.L.4) with a HNKPC-TV

parametrization in terms of their forecast performances. For the forecast sample consid-

ered in the chapter, the cumulative predictive likelihood for the HNKPC-TV model in

(4.L.3) is −36.19 while for the model in (4.L.4) this value is −36.44. The cumulative

predictive likelihood values for the HNKPC-TV model with and without the restriction

βS = βμ indicate that this restriction is statistically valid as the difference between the

likelihood values are very small. Following this evidence we display the parameter esti-

mates of all extended HNKPC models using the expectation specification in (4.L.4) in

Table L.1. We further report the cumulative predictive likelihood values and 1 step ahead

MSFE for these models in Table L.2.

Results are very similar to the corresponding table in the main text of the chapter (Ta-

ble 2), thus, we conclude that the effect of the measurement errors in survey expectations

is negligible.
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Table L.1: Posterior results of HNKPC models with unobserved inflation expectations

Model λH γH
f γH

b βS ρ φ1 φ2

HNKPC-TV 0.05 (0.03) 0.02 (0.03) 0.38 (0.14) 0.49 (0.28) 0.01 (0.06) 0.81 (0.05) 0.07 (0.05)

HNKPC-TV-LS 0.04 (0.02) 0.01 (0.01) 0.49 (0.11) 0.52 (0.18) 0.02 (0.01) 0.79 (0.09) 0.19 (0.08)

HNKPC-TV-LS-SV 0.06 (0.02) 0.04 (0.10) 0.22 (0.12) 0.44 (0.24) -0.01 (0.01) 0.82 (0.05) 0.15 (0.04)
The table presents posterior means and standard deviations (in parentheses) of parameters for the competing HNKPC type
models estimated for quarterly inflation and real marginal costs over the period 1960-I until 2012-I. λH and γH

f are the

slope of the Phillips curve and the coefficient of inflation expectations in HNKPC model in (4.L.4). γH
b is the coefficient

of the backward looking component in the HNKPC model in (4.L.4). βS is the autoregressive parameter for the deviation
of inflation expectations, as used in (4.L.4). ρ is the correlation coefficient of the residuals ε1 and ε2. φ1 and φ2 are the
autoregressive parameters for the real marginal cost specification. Posterior results are based on 40000 simulations of which
the first 20000 are discarded for burn-in. Model abbreviations are as in Table 1 in the main text of the chapter.

Table L.2: Predictive performance of HNKPC models with unobserved inflation expecta-
tions

Model Cumulative MSFE
(Log) Pred. Likelihood 1 period ahead

HNKPC-TV -36.44 0.12
HNKPC-TV-LS -35.77 0.09
HNKPC-TV-LS-SV -17.96 0.09

Note: The table reports the predictive performances of competing models for the prediction sample over the period 1973-II
until 2012-I. ‘Cumulative (Log) Pred. Likelihood’ stands for the sum of the natural logarithms of predictive likelihoods.
‘MSFE’ stands for the Mean Squared Forecast Error. Results are based on 10000 simulations of which the first 5000 are
discarded for burn-in. Remaining abbreviations are as in Table 1 in the chapter.

4.M Analysis of Cointegration in Inflation andMarginal

Cost Levels

The models in the chapter considered rely on the implicit assumption of the absence of

a long-run cointegrating relationship between the inflation and marginal cost series. We

assess whether this assumption is plausible for the U.S. data. For this reason, we consider

the NKPC-TV model that provides the unobserved levels of both series at each posterior

draw. For each of these obtained posterior draws, we perform a simple two-step analysis

to check the existence of the cointegrating relationship, which can be seen as a Bayesian

extension of the method of Engle and Granger (1987).

We perform a two step analysis, where in the first step we obtain the residuals from

the regression of the estimated level of inflation on a constant and the estimated level
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of marginal costs, for each posterior draw. This implies that we take the estimation

uncertainty in the analysis into account. Next, we obtain the posterior distribution of the

autoregressive parameter, ρ, for each set of residuals from the following regression using

flat priors on the identified region ρ ∈ [−1, 1]

Δε̂t = ρε̂t−1 + ηt, ηt ∼ NID(0, σ2), (4.M.1)

where ε̂t denotes the residuals from the first stage, and ρ = 0 implies that there is no

cointegrating relationship between the series. An HPDI including the value of 0 indicates

that a cointegrating relation between inflation and marginal cost is unlikely.

We compute the mean and the quantiles of these individual densities using 5000 poste-

rior draws, and report the average values of the mean and the quantiles of ρ based on 3000

simulations. These results are presented in Figure M.1. Posterior means of parameter ρ

are around 0 for all posterior draws of inflation and marginal cost levels, and the 80%

and 90% percent quantiles of the distribution are around 0 as well. Hence this simula-

tion experiment does not indicate a cointegrating relationship between the inflation and

marginal cost levels. This pattern is also found for other TV-NKPC models we considered

for the U.S. data, but these results are not reported for the sake of brevity. We conclude

that the underlying assumption of ‘no cointegrating relationship’ is found to be feasible

for the NKPC models we consider.



Figure M.1: Cointegration analysis for the marginal costs and inflation series
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Note: The figure presents the posterior means and quantiles of the ρ parameter from 5 × 103 posterior draws from the
NKPC-TV models, where for each draw, the the reported values are calculated using 3000 simulations. ρ = 0 implies that
there is no cointegrating relationship between the series.



Nederlandse Samenvatting

(Summary in Dutch)

Dit proefschrift behandelt toepassing van Bayesiaanse econometrische methoden in de

economische wetenschap, in het bijzonder in de macroeconomie, en wil specifiek de vol-

gende drie vragen beantwoorden: 1) Hoe heeft Bayesiaanse econometrie zich de laatste

decennia ontwikkeld? 2) Hoe kunnen groeiramingen voor economische variabelen verbe-

terd worden? 3) Hoe kunnen de analyses en voorspellingen van inflatieprognoses verbe-

terd worden? Deze vragen worden beantwoord in drie opeenvolgende hoofdstukken van

dit proefschrift.

Hoofdstuk 2 beschrijft de geschiedenis van de Bayesiaanse econometrie sinds het begin

van de jaren zestig (van de vorige eeuw). We kwantificeren de toenemende populariteit van

Bayesiaanse econometrie op basis van een dataset dat bestaat uit ongeveer 1000 artikelen.

Hiervoor tellen we het aantal publicatie- en citatie-records van deze artikelen die versch-

enen zijn in tien econometrische tijdschriften. De aantallen geven inzicht in de wortels van

de Bayesiaanse econometrie en maken een voorspelling voor de toekomst mogelijk. De

analyse wijst op een positieve toekomst voor Bayesiaanse econometrie wat toepassingsmo-

gelijkheden op verschillende deelgebieden van de economie betreft. Daarnaast analyseert

hoofdstuk 2 de verbindingen tussen onderwerpen en auteurs van de artikelen in de dataset

met behulp van een bibliometrische techniek. Deze analyse geeft een beeld van de be-

langrijkste onderwerpen binnen de Bayesiaanse econometrie. De resultaten suggereren
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dat onderwerpen zoals ’modellen met niet waargenomen variabelen’ en ’modellen met

tijdsvarierende patronen’ steeds belangrijker zijn geworden.

Gezien het belang van tijdsvarierende patronen in de economie richten hoodstuk 3

en 4 zich op het verbeteren van modellen voor het voorspellen van de groei van het

Bruto-Binnenlands-Product (BBP) en het voorspellen van inflatie, waarbij gebruike wordt

gemaakt van het tijdsvarierend karakter van veel economische reeksen. De klasse van

Nieuw-Keynesiaanse Philips Curve (NKPC) modellen voor het voorspellen van inflatie

maakt doorgaans gebruik van traditionele methoden voor het opschonen van data vooraf-

gaand aan de analyse. Dit kan echter leiden tot onzuivere schattingen en voorspellingen.

Om dit probleem aan te pakken en de voorspellingen van macro-economische modellen

te verbeteren biedt dit proefschrift een Bayesiaanse methode voor het modelleren van het

NKPC-model en van reële Amerikaanse BBP reeksen.

Hoofdstuk 3 begint met een eenvoudige uiteenzetting van de technische kwesties waarmee

een Bayesiaanse econometrist geconfronteerd wordt, wanneer zij de reële groei van het

Amerikaanse BBP wil ramen met behulp van een tijdsvarierend parameter model en met

Bayesiaanse schattingsmethoden. Het gemiddelde van de groeireeks verandert namelijk in

de loop van de 20e eeuw met structurele verschuivingen rond 1965 en 1984. Wij willen met

deze typische kenmerken in de data rekening houden bij het modelleren van de reële BBP-

reeksen. Daarom onderzoeken wij een tijdsvarierend parameter model voor het gemid-

delde, met continue verschuivingen in het niveau van het gemiddelde. De Bayesiaaanse

analyse wordt uitgevoerd met behulp van Gibbs sampling. Vervolgens breiden we de

analyse uit met discrete structurele verschuivingen in het gemiddelde en met stochastis-

che volatiliteit in de variantie. Een verdere uitbreiding is het gebruik van data over

verwachtingen die gebaseerd zijn op enquête data. De voorspelkracht van alle modellen

wordt vergeleken via Bayesiaanse voorspeltechnieken.

De klasse van Philips Curve modellene is populair in de economische wetenschap omdat

deze het verband tussen inflatie en economische activiteit weergeeft, wat essentieel is om
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de werking van de economie te verklaren en te voorspellen. Hoofdstuk 4 biedt varianten

van het NKPC model waarin zowel het veranderende gemiddelde van inflatie als ook de

trend in de reeksen van marginale kosten expliciet zijn opgenomen in de structuur van het

model. Vervolgens wordt een zgn. ’posterior-predictive’ analyse uitgevoerd. In één van

de varianten van het NKPC model, namelijk het hybride NKPC, wordt een terugwaarts

kijkende term opgenomen, en het relatieve belang van terugwaarts en voorwaarts kijkend

gedrag wordt geëvalueerd. In nog een andere variant gebruiken we inflatie-verwachtingen

uit enquête data, met als doel de informatie in de aannemelijkheidsfunctie en de poste-

rior dichtheid te verbeteren. De bereikte resultaten suggereren dat de precisie van de

schattingen verbetert wanneer structurele tijdsvariatie in de reeks(en) expliciet gemod-

elleerd worden. Bovendien zijn de resultaten van het model, zowel voor het schatten

als voor het voorspellen beter of tenminste even goed als bij de gangbare Bayesiaanse

vectorautoregressieve en stochastische volatiliteits modellen.
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This thesis deals with the application of Bayesian econometrics for 
macroeconomic modelling. In particular, this thesis aims to answer
three questions: 1) How did Bayesian econometrics evolve over time? 2) 
How can output growth forecasts be improved? 3) How can inflation 
forecasts be improved? These questions are answered in three
consecutive chapters of this thesis.
 
Chapter 2 describes the history of Bayesian econometrics since the early 
1960s. It quantifies the increasing popularity of Bayesian econometrics 
by analyzing the publication and citation records of papers in ten
econometrics journals. These numbers give insight into the roots of 
Bayesian econometrics and a prediction about its future. Additionally, 
this chapter examines the connections among the topics and authors
of the papers in the data set using the bibliometric mapping technique.
Given the importance of time varying patterns suggested by these
analyses, the following two chapters aim to improve models for
forecasting GPD growth and inflation taking into account the time
varying behavior of the series.
 
Chapter 3 starts with a basic exposition of the technical issues that a 
Bayesian econometrician faces in terms of modeling and inference when 
she is interested in forecasting US real GDP growth by using a time varying 
parameter model using simulation based Bayesian inference. It then
proposes models for the US real GDP growth series in level and volatility 
dimensions. New Keynesian Phillips Curve models used for inflation fore-
casting typically rely on traditional ways of cleaning data before analysis. 
However, this may lead to poor performance. Therefore, motivated to fill 
in this gap in the literature and improve model performance, Chapter 4 
proposes models for the NKPC model for the US in a Bayesian way.
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