VI. Detection of Implanted Staphylococcus Aureus Strain

Use of Serological and Phage Typing

A recent approach to the control of staphylococcal problems in hospital nurseries involves the implantation of a penicillin-sensitive staphylococcus (the 502A strain) in infants in an effort to interfere with colonization by more virulent organisms. The evaluation of the results of such implantation experiments depends upon accurate and definitive identification of the implanted strain and the ability to differentiate it from other strains of coagulase-positive staphylococci found in the environment. The use of two or more distinct typing systems, especially for cultures from lesions and other infections, greatly improves the reliability of the experiment. Toward this end selected representative staphylococcus strains from the Georgia study were referred to the research laboratory for special serological and phage studies.

Materials and Methods

The serological system used in this study was developed by Oeding and by Haukenes and Oeding. Methods of producing reagents and performing the tests are described in a recent paper by Cohen and Oeding. The fluorescent antibody method was used to type several auto-agglutinating strains. Antisera for factors, a, b, c, (polyvalent), c₁, h, i, k, and m were used. (During the course of this study the monovalent reagent for factor c₁ was developed by adsorption of F21 antiserum with strains 1503, 2095, and Wood 46.) Several isolates from the stock 502A strain, a selected group of nasal and umbilical cultures from inoculated and uninoculated babies, and a few cultures from lesions were typed by both phage and serological procedures. One hundred colonies of the 502A strain were phage typed to determine the range of variation in vitro. The four colonies listed in Table I represent the extent of variation observed.

Results

The 502A strain reacted strongly with the monovalent c₁ antiserum, the polyvalent c₂ antiserum, and with the divalent c₃ antiserum. In addition, it reacted weakly with polyvalent b antiserum. The strain was therefore designated type (b)c₁ but the strong c₁ reaction was the most useful in identifying it. The serotypes and phage patterns of representative strains from a nursery study are given in Table 1. Strains of the 52/52A/80/81 complex, strains of other phage patterns, and a number of strains not typed by our phages exhibited a variety of serological types. In general, those strains associated with each other by phage type were also associated with each other by serotype.

In Table 2 the serology and phage results are summarized according to epidemiological data on sources of the cultures. Twenty-three strains with serology characteristic of the 502A staphylococcus (i.e., (b)c₁ or [c₁]) were identified among the cultures referred for special study. Twenty of these were from inoculated babies, including three from a parallel study in Cincinnati which were tested in order to ascertain the similarity between
the 502A progeny in the separate studies. Eighteen of the (b) c1 or c1 strains were considered to be the same as the 502A strain by phage typing, although interpretation of the phage results was difficult, as mentioned previously, because of variations in intensity of reactions. Five (b) c1 or c1 strains (four from inoculated babies) had phage patterns which were distinctly different from that of known 502A cultures. One culture from an uninoculated baby was indistinguishable from the 502A strain by serology and phage type. This appears to represent cross-colonization with the 502A strain. One culture from an inoculated baby was distinct from the 502A strain by both procedures. This culture was isolated from the same plate as a culture with both serotype and phage type characteristic of the 502A strain. All of the 27 strains differentiated from the 502A strain by serology were also differentiated from it by phage typing.

Comment

In order to evaluate the effect of nasal inoculation of the 502A staphylococcus strain in newborn infants an intensive culturing and phage typing program was carried out by the CDC Epidemiology Branch Laboratory. Positive identification of the 502A strain proved to be difficult because of variability of the phage patterns. Therefore, selected cultures were referred to the Staphylococcus and Streptococcus Unit for confirmatory phage typing and serological studies. In both laboratories the variations in phage reactions or the complete absence of susceptibility to the basic set of phages resulted from variations in other phages as well.

Table 1.—Comparison of Serological Type and Phage Type of Some Representative Strains From a Nursery Study of Implantation With the 502A Strain

<table>
<thead>
<tr>
<th>No.</th>
<th>Tested</th>
<th>Source</th>
<th>Serotype</th>
<th>Phage Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>502A</td>
<td>(b) c1</td>
<td>(b) c1 or c1</td>
<td>6/7 (41E/47/53/55/A/81) *</td>
</tr>
<tr>
<td>16</td>
<td>Inoculated babies</td>
<td>(b) c1</td>
<td>(b) c1 or c1</td>
<td>6/7/41/53/55/A/81/91</td>
</tr>
<tr>
<td>4</td>
<td>Inoculated babies</td>
<td>(b) c1</td>
<td>(b) c1 or c1</td>
<td>6/7/53 (41E/47/55/A/81)</td>
</tr>
<tr>
<td>1</td>
<td>Uninoculated baby</td>
<td>(b) c1</td>
<td>c1</td>
<td>6/7/53 (41E/47/55/A/81)</td>
</tr>
<tr>
<td>1</td>
<td>""</td>
<td>""</td>
<td>belin</td>
<td>3A (3H/3C)</td>
</tr>
<tr>
<td>6</td>
<td>Babies</td>
<td>abc</td>
<td>20/32/52/79/8/7/47/53/55/A/81/81 (30/41E)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Breast abscess of mother</td>
<td>h</td>
<td>No reaction</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Uninoculated babies</td>
<td>h</td>
<td>No reaction</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Uninoculated baby</td>
<td>abc</td>
<td>32/52/3A/A/81</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>""</td>
<td>abcpA</td>
<td>32/52/3A/A/81</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>""</td>
<td>abc</td>
<td>76/77/57</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>""</td>
<td>babies</td>
<td>k</td>
<td>No reaction</td>
</tr>
<tr>
<td>1</td>
<td>""</td>
<td>baby</td>
<td>No reaction</td>
<td></td>
</tr>
</tbody>
</table>

* Numbers in parentheses represent weak reactions.
† Culture taken 6 weeks after discharge from the hospital.

Table 2.—Comparison of Serological and Phage Differentiation of Fifty Selected Staphylococcus Strains From a Nursery Study of Implantation With the 502A Strain

<table>
<thead>
<tr>
<th>Serotype</th>
<th>(b) c1 or c1 (Characteristic of the 502A Strain)</th>
<th>Distinct from (b) c1 or c1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Like 502A by Phage Typing</td>
<td>Unlike 502A by Phage Typing</td>
</tr>
<tr>
<td>Source</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Inoculated babies</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Uninoculated babies and other sources</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>18</td>
</tr>
</tbody>
</table>
in rather poor definitive identification of
many of the strains under study.

In contrast, all but one of the 50 strains
were typed successfully by serological
procedures; 46 by agglutination, and 3, which
agglutinated spontaneously, by a fluorescent
antibody method. The strong κ_1 antigen in
the 502A strain provided a ready marker to
its identification, especially in view of the
apparent absence of similar strains in the
nursery environment. Five (b)κ_1 or κ_1
strains which had phage patterns distinctly
different from the majority of 502A cultures
were more difficult to classify. However, in
view of the marked variability in phage re-
actions of known 502A subcultures (Table
1) one is inclined to consider the serological
reactions as the more reliable in this study.

Studies of strains by both phage typing
and serology by Oeding and Vogelsang,8
Oeding and Williams,8 and our own labora-
tory (unpublished data) indicate that
the serological type and phage type are based on
different markers. Where positive identifica-
tion of a culture is essential in the evaluation
of important experiments, the use of both
systems offers an obvious advantage over
either system alone.

In the study presented here, serological
typing was useful in several instances in
making judgments as to the successful col-
onization with the 502A strain and its ability
to interfere with colonization by other
strains. Serology also indicated that several
lesions of questionable etiology were due to
organisms other than the 502A strain.

Summary
During a study of the effect of artificially
introducing a penicillin-sensitive strain
(502A) into a nursery in an effort to limit
the dissemination of more virulent staphylo-
cocci, representative cultures were selected
for special serological and phage studies. The
502A strain was found to possess a strong κ_1
antigen by which it could be distinguished
from other strains in the nursery environ-
ment. Serological typing proved valuable in
assessing the results of the experiments.

REFERENCES
1. Shinefield, H.; Ribble, J.; Boris, M.; and
Eichenwald, H.: Bacterial Interference: Its Effect
on Nursery Acquired Infection With Staphylo-
coccus Aureus; I. Preliminary Observations in the
Newborn, Amer J Dis Child, this issue, p 646.
2. Shinefield, H.; Boris, M.; Ribble, J.; and
Eichenwald, H.: Bacterial Interference: Its Effect
on Nursery Acquired Infection With Staphylo-
coccus Aureus; III. Georgia Epidemic, Amer J Dis
Child, this issue, p 663.
3. Oeding, P.: Serological Typing of Staphylo-
cocci, Acta Path Microbiol Scand, Suppl 93:356,
1952.
4. Oeding, P.: Serological Typing of Staphylo-
cocci: III. Further Investigations and Comparison
to Phage Typing, Acta Path Microbiol Scand 33:
324, 1953.
5. Oeding, P.: Agglutinability of Pyogenic
Staphylococci at Various Conditions, Acta Path
6. Haukenes, G., and Oeding, P.: On Two New
Antigens in Staphylococcus Aureus, Acta Path
7. Cohen, J. O., and Oeding, P.: Serological
Typing of Staphylococci by Means of Fluorescent
Antibodies: I. Development of Specific Reagents
for Seven Serological Factors, J Bact 84:735, 1962.
8. Oeding, P., and Vogelsang, T. M.: Staphylo-
coccal Studies in Hospital Staffs: V. Comparison
Between Serological Typing and Phage Typing,
9. Oeding, P., and Williams, R. E. O.: The Type
Classification of Staphylococcus Aureus: A Com-
parison of Phage Typing With Serological Typing,