

Improving Cervical Cancer Prevention by HPV Self-sampling, Colposcopy and Biomarkers

Romy van Baars

Improving Cervical Cancer Prevention by HPV Self-sampling, Colposcopy and Biomarkers

ISBN: 978-94-6169-545-1

The studies described in this thesis were financially supported by the Stichting Pathologie Ontwikkeling en Onderzoek (SPOO) Foundation.

The printing of this thesis was financially supported by the Stichting Pathologie Ontwikkeling en Onderzoek (SPOO) Foundation, the Department of Obstetrics and Gynaecology of the Erasmus MC University Medical Centre, Rotterdam, The Netherlands, Werkgroep Cervix Uteri and Stichting Gilles Hondius Foundation.

Cover design, lay-out and printing:
Optima Grafische Communicatie, Rotterdam, The Netherlands

Copyright © Romy van Baars, Rotterdam, 2014

All rights reserved. No part of this thesis may be reproduced or transmitted in any forms or by any means, without the prior written permission of the author, or, when appropriate, of the publisher of the articles.

Improving Cervical Cancer Prevention by HPV Self-sampling, Colposcopy and Biomarkers

**Verbetering van preventie van baarmoederhalskanker met behulp van
HPV zelfafname, colposcopie en biomarkers**

Proefschrift

ter verkrijging van de graad van doctor aan de
Erasmus Universiteit Rotterdam
op gezag van de
rector magnificus

Prof.dr. H.A.P. Pols

en volgens besluit van het College voor Promoties.
De openbare verdediging zal plaatsvinden op
woensdag 1 oktober 2014 om 15:30 uur

door

Romy van Baars

geboren te Rotterdam

The logo of Erasmus Universiteit Rotterdam, featuring a stylized signature of the word 'Erasmus' above the text 'ERASMUS UNIVERSITEIT ROTTERDAM'.

Promotiecommissie

Promotoren: Prof.dr. Th.J.M. Helmerhorst
Prof.dr. P.J.F. Snijders

Overige leden: Prof.dr. C.W. Burger
Prof.dr. F.J. van Kemenade
Prof.dr. C.J.L.M. Meijer

Copromotoren: Dr. W.G.V. Quint
Dr. W.A. ter Harmsel

Zit het je eens tegen en vind je iets niet fijn
Ook regen is een zegen, die moet er soms ook zijn

Theodoor van Baars

TABLE OF CONTENTS

Chapter 1	General introduction	9
Chapter 2	Clinical evaluation of high-risk HPV detection on self-samples using the Indicating FTA-elute solid-carrier cartridge	31
Chapter 3	Dry storage and transport of a cervicovaginal self-sample by use of the Evalyn brush, providing reliable human papillomavirus detection combined with comfort for women	43
Chapter 4	The impact of Human Papillomavirus genotype on colposcopic appearance: a cross-sectional analysis	61
Chapter 5	The increased detection of cervical intraepithelial neoplasia when using a second biopsy at colposcopy: a cross-sectional study	85
Chapter 6	Categorisation of CIN to address histological problems of CIN 1 and 2 by combining viral biomarker panHPVE4, proliferation marker MCM and transformation marker p16	105
Chapter 7	CADM1 and MAL methylation status in cervical scrapes is representative for the most severe underlying lesion in women with multiple cervical lesions	125
Chapter 8	Oncogenic human papillomavirus infected immature metaplastic cells and cervical neoplasia	143
Chapter 9	General discussion	163
Chapter 10	Summary / Samenvatting	183
Addendum	List of abbreviations	195
	Affiliations of co-authors	197
	Bibliography	201
	PhD Portfolio	203
	About the author	205
	Dankwoord	207

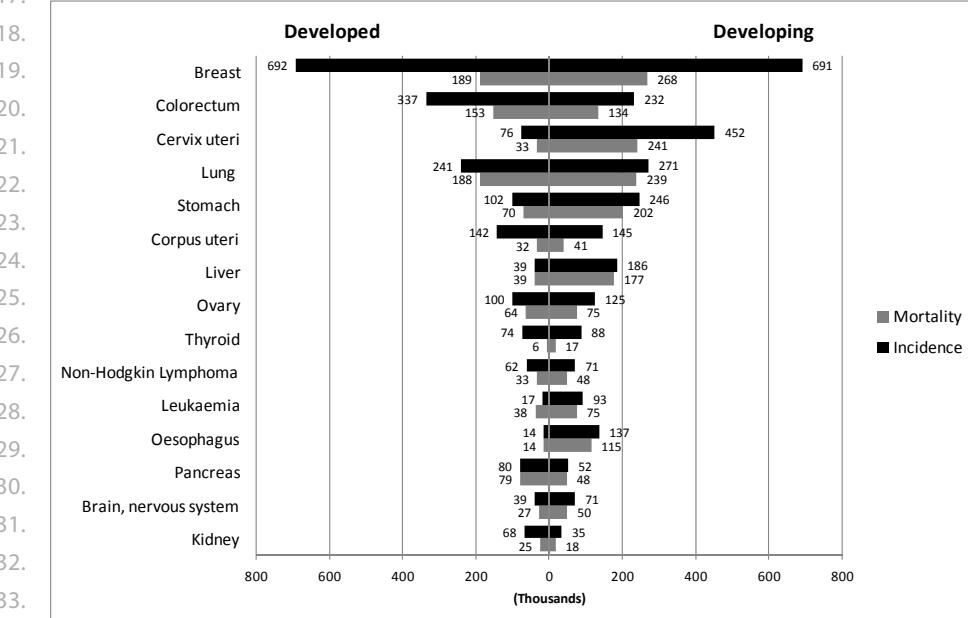
Chapter 1

General introduction

GENERAL INTRODUCTION

- 1. Cervical cancer and cervical intraepithelial neoplasia**
 - 1.1 Cervical cancer
 - 1.2 Precursor lesions of cervical cancer
- 2. Human papillomavirus and cervical carcinogenesis**
- 3. Cervical cancer prevention**
 - 3.1 Primary prevention
 - 3.2. Secondary prevention
 - 3.2.1 *Cytology screening*
 - 3.2.2 *HPV screening*
 - 3.2.3 *HPV Self-sampling*
 - 3.2.4 *Colposcopy*
 - 3.3 Treatment
- 4. Molecular biomarkers**
 - 4.1 HrHPV genotyping
 - 4.2 Methylation markers
 - 4.3 Immunohistochemical markers
 - 4.3.1 *Biomarker for transforming infections: p16^{INK4a}*
 - 4.3.2 *Biomarker for cell proliferation: MCM*
 - 4.3.3 *Biomarkers for productive HPV-infections: E4 and L1*
5. Aim and outline of this thesis

1. CERVICAL CANCER AND CERVICAL INTRAEPITHELIAL NEOPLASIA


2.

3. 1.1 Cervical cancer

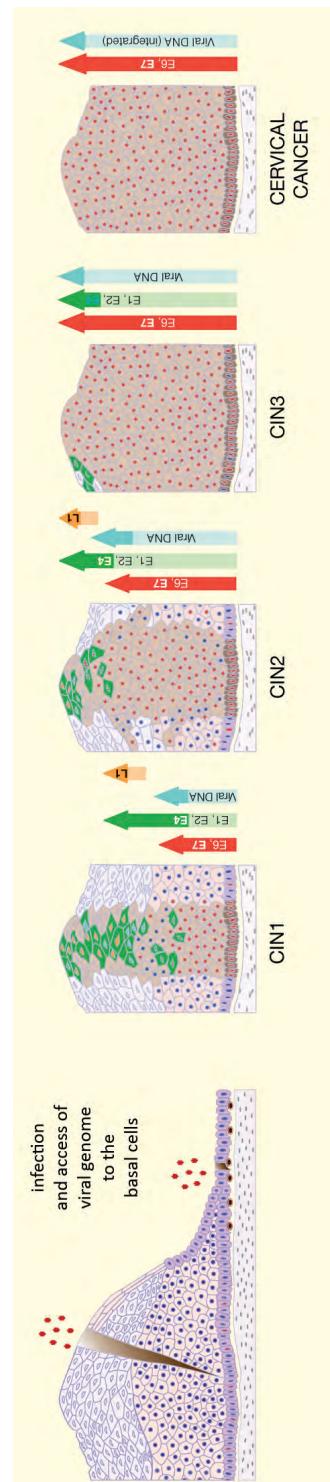
4. The worldwide incidence rate of cervical cancer is around 500 000 per year with a mortality rate
 5. of around 270 000 women per year.^{1,2} With these figures, it represents the third most common
 6. cancer among women worldwide, after breast and colorectal cancer. However, the incidence
 7. varies widely among countries; with an average incidence of 452 000 new cases per year in devel-
 8. oping countries versus 76 000 new cases per year in developed countries (Figure 1).² This lower
 9. incidence of cervical cancer in developed countries is at least partially the result of organized
 10. cervical cancer screening programs, which lead to earlier detection of cervical cancer and treat-
 11. able premalignant stages.³ Since the introduction of the national organised screening program
 12. in the Netherlands in the 1970s, the cervical cancer incidence and mortality have significantly
 13. reduced (see paragraph 3.2.1). Between 1999 and 2009 around 700 new cases of cervical cancer
 14. were diagnosed yearly with approximately 200-250 deaths.⁴ The peak cervical cancer incidence is
 15. between 40 and 44 years.⁴ The overall 5-year survival rate is 66% in the Netherlands.⁴

16.

17.

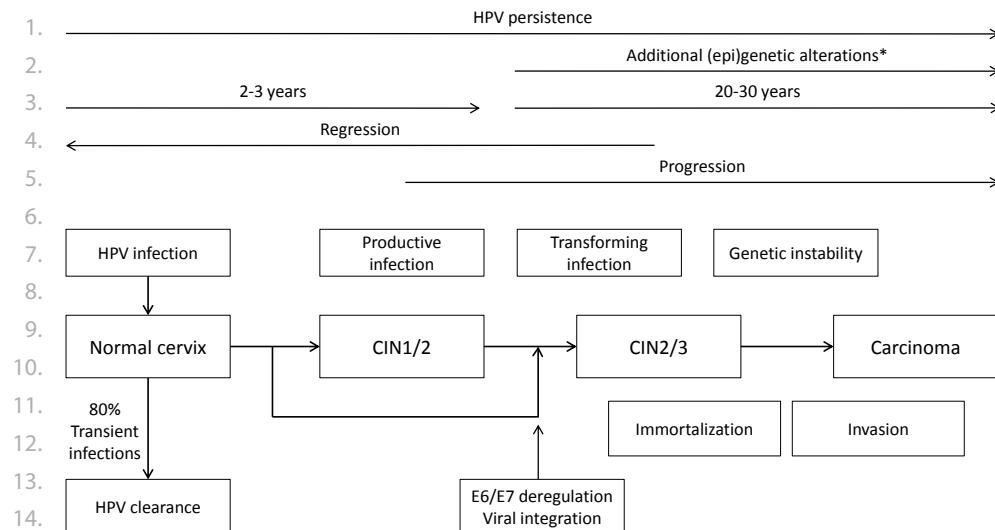
34. **Figure 1.** Estimated number (per 1000) of new cancer cases (incidence) and deaths (mortality) in women in developed and developing
 35. countries worldwide in 2008 [Adapted from GLOBOCAN 2008]²

36.


37. 1.2 Precursor lesions of cervical cancer

38. The cervix is the lower part of the uterus. It consists of the endocervix covered with glandular
 39. columnar cells and the ectocervix covered with squamous epithelium. The transition area

1. where the glandular cells meet the squamous cells is called the squamocolumnar junction (SCJ). During puberty, a metaplastic change starts, resulting in transformation of columnar cells into metaplastic squamous epithelium. This manifests in a shift of the SCJ from the ectocervix to the endocervix. The area between the old and the new SCJ is called the transformation zone (TZ). Because this area is assumed to be particular vulnerable for neoplastic changes, it is thought that most cervical cancers originate from this site.⁵
7. Histologically, cervical cancers can be classified into different subtypes. The two most common subtypes are squamous cell carcinoma (comprising approximately 80% of cervical cancers), and adenocarcinoma (comprising approximately 10-20% of cases).
10. It is thought that cervical squamous cell cancer arises from precursor lesions, histologically recognisable as cervical intraepithelial neoplasia (CIN). CIN lesions are classified into three groups: CIN1 (mild dysplasia) with morphological changes up to the lower one third of the squamous epithelium, CIN2 (moderate dysplasia) with morphological changes until two thirds, and CIN3 (severe dysplasia, including carcinoma in situ) with morphological changes in more than two thirds of the epithelium (Figure 2). CIN2 and CIN3 together are also called high-grade CIN (HG-CIN). CIN1 is also referred to as low-grade CIN. The precursor lesion of the adenocarcinoma is adenocarcinoma in situ (AIS).
18. If these precursor lesions are not treated they may finally develop into cervical carcinoma.
19. According to national guidelines CIN2 is the treatment threshold (see paragraph 3.3).⁶ Despite that histological grading of CIN is such an important determinant for clinical management, histological grading is subject to substantial inter- and intra-observer variability.⁷⁻¹⁰
22. Particularly, the reproducibility of diagnosing CIN1 and CIN2 is low,^{10,11} leading to extensive follow-up and overtreatment of falsely diagnosed high-grade lesions.
24. Recently, the theory of cervical squamous cancer development from squamous TZ epithelium has been questioned and a discrete, single layered embryonic cell population with unique morphology (cuboidal), expressing junction cell specific genes, has been proposed as origin of most cervical cancers.^{12,13}
- 28.
- 29.


30. 2. HUMAN PAPILLOMAVIRUS AND CERVICAL CARCINOGENESIS

32. Cervical cancer is caused by a persistent infection with a high-risk human papillomavirus (hrHPV).¹⁵⁻¹⁸ HPV can be detected in 90-100% of SCC and 80-90% of the adenocarcinomas.
34. ¹⁹ HPV is a highly infectious sexual transmitted virus and it is assumed that the life-time risk to acquire a genital HPV infection is around 80%.²⁰ HPV is frequently found in young women (around twenty years of age),²¹ but most infections are cleared by the immune system in 1-2 years and only around 10-20% progress to CIN (see Figure 3).²²⁻²⁴ If left untreated, 30-50% of the CIN3 lesions may progress to cancer.²⁵
- 39.

Figure 2. Changes in expression patterns of the HPV proteins that accompany progression to cervical cancer

Micro lacerations in the skin or mucosa permit the HPV virus to enter the basal cells of the squamous epithelium. Infection starts an ordered expression pattern of the viral genes that lead to virus synthesis and release (productive infection or CIN1). Deregulation of viral gene expression occurs with increasing lesion grade. Furthermore, there is an increasing risk of viral genome integration into the host cell chromosome. Persistent deregulated gene expression and viral DNA integration can eventually result in accumulation of secondary genetic changes and development of cancer. Proliferating cells are indicated by the presence of red nuclei. Cells expressing the HPV E4 protein are shown in green and cells expressing HPV L1 are shown in yellow [Adapted from Doorbar *et al.* 2012].¹⁴

Figure 3. Progression model of cervical cancer [Adapted from Snijders *et al.* 2006].⁴⁰

* Activation of oncogenes, loss of tumour suppressor gene function

HPV is a small double-stranded, circular DNA virus belonging to the family of Papillomaviridae.²⁶ The HPV genome consists of three regions: the long control region (LCR) without coding potential, a so-called early region, encoding proteins essential for viral genome replication (E1, E2, E4, E5, E6 and E7), and a late region, encoding the viral capsid proteins (L1 and L2). Micro lacerations in the skin or mucosa permit the virus to enter the basal cells of the squamous epithelium. Infection starts an ordered expression pattern of the viral genes that can lead to viral assembly in the upper layers of the squamous epithelium, and virions are released from shedded terminally differentiated cells and may infect adjacent tissue (productive infection or CIN1).¹⁴ During progression from normal epithelium to cervical cancer, normal regulation of the HPV life cycle is lost and the viral gene expression becomes perturbed (see Figure 2).²⁷ The extent of cells with E6 and E7 expression is increased proportional to CIN grade. The immortalizing and transforming potential of E6 and E7 make them the most important viral oncoproteins. The HPV E6 protein inhibits the function of the tumour suppressor protein p53 and contributes to the activation of the enzyme telomerase, preventing chromosome shortening, leading to an increased life-span of the infected cell.²⁸ The HPV E7 protein binds to the tumour suppressor protein retinoblastoma (pRB), finally resulting in uncontrolled cell division. In normal situations, p53 would induce apoptosis in response to unregulated cell proliferation and DNA damage. By E6 induced p53 degradation this apoptosis mechanism is blocked which results in accumulation of chromosomal changes of cervical cells.^{28, 29} Furthermore, there is an increasing risk of viral genome integration into the host cell chromosome. Persistent deregulated viral oncogene expression and chromosomal instability eventually result in accumulation of secondary genetic changes and development of cancer (see Figure 3).^{30, 31}

1. Currently, more than 120 HPV types have been identified. HPV types are divided into the so-called low-risk types and high-risk HPV types (hrHPV). Low-risk types cause in particular condylomata acuminata (genital warts) en hrHPV is related to a high risk of malignant transformation of the infected epithelium, causing CIN and cancer.³² Based on epidemiological evidence, the World Health Organization, International Agency of Research on Cancer (IARC) has classified 12 HPV types as high-risk types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58 and 59); with additional types (HPV68, 73) being considered as possibly carcinogenic types.^{14, 33-35} Based on phylogenetic relationships also several other HPV types probably belong to the hrHPV types.^{36, 37}

2. HPV16 is the most common HPV genotype in squamous cell carcinoma, adenocarcinoma and HG-CIN worldwide. The second most prevalent HPV genotype in HG-CIN and cervical cancer is HPV18.^{19, 38, 39}

3.

4.

3. CERVICAL CANCER PREVENTION

5.

3.1 Primary prevention

6. Two prophylactic HPV vaccines are available for primary prevention of cervical cancer. The bivalent vaccine (Cervarix, GSK) protects against the two most important HPV types (e.g. HPV16 and 18), which together cause approximately 70% of cervical cancers.⁴¹ The quadrivalent vaccine (Gardasil, Merck) also prevents against infections with HPV6 and 11, which together cause almost all condylomata acuminata (genital warts).⁴²

7. Because of practical and social reasons, vaccine coverage in developed countries is variable. In the Netherlands, false stories on social media led to fear of vaccination in young girls and have resulted in a suboptimal vaccine uptake of only 50%.⁴³ Vaccination is almost not available in developing countries, since the vaccines are expensive, require cold storage and transport and have to be administered in (2 to) 3 doses in 6 months.

8.

3.2 Secondary prevention

9. The main intent of secondary prevention is to identify the women with cervical precancer by screening and accordingly treat them to prevent cervical cancer.

10.

3.2.1 Cytology screening

11. Cervical cytology screening programs have significantly reduced cervical cancer incidence and mortality.^{2, 44}

12. In the Netherlands women between 30 years and 60 years receive every 5 years an invitation to attend the national cervical screening program for a so-called Pap-smear. The purpose of this test is to detect potentially precancerous changes in order to treat them before progression to cancer. In the Netherlands, the CISOE-A classification (in Dutch KOPAC-B) is currently used to grade. Internationally, the Bethesda classification is used.⁴⁵ Women with moderate dyskaryosis

1. or worse cytology result are directly referred for colposcopy (see paragraph 3.2.4). Women with
2. borderline or mild dyskaryosis are followed in the screening program by repeat cytology at
3. 6 and 18 months and are referred for colposcopic examination if the repeat test is abnormal.
4. Although effective, cytological screening has several limitations. The first limitation is the
5. low sensitivity to detect cervical lesions. This limited sensitivity is caused by inadequate
6. sampling in which abnormal cells are not obtained from the cervix, and interpretation er-
7. rors in which the few abnormal cells are not identified between the multitudes of normal
8. cells.⁴⁶⁻⁴⁸ Cytology has a sensitivity to detect CIN2+ of 50-70%.⁴⁷ The second limitation is the
9. moderate specificity of approximately 95%,⁴⁹ leading to a substantial over-referral rate of
10. women with minor abnormalities who do not have underlying high-grade disease. Thirdly,
11. the incidence of cervical cancer has declined since the introduction of cytology-based cervi-
12. cal screening, but no change has been observed in the incidence of cervical adenocarcinoma,
13. ^{49,50} suggesting that cytology fails to detect adenocarcinoma and its precursor lesions. Finally,
14. the attendance to the screening program is limited.⁵¹ As a consequence, there is a need of
15. improvement of primary screening.

16.

17. *3.2.2 HPV screening*

18. Several trials have shown that HPV testing has a higher sensitivity for cervical precancer
19. and cancer detection than cytology (~95%), although it is less specific.⁵²⁻⁵⁷ Due to this
20. higher sensitivity, HPV negative women have a lower 5 year risk of CIN3 and cancer than
21. Pap negative women.⁵² Therefore, screening based on the detection of HPV DNA will further
22. improve the effectiveness of the screening program.⁵³⁻⁵⁷ Moreover, the screening interval for
23. HPV negative women might be extended.^{49, 58-60} In the Netherlands primary screening with
24. hrHPV testing will be implemented in 2016 as a way to improve cervical cancer prevention.
25. In the newly proposed screening algorithm women will receive 5 invitations to the screening
26. program instead of 7, at age 30, 35, 40, 50 and 60. To retain the number of colposcopies and
27. thus the costs and unnecessary distress for women within acceptable limits, triage testing of
28. hrHPV positive women is necessary. In the new screening algorithm, hrHPV positive women
29. will receive triage testing by cytology and in case of abnormal cytology will be referred to
30. colposcopy. If cytology is normal a repeat HPV test and cytology after 6 months is advised.

31.

32. *3.2.3 HPV Self-sampling*

33. In the Netherlands, only 65% of the invited women participate in the cytological screening
34. program.⁵¹ Over half of all cervical cancers arise in women who do not respond to the invita-
35. tion to the cervical screening program.⁶¹ Previous studies have shown that providing the
36. opportunity of self-sampling for HPV testing (HPV self-sampling) can improve the attendance
37. of women to the cervical screening program, by re-attracting those who currently do not
38. attend the screening program.⁶²⁻⁶⁵ Also in countries without an organized nationwide screen-
39. ing program HPV self-sampling could be a good option for screening. Several studies have

1. shown that self-sampling combined with HPV testing can have a similar sensitivity for HG-CIN
2. as HPV testing on a cervical scrape obtained by a physician, although this likely depends on
3. the self-sampling device and HPV testing method used (this thesis, **Chapter 2 and 3**).⁶⁶⁻⁶⁹
4. However, self-sampled material is not suitable for cytomorphological analysis, and therefore
5. cytology cannot be used as a direct triage method on self-samples.⁷⁰ Interestingly, non-
6. morphology-based, objective molecular markers such as promoter methylation analysis of
7. tumour suppressor genes (see paragraph 4.2) have shown to be alternative triage tools for
8. hrHPV positive women that are feasible on self-samples and clinically perform similarly as
9. cytology triage testing on a physician-collected cervical scrape.⁷¹⁻⁷³

10.

11. 3.2.4 Colposcopy

12. Colposcopy is performed after an abnormal Pap-smear and is the current standard for visualisation
13. of cervical lesions after application of an acetic acid solution (3-5%). Reid and Scazi developed a
14. scoring system using varying colposcopic characteristics that gynaecologists use to evaluate the
15. severity of the lesion: the Reid colposcopy index.⁷⁴ These colposcopic characteristics are acetow-
16. whitening, lesion margins, punctuation, mosaicism, the presence of atypical vessels and lesion size
17. (Figure 4). The grade of the characteristics is used to identify the area on the cervix that most likely
18. represents the worst lesion.⁷⁵⁻⁷⁸ This area is biopsied and the biopsy is sent to the pathologists for
19. histopathological diagnosis. A limitation of colposcopy is that it has a sensitivity of only 50-70% to
20. detect CIN2+.⁷⁹⁻⁸³ Gains in sensitivity can be obtained by increasing the number of biopsies (this
21. thesis, **Chapter 5**).⁸⁴ Moreover, a previous study performing random biopsies of regions without
22. visual abnormalities has shown that 23-37% of CIN2+ lesions were detected in such a biopsy
23. only.⁸⁵ Another limitation of colposcopy is that not always the entire transformation zone can be
24. visualised. Endocervical curettage is required when the transformation zone is not visualised.⁸⁶

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39. **Figure 4.** Colposcopic image of a cervix with clear acetowhiteness and coarse mosaicism

1. 3.3 Treatment

2. Further clinical management is depending on the histology result of the biopsy taken during
3. colposcopy. Because 60% of CIN1 lesions regress spontaneously,^{22, 87, 88} women diagnosed
4. with CIN1 or without CIN are followed-up by cervical cytology 6, 12 and 24 months after
5. colposcopy. If these three smears are normal, women can return to the regular screening pro-
6. gram. According to the national guidelines all women with CIN3 and almost all women with
7. CIN2 receive treatment.⁶ Whether treatment will be performed and the type of treatment
8. depends on the patients age, potential child wish, the visualisation of the transformation
9. zone, the severity and the extension of the lesion. Nowadays, the most common procedure
10. is a loop electrosurgical excision procedure (LEEP). This procedure can be performed under
11. local anaesthetics at the outpatient clinic. A cold-knife conisation is performed when the
12. biopsy showed AIS or when a micro-invasive carcinoma is suspected. Because of the destruc-
13. tion of the tissue cryotherapy is not indicated in the Netherlands. In case of vaginal extension
14. of the lesion (vaginal intraepithelial neoplasia; VAIN) laser evaporation can be used. More
15. extensive operations such as hysterectomy or trachelectomy are used for cervical cancer if
16. necessary in combination with radiotherapy and/or chemotherapy.

17.

18.

19. 4. MOLECULAR BIOMARKERS

20.

21. More insight into the pathogenesis of cervical cancer has led to the discovery of various biomark-
22. ers that could be useful at several levels; from screening to diagnostic workup. As indicated above,
23. in an HPV-based screening program triage testing is needed to compensate for the lower specific-
24. ity of the HPV test, and in the Netherlands triaging by cytology at baseline and repeat cytology
25. after 6 months has been advised by the Health Council to the Minister of Health.⁸⁹ However, it
26. is expected that cytology having its drawback of subjective reading, will face growing competi-
27. tion from other, objective biomarkers, some of which are applicable to self-sampled specimens.
28. Molecular biomarkers that are currently under study include hrHPV genotyping, methylation of
29. tumour suppressor genes and immunohistochemical staining of proliferation marker MCM, viral
30. markers E4 and L1 and transformation marker p16^{INK4a}.⁹⁰ The latter markers might also be of value
31. to increase the reproducibility and consistency of diagnosing CIN, thereby reducing extensive
32. follow-up and overtreatment of falsely diagnosed high-grade lesions.

33.

34. 4.1 HrHPV genotyping

35. Considerable evidence exist that the absolute risk for cervical precancer and cancer varies
36. substantially among specific HPV genotypes. Studies have shown that HPV16 has the highest
37. oncogenic potential³² and HPV16 and 18 have found to be associated with the highest risk
38. of the development of CIN3 and ICC.^{19, 39, 91} Furthermore, HPV18 and 45 are associated with a
39. lower difference in age between diagnosis of CIN3 and cancer.³⁹ Therefore, hrHPV genotyping

1. might be useful for the risk assessment and triage of HPV positive women, particularly those
2. who have normal cytology. A recent post-hoc analysis of the POBASCAM trial showed that
3. HPV16/18 genotyping was involved in two out of three eligible triage strategies, but these
4. strategies had a lower positive predictive value (PPV) compared to the PPV obtained by tri-
5. age with baseline cytology and repeat cytology after 6 months, which might lead to potential
6. overtreatment resulting from the increase in referral rate.⁹²

7.

8. **4.2 Methylation markers**

9. The presence of a hrHPV infection alone is, though essential, not sufficient to develop a CIN
10. lesion or cervical (pre)cancer. Particularly, progression from HG-CIN to invasive cancer is a
11. long-lasting process (20 to 30 years)⁹³ that is believed to depend on accumulation of various
12. crucial additional genetic and epigenetic alterations (Figure 3).⁴⁰ Indeed, a longer duration of
13. a preceding hrHPV infection is associated with increased levels of chromosomal alterations in
14. HG-CIN lesions.⁹⁴ Genetic alterations such as DNA copy number gains and losses can result
15. in the activation of oncogenes and inactivation of tumour suppressor genes, respectively.⁹⁵
16. Epigenetic alterations are reversible changes in the gene function without changes in the
17. DNA sequence. DNA methylation is an epigenetic process whereby a methyl group is cova-
18. lently bound to a cytosine in a CpG dinucleotide. CpGs are enriched in so-called CpG islands
19. of the promoter regions of many genes and hypermethylation in these islands contributes to
20. a structural change of the chromatin and usually abrogation of the transcription of the gene.
21. If such hypermethylation events involve promoter regions of tumour suppressor genes,
22. this will lead to inactivation of such genes and therefore contribute to cell transformation.
23. Hypermethylation of CpG islands in the promoter region of tumour suppressor genes has
24. been recognized as a common molecular change in cancer,^{96, 97} including cervical cancer.⁹⁸
25. Moreover, similarly as for chromosomal aberrations, methylation levels of several genes like
26. cell adhesion molecule 1 (CADM1) and T-lymphocyte maturation associated protein (MAL)
27. are increased proportional to degree and duration of underlying cervical disease.⁹⁹
28. DNA methylation of several host cell genes that might be feasible for triage of hrHPV posi-
29. tive women has been described in literature (reviewed by Wentzensen *et al.*⁹⁸), and combined
30. methylation testing of CADM1 and MAL^{100, 101} has successfully been analysed in a training/
31. validation set approach.¹⁰⁰ In this thesis (**Chapter 7**), we further explored CADM1 and MAL
32. methylation in women having multiple cervical lesions.

33.

34. **4.3 Immunohistochemical markers**

35. *4.3.1 Biomarker for transforming infections: p16^{INK4a}*

36. HrHPV E6 and E7 proteins have a central role in the cascade of events leading to malignant
37. transformation by among others inactivating the tumour suppressor genes p53 and pRB,
38. respectively (see paragraph 2). Therefore, detection of E6 and E7 overexpression in the pro-
39. liferating cell compartment of cervical epithelium could serve as a marker to differentiate

1. women with productive HPV infections from those with transforming infections that may
2. develop into true precancer. Nowadays, there are no highly effective and specific monoclonal
3. antibodies for HPV E6 or E7 available.
4. An alternative, however, is staining for the cyclin dependent kinase-4 inhibitor p16^{INK4a}, which
5. is considered a surrogate marker for increased E7 expression in proliferating cells. The p16^{INK4a}
6. expression pattern has been extensively investigated by immunohistochemistry in cervical (pre)
7. malignancies.¹⁰²⁻¹⁰⁵ In normal tissue p16^{INK4a} expression is hardly detectable, and if so, it only
8. involves isolated cells. Strong, diffuse p16^{INK4a} immunohistochemical staining in proliferating cells
9. is found in cervical cancers and high-grade CIN lesions. Therefore, p16^{INK4a} overexpression is now
10. widely accepted as a sensitive and specific biomarker for HPV induced HG-CIN^{106, 107} and p16^{INK4a}
11. immunohistochemistry has shown to improve diagnostic accuracy of CIN grading, and reduce
12. interobserver variability.^{105, 108} Moreover, when applied in a dual stain format combined with the pro-
13. liferation marker ki-67, p16^{INK4a} immunocytochemical staining of liquid-based cytology slides has
14. shown to be a promising candidate triage test for hrHPV positive women.¹⁰⁹⁻¹¹¹ Despite its high
15. sensitivity, p16^{INK4a} staining has its limitation: p16^{INK4a} overexpression in the basal and parabasal
16. cell layers can also be seen in a substantial number of hrHPV positive, histologically typical CIN1
17. lesions, and clinical management of these lesions remains unclear.

18.

19. **4.3.2 Biomarker for cell proliferation: MCM**

20. Minichromosome maintenance (MCM) proteins are DNA helicases that are crucial for DNA
21. replication and confine replication to once per cell cycle.¹¹² Several studies have shown MCM
22. to be a proliferation marker.¹¹³⁻¹¹⁶ In normal squamous epithelium MCM proteins are limited
23. to the (para)basal proliferating cell layers and are absent in differentiated cells. However,
24. MCM expression is increased in cervical dysplasia.^{117, 118} A drawback is that proliferation
25. markers such as MCM cannot differentiate between proliferation due to benign conditions
26. such as inflammation, metaplasia and epithelial repair or due to hrHPV induced neoplasia
27. (this thesis, **Chapter 6**).

28.

29. **4.3.3 Biomarkers for productive HPV-infections: E4 and L1**

30. The viral proteins L1 and E4 are expressed in the late stage of the HPV replication cycle and
31. are involved in viral packaging and support genome amplification, respectively.^{119, 120} As can
32. be seen in Figure 2, they are only expressed in terminally differentiated HPV-infected squa-
33. mous cells of the intermediate or superficial cell layers.²⁷ With increasing lesion grade cell
34. differentiation is lost. Consequently, the expression of these viral genes is progressively lost
35. in transforming HPV infections, proportional to increased E6 and E7 expression. Therefore, E4
36. and L1 have been suggested as markers of the onset of the productive stage in the viral life
37. cycle and low-grade CIN.^{121, 122} The inclusion of a viral protein marker appears to help in the
38. discrimination between HPV and non-HPV induced CIN1 and may help in the subdivision of
39. lesions that fall into the equivocal CIN2 category (this thesis, **Chapter 6**).

1. 5. AIM AND OUTLINE OF THIS THESIS

2.

3. Current screening algorithms suffer from several shortcomings at different levels. Anticipat-
4. ing on new developments and insights, we have explored, in this thesis, alternative meth-
5. odologies aiming at improvements at various steps, including sampling for primary testing,
6. secondary (i.e. triage) testing, and diagnostic (colposcopy and pathology) work-up steps.

7. HrHPV DNA testing will be implemented as primary screening tool in the Netherlands. Fur-
8. thermore, hrHPV self-sampling will be offered to non-responders. Liquid-based self-samples
9. are not ideal to sending by mail and their application might be more challenging. Therefore,
10. we evaluated in **Chapter 2** the clinical sensitivity and sensitivity for CIN2+ of HPV testing
11. using a solid-state sample carrier, the FTA cartridge, for dry transport of self-collected brush
12. samples. In **Chapter 3** we subsequently investigated acceptability of a novel self-sampling
13. device, the Evalyn Brush, and its suitability as a dry transport system compared to concu-
14. rently physician-obtained samples for the detection of hrHPV.

15. Clinical management of women with abnormal cytology relies on colposcopy. During
16. colposcopy a biopsy of the area on the cervix with visual characteristics that most likely
17. represents the worst lesion, is taken. HPV16 has been previously suggested to cause more
18. definite visual abnormalities than other hrHPV types. In **Chapter 4** we studied the visual ap-
19. pearance of the cervix using colposcopic characteristics combined with hrHPV genotyping
20. to predict CIN2+. Previous studies have shown that the sensitivity of colposcopy to detect
21. CIN2+ is 50%-70%. In **Chapter 5** the benefit of collecting a second lesion-directed biopsy
22. and an additional biopsy of visual normal appearing tissue (non-directed biopsy) to improve
23. cervical precancer detection, was investigated.

24. Clinical management is further determined by CIN-grading, but reproducibility of CIN-
25. grading is low. In **Chapter 6** we investigated whether combining biomarkers of productive
26. HPV infection and transformation (E4, MCM and p16^{INK4a}) provided a more reliable categorisa-
27. tion of CIN than histopathology.

28. **Chapter 7** dealt with a thorough analysis of candidate methylation triage biomarkers MAL
29. and CADM1 in relation to heterogeneity of CIN lesions in women who presented with mul-
30. tiple lesions of different histological grade on their cervix. Here, in order to find out to what
31. extent methylation analysis of cervical scrapes are representative for underlying lesions,
32. results at lesion level from different biopsies were compared with that obtained from the
33. cervical scrape.

34. In **Chapter 8** we studied the presence of hrHPV and the expression of p16^{INK4a}, CK7 and
35. CK17 in different types of cervical epithelium and we describe the potential importance of
36. hrHPV infected atypical immature metaplastic cells as precursor for cervical carcinomas.

37. The findings of this thesis are discussed in the general discussion (**Chapter 9**) and sum-
38. marized in **Chapter 10**.

39.

1. REFERENCES

2. 1. Arbyn M, Castellsague X, de Sanjose S, Bruni L, Saraiya M, Bray F, et al. Worldwide burden of cervical cancer in 2008. *Ann Oncol*. 2011; **22**(12): 2675-86.
4. 2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. *Int J Cancer*. 2010; **127**(12): 2893-917.
6. 3. Bulk S, Visser O, Rozendaal L, Verheijen RH, Meijer CJ. Incidence and survival rate of women with cervical cancer in the Greater Amsterdam area. *Br J Cancer*. 2003; **89**(5): 834-9.
7. 4. Integraal Kankercentrum Nederland. Cijfers over kanker. 2013. Cited December 30th, 2013; Available from: <http://www.cijfersoverkanker.nl>
9. 5. Richart RM. A theory of cervical carcinogenesis. *Obstetrical & gynecological survey*. 1969; **24**(7 Pt 2): 874-9.
11. 6. NVOG. National Guideline 'Cervical Intraepithelial Neoplasia'. 2004. Cited January 20th, 2014; Available from: <http://www.oncoline.nl/cervicale-intra-epitheliale-neoplasie>
13. 7. de Vet HC, Knipschild PG, Schouten HJ, Koudstaal J, Kwee WS, Willebrand D, et al. Interobserver variation in histopathological grading of cervical dysplasia. *Journal of clinical epidemiology*. 1990; **43**(12): 1395-8.
15. 8. Ismail SM, Colclough AB, Dinnen JS, Eakins D, Evans DM, Gradwell E, et al. Observer variation in histopathological diagnosis and grading of cervical intraepithelial neoplasia. *BMJ*. 1989; **298**(6675): 707-10.
17. 9. Robertson AJ, Anderson JM, Beck JS, Burnett RA, Howatson SR, Lee FD, et al. Observer variability in histopathological reporting of cervical biopsy specimens. *J Clin Pathol*. 1989; **42**(3): 231-8.
19. 10. Stoler MH, Schiffman M. Interobserver reproducibility of cervical cytologic and histologic interpretations: realistic estimates from the ASCUS-LSIL Triage Study. *JAMA*. 2001; **285**(11): 1500-5.
21. 11. Carreon JD, Sherman ME, Guillen D, Solomon D, Herrero R, Jeronimo J, et al. CIN2 is a much less reproducible and less valid diagnosis than CIN3: results from a histological review of population-based cervical samples. *Int J Gynecol Pathol*. 2007; **26**(4): 441-6.
23. 12. Herfs M, Yamamoto Y, Laury A, Wang X, Nucci MR, McLaughlin-Drubin ME, et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. *Proc Natl Acad Sci U S A*. 2012; **109**(26): 10516-21.
26. 13. Herfs M, Vargas SO, Yamamoto Y, Howitt BE, Nucci MR, Hornick JL, et al. A novel blueprint for 'top down' differentiation defines the cervical squamocolumnar junction during development, reproductive life, and neoplasia. *J Pathol*. 2013; **229**(3): 460-8.
29. 14. Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV. The causal relation between human papillomavirus and cervical cancer. *J Clin Pathol*. 2002; **55**(4): 244-65.
30. 15. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. *Nature reviews Cancer*. 2002; **2**(5): 342-50.
32. 16. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. *Lancet*. 2007; **370**(9590): 890-907.
34. 17. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. *J Pathol*. 1999; **189**(1): 12-9.
36. 18. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. *Lancet Oncol*. 2010; **11**(11): 1048-56.
38. 19. Syrjanen KJ. Epidemiology of human papillomavirus (HPV) infections and their associations with genital squamous cell cancer. *Review article*. *APMIS*. 1989; **97**(11): 957-70.

20. Coupe VM, Berkhof J, Bulkmans NW, Snijders PJ, Meijer CJ. Age-dependent prevalence of 14 high-risk HPV types in the Netherlands: implications for prophylactic vaccination and screening. *Br J Cancer*. 2008; **98**(3): 646-51.
21. Ostor AG. Natural history of cervical intraepithelial neoplasia: a critical review. *Int J Gynecol Pathol*. 1993; **12**(2): 186-92.
22. Ho GY, Bierman R, Beardsley L, Chang CJ, Burk RD. Natural history of cervicovaginal papillomavirus infection in young women. *N Engl J Med*. 1998; **338**(7): 423-8.
23. Rodriguez AC, Schiffman M, Herrero R, Hildesheim A, Bratti C, Sherman ME, et al. Longitudinal study of human papillomavirus persistence and cervical intraepithelial neoplasia grade 2/3: critical role of duration of infection. *J Natl Cancer Inst*. 2010; **102**(5): 315-24.
24. McCredie MR, Sharples KJ, Paul C, Baranyai J, Medley G, Jones RW, et al. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study. *Lancet Oncol*. 2008; **9**(5): 425-34.
25. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H. Classification of papillomaviruses. *Virology*. 2004; **324**(1): 17-27.
26. Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, et al. The biology and life-cycle of human papillomaviruses. *Vaccine*. 2012; **30 Suppl 5**: F55-70.
27. Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. *Clin Sci (Lond)*. 2006; **110**(5): 525-41.
28. Munger K, Scheffner M, Huibregts JM, Howley PM. Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. *Cancer surveys*. 1992; **12**: 197-217.
29. Carson DA, Lois A. Cancer progression and p53. *Lancet*. 1995; **346**(8981): 1009-11.
30. Pett MR, Alazawi WO, Roberts I, Dowen S, Smith DI, Stanley MA, et al. Acquisition of high-level chromosomal instability is associated with integration of human papillomavirus type 16 in cervical keratinocytes. *Cancer research*. 2004; **64**(4): 1359-68.
31. Yu T, Ferber MJ, Cheung TH, Chung TK, Wong YF, Smith DI. The role of viral integration in the development of cervical cancer. *Cancer genetics and cytogenetics*. 2005; **158**(1): 27-34.
32. Cogliano V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F. Carcinogenicity of human papillomaviruses. *Lancet Oncol*. 2005; **6**(4): 204.
33. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, et al. A review of human carcinogens—Part B: biological agents. *Lancet Oncol*. 2009; **10**(4): 321-2.
34. Munoz N, Castellsague X, de Gonzalez AB, Gissmann L. Chapter 1: HPV in the etiology of human cancer. *Vaccine*. 2006; **24 Suppl 3**: S3/1-10.
35. Schiffman M, Clifford G, Buonaguro FM. Classification of weakly carcinogenic human papillomavirus types: addressing the limits of epidemiology at the borderline. *Infectious agents and cancer*. 2009; **4**: 8.
36. Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. *N Engl J Med*. 2003; **348**(6): 518-27.
37. Schiffman M, Herrero R, Desalle R, Hildesheim A, Wacholder S, Rodriguez AC, et al. The carcinogenicity of human papillomavirus types reflects viral evolution. *Virology*. 2005; **337**(1): 76-84.
38. Li N, Franceschi S, Howell-Jones R, Snijders PJ, Clifford GM. Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: Variation by geographical region, histological type and year of publication. *Int J Cancer*. 2011; **128**(4): 927-35.
- 39.

39. Tjalma WA, Fiander A, Reich O, Powell N, Nowakowski AM, Kirschner B, et al. Differences in human papillomavirus type distribution in high-grade cervical intraepithelial neoplasia and invasive cervical cancer in Europe. *Int J Cancer*. 2013; **132**(4): 854-67.
40. Snijders PJ, Steenbergen RD, Heideman DA, Meijer CJ. HPV-mediated cervical carcinogenesis: concepts and clinical implications. *J Pathol*. 2006; **208**(2): 152-64.
41. Paavonen J, Naud P, Salmeron J, Wheeler CM, Chow SN, Apter D, et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. *Lancet*. 2009; **374**(9686): 301-14.
42. Munoz N, Manalastas R, Jr., Pitisuttithum P, Tresukosol D, Monsonego J, Ault K, et al. Safety, immunogenicity, and efficacy of quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine in women aged 24-45 years: a randomised, double-blind trial. *Lancet*. 2009; **373**(9679): 1949-57.
43. Health Council of the Netherlands. Vaccination against cervical cancer. [Report] 2008. Cited February 21th, 2014; Publication no. 2008/11. Available from: <http://www.gezondheidsraad.nl/sites/default/files/200808baarmoederhalskanker.pdf>
44. van der Aa MA, Pukkala E, Coebergh JW, Anttila A, Siesling S. Mass screening programmes and trends in cervical cancer in Finland and the Netherlands. *Int J Cancer*. 2008; **122**(8): 1854-8.
45. Solomon D, Davey D, Kurman R, Moriarty A, O'Connor D, Prey M, et al. The 2001 Bethesda System: terminology for reporting results of cervical cytology. *JAMA*. 2002; **287**(16): 2114-9.
46. Koss LG. Detection of carcinoma of the uterine cervix. *JAMA*. 1972; **222**(6): 699-700.
47. Cuzick J, Clavel C, Petry KU, Meijer CJ, Hoyer H, Ratnam S, et al. Overview of the European and North American studies on HPV testing in primary cervical cancer screening. *Int J Cancer*. 2006; **119**(5): 1095-101.
48. Nanda K, McCrory DC, Myers ER, Bastian LA, Hasselblad V, Hickey JD, et al. Accuracy of the Papanicolaou test in screening for and follow-up of cervical cytologic abnormalities: a systematic review. *Annals of internal medicine*. 2000; **132**(10): 810-9.
49. Bulkmans NW, Rozendaal L, Voorhorst FJ, Snijders PJ, Meijer CJ. Long-term protective effect of high-risk human papillomavirus testing in population-based cervical screening. *Br J Cancer*. 2005; **92**(9): 1800-2.
50. Anttila A, Pukkala E, Soderman B, Kallio M, Nieminen P, Hakama M. Effect of organised screening on cervical cancer incidence and mortality in Finland, 1963-1995: recent increase in cervical cancer incidence. *Int J Cancer*. 1999; **83**(1): 59-65.
51. Rebolj M, van Ballegooijen M, Berkers LM, Habbema D. Monitoring a national cancer prevention program: successful changes in cervical cancer screening in the Netherlands. *Int J Cancer*. 2007; **120**(4): 806-12.
52. Dillner J, Rebolj M, Birembaut P, Petry KU, Szarewski A, Munk C, et al. Long term predictive values of cytology and human papillomavirus testing in cervical cancer screening: joint European cohort study. *BMJ*. 2008; **337**: a1754.
53. Mayrand MH, Duarte-Franco E, Rodrigues I, Walter SD, Hanley J, Ferenczy A, et al. Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer. *N Engl J Med*. 2007; **357**(16): 1579-88.
54. Naucler P, Ryd W, Tornberg S, Strand A, Wadell G, Elfgren K, et al. Human papillomavirus and Papanicolaou tests to screen for cervical cancer. *N Engl J Med*. 2007; **357**(16): 1589-97.
55. Rijkaart DC, Berkhof J, Rozendaal L, van Kemenade FJ, Bulkmans NW, Heideman DA, et al. Human papillomavirus testing for the detection of high-grade cervical intraepithelial neoplasia and

1.

2. 56. Ronco G, Giorgi-Rossi P, Carozzi F, Confortini M, Dalla Palma P, Del Mistro A, et al. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial. *Lancet Oncol.* 2012; **13**(1): 78-88.

3. 57. Ronco G, Giorgi-Rossi P, Carozzi F, Confortini M, Dalla Palma P, Del Mistro A, et al. Results at recruitment from a randomized controlled trial comparing human papillomavirus testing alone with conventional cytology as the primary cervical cancer screening test. *J Natl Cancer Inst.* 2008; **100**(7): 492-501.

4. 58. Elfstrom KM, Smelov V, Johansson AL, Eklund C, Naucler P, Arnhem-Dahlstrom L, et al. Long term duration of protective effect for HPV negative women: follow-up of primary HPV screening randomised controlled trial. *BMJ.* 2014; **348**: g130.

5. 59. Kocken M, Berkhof J, van Kemenade FJ, Louwers JA, Zaal A, Nobbenhuis MA, et al. Long-term CIN3+ risk in women with abnormal cytology; role of hrHPV testing. *Br J Cancer.* 2012; **106**(5): 817-25.

6. 60. Ronco G, Dillner J, Elfstrom KM, Tunesi S, Snijders PJ, Arbyn M, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. *Lancet.* 2014; **383**(9916): 524-32.

7. 61. Gok M, Rozendaal L, Berkhof J, Visser O, Meijer CJ, van Kemenade FJ. Cytology history preceding cervical cancer diagnosis: a regional analysis of 286 cases. *Br J Cancer.* 2011; **104**(4): 685-92.

8. 62. Gok M, Heideman DA, van Kemenade FJ, Berkhof J, Rozendaal L, Spruyt JW, et al. HPV testing on self collected cervicovaginal lavage specimens as screening method for women who do not attend cervical screening: cohort study. *BMJ.* 2010; **340**: c1040.

9. 63. Gok M, van Kemenade FJ, Heideman DA, Berkhof J, Rozendaal L, Spruyt JW, et al. Experience with high-risk human papillomavirus testing on vaginal brush-based self-samples of non-attendees of the cervical screening program. *Int J Cancer.* 2012; **130**(5): 1128-35.

10. 64. Bais AG, van Kemenade FJ, Berkhof J, Verheijen RH, Snijders PJ, Voorhorst F, et al. Human papillomavirus testing on self-sampled cervicovaginal brushes: an effective alternative to protect nonresponders in cervical screening programs. *Int J Cancer.* 2007; **120**(7): 1505-10.

11. 65. Virtanen A, Nieminen P, Luostarinen T, Anttila A. Self-sample HPV tests as an intervention for nonattendees of cervical cancer screening in Finland: a randomized trial. *Cancer Epidemiol Biomarkers Prev.* 2011; **20**(9): 1960-9.

12. 66. Snijders PJ, Verhoef VM, Arbyn M, Ogilvie G, Minozzi S, Banzi R, et al. High-risk HPV testing on self-sampled versus clinician-collected specimens: a review on the clinical accuracy and impact on population attendance in cervical cancer screening. *Int J Cancer.* 2013; **132**(10): 2223-36.

13. 67. Ogilvie GS, Patrick DM, Schulzer M, Sellors JW, Petric M, Chambers K, et al. Diagnostic accuracy of self collected vaginal specimens for human papillomavirus compared to clinician collected human papillomavirus specimens: a meta-analysis. *Sex Transm Infect.* 2005; **81**(3): 207-12.

14. 68. Petignat P, Faltin DL, Bruchim I, Tramer MR, Franco EL, Coutlee F. Are self-collected samples comparable to physician-collected cervical specimens for human papillomavirus DNA testing? A systematic review and meta-analysis. *Gynecol Oncol.* 2007; **105**(2): 530-5.

15. 69. Arbyn M, Verdoort F, Snijders PJ, Verhoef VM, Suonio E, Dillner L, et al. Accuracy of human papillomavirus testing on self-collected versus clinician-collected samples: a meta-analysis. *Lancet Oncol.* 2014.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

1. 70. Nobbenhuis MA, Helmerhorst TJ, van den Brule AJ, Rozendaal L, Jaspars LH, Voorhorst FJ, et al. Primary screening for high risk HPV by home obtained cervicovaginal lavage is an alternative screening tool for unscreened women. *J Clin Pathol.* 2002; **55**(6): 435-9.
2. 71. Eijsink JJ, Yang N, Lendvai A, Klip HG, Volders HH, Buikema HJ, et al. Detection of cervical neoplasia by DNA methylation analysis in cervico-vaginal lavages, a feasibility study. *Gynecol Oncol.* 2011; **120**(2): 280-3.
3. 72. Hesselink AT, Heideman DA, Steenbergen RD, Gok M, van Kemenade FJ, Wilting SM, et al. Methylation marker analysis of self-sampled cervico-vaginal lavage specimens to triage high-risk HPV-positive women for colposcopy. *Int J Cancer.* 2014.
4. 73. Verhoef VM, Bosgraaf RP, van Kemenade FJ, Rozendaal L, Heideman DA, Hesselink AT, et al. Triage by methylation-marker testing versus cytology in women who test HPV-positive on self-collected cervicovaginal specimens (PROTECT-3): a randomised controlled non-inferiority trial. *Lancet Oncol.* 2014.
5. 74. Reid R, Scalzi P. Genital warts and cervical cancer. VII. An improved colposcopic index for differentiating benign papillomaviral infections from high-grade cervical intraepithelial neoplasia. *Am J Obstet Gynecol.* 1985; **153**(6): 611-8.
6. 75. Jeronimo J, Massad LS, Schiffman M. Visual appearance of the uterine cervix: correlation with human papillomavirus detection and type. *Am J Obstet Gynecol.* 2007; **197**(1): 47 e1-8.
7. 76. Louwers JA, Kocken M, van der Bijl JC, Berkhof J, Snijders PJ, Meijer CJ, et al. Colposcopic characteristics of high-risk human papillomavirus-related cervical lesions. *J Low Genit Tract Dis.* 2010; **14**(1): 49-55.
8. 77. Reid R. Biology and colposcopic features of human papillomavirus-associated cervical disease. *Obstetrics and gynecology clinics of North America.* 1993; **20**(1): 123-51.
9. 78. Reid R, Stanhope CR, Herschman BR, Crum CP, Agronow SJ. Genital warts and cervical cancer. IV. A colposcopic index for differentiating subclinical papillomaviral infection from cervical intraepithelial neoplasia. *Am J Obstet Gynecol.* 1984; **149**(8): 815-23.
10. 79. Bekkers RL, van de Nieuwenhof HP, Neesham DE, Hendriks JH, Tan J, Quinn MA. Does experience in colposcopy improve identification of high grade abnormalities? *Eur J Obstet Gynecol Reprod Biol.* 2008; **141**(1): 75-8.
11. 80. Massad LS, Jeronimo J, Katki HA, Schiffman M. The accuracy of colposcopic grading for detection of high-grade cervical intraepithelial neoplasia. *J Low Genit Tract Dis.* 2009; **13**(3): 137-44.
12. 81. Mitchell MF, Schottenfeld D, Tortolero-Luna G, Cantor SB, Richards-Kortum R. Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis. *Obstet Gynecol.* 1998; **91**(4): 626-31.
13. 82. Schiffman M, Solomon D. Findings to date from the ASCUS-LSIL Triage Study (ALTS). *Archives of pathology & laboratory medicine.* 2003; **127**(8): 946-9.
14. 83. Wentzensen N, Schiffman M, Dunn ST, Zuna RE, Walker J, Allen RA, et al. Grading the severity of cervical neoplasia based on combined histopathology, cytopathology, and HPV genotype distribution among 1,700 women referred to colposcopy in Oklahoma. *Int J Cancer.* 2009; **124**(4): 964-9.
15. 84. Gage JC, Hanson VW, Abbey K, Dippery S, Gardner S, Kubota J, et al. Number of cervical biopsies and sensitivity of colposcopy. *Obstet Gynecol.* 2006; **108**(2): 264-72.
16. 85. Pretorius RG, Zhang WH, Belinson JL, Huang MN, Wu LY, Zhang X, et al. Colposcopically directed biopsy, random cervical biopsy, and endocervical curettage in the diagnosis of cervical intraepithelial neoplasia II or worse. *Am J Obstet Gynecol.* 2004; **191**(2): 430-4.
17. 86. 39.

86. Hopman EH, Kenemans P, Helmerhorst TJ. Positive predictive rate of colposcopic examination of the cervix uteri: an overview of literature. *Obstetrical & gynecological survey*. 1998; **53**(2): 97-106.
87. Nasiell K, Roger V, Nasiell M. Behavior of mild cervical dysplasia during long-term follow-up. *Obstet Gynecol*. 1986; **67**(5): 665-9.
88. Schlecht NF, Platt RW, Duarte-Franco E, Costa MC, Sobrinho JP, Prado JC, et al. Human papillomavirus infection and time to progression and regression of cervical intraepithelial neoplasia. *J Natl Cancer Inst*. 2003; **95**(17): 1336-43.
89. Health Council of the Netherlands. Population screening for cervical cancer. 2011. Cited February 21th, 2014; publication no. 2011/07. Available from: <http://www.gr.nl/sites/default/files/Summary%20Population%20screening%20cervical%20cancer.pdf>
90. Cuzick J, Bergeron C, von Knebel Doeberitz M, Gravitt P, Jeronimo J, Lorincz AT, et al. New technologies and procedures for cervical cancer screening. *Vaccine*. 2012; **30 Suppl 5**: F107-16.
91. Khan MJ, Castle PE, Lorincz AT, Wacholder S, Sherman M, Scott DR, et al. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice. *J Natl Cancer Inst*. 2005; **97**(14): 1072-9.
92. Dijkstra MG, van Niekerk D, Rijkaart DC, van Kemenade FJ, Heideman DA, Snijders PJ, et al. Primary hrHPV DNA Testing in Cervical Cancer Screening: How to Manage Screen-Positive Women? A POBASCAM Trial Substudy. *Cancer Epidemiol Biomarkers Prev*. 2014; **23**(1): 55-63.
93. Vink MA, Bogaards JA, van Kemenade FJ, de Melker HE, Meijer CJ, Berkhof J. Clinical progression of high-grade cervical intraepithelial neoplasia: estimating the time to preclinical cervical cancer from doubly censored national registry data. *American journal of epidemiology*. 2013; **178**(7): 1161-9.
94. Bierkens M, Wilting SM, van Wieringen WN, van Kemenade FJ, Bleeker MC, Jordanova ES, et al. Chromosomal profiles of high-grade cervical intraepithelial neoplasia relate to duration of preceding high-risk human papillomavirus infection. *Int J Cancer*. 2012; **131**(4): E579-85.
95. Thomas LK, Bermejo JL, Vinokurova S, Jensen K, Bierkens M, Steenbergen R, et al. Chromosomal gains and losses in human papillomavirus-associated neoplasia of the lower genital tract - A systematic review and meta-analysis. *Eur J Cancer*. 2014; **50**(1): 85-98.
96. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. *N Engl J Med*. 2003; **349**(21): 2042-54.
97. Jones PA, Gonzalgo ML. Altered DNA methylation and genome instability: a new pathway to cancer? *Proc Natl Acad Sci U S A*. 1997; **94**(6): 2103-5.
98. Wentzensen N, Sherman ME, Schiffman M, Wang SS. Utility of methylation markers in cervical cancer early detection: appraisal of the state-of-the-science. *Gynecol Oncol*. 2009; **112**(2): 293-9.
99. Bierkens M, Hesselink AT, Meijer CJ, Heideman DA, Wisman GB, van der Zee AG, et al. CADM1 and MAL promoter methylation levels in hrHPV-positive cervical scrapes increase proportional to degree and duration of underlying cervical disease. *Int J Cancer*. 2013.
100. Hesselink AT, Heideman DA, Steenbergen RD, Coupe VM, Overmeer RM, Rijkaart D, et al. Combined promoter methylation analysis of CADM1 and MAL: an objective triage tool for high-risk human papillomavirus DNA-positive women. *Clinical cancer Res*. 2011; **17**(8): 2459-65.
101. Overmeer RM, Louwers JA, Meijer CJ, van Kemenade FJ, Hesselink AT, Daalmeijer NF, et al. Combined CADM1 and MAL promoter methylation analysis to detect (pre-)malignant cervical lesions in high-risk HPV-positive women. *Int J Cancer*. 2011; **129**(9): 2218-25.

102. Klaes R, Friedrich T, Spitzkovsky D, Ridder R, Rudy W, Petry U, et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. *Int J Cancer.* 2001; **92**(2): 276-84.
103. Negri G, Bellisano G, Zannoni GF, Rivasi F, Kasal A, Vittadello F, et al. p16 ink4a and HPV L1 immunohistochemistry is helpful for estimating the behavior of low-grade dysplastic lesions of the cervix uteri. *Am J Surg Pathol.* 2008; **32**(11): 1715-20.
104. Sano T, Oyama T, Kashiwabara K, Fukuda T, Nakajima T. Expression status of p16 protein is associated with human papillomavirus oncogenic potential in cervical and genital lesions. *Am J Pathol.* 1998; **153**(6): 1741-8.
105. Dijkstra MG, Heideman DA, de Roy SC, Rozendaal L, Berkhof J, van Krimpen K, et al. p16(INK4a) immunostaining as an alternative to histology review for reliable grading of cervical intraepithelial lesions. *J Clin Pathol.* 2010; **63**(11): 972-7.
106. von Knebel Doeberitz M, Reuschenbach M, Schmidt D, Bergeron C. Biomarkers for cervical cancer screening: the role of p16(INK4a) to highlight transforming HPV infections. *Expert review of proteomics.* 2012; **9**(2): 149-63.
107. Wentzensen N, von Knebel Doeberitz M. Biomarkers in cervical cancer screening. *Disease markers.* 2007; **23**(4): 315-30.
108. Zhang Q, Kuhn L, Denny LA, De Souza M, Taylor S, Wright TC, Jr. Impact of utilizing p16INK4A immunohistochemistry on estimated performance of three cervical cancer screening tests. *Int J Cancer.* 2007; **120**(2): 351-6.
109. Carozzi F, Gillio-Tos A, Confortini M, Del Mistro A, Sani C, De Marco L, et al. Risk of high-grade cervical intraepithelial neoplasia during follow-up in HPV-positive women according to baseline p16-INK4A results: a prospective analysis of a nested substudy of the NTCC randomised controlled trial. *Lancet Oncol.* 2013; **14**(2): 168-76.
110. Roelens J, Reuschenbach M, von Knebel Doeberitz M, Wentzensen N, Bergeron C, Arbyn M. p16INK4a immunocytochemistry versus human papillomavirus testing for triage of women with minor cytologic abnormalities: a systematic review and meta-analysis. *Cancer cytopathology.* 2012; **120**(5): 294-307.
111. Wentzensen N, Schwartz L, Zuna RE, Smith K, Mathews C, Gold MA, et al. Performance of p16/Ki-67 immunostaining to detect cervical cancer precursors in a colposcopy referral population. *Clinical cancer Res.* 2012; **18**(15): 4154-62.
112. Bochman ML, Schwacha A. The Mcm2-7 complex has in vitro helicase activity. *Molecular cell.* 2008; **31**(2): 287-93.
113. Davidson EJ, Morris LS, Scott IS, Rushbrook SM, Bird K, Laskey RA, et al. Minichromosome maintenance (Mcm) proteins, cyclin B1 and D1, phosphohistone H3 and in situ DNA replication for functional analysis of vulval intraepithelial neoplasia. *Br J Cancer.* 2003; **88**(2): 257-62.
114. Facoetti A, Ranza E, Grecchi I, Benericetti E, Ceroni M, Morbini P, et al. Immunohistochemical evaluation of minichromosome maintenance protein 7 in astrocytoma grading. *Anticancer research.* 2006; **26**(5A): 3513-6.
115. Lee YS, Ha SA, Kim HJ, Shin SM, Kim HK, Kim S, et al. Minichromosome maintenance protein 3 is a candidate proliferation marker in papillary thyroid carcinoma. *Experimental and molecular pathology.* 2010; **88**(1): 138-42.
116. Zhang J, Wang L, Qiu M, Liu Z, Qian W, Yang Y, et al. The protein levels of MCM7 and p63 in evaluating lesion severity of cervical disease. *Int J Gynecol Cancer.* 2013; **23**(2): 318-24.

117. Henderson D, Hall L, Prpic N, Hessling J, Parker M, Sampson S, et al. The selection and characterization of antibodies to minichromosome maintenance proteins that highlight cervical dysplasia. *Journal of immunological methods*. 2011; **370**(1-2): 1-13.
118. Williams GH, Romanowski P, Morris L, Madine M, Mills AD, Stoeber K, et al. Improved cervical smear assessment using antibodies against proteins that regulate DNA replication. *Proc Natl Acad Sci U S A*. 1998; **95**(25): 14932-7.
119. Doorbar J. The papillomavirus life cycle. *J Clin Virol*. 2005; **32 Suppl 1**: S7-15.
120. Peh WL, Middleton K, Christensen N, Nicholls P, Egawa K, Sotlar K, et al. Life cycle heterogeneity in animal models of human papillomavirus-associated disease. *J Virol*. 2002; **76**(20): 10401-16.
121. Doorbar J. The E4 protein; structure, function and patterns of expression. *Virology*. 2013; **445**(1-2): 80-98.
122. Griffin H, Wu Z, Marnane R, Dewar V, Molijn A, Quint W, et al. E4 antibodies facilitate detection and type-assignment of active HPV infection in cervical disease. *PLoS one*. 2012; **7**(12): e49974.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.

Chapter 2

Clinical evaluation of high-risk HPV detection on self-samples using the Indicating FTA-elute solid-carrier cartridge

Romy van Baars*, Daan T. Geraets*, Inmaculada Alonso, Jaume Ordi, Aureli Torné, Willem J.G. Melchers, Chris J.L.M. Meijer, Wim G.V. Quint

*Both authors contributed equally

Journal of Clinical Virology 2013 Jun; 57: 125-9

1. **ABSTRACT**

2.

3. **Background:** High-risk human papillomavirus (hrHPV) testing in cervical screening is usually
4. performed on physician-taken cervical smears in liquid-based medium. However, solid-state
5. specimen carriers allow easy, non-hazardous storage and transportation and might be suit-
6. able for self-collection by non-responders in screening and in low-resource settings.

7. **Objectives:** We evaluated the adequacy of self-collected cervicovaginal (c/v) samples using
8. a Viba-brush stored on an Indicating FTA-elute cartridge (FTA-based self-sampling) for hrHPV
9. testing in women referred to a gynecology clinic due to an abnormal smear.

10. **Study design:** 182 women accepted to self-collect a c/v sample. After self-sampling, a physi-
11. cian obtained a conventional liquid-based cervical smear. Finally, women were examined
12. by colposcopy and a biopsy was taken when clinically indicated. Self-samples required only
13. simple DNA elution, and DNA was extracted from physician-obtained samples. Both samples
14. were tested for 14 hrHPVs by GP5+/6+-EIA-LQ Test and SPF₁₀-DEIA-LiPA₂₅.

15. **Results:** Both assays detected significantly more hrHPV in physician-collected specimens
16. than in self-collected samples (75.3% and 67.6% by SPF₁₀; 63.3% and 53.3% by GP5+/6+,
17. respectively). The combination of physician-collected specimen and GP5+/6+ testing dem-
18. onstrated the optimal balance in sensitivity (98.0%) and specificity (48.1%) for CIN2+ detec-
19. tion in this referral population. A test system of FTA-based self-collection and SPF₁₀ hrHPV
20. detection approached this sensitivity (95.9%) and specificity (42.9%).

21. **Conclusions:** These results show that the clinical performance of hrHPV detection is deter-
22. mined by both the sample collection system and the test method. FTA-based self-collection
23. with SPF₁₀ testing might be valuable when a liquid-based medium cannot be used, but
24. requires further investigation in screening populations.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

1. BACKGROUND

2.

3. The incidence of cervical cancer has been reduced by implementation of national cytology-based screening programs. The incorporation of high-risk human papillomavirus (hrHPV) testing in primary screening is expected to further improve cervical cancer screening. HrHPV testing has a higher sensitivity than cytology for detecting high-grade cervical intraepithelial neoplasia (CIN) and cervical cancer.^{1,2}

8. In current practice, hrHPV testing is generally performed on cervical smears stored in liquid-based medium. However, solid-carrier collection systems could be suitable alternatives, allowing storage and easy transportation at room temperature. Furthermore, solid-carriers

11. are nonflammable, non-hazardous and can therefore be posted by regular mail.

12. Solid-state sample carriers might be of use for women who do not attend cervical cancer screening programs, but might respond to the option of self-sampling. Thus, the effectiveness of cervical screening programs could be enhanced by increasing the participation rate.³

15. Several studies showed 30% of the non-responders do respond to a screening invitation if offered the option of self-sampling for hrHPV testing.³⁻⁶

17. Additionally, solid specimen carriers could also be applied to HPV testing in low-resource settings. When access to refrigeration is limited or absent, solid carriers might offer a convenient alternative for liquid-based storage of samples.

20. A novel solid-state carrier, the Indicating FTA-elute cartridge (FTA) combined with the Vibra-brush might constitute a suitable self-collection and storage system of c/v specimens prior to hrHPV testing (FTA-based self-sampling).⁷⁻⁹ In the previous FTA-based self-sampling studies, no relation was made with the histological outcome.

24.

25.

26. OBJECTIVES

27.

28. The clinical sensitivity and specificity of a hrHPV test is defined by all the different steps in the diagnostic chain: sample collection system (sampling, storage, and processing) and test method (amplification and read-out). The aim of this study was to evaluate the suitability of this novel FTA-based self-collection method for hrHPV testing in terms of sensitivity and specificity for CIN2+. HrHPV positivity by the FTA-based self-collection method was compared with physician-collected cervical samples stored in liquid-based PreservCyt medium. Both specimens were tested by the GP5+/6+-EIA followed by the LQ Test, and by the SPF₁₀-DEIA-LiPA₂₅ version 1. For each combination of sample collection and test method, we determined the clinical sensitivity and specificity for high-grade CIN.

37.

38.

39.

1. **STUDY DESIGN**

2.

3. **Clinical specimen collection**

4. Between January 2010 and August 2010 clinical specimens, i.e. physician-collected (PC)
5. cervical smears and c/v self-collected (SC) samples, were collected from 182 women visiting
6. the gynecological outpatient clinic of the Hospital Clinic in Barcelona, Spain. All women had
7. been referred because of an abnormal Pap smear (ASC-US+) detected at local health centers
8. on average 3 months prior to the study visit (range: 1.5–6 months). The median age of the
9. participants was 34 years (range 16–76 years).

10. Prior to colposcopic examination, women were asked to self-collect c/v material. Women
11. received a self-sampling kit and verbal instructions from the physician. The sample was taken
12. by the Rovers Viba-Brush (Rovers Medical Devices, Oss, The Netherlands), and subsequently
13. applied to an Indicating FTA-elute cartridge (GE Healthcare, Buckinghamshire, United King-
14. dom) and air-dried. The FTA cartridge contains an indicating dye that changes from purple
15. to white when material of the c/v swab sample was applied to the cartridge. The FTA matrix
16. is chemically treated with proprietary reagents to lyse cells upon application and become
17. non-infectious, allowing safe and easy transport. FTA cartridges were stored for 2–15 months
18. (median: 4 months) and transported at room temperature. Following self-sampling, a trained
19. gynecologist obtained a cervical scrape using the Rovers Cervex-Brush (Rovers Medical De-
20. vices). The brush was collected in 20 ml PreservCyt medium (Cytac Corp., Boxborough, MA,
21. USA) and cytologically examined. All samples were tested for hrHPV.

22. Finally, colposcopy was performed and biopsies were taken if the colposcopic impression
23. was abnormal. The biopsy specimens were fixed in 10% formalin and paraffin-embedded.
24. H&E sections were examined by a gynecological pathologist and classified as normal, CIN1,
25. CIN2, CIN3 or cervical cancer. The local ethical committee approved the study. Informed
26. consent was obtained from all participating women.

27.

28. **Processing of specimens**

29. DNA was isolated from 250 µl PC specimen in PreservCyt medium using the QIAamp MinElute
30. Virus Spin kit (Qiagen, Hilden, Germany). As recommended by the manufacturer, DNA was
31. eluted in 100 µl buffer AVE from the kit.

32. DNA from the FTA cartridges was eluted as described previously with minor modifica-
33. tions.⁹ Four 3 mm punches were taken from each FTA cartridge using a sterilized perforator
34. (Miltex GmbH, Rietheim-Wielheim, Germany) and transferred into a microcentrifuge tube.
35. The punches were washed in sterile water and vortexed three times for 15 s. The water was
36. removed by a sterile fine-tip pipette. DNA elution was performed with 70 µl distilled water at
37. 95 °C for 30 min. Next, the sample was removed and pulse-vortexed six times for 5 s. Finally,
38. the specimen was centrifuged for 30 s and the eluted DNA was transferred to a new Ep-
39. pendorf tube.

1. **HrHPV detection and genotyping**

2. All samples were tested with two HPV assays at DDL Diagnostic Laboratory, Rijswijk, The
 3. Netherlands: the HPV SPF₁₀ PCR-DEIA-LiPA₂₅ version 1 algorithm (Labo Bio-medical Products
 4. BV, Rijswijk, The Netherlands) was carried out as described previously.^{10, 11} The second assay
 5. was the standardized and clinically validated GP5+/6+-EIA kit (Diassay BV, Rijswijk, The Neth-
 6. erlands); this test was performed according to the kit insert. HrHPV-positive samples by the
 7. GP5+/6+-EIA were subsequently genotyped by the digene HPV Genotyping LQ Test (LQ Test;
 8. Qiagen) according to the manufacturer's instructions.¹²

9.

10. **Statistical analysis**

11. In this study, comparisons for hrHPV detection and genotyping in both systems were limited
 12. to the 14 common hrHPV types, i.e. HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68.
 13. The two-tailed McNemar's test was used for mutual comparison of positivity rates. The
 14. level of agreement was determined using Cohen's kappa statistics.
 15. The clinical sensitivity and specificity for detection of biopsy-proven CIN2+ (CIN2, 3, invasive
 16. cervical cancer) of each combination of sampling procedure and HPV test were computed.
 17. The clinical sensitivity was compared using a non-inferiority score test in accordance with
 18. previously defined guidelines. We applied a sensitivity threshold for CIN2+ of ≥90% relative
 19. to that of GP5+/6+ performed on physician-collected specimens.^{13, 14} Confidence intervals
 20. were calculated, and the level of statistical significance was set at 0.05. All analyses were
 21. performed using SPSS version 15.0.

22.

23.

24. **RESULTS**

25.

26. **Cytology results and histological diagnoses**

27. The cytological results on physician-collected (PC) specimens obtained during the study
 28. visit in the 182 women enrolled were squamous cell carcinoma (n=2), HSIL (n=59), ASC-H
 29. (n= 4), LSIL (n=54), ASC-US (n=9), and normal (n=54). Colposcopically directed biopsies were
 30. taken from 166 women for histological analysis. Histological diagnoses were squamous cell
 31. carcinoma (n=2), CIN3 (n=27), CIN2 (n=20), CIN1 (n=36) and normal (n=81).

32.

33. **Overall hrHPV detection in PC samples versus SC samples**

34. In the total population, 137/182 (75.3%) PC specimens tested positive for hrHPV by SPF₁₀.
 35. HrHPV-positivity by GP5+/6+ was lower (117/182; 64.3% (p<0.001)). Significantly more PC
 36. specimens (137/182; 75.3%) than SC specimens (123/182; 67.6%) were hrHPV-positive by
 37. SPF₁₀ (p=0.003). The hrHPV test results in SC and corresponding PC samples demonstrated a
 38. substantial agreement of 89.0%, resulting in a kappa of 0.733 (95% CI: 0.625–0.841).

39.

1. GP5+/6+ also detected significantly more hrHPV in PC specimens (117/182; 64.3%) compared to SC samples (97/182; 53.3% (p<0.001)). The agreement in GP5+/6+-positivity between the two collection methods was substantial as well (82.4%; k=0.642, 95% CI: 0.532–0.751).

4.

5. **HrHPV detection in relation to high-grade CIN**

6. High-grade CIN (CIN2+) was detected in 49 (26.9%) patients. SPF₁₀ performed on PC specimens demonstrated a sensitivity of 100% (95% CI: 90.9–100%) and a specificity of 33.8% (26.0–42.6%) for CIN2+ (Table 1) in this referral population. The same assay on FTA-based SC samples showed a lower sensitivity of 95.9% (84.9–99.3%) but a higher specificity of 42.9% (34.4–51.7%). SPF₁₀ was negative in the SC specimen of two women diagnosed with CIN3.

11. The sensitivity of GP5+/6+ for detection of CIN2+ on PC and FTA-based SC samples was 98.0% (87.8–99.9%) and 87.8% (74.5–94.9%), with a specificity of 48.1% (39.4–56.9%) and 60.2% (51.3–68.4%), respectively. GP5+/6+ was negative in the PC specimen of one woman with CIN3 and in the SC specimen of three women with CIN2 and three with CIN3. According to the non-inferiority score test parameters described before,^{13, 14} the clinical sensitivity for CIN2+ by GP5+/6+ testing on this series of FTA-based SC samples was inferior to GP5+/6+ performed on PC samples (p=0.538). The clinical sensitivity for detecting CIN2+ of SC samples was also inferior to the PC samples (p=0.084) by the more sensitive SPF₁₀ test.

19. Table 1 also shows the clinical sensitivity and specificity for the detection of CIN3+ (n=29) of the four combinations of two collection methods and two hrHPV tests. No major differences were observed between the detection of CIN3+ and CIN2+.

22. The clinical sensitivity for CIN2+ of PC samples tested with SPF₁₀ was non-inferior to PC samples tested with GP5+/6+ (p=0.006), but the clinical specificity was inferior (p=0.999). Of the four evaluated combinations, GP5+/6+ on PC specimens demonstrated the optimal balance in clinical sensitivity and specificity. That clinical performance was closely approached by the test system comprising self-collection and hrHPV detection by SPF₁₀.

27. The non-inferiority score test could not decisively determine if the clinical sensitivity for CIN2+ of SPF₁₀ performed on SC samples was inferior to that of GP5+/6+ carried out on PC samples (p=0.051). The other two combinations of collection and test method did not perform as well as GP5+/6+ on PC specimens in detecting CIN2+. The combination of SC samples and GP5+/6+ testing lacked sensitivity, while SPF₁₀ analysis of PC samples lacked specificity.

32.

33. **HrHPV genotypes identified in PC and SC samples**

34. All HPV-positive specimens by SPF₁₀-DEIA and GP5+/6+-EIA were genotyped by LiPA₂₅ and the digene HPV Genotyping LQ Test (LQ Test), respectively. The five most prevalent genotypes identified in PC and SC samples according to LQ Test were HPV16, 31, 18, 51 and 56 (Table 2). In total, LQ Test found a significantly higher prevalence of these genotypes in PC samples (n=103) compared to SC specimens (n=83; p=0.001). Similarly, LiPA₂₅ detected these types significantly more often in PC specimens (n=124) than in SC samples (n=110; p=0.034).

Table 1. Sensitivity and specificity for CIN2+ and CIN3+ of PC samples in PreservCyt and FTA-based SC samples tested by GP5+/6+ and SPF₁₀

Sample collection by	Storage medium	Test	CIN2+			CIN3+		
			Sensitivity	Specificity	n	Sensitivity	Specificity	n
Woman	FTA	GP5+/6+	43/49	87.8%	(74.9%-94.9%)	80/133	60.2%	(51.3%-68.4%)
		SPF ₁₀	47/49	95.9%	(84.9%-99.3%)	57/133	42.9%	(34.4%-51.7%)
Physician	PreservCyt	GP5+/6+	48/49	98.0%	(87.8%-99.9%)	64/133	48.1%	(39.4%-56.9%)
		SPF ₁₀	49/49	100%	(90.9%-100%)	45/133	33.8%	(26.0%-42.6%)

Table 2. The most prevalent HPV types identified in PC and SC samples by genotyping of GP5+/6+ are shown on the left. The prevalence of the same genotypes according to SPF₁₀ is demonstrated on the right.

Genotype	Detected by GP5+/6+ in ^a :			Detected by SPF ₁₀ in ^a :		
	PC and SC sample	PC sample only	SC sample only	none of both samples	PC and SC sample	PC sample only
HPV16	43	13	2	124	49	11
HPV31	11	4	1	166	17	4
HPV18	6	5	1	170	8	4
HPV51	8	2	2	170	13	4
HPV56	7	4	2	169	11	3
Total	75	28	8	799	98	26
					12	774

PC, physician-collected sample; SC, self-collected sample

^a Frequencies indicated here include presence of HPV types in both single and multiple infections

1. DISCUSSION

2.

3. Overall, hrHPV detection was significantly lower in FTA-based SC specimens compared to
4. PC samples. A test system consisting of SC samples and SPF₁₀ approached the performance
5. of PC samples and GP5+/6+ in terms of sensitivity and specificity for CIN2+ lesions. The
6. non-inferiority score test could not decisively determine if the clinical sensitivity of SPF₁₀
7. performed on SC samples was inferior.

8. The higher hrHPV positivity by SPF₁₀ is caused by infections characterized by a low viral
9. load that are not associated with CIN2+.¹³ However, the sensitivity and specificity for CIN2+
10. of SPF₁₀ in combination with a less sensitive FTA-based self-collection method approached
11. that of GP5+/6+ on physician-collected swabs. This underlines that clinical performance of a
12. hrHPV test is defined by all different steps of the diagnostic chain, e.g. the sample collection
13. system (sampling, storage, and processing) as well as test method (amplification and read-
14. out). Also the clinical performance will be affected by the population studied and the preva-
15. lence of hrHPV and of high-grade CIN. This specific combination of FTA-based self-collection
16. and hrHPV testing by SPF₁₀ should also be investigated for its diagnostic performance, ef-
17. fectiveness and efficiency in larger screening populations representing the women for whom
18. it might be of most use: non-responders to screening and screening in low-resource settings.

19. The difference in hrHPV detection observed between SC samples and PC samples was also
20. observed on the genotype level by the LQ Test and LiPA.²⁵ The overall number of genotypes
21. detected in SC samples was significantly lower than in PC samples. Previous studies found
22. that c/v self-samples are representative for hrHPV types that infect the cervix.¹⁵⁻¹⁸ Therefore,
23. the lower number of HPV genotypes detected in self-collected c/v specimens does not seem
24. to be related to the anatomical site from which material was collected, but might be a conse-
25. quence of the collection device that was used in our study.

26. Our findings differ from those of three previous studies^{8,9,19} that have evaluated FTA-based
27. self-sampling. However, in these studies, the collection method (by patient or physician) or
28. storage medium (solid FTA or liquid-based) to which self-sampling was compared differed.
29. Lenselink et al., Gustavsson et al. and de Bie et al. showed that the Viba-brush applied to the
30. FTA cartridge represents a convenient transport carrier, but their study groups consisted of
31. a lower number of patients and a low amount of HPV positive samples (n=28, 34 and 32,
32. respectively).^{8,9,19} In the study of Gustavsson et al. the physician-collected sample and the
33. self-collected specimen was applied to the FTA cartridge and thus compared the collection
34. methods in the same storage medium. De Bie et al. compared the same collection method
35. (e.g. self-collection) in different storage media (e.g. FTA cartridge and PreservCyt). In this
36. study for the first time two variables, collection method and collection medium were intro-
37. duced. The lower detection of hrHPV in FTA-based SC samples in our study could be due to
38. insufficient collection of material by the patient, improper transfer of material from the brush
39.

1. onto the cartridge, or a limited DNA binding capacity. This requires further investigation by
2. e.g. DNA quantification by qPCR.
3. This study had several limitations. The small size of the study population may account for
4. the overlapping confidence intervals of the clinical sensitivity and specificity of the differ-
5. ent collection devices and tests. Another limitation is that the self-collection method was
6. evaluated on a referral population of women with an abnormal smear. The clinical specificity
7. determined in this referral population is not necessarily representative for women attend-
8. ing a cervical screening cohort. Thirdly, the self-sample was always collected before the
9. physician-taken sample, creating a bias in favor of the SC samples. Self-collection by FTA
10. might even be less sensitive.
11. The role of self-collection of cervical samples is to improve screening coverage. Self-
12. sampling might be especially useful in primary screening of women otherwise not screened,
13. e.g. non-responders or for women in low-resource countries without a screening program.²⁰
14. ²¹ Different self-sampling devices have been studied and shown to be as suitable for hrHPV
15. detection as physician-sampling.^{20, 22, 23} Brush-based self-sampling is highly accepted for HPV
16. detection.^{18, 24-26} Because of the high acceptability and the high agreement in hrHPV detec-
17. tion with physician-taken smears, the implementation of self-sampling in primary screening
18. may potentially reduce cervical cancer incidence.^{27, 28}
19. In low-resource settings with limited access to refrigeration or where samples need to
20. be sent by post, the FTA cartridge might provide a convenient alternative for liquid-based
21. storage. Cervical self-collection for hrHPV testing using FTA as a solid sample carrier seems
22. suitable in combination with the SPF₁₀ assay.
23. In conclusion, in this study the hrHPV detection on FTA-based self-samples was lower com-
24. pared to conventional liquid-based cervical specimens collected by a physician. However,
25. self-collection by FTA-based self-sampling combined with SPF₁₀ hrHPV testing showed a
26. clinical performance close to that of GP5+/6+ on physician-taken samples in this cohort of
27. women referred because of an abnormal smear. This combined collection and test algorithm
28. might therefore be valuable when a liquid-based medium cannot be used, for example in
29. screening of non-responders and in low-resource settings. Self-sampling by brush, trans-
30. ferred to the FTA cartridge requires further investigation specifically in these settings.
- 31.
- 32.

ACKNOWLEDGEMENTS

- 34.
35. The authors would like to thank David Jenkins for his guidance on writing the manuscript.
- 36.
- 37.
- 38.
- 39.

1. REFERENCES

2. 1. Mayrand MH, Duarte-Franco E, Rodrigues I, Walter SD, Hanley J, Ferenczy A, et al. Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer. *N Engl J Med.* 2007; **357**(16): 1579-88.
5. 2. Ronco G, Giorgi-Rossi P, Carozzi F, Confortini M, Dalla Palma P, Del Mistro A, et al. Results at recruitment from a randomized controlled trial comparing human papillomavirus testing alone with conventional cytology as the primary cervical cancer screening test. *J Natl Cancer Inst.* 2008; **100**(7): 492-501.
8. 3. Gok M, Heideman DA, van Kemenade FJ, Berkhof J, Rozendaal L, Spruyt JW, et al. HPV testing on self collected cervicovaginal lavage specimens as screening method for women who do not attend cervical screening: cohort study. *BMJ.* 2010; **340**: c1040.
11. 4. Bais AG, van Kemenade FJ, Berkhof J, Verheijen RH, Snijders PJ, Voorhorst F, et al. Human papillomavirus testing on self-sampled cervicovaginal brushes: an effective alternative to protect nonresponders in cervical screening programs. *Int J Cancer.* 2007; **120**(7): 1505-10.
14. 5. Gok M, van Kemenade FJ, Heideman DA, Berkhof J, Rozendaal L, Spruyt JW, et al. Experience with high-risk human papillomavirus testing on vaginal brush-based self-samples of non-attendees of the cervical screening program. *Int J Cancer.* 2012; **130**(5): 1128-35.
17. 6. Nobbenhuis MA, Helmerhorst TJ, van den Brule AJ, Rozendaal L, Jaspars LH, Voorhorst FJ, et al. Primary screening for high risk HPV by home obtained cervicovaginal lavage is an alternative screening tool for unscreened women. *J Clin Pathol.* 2002; **55**(6): 435-9.
19. 7. Gonzalez P, Cortes B, Quint W, Kreimer AR, Porras C, Rodriguez AC, et al. Evaluation of the FTA carrier device for HPV testing in developing countries. *J Clin Microbiol.* 2012.
22. 8. Gustavsson I, Sanner K, Lindell M, Strand A, Olovsson M, Wikstrom I, et al. Type-specific detection of high-risk human papillomavirus (HPV) in self-sampled cervicovaginal cells applied to FTA elute cartridge. *J Clin Virol.* 2011; **51**(4): 255-8.
24. 9. Lenselink CH, de Bie RP, van Hamont D, Bakkers JM, Quint WG, Massuger LF, et al. Detection and genotyping of human papillomavirus in self-obtained cervicovaginal samples by using the FTA cartridge: new possibilities for cervical cancer screening. *J Clin Microbiol.* 2009; **47**(8): 2564-70.
27. 10. Kleter B, van Doorn LJ, Schrauwen L, Molijn A, Sastrowijoto S, ter Schegget J, et al. Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. *J Clin Microbiol.* 1999; **37**(8): 2508-17.
29. 11. Kleter B, van Doorn LJ, ter Schegget J, Schrauwen L, van Krimpen K, Burger M, et al. Novel short-fragment PCR assay for highly sensitive broad-spectrum detection of anogenital human papillomaviruses. *Am J Pathol.* 1998; **153**(6): 1731-9.
32. 12. Geraets DT, Heideman DA, de Koning MN, Snijders PJ, van Alewijk DC, Meijer CJ, et al. High-throughput genotyping of high-risk HPV by the digene HPV Genotyping LQ Test using GP5+/6+ PCR and xMAP technology. *J Clin Virol.* 2009; **46 Suppl 3**: S21-6.
34. 13. Meijer CJ, Berkhof J, Castle PE, Hesselink AT, Franco EL, Ronco G, et al. Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older. *Int J Cancer.* 2009; **124**(3): 516-20.
37. 14. Tang NS, Tang ML, Chan IS. On tests of equivalence via non-unity relative risk for matched-pair design. *Stat Med.* 2003; **22**(8): 1217-33.
39. 15. Castle PE, Rodriguez AC, Porras C, Herrero R, Schiffman M, Gonzalez P, et al. A comparison of cervical and vaginal human papillomavirus. *Sex Transm Dis.* 2007; **34**(11): 849-55.

16. Castle PE, Schiffman M, Glass AG, Rush BB, Scott DR, Wacholder S, et al. Human papillomavirus prevalence in women who have and have not undergone hysterectomies. *J Infect Dis.* 2006; **194**(12): 1702-5.
17. Delere Y, Schuster M, Vartazarowa E, Hansel T, Hagemann I, Borchardt S, et al. Cervicovaginal self-sampling is a reliable method for determination of prevalence of human papillomavirus genotypes in women aged 20 to 30 years. *J Clin Microbiol.* 2011; **49**(10): 3519-22.
18. Dijkstra MG, Heideman DA, van Kemenade FJ, Hogewoning KJ, Hesselink AT, Verkuijen MC, et al. Brush-based self-sampling in combination with GP5+/6+-PCR-based hrHPV testing: High concordance with physician-taken cervical scrapes for HPV genotyping and detection of high-grade CIN. *J Clin Virol.* 2012; **54**(2): 147-51.
19. de Bie RP, Schmeink CE, Bakkers JM, Snijders PJ, Quint WG, Massuger LF, et al. The indicating FTA elute cartridge a solid sample carrier to detect high-risk HPV and high-grade cervical lesions. *J Mol Diagn.* 2011; **13**(4): 371-6.
20. Schmeink CE, Bekkers RL, Massuger LF, Melchers WJ. The potential role of self-sampling for high-risk human papillomavirus detection in cervical cancer screening. *Rev Med Virol.* 2011; **21**(3): 139-53.
21. Snijders PJ, Verhoef VM, Arbyn M, Ogilvie G, Minozzi S, Banzi R, et al. High-risk HPV testing on self-sampled versus clinician-collected specimens: A review on the clinical accuracy and impact on population attendance in cervical cancer screening. *Int J Cancer.* 2012.
22. Ogilvie GS, Patrick DM, Schulzer M, Sellors JW, Petric M, Chambers K, et al. Diagnostic accuracy of self collected vaginal specimens for human papillomavirus compared to clinician collected human papillomavirus specimens: a meta-analysis. *Sex Transm Infect.* 2005; **81**(3): 207-12.
23. Petignat P, Faltin DL, Bruchim I, Tramer MR, Franco EL, Coutlee F. Are self-collected samples comparable to physician-collected cervical specimens for human papillomavirus DNA testing? A systematic review and meta-analysis. *Gynecol Oncol.* 2007; **105**(2): 530-5.
24. Anhang R, Nelson JA, Tolerant R, Chiasson MA, Wright TC, Jr. Acceptability of self-collection of specimens for HPV DNA testing in an urban population. *J Womens Health (Larchmt).* 2005; **14**(8): 721-8.
25. Dzuba IG, Diaz EY, Allen B, Leonard YF, Lazcano Ponce EC, Shah KV, et al. The acceptability of self-collected samples for HPV testing vs. the pap test as alternatives in cervical cancer screening. *J Womens Health Gend Based Med.* 2002; **11**(3): 265-75.
26. Waller J, McCaffery K, Forrest S, Szarewski A, Cadman L, Austin J, et al. Acceptability of unsupervised HPV self-sampling using written instructions. *J Med Screen.* 2006; **13**(4): 208-13.
27. Bekkers RL, Massuger LF, Bulten J, Melchers WJ. Epidemiological and clinical aspects of human papillomavirus detection in the prevention of cervical cancer. *Rev Med Virol.* 2004; **14**(2): 95-105.
28. Bekkers RL, Meijer CJ, Massuger LF, Snijders PJ, Melchers WJ. Effects of HPV detection in population-based screening programmes for cervical cancer; a Dutch moment. *Gynecol Oncol.* 2006; **100**(3): 451-4.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.

Chapter 3

**Dry storage and transport of
a cervicovaginal self-sample
by use of the Evalyn brush,
providing reliable human
papillomavirus detection
combined with comfort for
women**

Romy van Baars, Remko P. Bosgraaf, Bram W.A. ter
Harmsel, Willem J.G. Melchers, Wim G.V. Quint, Ruud L.M.
Bekkers

Journal of Clinical Microbiology 2012 Dec; 50: 3937-43

1. **ABSTRACT**

2.

3. Primary screening using high-risk human papillomavirus (hrHPV) detection has been sug-
4. gested as a way of improving cervical cancer prevention. Women currently not attending
5. screening (nonresponders) are more likely to participate when given the opportunity of
6. self-sampling for hrHPV testing. The Evalyn Brush is a new cervicovaginal self-sampling
7. device, developed specifically to meet women's demands, which is user-friendly and easy
8. to use. The aims of this study were to investigate agreement of hrHPV detection by two PCR
9. methods between the Evalyn Brush and physician-obtained samples and to study women's
10. acceptance of this self-sampling device. Each of 134 women visiting the gynecology outpa-
11. tient clinic collected a self-obtained sample (self-sample) and completed a questionnaire.
12. The brush was stored dry. After self-sampling, a trained physician obtained a conventional
13. cervical cytology specimen in ThinPrep medium. HrHPV detection was performed using the
14. SPF_{10} -DEIA-LiPA₂₅ and GP5+/6+-LQ-test. The overall agreement for hrHPV detection using
15. SPF_{10} -DEIA-LiPA₂₅ between the self-sample and the physician-taken sample was 85.8% (kappa
16. value, 0.715; 95% confidence interval [CI]: 0.597 to 0.843; $p=1.000$). The overall agreement for
17. hrHPV detection using GP5+/6+-LQ between the self-sample and the physician-taken sample
18. was 86.6% (kappa value, 0.725; 95% CI: 0.607 to 0.843; $p=0.815$). Ninety-eight percent of the
19. women rated their experience as good to excellent. Moreover, 95% of women preferred
20. self-sampling to physician sampling. Self-sampling using the dry Evalyn Brush system is as
21. good as a physician-taken sample for hrHPV detection and is highly acceptable to women. To
22. validate this self-sampling device for clinical use, a large screening cohort should be studied.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

1. BACKGROUND

2.

3. Cervical cytology screening programs have significantly decreased the incidence and mortality of cervical cancer. Primary screening using high-risk human papillomavirus (hrHPV) detection has been found to be more sensitive than conventional cervical cytology for detecting cervical precancer.¹⁻⁴ All data argue for the implementation of hrHPV testing as a primary test in cervical cancer screening, and the Health Council in the Netherlands has advised the Minister of Health to implement primary screening with hrHPV detection as a way of improving cervical cancer prevention.⁵

10. Cervical cancer incidence is higher among women who do not respond (nonresponders) or have no access to cervical screening programs than in screened women. A substantial number of nonresponders participate in screening when given the opportunity of self-sampling for hrHPV testing.^{6,7} Self-sampling for hrHPV therefore has the potential to reduce cervical cancer incidence, especially among nonresponders.⁸

15. Cervicovaginal self-collected samples (self-samples) have proved to be as reliable as physician-obtained cervical samples for the detection of hrHPV.⁹⁻¹⁶ Studies on HPV self-sampling have used a great variety of collection devices, such as tampons, swabs, cervicovaginal brushes, and cervicovaginal lavage. Women are more familiar and comfortable with tampons than with other self-sampling methods, and the use of tampons is an attractive self-sampling method for women.^{10,17,18} However, tampons need more extensive processing than swabs and brushes for performance of HPV analysis.¹⁹ Furthermore, studies that used a brush or lavage^{9,20-22} for self-collection have demonstrated a higher sensitivity for cervical intraepithelial neoplasia grade two or worse (CIN2+) than studies that used a Dacron or cotton swab.²³⁻²⁶

24. Although cervicovaginal lavage is the most studied self-sampling technique,^{6,9,11,27-29} the main disadvantage is that liquid specimens are not convenient to send by mail. This might be an obstacle in national screening programs.³⁰ Brushes, on the other hand, may be used for dry transport and storage.³¹ Richman et al.³² showed that the majority of women who were offered the choice between the Qiagen cervical brush, the Fournier cervical self-sampling device, and the Pantarhei cervicovaginal lavage preferred the brush. Brushes are flexible and easy to use, can be processed in the same way as physician-obtained smears, and are suitable for sending by mail.^{14,15,30} Although self-sampling for HPV testing is very acceptable to women, they are still concerned about performing the self-sampling procedure properly.^{10,33-36}

34. To improve women's confidence and the convenience of performing self-sampling, a new cervicovaginal self-sampling device, the Evalyn Brush, was developed. This device is more understandable and user-friendly to women, as it indicates a standard depth of insertion and the number of rotations (Fig. 1). The depth of insertion is controlled by the wings. The brush needs to be rotated five times, and at each rotation, there is an audible click indicating the number of rotations. After self-sampling, the cap can be clicked onto the case and the

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.

Figure 1. The Evalyn Brush

The Evalyn Brush[®] is about 20cm in length and consists of a transparent case with wings. Within the casing is a pink stick with a pink plunger at one end and a white brush at the other. You can push the white brush out of the case by pushing the pink plunger towards the transparent casing. After self-sampling, you can pull the brush back in and a cap can be clicked onto the case before transport.

brush can be sent by mail as is. The FTA cartridge, another previously reported dry storage system,^{30,37} has the disadvantage that the DNA from the brush can be only partly transferred to the cartridge.

We conducted the present study to investigate clinical applicability of the Evalyn Brush as a dry transport system compared to concurrently physician-obtained samples for the detection of hrHPV. We also investigated the acceptability of self-sampling using this device and women's preferences for self-sampling or physician sampling.

MATERIALS AND METHODS

Clinical specimen collection

Clinical specimens were collected between September 2010 and May 2011 from 134 women aged 18 years and above visiting the gynecological outpatient clinics of the Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, and of the Reinier de Graaf Hospital, Voorburg, The Netherlands, for colposcopic evaluation due to an abnormal Pap smear or for

1. a follow-up visit after an abnormal Pap smear. Women self-collected a cervicovaginal sample
2. with the Evalyn Brush (Rovers Medical Devices B.V., Oss, The Netherlands) after they had re-
3. ceived verbal and written instructions with illustrations and consented to the study. After the
4. specimen was obtained, a cap was clicked onto the case, and it was stored dry in the original
5. state. After self-sampling, a trained physician obtained a liquid-based cytology sample using
6. a Rovers Cervex-Brush (Rovers Medical Devices B.V., Oss, The Netherlands). The Cervex-Brush
7. was rinsed in ThinPrep medium (Hologic, Marlborough, MA) at Radboud University Nijmegen
8. Medical Centre and in SurePath medium (Klinipath BV, Duiven, The Netherlands) at Reinier de
9. Graaf Hospital. Cytological examination and classification were performed at the local labora-
10. tory according to the CISOE-A (composition, inflammation, squamous epithelium, other and
11. endometrium, endocervical columnar epithelium, and adequacy of the smear) classification,
12. which can easily be translated into the Bethesda 2001 classification.³⁸ All samples were stored
13. and transported at room temperature to DDL Diagnostic Laboratory, Voorburg, The Nether-
14. lands, for molecular testing. All samples were assigned an anonymous, unique patient code.
15.

16. **Questionnaires**

17. To investigate the acceptability of using the Evalyn Brush, all women were asked to fill out
18. a short questionnaire using a 5-point ordinal scale to record their general experience, their
19. response to the instructions, and their assessment of the convenience of using the Evalyn
20. Brush. Participants were also asked whether they preferred self-sampling or physician sam-
21. pling.
22.

23. **Specimen preparation**

24. The dry Evalyn Brush was resuspended in 1 ml of ThinPrep. The vials were vortexed for 3x15
25. s, stored overnight at 4°C, and again vortexed for 2x15 s. From each resuspended dry Evalyn
26. brush specimen and from each cervical cytological specimen in liquid-based medium, 250
27. µl was used to obtain 100 µl of eluate with the QIAamp MinElute Virus Spin kit (Qiagen Inc.,
28. Valencia, CA) as described by the manufacturer. The mean interval between obtaining the
29. specimen and HPV DNA isolation was 2 months, with a range of 2 weeks to 6 months. Each
30. DNA isolation and PCR test run contained HPV-positive and -negative controls. All self-
31. collected and physician-obtained samples were tested for HPV with both the analytically
32. sensitive SPF₁₀-PCR system^{39,40} and the clinically validated GP5+/6+-PCR-based test.^{41,42}
33.

34. **HPV detection and genotyping**

35. **SPF₁₀ PCR-DEIA-LiPA25 system**

36. Broad-spectrum HPV DNA amplification was performed using a short-PCR-fragment assay
37. (HPV SPF₁₀-LiPA₂₅, version 1; Labo Bio-medical Products B.V., Rijswijk, The Netherlands). This
38. assay amplifies a 65-bp fragment of the L1 open reading frame of HPV genotypes, as described
39. by Kleter et al.^{39,40} HPV detection of at least 54 anogenital HPV genotypes was performed

1. using a cocktail of 9 conservative probes in a microtiter hybridization assay, the DNA enzyme
2. immunoassay (DEIA).^{40,43} The samples positive for HPV by DEIA were then analyzed with the
3. line probe assay (LiPA₂₅) by reverse hybridization with type-specific probes for HPV 6, 11, 16,
4. 18, 31, 33, 34, 35, 39, 40, 42, 43, 44, 45, 51, 52, 53, 54, 56, 58, 59, 66, 68/73, 70, and 74.³⁹ The LiPA
5. strips were visually inspected and interpreted following the standardized reference guide.

6.

7. *GP5+/6+-EIA-LQ HPV amplification and detection*

8. The samples were also tested with the clinically validated hrHPV GP5+/6+ primer-mediated
9. PCR assay (Diassay, Rijswijk, The Netherlands). With this, detection of DNA from 14 hrHPV
10. genotypes, i.e., HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, and 68, can be deter-
11. mined.⁴⁴ Briefly, 10 µl of DNA was amplified with the biotin-labeled GP5+/6+ primer set. The
12. GP5+/6+ amplimers were subsequently genotyped by the digene HPV Genotyping LQ test
13. using xMAP technology for high-throughput screening (Qiagen, Hilden, Germany) according
14. to the manufacturer's instructions.⁴⁵

15. For the comparison of the two collection systems, only the 14 hrHPV types 16, 18, 31,
16. 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, and 68 were evaluated. Comparing the presence of
17. hrHPV between the samples, results were classified as identical, concordant, or discordant.
18. If all genotypes were the same in both samples, the results were called identical. If analyses
19. showed at least one identical genotype in both samples, the results were called concordant.
20. Genotype results were called discordant when the genotypes were different.

21.

22. **Statistical analysis**

23. The level of agreement was determined using Cohen's kappa statistics. The two-tailed
24. McNemar's test was used for mutual comparison of positivity rates. The level of statistical
25. significance was set at 0.05. All analyses were performed using SPSS version 17.0 for Windows
26. (Chicago, IL). Cytology and histology data were used to investigate clinically relevant differ-
27. ences in hrHPV detection.

28. This study was approved by the local medical ethical committees of both hospitals.
- 29.
- 30.

31. **RESULTS**

32.

33. A self-collected sample and a subsequent conventional physician-taken cervical smear were
34. obtained from 134 women (mean age, 40 years [standard deviation (SD), 9.5 years]; range,
35. 21 to 66 years). For 44 of the 134 women, histology results were available. Of the 44 biopsy
36. specimens, 8 contained normal tissue, 9 had a CIN1 lesion, 13 a CIN2 lesion, and 14 a CIN3 le-
37. sion. Cytology results were available for all women. If a histology diagnosis was available, this
38. was used in the analyses of hrHPV detection in relation to cytohistological diagnosis. Five of
39. the cytology results were not obtained during the same visit as that in which the sample for

1. HPV analysis was obtained. Of these five women, three had an earlier smear with borderline
2. dyskaryosis and two had an earlier negative result. These earlier results were used as the
3. diagnoses in the analyses of hrHPV detection for women without concurrent cytohistological
4. diagnoses.

5.

6. **SPF₁₀ PCR-DEIA-LiPA₂₅ system**

7. Table 1 shows the SPF₁₀ PCR-DEIA-LiPA₂₅ results in relation to the cytohistological diagnoses. The hrHPV positivity rate in physician-taken samples was 72/134 (54%) using the
8. SPF₁₀-DEIA-LiPA₂₅ system. By comparison, 71 (53%) of the self-samples were hrHPV positive
9. with SPF₁₀-PCR. Ten women were SPF₁₀ positive in the physician-taken samples but negative
10. in self-samples, and 9 women tested positive in self-samples only but negative on the
11. physician-taken sample. Fifty-three women were hrHPV negative in both samples. These
12. differences in hrHPV results were observed in all diagnostic categories. There was no differ-
13. ence in the percentage of HPV positivity and the number of discordant cases between the
14. specimens that were tested after 2 weeks to 1 month and the specimens that were tested
15. after 2 to 6 months (data not shown). There was good agreement for hrHPV detection using
16. SPF₁₀-DEIA-LiPA₂₅ between the self-sample and the physician-taken sample (kappa value
17. $[\kappa]=0.715$; 95% confidence interval [CI], 0.597 to 0.843; $p=1.000$) with 85.8% concordance. Of
18. the 62 samples that were SPF₁₀ positive in the physician-taken sample and the self-sample,
19. 41 (66%) showed identical hrHPV genotypes, 18 (29%) showed concordant hrHPV genotypes,
20. and 3 (5%) showed discordant genotypes. In the concordant cases, in 7/18 (39%) cases the
21. self-sample detected an additional hrHPV genotype and in 5/18 (28%) cases an additional
22. hrHPV type was detected in the physician-taken sample. In the 6 other cases, one or two
23. genotypes were replaced by one or two other genotypes in the other sample. In 3 discordant
- 24.

26. **Table 1.** Agreement in hrHPV positivity (14 hr types) in self-sampled dry Evalyn Brush samples compared to physician-obtained samples with
27. SPF₁₀-DEIA-LiPA₂₅ in relation to the diagnoses

hrHPV positivity by SPF ₁₀ in:							
Diagnoses	n	Dry Brush and physician-obtained	Physician-obtained only	Dry Brush only	None of both systems	kappa value (95% CI)	P-value
Negative†	70	21	7	3	39	0.695 (0.522-0.868)	0.344
BMD*‡	28	15	0	5	8	0.632 (0.360-0.904)	0.063
CIN 1	9	4	1	1	3	0.550 (0.001-1.000)	1.500
CIN 2	13	11	0	0	2	1.000 (1.000-1.000)	2.000
CIN 3	14	11	2	0	1	0.440 (0-1.000)	0.500
TOTAL	134	62	10	9	53	0.715 (0.597-0.834)	1.000

36. † 2 of these results were not obtained on the same moment as the sample for HPV analysis was obtained

37. *3 of these results were not obtained on the same moment as the sample for HPV analysis was obtained

38. ‡1 of these samples was a vagina top smear

39. BMD borderline or mild dyskaryosis

1. **Table 2.** Comparison for hrHPV genotyping by SPF₁₀-DEIA-LiPA₂₅ in physician-obtained and dry Evalyn Brush samples

Genotype	hrHPV positivity by SPF ₁₀ -LiPA ₂₅ in:					
	Dry Brush and physician-obtained	Physician-obtained only	Dry Brush only	None of both systems	kappa value (95% CI)	P-value
HPV16	13	1	3	117	0.850 (0.706-0.994)	0.625
HPV18	8	2	0	124	0.881 (0.719-1.000)	0.500
HPV31	8	3	6	117	0.604 (0.369-0.839)	0.508
HPV33	5	1	0	128	0.905 (0.721-1.000)	1.000
HPV35	2	1	0	131	0.796 (0.407-1.000)	1.000
HPV39	2	4	2	126	0.378 (0-0.770)	0.687
HPV45	2	0	0	132	1.000 (1.000-1.000)	2.000
HPV51	7	0	4	123	0.763 (0.540-0.985)	0.125
HPV52	5	5	5	119	0.460 (0.177-0.743)	1.000
HPV56	4	3	3	124	0.548 (0.226-0.870)	1.000
HPV58	1	1	0	132	0.663 (0.044-1.000)	1.000
HPV59	4	4	0	126	0.653 (0.339-0.967)	0.125
HPV66	9	1	4	120	0.763 (0.563-0.962)	0.375
HPV68/73	1	2	2	129	0.318 (0-0.812)	1.000
HPV39/68/73	0	2	0	132	n.c	0.500
Any type	71	30	29	1880	0.691 (0.617-0.766)	1.000

20. n.c. this quantity cannot be calculated

21. BMD borderline or mild dyskaryosis

22. cases, the physician-taken samples showed HPV types 52, 56, 31, and 39/68/73 (LiPA₂₅ cannot
 23. distinguish between these types), whereas the self-samples showed HPV types 16, 31, and
 24. 16, respectively.

25. The 72 physician-taken samples and 71 self-samples that were SPF₁₀-DEIA positive were
 26. genotyped by LiPA₂₅. Only the 14 hrHPV types were considered. Table 2 shows that the overall
 27. agreement for hrHPV genotyping between physician-taken samples and self-samples was
 28. good ($\kappa=0.691$; 95% CI: 0.617 to 0.766; $p=1.000$). No statistically significant differences were
 29. found. From the 72 hrHPV-positive physician-taken samples, 25 (35%) contained a multiple
 30. infection with two or more hrHPV types, compared to 20/71 (28%) in the self-samples.

31.

32. **GP5+/6+-LQ**

33. Table 3 shows the GP5+/6+-LQ test results in relation to the cytohistological diagnoses. With
 34. GP5+/6+-PCR, hrHPV was detected in 58 (43%) of 134 physician-taken samples. A similar
 35. number of self-samples tested hrHPV positive (56/134 [42%]; $p=0.815$). Ten samples were
 36. found GP5+/6+positive in physician-taken samples but negative in self-samples. Only two of
 37. these physician-taken samples were also SPF₁₀ positive. Both were negative by SPF₁₀ in self-
 38. samples. With GP5+/6+-PCR, hrHPV was detected in eight self-samples that were negative in
 39. the physician-taken sample. For 68 women both samples were hrHPV negative, and for 48

1. **Table 3.** Agreement in hrHPV positivity (14 hr types) in self-sampled dry Evalyn Brush samples compared to physician-obtained samples with
 2. GP5+/6+-LQ in relation to the diagnoses

hrHPV positivity by GP5+/6+ in:							
Diagnoses	n	Dry Brush and physician-obtained	Physician-obtained only	Dry Brush only	None of both systems	kappa value (95% CI)	P-value
Negative†	70	13	4	4	49	0.689 (0.490-0.889)	1.273
BMD**	28	12	1	3	12	0.716 (0.460-0.971)	0.625
CIN 1	9	4	2	0	3	0.571 (0.098-1.000)	0.500
CIN 2	13	9	1	1	2	0.567 (0.032-1.000)	1.500
CIN 3	14	10	2	0	2	0.588 (0.107-1.000)	0.500
TOTAL	134	48	10	8	68	0.725 (0.607-0.843)	0.815

11. † 2 of these results were not obtained on the same moment as the sample for HPV analysis was obtained

12. **3 of these results were not obtained on the same moment as the sample for HPV analysis was obtained

13. *1 of these samples was a vagina top smear

14. BMD borderline or mild dyskaryosis

15. women both samples were hrHPV positive. None of the diagnostic categories showed a significant difference in hrHPV detection. The concordance for hrHPV detection using GP5+/6+-LQ between self-samples and physician-taken samples was 86.6%, with good agreement ($\kappa=0.725$; 95% CI: 0.607 to 0.843; $p=0.815$).

16. All GP5+/6+-positive samples were genotyped by LQ. Only the 14 hrHPV types were considered. The results are shown in Table 4. The 48 samples that were GP5+/6+-LQ positive in both the physician-taken sample and the self-sample did not show discordant genotypes, 37/48 samples (77%) had identical hrHPV genotypes, and 11/48 (23%) had concordant hrHPV genotypes. We found good agreement for hrHPV genotyping between physician-taken samples and self-samples ($\kappa=0.768$; 95% CI: 0.691 to 0.846; $p=0.110$). A multiple infection with two or more genotypes was found in 24% (14/58) of the physician-taken samples and 25% (14/56) of the self-samples.

27.

28. **Detection rate of CIN2+**

29. CIN2+ was present in 27 women (20.1%). The sensitivities for the detection of CIN2+ in physician-obtained samples with the SPF₁₀ and the GP5+/6+-PCR were 88.9% and 81.5%, respectively, and in the self-samples 81.5% and 74.1%, respectively (Table 5). The specificities for the detection of CIN2+ samples in physician-taken samples with the SPF₁₀ and the GP5+/6+-PCR were 55.1% and 66.4%, respectively, and in the self-samples 54.2% and 66.4%, respectively. No significant difference in the sensitivity for the detection of CIN2+ could be found between the physician-taken samples and the self-samples with both detection methods (for SPF₁₀, $p=0.500$; and for GP5+/6+, $p=0.625$).

37.

38.

39.

1. **Table 4.** Comparison for hrHPV genotyping by GP5+/6+-LQ in physician-obtained and dry Evalyn Brush samples

Genotype	hrHPV positivity by GP5+/6+-LQ in:					
	Dry Brush and physician-obtained	Physician-obtained only	Dry Brush only	None of both systems	kappa value (95% CI)	P-value
HPV16	11	4	3	116	0.729 (0.539-0.920)	1.000
HPV18	7	1	1	125	0.867 (0.686-1.000)	1.000
HPV31	6	3	2	123	0.686 (0.427-0.945)	1.000
HPV33	5	1	0	128	0.905 (0.721-1.000)	1.000
HPV35	2	0	0	132	1.000 (1.000-1.000)	2.000
HPV39	2	0	1	131	0.796 (0.407-1.000)	1.000
HPV45	2	0	0	132	1.000 (1.000-1.000)	1.000
HPV51	4	3	1	126	0.651 (0.334-0.969)	0.625
HPV52	1	1	1	131	0.492 (0-1.000)	1.000
HPV56	4	4	0	126	0.653 (0.339-0.967)	0.125
HPV58	2	1	0	131	0.796 (0.407-1.000)	1.000
HPV59	3	0	1	130	0.853 (0.570-1.000)	1.000
HPV66	8	2	1	123	0.830 (0.642-1.000)	1.000
HPV68	0	1	0	133	n.c.	1.000
Any type	56	21	11	1658	0.768 (0.691-0.846)	0.110

19. n.c. this quantity cannot be calculated

20. **Table 5.** Sensitivity and specificity for the two collection devices with the SPF₁₀ and the GP5+/6+-system for the detection of CIN2+

	Physician-obtained				Dry Brush			
	SPF ₁₀		GP5+/6+		SPF ₁₀		GP5+/6+	
Sensitivity	24/27	88.90%	22/27	81.50%	22/27	81.50%	20/27	74.10%
Specificity	59/107	55.10%	71/107	66.40%	58/107	54.20%	71/107	66.40%

26. Questionnaires

27. Of the 134 questionnaires, 127 (95%) were returned for analysis. The results from the questionnaires are shown in Table 6. From this group, 124 (98%) women rated their experience with the brush as good to excellent. The instructions for using the Evalyn Brush were considered good to excellent by 124 (98%) of the 127 women, and 125 (98%) women rated the convenience of using this self-sampling device as good to excellent. Most women (n=120 [95%]) preferred self-sampling to physician sampling because it was simple, easy, and less painful than a physician-collected smear. Also women that never used tampons judged their experience with the brush as very good. Women also liked the option of self-sampling because it was time saving, as no visit to the clinician was needed. The most frequent reason (6/7 [86%]) for preferring the physician-taken smear was that the women considered it more reliable. Among the women who preferred self-sampling to physician sampling, 2/120 (2%) nevertheless considered the physician-taken sample more reliable and 3/120 (3%) questioned whether they had performed the test correctly. Women commented on the appearance of the Evalyn Brush and said that they liked the color.

1. **Table 6.** Questionnaire results

2. Question	3. Excellent		4. Very Good		5. Good		6. Moderate		7. Poor	
	3. n	3. %	4. n	4. %	5. n	5. %	6. n	6. %	7. n	7. %
4. Experience	43	34	39	31	42	33	3	2	0	0
5. Instructions	46	36	35	28	43	34	3	2	0	0
6. Convenience	45	35	45	35	35	28	1	1	1	1
7. Convenience compared to physician-taken smear	56	44	30	24	34	27	5	4	2	1

8.
9.
10. **DISCUSSION**

11. The dry self-samples showed good agreement with the physician-taken samples in hrHPV
 12. detection with both the analytically sensitive SPF₁₀-PCR and the clinically validated GP5+/6+-
 13. PCR. Our results indicate that self-sampling using the dry Evalyn Brush system is as good as
 14. a physician-taken smear for hrHPV detection. Our results are in line with previous studies
 15. showing repeatedly that self-collected cervicovaginal samples are as reliable as clinician-
 16. collected specimens for hrHPV detection.^{7, 9, 11-14, 46-48}

17. Previous HPV self-sampling studies have used a variety of collection devices and HPV DNA
 18. tests. The concordance between the dry brush system and physician sampling in this study
 19. was 85.8% with SPF₁₀ and 86.6% with GP5+/6+. This is comparable with the mean concor-
 20. dance calculated in the meta-analysis of Petignat et al. (87%)¹³ and with the more recent
 21. review of Schmeink et al. (85.2%).¹⁴ The kappa statistic showed good agreement between
 22. self-sampling and physician sampling for hrHPV in this study ($\kappa=0.715$ and $\kappa=0.725$). This
 23. agreement was higher than the mean κ obtained by Schmeink et al. ($\kappa=0.60$)¹⁴ and by Petignat
 24. et al. ($\kappa=0.66$).¹³ In our study, the sensitivities for CIN2+ did not differ significantly between
 25. the self-samples and the physician-taken samples. Some previous publications reported that
 26. self-sampling has a lower sensitivity than clinician sampling for HPV detection,^{11, 15, 21, 23, 26, 49-51}
 27. but these results have not been consistently found.^{9, 10, 47} The difference in sensitivity between
 28. studies might be due to differences in collection devices (brush, swab, tampon, or lavage),
 29. populations (screening population or women with an abnormal Pap smear), and the HPV
 30. DNA tests used. Schmeink et al. concluded that PCR-based HPV testing shows better results
 31. than studies performed with HC2. From our results, it appears that the use of an analytically
 32. sensitive test, like the SPF₁₀, results in a lower specificity than that obtained with the less
 33. sensitive GP5+/6+. Further studies are needed to determine the most suitable test in differ-
 34. ent populations.

35. The Evalyn Brush is a well-accepted self-sampling method for HPV detection according to
 36. 98% of women who used this device because it is easy to use, time saving, and more com-
 37. fortable than collection by a physician. This self-sampling device was specifically designed
 38. to improve women's confidence in, and the convenience of, self-sampling. Indeed, 95% of

1. women preferred self-sampling to physician sampling. The few women in our study who pre-
2. fered clinician sampling specified their main reason as fear of inadequate self-sampling. This
3. is in line with findings of previous studies.^{18,32,34,36,48} Acceptability of the self-sampling device
4. may be important for women who ignore the invitation to attend the national cervical cancer
5. screening program or in settings without organized cervical screening programs.⁵² Use of the
6. Evalyn Brush may help increase the participation rate for cervical screening programs.
7. A limitation of this study is that it was performed in a hospital setting. Self-sampling is
8. shown to be accepted well by women with a history of an abnormal Pap smear, but this
9. study population is not representative of the broader population of women not participat-
10. ing in screening. Therefore, this study cannot be generalized to such a population. Another
11. theoretical limitation is that the self-sample was always obtained before the physician-taken
12. smear. This was done to avoid interference with HPV detection by the lubricating gel used on
13. the speculum. The order of sampling could influence the amount of HPV DNA sampled, but
14. Harper et al.¹⁹ showed in a randomized controlled trial that the order of sampling did not in-
15. fluence the result. Third, the number of patients included in this study is small. The response
16. rate and performance of the Evalyn Brush are currently being investigated in nonresponders
17. to the Netherlands national screening program.
18. In conclusion, although the number of women included in this study was limited, the dry-
19. stored Evalyn Brush showed good agreement for hrHPV detection with the physician-taken
20. smears and is a well-accepted self-sampling device. Clinical validation and evaluation of the
21. acceptability of this self-sampling device in screening populations should be the next step.
22.
23.

24. ACKNOWLEDGEMENT

25.
26. The authors would like to thank David Jenkins for the English revision of the manuscript.
27. All Evalyn Brushes were kindly provided by Rovers Medical Devices B.V.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

1. REFERENCES

2. 1. Bulkmans NW, Rozendaal L, Snijders PJ, Voorhorst FJ, Boeke AJ, Zandwijken GR, et al. POBASCAM, a population-based randomized controlled trial for implementation of high-risk HPV testing in cervical screening: design, methods and baseline data of 44,102 women. *Int J Cancer*. 2004; **110**(1): 94-101.
6. 2. Mayrand MH, Duarte-Franco E, Rodrigues I, Walter SD, Hanley J, Ferenczy A, et al. Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer. *N Engl J Med*. 2007; **357**(16): 1579-88.
10. 3. Ronco G, Giorgi-Rossi P, Carozzi F, Confortini M, Dalla Palma P, Del Mistro A, et al. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial. *Lancet Oncol*. 2010; **11**(3): 249-57.
14. 4. Ronco G, Giorgi-Rossi P, Carozzi F, Confortini M, Dalla Palma P, Del Mistro A, et al. Results at recruitment from a randomized controlled trial comparing human papillomavirus testing alone with conventional cytology as the primary cervical cancer screening test. *J Natl Cancer Inst*. 2008; **100**(7): 492-501.
18. 5. Health Council of the Netherlands. Population screening for cervical cancer. 2011 [cited; publication no. 2011/07.].[Available from: <http://www.gr.nl/sites/default/files/Summary%20Population%20screening%20cervical%20cancer.pdf>
22. 6. Bais AG, van Kemenade FJ, Berkhof J, Verheijen RH, Snijders PJ, Voorhorst F, et al. Human papillomavirus testing on self-sampled cervicovaginal brushes: an effective alternative to protect nonresponders in cervical screening programs. *Int J Cancer*. 2007; **120**(7): 1505-10.
26. 7. Gok M, Heideman DA, van Kemenade FJ, Berkhof J, Rozendaal L, Spruyt JW, et al. HPV testing on self collected cervicovaginal lavage specimens as screening method for women who do not attend cervical screening: cohort study. *BMJ*. 2010; **340**: c1040.
30. 8. Bekkers RL, Meijer CJ, Massuger LF, Snijders PJ, Melchers WJ. Effects of HPV detection in population-based screening programmes for cervical cancer; a Dutch moment. *Gynecol Oncol*. 2006; **100**(3): 451-4.
34. 9. Brink AA, Meijer CJ, Wiegerinck MA, Nieboer TE, Kruitwagen RF, van Kemenade F, et al. High concordance of results of testing for human papillomavirus in cervicovaginal samples collected by two methods, with comparison of a novel self-sampling device to a conventional endocervical brush. *J Clin Microbiol*. 2006; **44**(7): 2518-23.
38. 10. Harper DM, Noll WW, Belloni DR, Cole BF. Randomized clinical trial of PCR-determined human papillomavirus detection methods: self-sampling versus clinician-directed—biologic concordance and women's preferences. *Am J Obstet Gynecol*. 2002; **186**(3): 365-73.
42. 11. Nobbenhuis MA, Helmerhorst TJ, van den Brule AJ, Rozendaal L, Jaspars LH, Voorhorst FJ, et al. Primary screening for high risk HPV by home obtained cervicovaginal lavage is an alternative screening tool for unscreened women. *J Clin Pathol*. 2002; **55**(6): 435-9.
46. 12. Ogilvie GS, Patrick DM, Schulzer M, Sellors JW, Petric M, Chambers K, et al. Diagnostic accuracy of self collected vaginal specimens for human papillomavirus compared to clinician collected human papillomavirus specimens: a meta-analysis. *Sex Transm Infect*. 2005; **81**(3): 207-12.
50. 13. Petignat P, Faltin DL, Bruchim I, Tramer MR, Franco EL, Coutlee F. Are self-collected samples comparable to physician-collected cervical specimens for human papillomavirus DNA testing? A systematic review and meta-analysis. *Gynecol Oncol*. 2007; **105**(2): 530-5.

14. Schmeink CE, Bekkers RL, Massuger LF, Melchers WJ. The potential role of self-sampling for high-risk human papillomavirus detection in cervical cancer screening. *Rev Med Virol.* 2011; **21**(3): 139-53.
15. Sellors JW, Lorincz AT, Mahony JB, Mielzynska I, Lytwyn A, Roth P, et al. Comparison of self-collected vaginal, vulvar and urine samples with physician-collected cervical samples for human papillomavirus testing to detect high-grade squamous intraepithelial lesions. *CMAJ.* 2000; **163**(5): 513-8.
16. Winer RL, Feng Q, Hughes JP, Yu M, Kiviat NB, O'Reilly S, et al. Concordance of self-collected and clinician-collected swab samples for detecting human papillomavirus DNA in women 18 to 32 years of age. *Sex Transm Dis.* 2007; **34**(6): 371-7.
17. Fairley CK, Chen S, Tabrizi SN, Quinn MA, McNeil JJ, Garland SM. Tampons: a novel patient-administered method for the assessment of genital human papillomavirus infection. *J Infect Dis.* 1992; **165**(6): 1103-6.
18. Harper DM, Raymond M, Noll WW, Belloni DR, Duncan LT, Cole BF. Tampon samplings with longer cervicovaginal cell exposures are equivalent to two consecutive swabs for the detection of high-risk human papillomavirus. *Sex Transm Dis.* 2002; **29**(11): 628-36.
19. Harper DM, Hildesheim A, Cobb JL, Greenberg M, Vaught J, Lorincz AT. Collection devices for human papillomavirus. *J Fam Pract.* 1999; **48**(7): 531-5.
20. Belinson JL, Qiao YL, Pretorius RG, Zhang WH, Rong SD, Huang MN, et al. Shanxi Province cervical cancer screening study II: self-sampling for high-risk human papillomavirus compared to direct sampling for human papillomavirus and liquid based cervical cytology. *Int J Gynecol Cancer.* 2003; **13**(6): 819-26.
21. Bhatia N, Dar L, Patro AR, Kumar P, Kriplani A, Gulati A, et al. Can human papillomavirus DNA testing of self-collected vaginal samples compare with physician-collected cervical samples and cytology for cervical cancer screening in developing countries? *Cancer Epidemiol.* 2009; **33**(6): 446-50.
22. Sanner K, Wikstrom I, Strand A, Lindell M, Wilander E. Self-sampling of the vaginal fluid at home combined with high-risk HPV testing. *Br J Cancer.* 2009; **101**(5): 871-4.
23. Balasubramanian A, Kulasingam SL, Baer A, Hughes JP, Myers ER, Mao C, et al. Accuracy and cost-effectiveness of cervical cancer screening by high-risk human papillomavirus DNA testing of self-collected vaginal samples. *J Low Genit Tract Dis.* 2010; **14**(3): 185-95.
24. Belinson J, Qiao YL, Pretorius R, Zhang WH, Elson P, Li L, et al. Shanxi Province Cervical Cancer Screening Study: a cross-sectional comparative trial of multiple techniques to detect cervical neoplasia. *Gynecol Oncol.* 2001; **83**(2): 439-44.
25. Szarewski A, Cadman L, Mallett S, Austin J, Londesborough P, Waller J, et al. Human papillomavirus testing by self-sampling: assessment of accuracy in an unsupervised clinical setting. *J Med Screen.* 2007; **14**(1): 34-42.
26. Wright TC, Jr., Denny L, Kuhn L, Pollack A, Lorincz A. HPV DNA testing of self-collected vaginal samples compared with cytologic screening to detect cervical cancer. *JAMA.* 2000; **283**(1): 81-6.
27. Baldwin S, Santos C, Mendez Brown E, Nuno T, Giuliano A, Davis J, et al. Comparison of type-specific human papillomavirus data from self and clinician directed sampling. *Gynecol Oncol.* 2005; **97**(2): 612-7.
28. Gravitt PE, Lacey JV, Jr., Brinton LA, Barnes WA, Kornegay JR, Greenberg MD, et al. Evaluation of self-collected cervicovaginal cell samples for human papillomavirus testing by polymerase chain reaction. *Cancer Epidemiol Biomarkers Prev.* 2001; **10**(2): 95-100.

29. Lack N, West B, Jeffries D, Ekpo G, Morison L, Soutter WP, et al. Comparison of non-invasive sampling methods for detection of HPV in rural African women. *Sex Transm Infect.* 2005; **81**(3): 239-41.

30. Lenselink CH, de Bie RP, van Hamont D, Bakkers JM, Quint WG, Massuger LF, et al. Detection and genotyping of human papillomavirus in self-obtained cervicovaginal samples by using the FTA cartridge: new possibilities for cervical cancer screening. *J Clin Microbiol.* 2009; **47**(8): 2564-70.

31. Stenvall H, Wikstrom I, Backlund I, Wilander E. Accuracy of HPV testing of vaginal smear obtained with a novel self-sampling device. *Acta Obstet Gynecol Scand.* 2007; **86**(1): 16-21.

32. Richman AR, Brewer NT, Liebman AK, Rinas AC, Smith JS. Optimising human papillomavirus self-testing for high risk women. *Sex Transm Infect.* 2011; **87**(2): 118-22.

33. Barata PC, Mai V, Howlett R, Gagliardi AR, Stewart DE. Discussions about self-obtained samples for HPV testing as an alternative for cervical cancer prevention. *J Psychosom Obstet Gynaecol.* 2008; **29**(4): 251-7.

34. Dzuba IG, Diaz EY, Allen B, Leonard YF, Lazcano Ponce EC, Shah KV, et al. The acceptability of self-collected samples for HPV testing vs. the pap test as alternatives in cervical cancer screening. *J Womens Health Gend Based Med.* 2002; **11**(3): 265-75.

35. Forrest S, McCaffery K, Waller J, Desai M, Szarewski A, Cadman L, et al. Attitudes to self-sampling for HPV among Indian, Pakistani, African-Caribbean and white British women in Manchester, UK. *J Med Screen.* 2004; **11**(2): 85-8.

36. Waller J, McCaffery K, Forrest S, Szarewski A, Cadman L, Austin J, et al. Acceptability of unsupervised HPV self-sampling using written instructions. *J Med Screen.* 2006; **13**(4): 208-13.

37. de Bie RP, Schmeink CE, Bakkers JM, Snijders PJ, Quint WG, Massuger LF, et al. The indicating FTA elute cartridge a solid sample carrier to detect high-risk HPV and high-grade cervical lesions. *J Mol Diagn.* 2011; **13**(4): 371-6.

38. Bulk S, Van Kemenade FJ, Rozendaal L, Meijer CJ. The Dutch CISOE-A framework for cytology reporting increases efficacy of screening upon standardisation since 1996. *J Clin Pathol.* 2004; **57**(4): 388-93.

39. Kleter B, van Doorn LJ, Schrauwen L, Molijn A, Sastrowijoto S, ter Schegget J, et al. Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. *J Clin Microbiol.* 1999; **37**(8): 2508-17.

40. Kleter B, van Doorn LJ, ter Schegget J, Schrauwen L, van Krimpen K, Burger M, et al. Novel short-fragment PCR assay for highly sensitive broad-spectrum detection of anogenital human papillomaviruses. *Am J Pathol.* 1998; **153**(6): 1731-9.

41. Hesselink AT, van Ham MA, Heideman DA, Grootenhuis ZM, Rozendaal L, Berkhof J, et al. Comparison of GP5+/6+-PCR and SPF₁₀-line blot assays for detection of high-risk human papillomavirus in samples from women with normal cytology results who develop grade 3 cervical intraepithelial neoplasia. *J Clin Microbiol.* 2008; **46**(10): 3215-21.

42. Meijer CJ, Berkhof J, Castle PE, Hesselink AT, Franco EL, Ronco G, et al. Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older. *Int J Cancer.* 2009; **124**(3): 516-20.

43. Melchers WJ, Bakkers JM, Wang J, de Wilde PC, Boonstra H, Quint WG, et al. Short fragment polymerase chain reaction reverse hybridization line probe assay to detect and genotype a broad spectrum of human papillomavirus types. Clinical evaluation and follow-up. *Am J Pathol.* 1999; **155**(5): 1473-8.

39.

1. 44. Snijders PJ, van den Brule AJ, Jacobs MV, Pol RP, Meijer CJ. HPV DNA detection and typing in cervical scrapes. *Methods Mol Med.* 2005; **119**: 101-14.
2. 45. Geraets DT, Heideman DA, de Koning MN, Snijders PJ, van Alewijk DC, Meijer CJ, et al. High-throughput genotyping of high-risk HPV by the digene HPV Genotyping LQ Test using GP5+/6+-PCR and xMAP technology. *J Clin Virol.* 2009; **46 Suppl 3**: S21-6.
3. 46. Dannecker C, Siebert U, Thaler CJ, Kiermeir D, Hepp H, Hillemanns P. Primary cervical cancer screening by self-sampling of human papillomavirus DNA in internal medicine outpatient clinics. *Ann Oncol.* 2004; **15**(6): 863-9.
4. 47. Hillemanns P, Kimmig R, Hutmenn U, Dannecker C, Thaler CJ. Screening for cervical neoplasia by self-assessment for human papillomavirus DNA. *Lancet.* 1999; **354**(9194): 1970.
5. 48. Jones HE, Wiegerinck MA, Nieboer TE, Mol BW, Westhoff CL. Women in the Netherlands prefer self-sampling with a novel lavaging device to clinician collection of specimens for cervical cancer screening. *Sex Transm Dis.* 2008; **35**(11): 916-7.
6. 49. Garcia F, Barker B, Santos C, Brown EM, Nuno T, Giuliano A, et al. Cross-sectional study of patient- and physician-collected cervical cytology and human papillomavirus. *Obstet Gynecol.* 2003; **102**(2): 266-72.
7. 50. Lorenzato FR, Singer A, Ho L, Santos LC, Batista Rde L, Lubambo TM, et al. Human papillomavirus detection for cervical cancer prevention with polymerase chain reaction in self-collected samples. *Am J Obstet Gynecol.* 2002; **186**(5): 962-8.
8. 51. Zhao FH, Lewkowitz AK, Chen F, Lin MJ, Hu SY, Zhang X, et al. Pooled Analysis of a Self-Sampling HPV DNA Test as a Cervical Cancer Primary Screening Method. *J Natl Cancer Inst.* 2012; **104**(3): 178-88.
9. 52. Igidbashian S, Boveri S, Spolti N, Radice D, Sandri MT, Sideri M. Self-collected human papillomavirus testing acceptability: comparison of two self-sampling modalities. *J Womens Health (Larchmt).* 2011; **20**(3): 397-402.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.

Chapter 4

The impact of Human Papillomavirus genotype on colposcopic appearance: a cross-sectional analysis

Romy van Baars*, Jacolien van der Marel*, Wim G.V. Quint,
Johannes Berkhof, Marta del Pino, Aureli Torné, Jaume
Ordi, Nicolas Wentzensen, Mark Schiffman, Miekel M.
van de Sandt, Jan Lindeman, David Jenkins, Theo J.M.
Helmerhorst, René H.M. Verheijen, Bram W.A. ter Harmsel,
Inmaculada Alonso.

*Both authors contributed equally

BJOG 2014 Aug; 121(9):1117-26

1. ABSTRACT

2.

3. **Objective:** To study colposcopic performance in diagnosing high-grade cervical intraepi-
4. thelial neoplasia or cervical cancer (CIN2+ and CIN3+) using colposcopic characteristics and
5. high-risk human papillomavirus (hrHPV) genotyping.

6. **Design:** Cross-sectional multicentre study.

7. **Setting:** Two colposcopy clinics in the Netherlands and Spain.

8. **Population:** Six hundred and ten women aged 17 years and older referred for colposcopy
9. because of abnormal cytology.

10. **Methods:** A cervical smear was obtained. Colposcopists identified the worst lesion, graded
11. their impression and scored the colposcopic characteristics of the lesions. Up to four biopsies
12. were collected, including one biopsy from visually normal tissue.

13. **Main outcome measures:** CIN2+ and CIN3+, positive for HPV16 or other high-risk HPV types
14. (non-16 hrHPV-positive).

15. **Results:** The mean age in HPV16-positive CIN2+ women was 35.1 years compared with 39.1
16. years in women with other hrHPV types ($p=0.002$). Sensitivity for colposcopy to detect CIN2+
17. was 87.9% (95% CI: 83.2–91.5), using colposcopic cut-off of 'any abnormality'. The remaining
18. CIN2+ were found by a biopsy from visually normal tissue or endocervical curettage (ECC).
19. Detection of CIN2+ by lesion-targeted biopsies was not different between HPV16-positive
20. women [119/135; 88.1% (95% CI: 81.2–92.9)] and non-16 hrHPV-positive women [100/115;
21. 87.0% (95% CI: 79.1–92.3); $p=0.776$]. In multivariate analysis, 'acetowhitening' [odds ratio (OR)
22. 1.91, 95% CI: 1.56–3.17], 'time of appearance' (OR 1.95, 95% CI: 1.21–3.15) and 'lesion >25% of
23. visible cervix' (OR 2.25, 95% CI: 1.44–3.51) were associated with CIN2+.

24. **Conclusions:** In this population following European screening practice, HPV16-related
25. CIN2+ lesions were detected at younger age and showed similar colposcopic impression as
26. non-16 hrHPV high-grade lesions. There was no relationship between any of the colposcopic
27. characteristics and HPV16 status.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

1. INTRODUCTION

2.

3. Almost all invasive cervical cancer (ICC) cases are caused by persistent infections with high-
4. risk human papillomavirus (hrHPV) through premalignant stages of cervical intraepithelial
5. neoplasia (CIN).^{1,2} Cervical cytology screening programmes have improved the detection of
6. precancerous lesions and, as a result, cervical cancer incidence has decreased in developed
7. countries.³ Women with abnormal cytology are offered colposcopy, which is the standard for
8. identifying CIN2+ (CIN2, CIN3 and ICC) in most countries. Current biopsy procedures rely on
9. visual features to identify the area on the cervix that most likely represents the worst lesion.
10. ⁴⁻⁸ However, colposcopy has a sensitivity of 50–70% to detect CIN2+. ⁹⁻¹³ Gains in sensitivity
11. can be obtained by increasing the number of biopsies.¹⁴ Moreover, in a study performing
12. random biopsies of regions without abnormalities, 23–37% of the overall CIN2+ lesions were
13. detected in this biopsy only.¹⁵

14. The risk of developing ICC within the group of hrHPV genotypes varies substantially. HPV16
15. is found to be the genotype with the highest carcinogenic potential; it is associated with
16. the highest risk of the development of CIN3 and ICC.¹⁶⁻¹⁹ Also, HPV16-related CIN2+ has
17. been found at young age.^{20,21} HPV genotype 16 is suggested to cause more definite visual
18. abnormalities than other HPV types.^{4,22} Women with CIN2+ frequently present with multiple
19. HPV genotypes in cytology.²³ In a study using laser capture microdissection (LCM) in women
20. positive for multiple HPV types in cytology we have shown that HPV16 is the most predomi-
21. nant causal genotype in CIN2+ lesions.²⁴ This suggests that etiologically, HPV16 has an even
22. more important role than previously thought. Although a growing interest exists for clinical
23. use of hrHPV testing to triage women who have minor cytological changes and in primary
24. screening, HPV genotyping is currently not implemented as standard clinical practice in most
25. countries.²⁵

26. The objective of this study was to evaluate the visual appearance of the cervix using col-
27. poscopic characteristics combined with HPV genotyping to predict CIN2+ in women who
28. were referred for colposcopy.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

1. **METHODS**

2.

3. **Study design and population**

4. The EVAH-study (Evaluating the Visual Appearance of cervical lesions in relation its histological diagnosis, Human papillomavirus genotype and other viral parameters) is a multicentre study conducted between August 2010 and October 2012. In total, 610 women aged 17 years and older who had an abnormal Pap smear result defined as atypical cells of undetermined significance (ASC-US) or worse (disregarding HPV status), who were referred for colposcopic evaluation to Reinier de Graaf Groep, Voorburg, The Netherlands or to Hospital Clínic, Barcelona, Spain, were included.

11. Patients were excluded if they had had previous treatment of cervical pathology, had a confirmed diagnosis of ICC at the time of referral, had insufficient knowledge of the Dutch or Spanish language or were pregnant or breast-feeding at the date of colposcopy or 3 months before. This study has received approval from the medical ethical board at both hospitals.

15. Informed consent was obtained from all participating women.

16.

17. **Cytology, colposcopy and specimen collection**

18. Before colposcopy, a liquid-based cytology sample using a Cervex-Brush® (Rovers Medical Devices BV, Oss, The Netherlands) was obtained. The Cervex-Brush was rinsed in ThinPrep® medium (Hologic, Marlborough, MA, USA) at Hospital Clínic, and in SurePath™ medium (Klinipath BV, Duiven, The Netherlands) at Reinier de Graaf Groep. Cytological examination and classification were performed at the local laboratory according to the Bethesda 2001 classification in Spain (negative, ASC-US, low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), atypical glandular cells of undetermined significance (AGUS), atypical squamous cells, cannot exclude HSIL (ASC-H), adenocarcinoma in situ (AIS) or ICC). In The Netherlands grading was done according to the CISOE-A (composition, inflammation, squamous epithelium, other and endocervical columnar epithelium, and adequacy of the smear), which was translated to the Bethesda 2001 classification as described earlier.²⁶

30. Nine colposcopists were involved in this study, seven expert and two junior colposcopists with supervision from an expert colposcopist. Five percent acetic acid was used to elicit the acetowhite epithelial response. Grading of visual impression was done as normal (including squamous metaplasia), CIN1, CIN2, CIN3 (including AIS) or ICC and the impression was coded in the final data analysis as normal (N), low-grade (LG; CIN1) or high-grade (HG; CIN2+, including ICC). Colposcopists were asked to score the lesion margins (geographical, smooth, internal borders), colour of the lesions (absent, translucent, intermediate white, opaque white), punctuation (absent, fine, coarse), mosaicism (absent, fine, coarse), the presence of atypical vessels, time of appearance (slow, fast) and size of the lesions (0, <25, 25–50, >50% of the cervix). This scoring system was based on the Reid colposcopy index designed by Reid

1. and Scazi.²⁷ In this study, multiple biopsies during colposcopy were collected. Up to four
 2. biopsies were taken from different lesions, or distinct areas within a large complex lesion
 3. were biopsied separately. If fewer than four directed biopsies were taken, a biopsy from visu-
 4. ally normal tissue was added. Using this refined biopsy protocol, we aimed to detect more
 5. underlying CIN2+ than with the current approach, in which usually only the most severe
 6. lesion is identified and biopsied. Endocervical curettage (ECC) was performed in cases where
 7. the squamocolumnar junction (SCJ) was not completely visualized. In accordance with the
 8. national guidelines in the Netherlands and Spain, histologically confirmed high-grade lesions
 9. diagnosed as CIN2+ were treated.

10.

11. **Histological processing**

12. Individual biopsy specimens, including ECC samples when taken, were processed separately,
 13. fixed in 10% neutral buffered formalin and paraffin-embedded. Haematoxylin and eosin
 14. (H&E) sections were examined by a local pathologist and classified as negative (including
 15. squamous metaplasia), CIN1, CIN2, CIN3 (including AIS) or ICC. All biopsies were indepen-
 16. dently reviewed by a second gynaecological pathologist. In case of disagreement between
 17. the original and review diagnosis, a third pathologist reviewed the discordant cases indepen-
 18. dently. Consensus diagnosis was determined by the agreement of two of three interpreta-
 19. tions. All pathologists were blinded for HPV status. The final histological diagnosis per case
 20. was based on the worst diagnosis found in all specimens of each woman.

21.

22. **HrHPV genotyping**

23. DNA extraction was performed using 250 µl of the cytology specimen to obtain 100 µl of elu-
 24. ate with the QIAamp MinElute Virus Spin kit (QIAgen Inc., Valencia, CA, USA). GP5+/6+ PCR-
 25. based HPV genotyping was performed at both laboratories in the Netherlands and Spain. In
 26. The Netherlands, 10 µl of isolated DNA was amplified and genotyped using the LMNX HPV GP
 27. Genotyping kit (Labo Bio-medical Products BV, Rijswijk, The Netherlands) as described by the
 28. manufacturer.²⁸ The LMNX test utilizes Luminex xMAP high-throughput technology to iden-
 29. tify 18 HPV types; i.e. HPV16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 73 and 82.
 30. In Spain, 10 µl of isolated DNA was amplified by the GP5+/6+ PCR and hrHPV was detected
 31. by the EIA (Diassay, Rijswijk, The Netherlands) according to the manufacturer's instructions.
 32. With the GP5+/6+ PCR-EIA test, 14 hrHPV types can be targeted: HPV16, 18, 31, 33, 35, 39,
 33. 45, 51, 52, 56, 58, 59, 66, and 68. Next, the EIA-positive GP5+/6+ amplimers were genotyped
 34. using the Genotyping kit HPV GP (Diassay), according to the manufacturer's instructions. The
 35. strip-based genotyping test targets the same 18 HPV types as the LMNX test. To compare the
 36. performance of the two genotyping tests, the first 60 cytology samples included in the study
 37. were analysed with both HPV genotyping methods. The agreement between both methods
 38. in hrHPV detection was 86.7% (p=0.727, kappa= 0.72, 95% CI: 0.54–0.90). Of the 32 samples
 39.

1. that were hrHPV-positive in both methods, 20 (63%) showed identical hrHPV genotypes, 10
2. (31%) concordant hrHPV genotypes and 2 (6%) discordant genotypes.

3.

4. **Statistical analysis**

5. Independent sample t-tests and chi-square tests were used to compare age, age at sexual
6. debut, cytology diagnosis and hrHPV status. Analyses were stratified by hrHPV status and
7. HPV16 status. HPV detection and genotype analyses were restricted to 14 hrHPV types
8. (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68). HPV16 status was defined as
9. positive if HPV16 was detected by GP5+/6+ in the cytology specimen. Positivity for any other
10. hrHPV type present except HPV16 was defined as non-16 hrHPV-positive.

11. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV)
12. for colposcopic performance were calculated. As a cut-off for abnormal colposcopy, both
13. low-grade or worse visual impression (any grade of abnormality) and high-grade or worse
14. visual impression (HG+) were used. The association between lesion size, HPV16 status, and
15. age in women with CIN2+ or CIN3+ was examined using linear logistic regression. Level of
16. statistical significance was set at 0.05. Colposcopic characteristics were studied on the cervix
17. level: when multiple lesions with different colposcopic characteristics were present, the worst
18. colposcopic features were used for analysis. Contingency tables using the Mann-Whitney U-
19. test and Pearson's chi-square statistics were used to analyse the association between the dif-
20. ferent colposcopic characteristics and CIN2+/CIN3+ diagnosis and the association between
21. HPV16 status and the different features. Odds ratios (ORs) and 95% CI: were calculated. In bi-
22. nary logistic regression, the association between CIN2+ and colposcopic characteristics was
23. studied, adjusted for age. Colposcopic characteristics were included in the model by forward
24. selection using the Wald test-statistic as selection criterion. The selection was stopped when
25. the P-value of the regression coefficient was above 0.05. Analyses were performed using SPSS
26. version 20.0 for Windows (Chicago, IL, USA).

27.

28.

29. **RESULTS**

30.

31. **Baseline characteristics**

32. All women with an abnormal cytology result and no exclusion criteria who were referred
33. between August 2010 and October 2012 were included in the study (n=610). Clinical char-
34. acteristics of the study group are described in Supplementary table 1. The mean age of the
35. women was 36.5 years (SD 10.9) but the age was slightly different between the study centres
36. (Barcelona: 36.0 years and Voorburg: 39.3 years; p=0.002). The mean age of sexual debut
37. was 18 years (SD 2.8). Referral cytology diagnoses were: ASC-US (n=71; 11.6%), LSIL (n=200;
38. 32.8%), HSIL (n=319; 52.3%), ASC-H (n=18; 3.0%), AGUS (n=1; 0.2%) and adenocarcinoma
39. (n=1; 0.2%). Cytology results at enrolment are shown in Supplementary table 1. HrHPV

1. positivity at enrolment was not significantly different between the two sites ($p=0.510$); 461
2. women (75.6%) were positive for hrHPV. Overall, 221 (36.2%) women had a histologically
3. negative diagnosis, 123 (20.2%) women were diagnosed with CIN1, 144 (23.6%) with CIN2
4. and 122 (20.0%) with CIN3+ (including six with ICC). For two women the HPV genotyping
5. data were not available and these women were excluded from further analysis.

6.

7. **HPV genotyping results**

8. The HPV genotype distribution among the 461 hrHPV-positive women was as follows; HPV16
9. ($n=193$; 41.9%), HPV31 ($n=73$; 15.8%), HPV66 ($n=43$; 9.3%), HPV18 ($n=42$; 9.1%), HPV56 ($n=39$;
10. 8.5%), HPV51 ($n=37$; 8.0%), HPV33 ($n=29$; 6.3%), HPV52 ($n=29$; 6.3%), HPV58 ($n=26$; 5.6%),
11. HPV39 ($n=22$; 4.8%), HPV45 ($n=19$; 4.1%), HPV59 ($n=16$; 3.5%), HPV35 ($n=15$; 3.3%), HPV68
12. ($n=11$; 2.4%). Additionally, the following HPV types were detected; HPV73 ($n=10$; 2.2%),
13. HPV53 ($n=6$; 1.3%), HPV82 ($n=5$; 1.1%), HPV26 ($n=1$; 0.2%). HrHPV was detected in 211/343
14. (61.5%) women with a histological diagnosis of negative or CIN1 and in 250/265 (94.3%) of
15. women with CIN2+ ($p<0.001$). Both single and multiple infections were detected and HPV
16. genotype distribution was calculated per individual HPV type. Multiple hrHPV infections
17. were detected in 116/461 (25.2%) of the hrHPV-positive women. Fifty-seven of 211 (27.0%)
18. hrHPV-positive women with a diagnosis of negative or CIN1 versus 59/250 (23.6%) of women
19. with CIN2+ had a multiple hrHPV-type infection ($p=0.45$).

20.

21. **Age and HPV16 status**

22. The mean age in the HPV16-positive women with CIN2+ and CIN3+ was significantly lower
23. compared with the non-16 hrHPV-positive cases; the mean age for HPV16-positive women
24. with CIN2+ was 35.1 years and for non-16 hrHPV-positive women 39.1 years ($p=0.002$). The
25. mean age for HPV16-positive CIN3+ cases was 36.4 years, versus 40.5 years in the non-16
26. hrHPV-positive group ($p=0.048$). Also, there was a significant shorter sexual activity span be-
27. tween HPV16-positive women (17.2 years) with CIN2+ lesions compared with non-16 hrHPV-
28. positive women (21.3 years; $p=0.001$). An equal trend was found for CIN3+ cases, although
29. not significant (18.6 years versus 22.2 years; $p=0.068$). No difference in number of lifetime
30. partners was found between the two groups ($n=2.7$; $p=0.701$). In linear regression, age in
31. women with CIN2+ was associated with HPV16 status (HPV16-positive women; estimate 3.7
32. years younger, 95% CI: -6.2 to -1.3, $p=0.003$). The association remained significant after adjust-
33. ing for lesion size categorized as <25, 25–50% or >50% of the cervix (HPV16-positive women;
34. estimate 3.7 years younger, 95% CI: -6.1 to -1.3, $p=0.003$). For women with CIN3+ only, the
35. univariate association between age and HPV16 was also significant (HPV16-positive women;
36. estimate 4.1 years younger, 95% CI: -8.0 to -0.2, $p=0.040$), and the association adjusted for
37. lesion size was nearly significant (HPV16-positive women; estimate 3.7 years younger, 95%
38. CI: -7.7 to 0.2, $p=0.065$).

39.

1. Colposcopic performance and HPV16 status

2. To evaluate the colposcopic performance we studied the relationship between colposcopic
3. impression and histological outcome per HPV group (total hrHPV-positive, HPV16-positive
4. and non-16 hrHPV-positive) (Tables 1 and Supplementary table 2). In total, 233/265 (87.9%)
5. CIN2+ cases and 108/122 (88.5%) CIN3+ cases had an abnormal colposcopic impression
6. (any grade of abnormality). There was an impression of HG or ICC (HG+) in 163/265 (61.5%)
7. CIN2+ cases and in 87/122 (71.3%) CIN3+ cases (Table 1). Five of six ICC were recognized
8. as ICC by the colposcopists. In one woman with adenocarcinoma as the cytological refer-
9. ral diagnosis, the SCJ was not visualized and an ECC was performed which showed ICC. In
10. HPV16-positive women, 119/135 (88.1%) CIN2+ cases had a colposcopic impression of any
11. grade of abnormality compared with 100/115 (87.0%) CIN2+ cases in non-16 hrHPV-positive
12. women ($p=0.776$). Sensitivity for detection of CIN3+ in HPV16+ versus non-16 hrHPV-positive
13. cases was 91.8 versus 82.2%, respectively ($p=0.119$) (Table 1). When HG+ visual impression
14. was used as cut-off for abnormal colposcopy, sensitivity was not significantly different either
15. ($p=0.279$ for CIN2+ and $p=0.332$ for CIN3+). Previous studies have shown that multiple HPV
16. infections often show complex and confluent multiple lesions.^{24, 29, 30} Therefore calculations
17. were limited to cases with single HPV genotype infections only (single HPV16+; $n=131$
18. versus single non-16 hrHPV-positive; $n=215$) and revealed no differences in colposcopic
19. detectability for CIN2+ and CIN3+. The sensitivity for CIN2+ detection with any grade of
20. abnormal impression in single HPV16-positive and single non-16 hrHPV-positive women was
21. not significantly different: 88/100 (88.0%) versus 77/92 (83.7%); $p=0.393$. Also, there was no
22. difference in sensitivity for CIN3+ detection [52/58 (89.7%) versus 28/36 (77.8%); $p=0.118$,
23. respectively].

24. To investigate further the role of HPV16 in CIN2+ and CIN3+, the PPV of colposcopy in
25. HPV16-positive versus non-16 hrHPV-positive women in this population was calculated
26. (Supplementary table 3). PPV was higher in HPV16-positive women with CIN2+ than in
27. non-16 hrHPV-positive women, for both any grade of abnormality and HG+ impression (75.8
28. versus 54.6%; $p<0.001$, and 88.8 versus 74.3%; $p=0.011$, respectively). This difference was also
29. significant in CIN3+ cases (any grade of abnormality: 42.7 versus 20.2%; $p<0.001$, and HG+:
30. 55.1 versus 33.7%; $p=0.003$). We observed similar results for each of the nine colposcopists
31. involved in the study.

32.

33. Colposcopic characteristics and HPV16 status

34. In 429/608 (70.6%) cases, the SCJ was visible during colposcopy, at least one lesion-targeted
35. biopsy (119 women had a random biopsy only) was collected and no missing colposcopic
36. characteristics were reported. These cases were included in the analysis of colposcopic
37. characteristics. 'Time of appearance' data were available for 422 women and 'size of lesion'
38. for 423 women (Table 2). CIN2+ lesions had more distinct margins ($p=0.001$), more distinct
39. acetowhiteness ($p<0.001$), coarser punctuation ($p<0.001$), coarser mosaic ($p=0.02$), appeared

Table 1. Sensitivity and specificity of colposcopy for the detection of CIN2+ and CIN3+ lesions stratified by HPV status

Visual impression	CIN2+						CIN3+					
	Sensitivity			Specificity			Sensitivity			Specificity		
	n	%	95% CI									
Overall												
Any abnormality	233/265	87.9	83.2 - 91.5	152/343	44.3	39.0 - 49.8	108/122	88.5	81.2 - 93.4	170/486	35.0	30.8 - 39.4
High-grade*	163/265	61.5	55.3 - 67.3	282/343	82.2	77.7 - 86.0	87/122	71.3	62.3 - 79.0	349/486	71.8	67.5 - 75.7
hrHPV positive												
Any abnormality	219/250	87.6	82.7 - 91.3	90/211	42.7	35.9 - 49.6	104/118	88.1	80.6 - 93.1	107/343	31.2	26.4 - 36.4
High-grade*	154/250	61.6	55.2 - 67.6	175/211	82.9	77.0 - 87.6	83/118	70.3	61.1 - 78.2	236/343	68.8	63.6 - 73.6
HPV16 positive												
Any abnormality	119/135	88.1	81.2 - 92.9	20/58	34.5	22.8 - 48.2	67/73	91.8	82.4 - 96.6	30/120	25.0	17.7 - 33.9
High-grade*	79/135	58.5	49.7 - 66.8	48/58	82.8	70.1 - 91.0	49/73	67.1	55.0 - 77.4	80/120	66.7	57.4 - 74.8
non-16 hrHPV positive												
Any abnormality	100/115	87.0	79.1 - 92.3	70/153	45.8	37.7 - 54.0	37/45	82.2	67.4 - 91.5	77/223	34.5	28.4 - 41.2
High-grade*	75/115	65.2	55.7 - 73.7	127/153	83.0	75.9 - 88.4	34/45	75.6	60.1 - 86.6	156/223	70.0	63.4 - 75.8
HPV negative												
Any abnormality	14/15	93.3	66.0 - 99.7	62/132	47.0	38.3 - 55.8	4/4	100	39.6 - 100	63/143	44.1	35.8 - 52.6
High-grade*	9/15	60.0	32.9 - 82.5	107/132	81.1	73.1 - 87.1	4/4	100	39.6 - 100	113/143	79.0	71.3 - 85.2

Results are stratified for the visual impression of low-grade cervical intraepithelial neoplasia (CIN) or worse (any abnormality) versus high-grade CIN or worse (high-grade).

*Including IC

1. **Table 2.** Different colposcopic characteristics in CIN2+ and CIN3+ cases (Table 2A) and in CIN2+ and CIN3+ cases stratified by HPV16 status (Table 2B). In total, 429 (70.6%) women with a visible transformation zone, at least one lesion targeted biopsy taken and no missing reported characteristics were studied.

2. **Table 2A.**

5. Characteristics	Histology					
	<CIN2	CIN2+	p-value	<CIN3	CIN3+	p-value
Margins						
7. Geographical	95	82		144	33	
8. Smooth	91	134	0.001	162	63	0.003
9. Internal borders	7	20		15	12	
Colour						
11. Absent	9	6		13	2	
12. Translucent	84	44	<0.001	114	14	<0.001
13. Intermediate	85	128		156	57	
14. Opaque	15	58		39	34	
Punctuation						
16. Absent	144	135		231	48	
17. Fine	45	69	<0.001	77	37	<0.001
18. Coarse	4	32		14	22	
Mosaic						
19. Absent	132	139		208	63	
20. Fine	46	61	0.020	85	22	0.092
21. Coarse	15	36		29	22	
Atypical vessels						
23. Absent	187	222	0.168	313	96	0.001
24. Present	6	14		9	11	
Time of appearance*						
26. Slow	123	82	<0.001	177	28	
27. Fast	68	149		140	77	<0.001
Size lesion[#]						
29. 0%	5	4		9	0	
30. <25%	106	65	<0.001	151	20	<0.001
31. 25-50%	43	73		86	30	
32. >50%	35	92		72	55	

33. * N=422. Missing data n=7

34. [#] N=423. Missing data n=6

35.

36.

37.

38.

39.

1.
2.3. **Table 2B.**

5. Characteristics	hrHPV positives					
	CIN2+		p-value	CIN3+		p-value
6.	HPV16 positive	non-16 hrHPV positive		HPV16 positive	non-16 hrHPV positive	
Margins						
8. Geographical	44	32		20	11	
9. Smooth	67	59	0.592	40	21	0.829
10. Internal borders	11	9		7	5	
Colour						
11. Absent	3	3		2	0	
12. Translucent	25	16	0.817	10	4	0.813
13. Intermediate	63	57		33	22	
14. Opaque	31	24		22	11	
Punctuation						
16. Absent	72	53		31	15	
17. Fine	33	33	0.454	22	14	0.656
18. Coarse	17	14		14	8	
Mosaic						
20. Absent	65	64		36	24	
21. Fine	38	20	0.200	14	8	0.191
22. Coarse	19	16		17	5	
Atypical vessels						
24. Absent	114	94	0.865	59	34	0.545
25. Present	8	6		8	3	
Time of appearance*						
27. Slow	48	30	0.167	19	9	0.777
28. Fast	72	67		48	26	
Size lesion[#]						
30. 0%	3	1		0	0	
31. <25%	37	21	0.180	16	4	0.932
32. 25-50%	35	35		13	15	
33. >50%	46	42		37	17	

34. * N=422. Missing data n=7

35. [#] N=423. Missing data n=636.
37.
38.
39.

1. faster ($p<0.001$) and had a larger lesion size ($p<0.001$) than negative or CIN1 lesions. In addition, women with CIN3+ lesions had atypical vessels more often ($p=0.001$) than did women with negative tissue, CIN1 or CIN2. CIN3+ lesions did not show coarser mosaic ($p=0.092$).
2. Atypical vessels were present in four of five women diagnosed with ICC and a visible SCJ. The time of appearance was fast and the lesion size was $>50\%$ in all ICC with SCJ visible. Mosaic, punctuation and colour had a variable score in these cases (Table 2A).
3. The associations between colposcopic characteristics and CIN2+ (and CIN3+) were expressed by Mantel-Haenszel ORs, corrected for age. For end-point CIN2+, statistically significant associations were found for most characteristics but not for 'atypical vessels' or
4. 10.

5. **Table 3.** Odds ratios (OR) for the different colposcopic characteristics in all women with CIN2+ and in women with CIN2+ stratified by HPV16 status (Table 3A) and ORs for women with CIN3+ and women with CIN3+ stratified by HPV16 status (Table 3B). All ORs are corrected for age.
6. 11.

Table 3A.

Colposcopic characteristics	Total CIN2+	HPV16 positive versus non-16 hrHPV positive in CIN2+
	OR (95% CI)	OR (95% CI)
Margins (geographical vs smooth/internal borders)	1.75 (1.18 - 2.61)	0.77 (0.43 - 1.38)
Acetowhiteness (absent/translucent vs intermediate/opaque)	3.25 (2.12 - 4.99)	0.70 (0.34 - 1.44)
Punctuation (absent vs present)	1.98 (1.29 - 3.03)	0.78 (0.45 - 1.37)
Punctuation (absent/fine vs coarse)	6.74 (2.30 - 19.78)	1.07 (0.49 - 2.33)
Mosaic (absent vs present)	1.48 (0.98 - 2.26)	1.26 (0.70 - 2.25)
Mosaic (absent/fine vs coarse)	1.98 (1.03 - 3.81)	0.93 (0.43 - 1.97)
Atypical vessels (absent vs present)	1.50 (0.56 - 4.07)	1.64 (0.51 - 5.26)
Time of appearance (slow vs fast)	3.26 (2.17 - 4.91)	0.59 (0.32 - 1.09)
Lesion size (cut off 25%)	3.24 (2.16 - 4.88)	0.58 (0.30 - 1.10)
Lesion size (cut off 50%)	2.53 (1.62 - 3.96)	0.90 (0.51 - 1.57)

Table 3B.

Colposcopic characteristics	Total CIN3+	HPV16 positive versus non-16 hrHPV positive in CIN3+
	OR (95% CI)	OR (95% CI)
Margins (geographical vs smooth/internal borders)	1.79 (1.12 - 2.85)	1.01 (0.42 - 2.42)
Acetowhiteness (absent/translucent vs intermediate/opaque)	3.51 (1.97 - 6.28)	0.79 (0.22 - 2.90)
Punctuation (absent vs present)	2.93 (1.86 - 4.63)	0.97 (0.41 - 2.27)
Punctuation (absent/fine vs coarse)	5.16 (2.52 - 10.55)	1.40 (0.49 - 3.99)
Mosaic (absent vs present)	1.32 (0.83 - 2.09)	1.78 (0.72 - 4.37)
Mosaic (absent/fine vs coarse)	2.69 (1.46 - 4.95)	2.31 (0.72 - 7.37)
Atypical vessels (absent vs present)	3.71 (4.47 - 9.40)	1.84 (0.46 - 7.30)
Time of appearance (slow vs fast)	3.43 (2.11 - 5.59)	1.10 (0.40 - 3.06)
Lesion size (cut off 25%)	4.02 (2.37 - 6.80)	0.64 (0.21 - 1.96)
Lesion size (cut off 50%)	3.54 (2.22 - 5.63)	1.75 (0.75 - 4.12)

1. 'mosaicism (absent versus present)' (Table 3A). For end-point CIN3+, the presence of atypical
 2. vessels was significant and the presence of 'mosaicism (absent versus present)' was not sig-
 3. nificant (Table 3B). Colposcopic characteristics were also compared between HPV16-positive
 4. and non-16 hrHPV-positive CIN2+ and CIN3+ cases. There was no significant relationship be-
 5. tween any of the colposcopic characteristics and HPV16 status, either for CIN2+ or for CIN3+
 6. (Tables 2B and 3A,B). In a binary logistic regression, the association between CIN2+ and
 7. multiple colposcopy characteristics were studied, adjusted for age. Significant independent
 8. associations with CIN2+ were found for 'acetowhiteness', 'time of appearance' and 'lesion size
 9. (>25% of visible cervix)'. The corresponding ORs were 1.91 (95% CI: 1.56-3.17), 1.95 (95% CI:
 10. 1.21-3.15), and 2.25 (95% CI: 1.44-3.51), respectively.

11.

12.

13. DISCUSSION

14.

15. Main findings

16. This study in women referred for colposcopy due to abnormal cervical cytology reveals that
 17. the colposcopic visual appearance of HPV16-related CIN2+ is not different from other hrHPV-
 18. type related lesions. The women were referred according to conventional European screen-
 19. ing practice with a mean age of over 35 years and on the basis of any abnormal cytology
 20. grade including a single ASC-US smear. HPV testing was not part of the screening or triage
 21. procedure. No difference was observed in either sensitivity or specificity of colposcopic im-
 22. pression or individual colposcopic criteria for CIN2+, when caused by HPV16 or other hrHPV
 23. types. However, we confirmed that HPV16-positive women had a younger age at diagnosis
 24. of CIN3.^{20,31} We observed this effect for both CIN2+ and CIN3+ separately. Moreover, we
 25. found a significantly shorter span of sexual activity among women with HPV16-related CIN2+
 26. than other carcinogenic HPV types, although these women had a similar number of lifetime
 27. partners. A similar, but non-statistically significant, trend for CIN3+ women was found. These
 28. findings suggest that HPV16-related CIN2+ lesions appear to develop faster than those
 29. related to other hrHPV types. When stratifying for age, we found no significant association
 30. between lesion size and HPV16 positivity. This implies that CIN2+ is detected at the same
 31. size irrespective of genotype but HPV16-related CIN2+ lesions reach the detection threshold
 32. faster than lesions related to other types because they are found at younger age.

33. In the present study, the sensitivity for detecting CIN2+ was 87.9% for any grade of
 34. abnormal impression and 61.5% for HG+ impression. In CIN3+ the sensitivities were 88.5
 35. and 71.3% for any grade of abnormal impression and HG+ impression, respectively. When
 36. studying performance of different colposcopic characteristics irrespective of HPV status,
 37. all characteristics except for 'presence of atypical vessels' and 'mosaicism (absent versus
 38. present)' were significantly associated with CIN2+. The highest correlations were found for
 39. 'acetowhiteness', 'time of appearance' and 'lesion size of >25% of visible cervix'. In general,

1. colposcopy has a sensitivity of 50–70% to detect high-grade lesions and ICC,^{9–12} but the sensitivity can be increased by raising the number of collected biopsies.¹⁴ The use of an extended biopsy protocol in our study with multiple targeted biopsies from all abnormal areas and a biopsy from visually negative tissue could explain the high sensitivity we have found. Unlike measures like sensitivity and specificity, the PPV depends on the prevalence of CIN2+ in the study population. We found a PPV of 72.8% for CIN2+ using colposcopic impression of HG+, representative for this population and broadly comparable to a recent UK study.³²

8.

9. **Strengths and limitations**

10. The main strength of this study is the large well described European study population
11. representative of women with abnormal smears referred for colposcopy. In The Netherlands
12. there is an organized 5-yearly screening program starting at the age of 30. In Spain there is
13. opportunistic screening. In both countries the median age of women referred for colposcopy
14. was over 35 years. A large number of women had CIN2+ as a histological endpoint. Various
15. colposcopists from two different centres took part. We used a refined protocol of collecting
16. multiple biopsies. Histological diagnosis of all biopsies was done by consensus diagnosis
17. including expert pathologists and local pathologists who were blinded to HPV status at the
18. time of diagnosis.

19. A limitation of this paper is that it is a cross-sectional study and loop electrosurgical excision procedure (LEEP) outcomes were not included as a histological endpoint. Hence, we
20. lack longitudinal HPV genotyping and histological end point data. Different test algorithms
21. were used for HPV genotyping in the two study centres. A pilot study performed on the first
22. samples included in the study showed good agreement between HPV positivity rates and
23. HPV genotypes. Furthermore, previous studies demonstrated a high genotyping agreement
24. between both test algorithms.^{28,33} As in most clinical and epidemiological studies, HPV genotyping was performed on cytology specimens. In multiple infections, it is uncertain which
25. genotype causes the lesion. Without techniques to define the presence of different HPV types
26. in pre-neoplastic cells they may be incorrectly associated with CIN. Therefore, LCM combined
27. with sensitive PCR (LCM-PCR) is currently being applied to study HPV type attribution on
28. lesion level in this study.

31.

32. **Interpretation**

33. Our findings are in contrast with Jeronimo et al.⁴ who suggested that HPV16 causes more
34. definite visual abnormalities than other HPV types, regardless of eventual histological diagnosis.
35. The mean age of the study population of Jeronimo et al. was substantially lower than
36. that of our study population (24 years versus 36.5 years). An explanation for the difference in
37. findings between the studies is that high-grade cervical precancer has to grow to a certain
38. size before it becomes detectable during colposcopy and that high-grade lesions evolve
39. more rapidly in women with HPV16 infections than many other hrHPV types. This is consistent

1. with evidence that ICC associated with HPV16 occurs at an earlier age than that associated
2. with many other hrHPV types and that the development of ICC from CIN3 is associated with a
3. large lesion size.^{17,34} Lesions driven by other hrHPV types than HPV16 in the older women in
4. the present study have had the chance to grow over time. Our theory is in line with the find-
5. ings of Wentzensen et al.,³¹ who observed a difference in lesion size between women with
6. HPV16 and other types in CIN2, but not in CIN3. Zaal et al.²² found that with conventional
7. visual colposcopy, no difference in sensitivity for CIN2+ lesions caused by different HPV types
8. was found. However, the sensitivity of dynamic spectral imaging colposcopy for CIN2+ was
9. higher in HPV16-positive than in non-16 hrHPV-positive women which may be explained by
10. the better identification of small CIN2 lesions with this technique.²² This is in agreement with
11. our finding that in this population of women with abnormal cervical screening results, the
12. visual colposcopic appearance of HPV16-positive women does not differ from that in women
13. infected with other HPV types. Studies have shown that HPV16 is the genotype with the high-
14. est oncogenic potential because it is associated with the highest risk of the development of
15. CIN3 and cancer and has the highest worldwide attribution for CIN2+ and ICC.^{16,19}
16.
17.

18. CONCLUSIONS

19.

20. In this cross-sectional study in women with abnormal cytology and referred for colposcopy
21. according to current European screening practice, we found that the sensitivity for detecting
22. CIN2+ during colposcopy is similar in HPV16-positive and non-16 hrHPV-positive women.
23. Irrespective of HPV status, all studied colposcopic characteristics were associated with CIN2+,
24. in particular acetowhitening and lesion size. Furthermore, the mean age of HPV16-positive
25. women with CIN2+ was significantly lower than in the non-16 hrHPV-positives. These find-
26. ings confirm the important etiologic role of HPV16 in the development of cervical neoplasia,
27. although HPV16-related CIN2+ lesions are not easier to detect during colposcopy. This might
28. be a result of more rapid development of HPV16-related CIN2+. However, the performance
29. of colposcopy in detecting these lesions is not improved, which may limit the benefit of
30. this knowledge during colposcopic examination. As there is debate as to the accuracy of
31. colposcopy in women vaccinated against HPV16 and 18, this study shows that colposcopic
32. performance is similar for any hrHPV-type-positive woman.³⁵ To improve our understanding
33. of the development of CIN2+ and CIN3+ related to HPV16 and other carcinogenic types, we
34. are currently performing lesion-based genotyping using LCM-PCR.

35.

36.

37.

38.

39.

1. **ACKNOWLEDGEMENTS**

2.

3. We thank Agata Rodriquez, Nadia Abu-Lhiga, Hospital Clínic; Frank Smedts, Reinier de Graaf
4. Groep; Edita Pirog, Weill Medical College of Cornell University, for their clinical assistance. We
5. thank Lorena Marimon, Hospital Clínic; Hanna Breijer, Leids Cytologisch Pathologisch Labo-
6. ratorium; Daan Geraets, Peter Lansen, DDL Diagnostic Laboratory; Karin van Kampen; Reinier
7. de Graaf Groep, for their technical assistance. We wish to thank all colposcopists, laboratory
8. personnel and the women who participated in this study.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

1. REFERENCES

2. 1. Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV. The causal relation between human papillomavirus and cervical cancer. *J Clin Pathol*. 2002; **55**(4): 244-65.
4. 2. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. *Lancet*. 2007; **370**(9590): 890-907.
6. 3. Gustafsson L, Ponten J, Zack M, Adami HO. International incidence rates of invasive cervical cancer after introduction of cytological screening. *Cancer causes & control : CCC*. 1997; **8**(5): 755-63.
8. 4. Jeronimo J, Massad LS, Schiffman M. Visual appearance of the uterine cervix: correlation with human papillomavirus detection and type. *Am J Obstet Gynecol*. 2007; **197**(1): 47 e1-8.
10. 5. Louwers JA, Kocken M, van der Bijl JC, Berkhof J, Snijders PJ, Meijer CJ, et al. Colposcopic characteristics of high-risk human papillomavirus-related cervical lesions. *J Low Genit Tract Dis*. 2010; **14**(1): 49-55.
12. 6. Petry KU, Luyten A, Scherbring S. Accuracy of colposcopy management to detect CIN3 and invasive cancer in women with abnormal screening tests: results from a primary HPV screening project from 2006 to 2011 in Wolfsburg, Germany. *Gynecol Oncol*. 2013; **128**(2): 282-7.
14. 7. Reid R. Biology and colposcopic features of human papillomavirus-associated cervical disease. *Obstetrics and gynecology clinics of North America*. 1993; **20**(1): 123-51.
16. 8. Reid R, Herschman BR, Crum CP, Fu YS, Braun L, Shah KV, et al. Genital warts and cervical cancer. V. The tissue basis of colposcopic change. *Am J Obstet Gynecol*. 1984; **149**(3): 293-303.
18. 9. Bekkers RL, van de Nieuwenhof HP, Neesham DE, Hendriks JH, Tan J, Quinn MA. Does experience in colposcopy improve identification of high grade abnormalities? *Eur J Obstet Gynecol Reprod Biol*. 2008; **141**(1): 75-8.
20. 10. Massad LS, Jeronimo J, Katki HA, Schiffman M. The accuracy of colposcopic grading for detection of high-grade cervical intraepithelial neoplasia. *J Low Genit Tract Dis*. 2009; **13**(3): 137-44.
22. 11. Mitchell MF, Schottenfeld D, Tortolero-Luna G, Cantor SB, Richards-Kortum R. Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis. *Obstet Gynecol*. 1998; **91**(4): 626-31.
24. 12. Schiffman M, Solomon D. Findings to date from the ASCUS-LSIL Triage Study (ALTS). *Archives of pathology & laboratory medicine*. 2003; **127**(8): 946-9.
26. 13. Wentzensen N, Schiffman M, Dunn ST, Zuna RE, Walker J, Allen RA, et al. Grading the severity of cervical neoplasia based on combined histopathology, cytopathology, and HPV genotype distribution among 1,700 women referred to colposcopy in Oklahoma. *Int J Cancer*. 2009; **124**(4): 964-9.
28. 14. Gage JC, Hanson VW, Abbey K, Dippery S, Gardner S, Kubota J, et al. Number of cervical biopsies and sensitivity of colposcopy. *Obstet Gynecol*. 2006; **108**(2): 264-72.
30. 15. Pretorius RG, Zhang WH, Belinson JL, Huang MN, Wu LY, Zhang X, et al. Colposcopically directed biopsy, random cervical biopsy, and endocervical curettage in the diagnosis of cervical intraepithelial neoplasia II or worse. *Am J Obstet Gynecol*. 2004; **191**(2): 430-4.
32. 16. Cogliano V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F. Carcinogenicity of human papillomaviruses. *Lancet Oncol*. 2005; **6**(4): 204.
34. 17. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. *Lancet Oncol*. 2010; **11**(11): 1048-56.
36. 18. Khan MJ, Castle PE, Lorincz AT, Wacholder S, Sherman M, Scott DR, et al. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and

1. the possible utility of type-specific HPV testing in clinical practice. *J Natl Cancer Inst.* 2005; **97**(14): 1072-9.
2. 19. Tjalma WA, Fiander A, Reich O, Powell N, Nowakowski AM, Kirschner B, et al. Differences in human papillomavirus type distribution in high-grade cervical intraepithelial neoplasia and invasive cervical cancer in Europe. *Int J Cancer.* 2013; **132**(4): 854-67.
3. 20. Porras C, Rodriguez AC, Hildesheim A, Herrero R, Gonzalez P, Wacholder S, et al. Human papillomavirus types by age in cervical cancer precursors: predominance of human papillomavirus 16 in young women. *Cancer Epidemiol Biomarkers Prev.* 2009; **18**(3): 863-5.
4. 21. Wheeler CM, Hunt WC, Joste NE, Key CR, Quint WG, Castle PE. Human papillomavirus genotype distributions: implications for vaccination and cancer screening in the United States. *J Natl Cancer Inst.* 2009; **101**(7): 475-87.
5. 22. Zaal A, Louwers JA, Berkhof J, Kocken M, Ter Harmsel WA, Graziosi GC, et al. Agreement between colposcopic impression and histological diagnosis among human papillomavirus type 16-positive women: a clinical trial using dynamic spectral imaging colposcopy. *BJOG.* 2012; **119**(5): 537-44.
6. 23. Cuschieri KS, Cubie HA, Whitley MW, Seagar AL, Arends MJ, Moore C, et al. Multiple high risk HPV infections are common in cervical neoplasia and young women in a cervical screening population. *J Clin Pathol.* 2004; **57**(1): 68-72.
7. 24. van der Marel J, Quint WG, Schiffman M, van de Sandt MM, Zuna RE, Dunn ST, et al. Molecular mapping of high-grade cervical intraepithelial neoplasia shows etiological dominance of HPV16. *Int J Cancer.* 2012; **131**(6): E946-53.
8. 25. Saslow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, Cain J, et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. *Am J Clin Pathol.* 2012; **137**(4): 516-42.
9. 26. Bulk S, Van Kemenade FJ, Rozendaal L, Meijer CJ. The Dutch CISOE-A framework for cytology reporting increases efficacy of screening upon standardisation since 1996. *J Clin Pathol.* 2004; **57**(4): 388-93.
10. 27. Reid R, Scalzi P. Genital warts and cervical cancer. VII. An improved colposcopic index for differentiating benign papillomaviral infections from high-grade cervical intraepithelial neoplasia. *Am J Obstet Gynecol.* 1985; **153**(6): 611-8.
11. 28. Geraets DT, Heideman DA, de Koning MN, Snijders PJ, van Alewijk DC, Meijer CJ, et al. High-throughput genotyping of high-risk HPV by the digene HPV Genotyping LQ Test using GP5+/6+ PCR and xMAP technology. *J Clin Virol.* 2009; **46 Suppl 3**: S21-6.
12. 29. Bekkers RL, Melchers WJ, Bulten J, Boonstra H, Quint WG, Hanselaar AG, et al. Localized distribution of human papillomavirus genotypes in the uterine cervix. *European journal of gynaecological oncology.* 2002; **23**(3): 203-6.
13. 30. Quint W, Jenkins D, Molijn A, Struijk L, van de Sandt M, Doorbar J, et al. One virus, one lesion—individual components of CIN lesions contain a specific HPV type. *J Pathol.* 2012; **227**(1): 62-71.
14. 31. Wentzensen N, Walker J, Schiffman M, Yang HP, Zuna RE, Dunn ST, et al. Heterogeneity of high-grade cervical intraepithelial neoplasia related to HPV16: implications for natural history and management. *Int J Cancer.* 2013; **132**(1): 148-54.
15. 32. Tidy JA, Brown BH, Healey TJ, Daayana S, Martin M, Prendiville W, et al. Accuracy of detection of high-grade cervical intraepithelial neoplasia using electrical impedance spectroscopy with colposcopy. *BJOG.* 2013; **120**(4): 400-10; discussion 10-1.
16. 33. 34. 35. 36. 37. 38. 39.

33. Geraets DT, Heideman DA, de Koning MN, Snijders PJ, Meijer CJ, van Doorn LJ, et al. High genotyping concordance between the digene HPV Genotyping RH Test and the Reverse Line Blot genotyping assay on GP5+/6+-PCR products. *J Clin Virol.* 2009; **46 Suppl 3**: S16-20.
34. McCredie MR, Sharples KJ, Paul C, Baranyai J, Medley G, Jones RW, et al. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study. *Lancet Oncol.* 2008; **9**(5): 425-34.
35. Leeson SC, Alibegashvili T, Arbyn M, Bergeron C, Carriero C, Mergui JL, et al. The future role for colposcopy in europe. *J Low Genit Tract Dis.* 2014; **18**(1): 70-8.
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.

1. SUPPLEMENTARY TABLES

2. Supplementary table 1. Population characteristics

	Barcelona		Voorburg		Total		p-value
	n	%	n	%	n	%	
Total patients	511	83.8	99	16.2	610	100	
Age at enrolment (mean, SD)	36.0 (11.1)		39.3 (9.2)		36.5 (10.9)		0.002*
Age at sexual debut (mean, SD)	18.2 (2.8)		17.2 (2.6)		18.0 (2.8)		0.001*
Cytology at enrolment							
Negative	119	23.3	25	25.3	144	23.6	
ASC-US	38	7.4	1	1.0	39	6.4	
LSIL	103	20.2	28	28.3	131	21.5	
HSIL	228	44.6	43	43.4	271	44.4	
ASC-H	14	2.7	0	0.0	14	2.3	0.053**
AGUS	1	0.2	0	0.0	1	0.2	
Adenocarcinoma in situ	1	0.2	1	1.0	2	0.3	
Cervical cancer	6	1.2	0	0.0	6	1.0	
Not enough material	1	0.2	1	1.0	2	0.3	
hrHPV status at enrolment (GP5+/6+)							
Positive	390	76.3	71	71.7	461	75.6	
HPV16 positive	165	42.3	28	39.4	193	41.9	
non-16 hrHPVpositive	225	57.7	43	60.6	268	58.1	0.510**
Negative	121	23.7	26	26.3	147	24.1	
Sample lost	0	0.0	2	2.0	2	0.3	

*independent-samples t-test

**chi-square test

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

1.

2. **Supplementary table 2.** The relation between histological diagnosis and visual impression of the cervix stratified by HPV status

Histology	Visual impression	hrHPV positive										HPV negative	
		Total		Total hrHPV positive		HPV16 positive		non-16 hrHPV positive					
		n	%	n	%	n	%	n	%	n	%		
Negative/CIN1													
Normal	152	44.3	90	42.7	20	34.5	70	45.8	62	47.0			
Low-grade	130	37.9	85	40.3	28	48.3	57	37.3	45	34.1			
High-grade	61	17.8	36	17.1	10	17.2	26	17.0	25	18.9			
Total	343*	100	211	100	58	100	153	100	132	100			
CIN2													
Normal	18	12.6	17	12.9	10	16.1	7	10.0	1	9.1			
Low-grade	49	34.3	44	33.3	22	35.5	22	31.4	5	45.5			
High-grade	76	53.1	71	53.8	30	48.4	41	58.6	5	45.5			
Total	143*	100	132	100	62	100	70	100	11	100			
CIN3+													
Normal	14	11.5	14	11.9	6	8.2	8	17.8	0	0.0			
Low-grade	21	17.2	21	17.8	18	24.7	3	6.7	0	0.0			
High-grade	87	71.3	83	70.3	49	67.1	34	75.6	4	100			
Total	122	100	118	100	73	100	45	100	4	100			
Total	608	100	461	75.8	193	41.9	268	58.1	147	24.2			

*1 sample lost

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Supplementary table 3. The positive predictive value (PPV) and negative predictive value (NPV) of colposcopy for the detection of CIN2+ and CIN3+ lesions stratified by HPV status

	Visual impression	CIN2+						CIN3+					
		PPV			NPV			PPV			NPV		
		n	%	95% CI									
Overall													
hrHPV positive	Any abnormality	233/424	55.0	50.1-59.7	152/184	82.6	76.2-87.6	108/424	25.5	21.4-29.9	170/184	92.4	87.3-95.6
	High-grade*	163/224	72.8	66.4-78.4	282/384	73.4	68.7-77.7	87/224	38.8	32.5-45.6	349/384	90.9	87.4-93.5
HPV16 positive	Any abnormality	219/340	64.4	59.0-69.5	90/121	74.4	65.5-81.7	104/340	30.6	25.8-35.8	107/121	88.4	81.0-93.3
	High-grade*	154/190	81.1	74.6-86.2	175/271	64.6	58.5-70.2	83/190	43.7	36.6-51.1	236/271	87.1	82.4-90.7
non-16 hrHPV positive	Any abnormality	119/157	75.8	68.2-82.1	20/36	55.6	38.3-71.7	67/157	42.7	34.9-50.8	30/36	83.3	66.5-93.0
	High-grade*	79/89	88.8	79.9-94.2	48/104	46.2	36.4-56.2	49/89	55.1	44.2-65.5	80/104	76.9	67.4-84.4
HPV negative	Any abnormality	100/183	54.6	47.1-62.0	70/85	82.4	72.2-89.5	37/183	20.2	14.8-26.9	77/85	90.6	81.8-95.6
	High-grade*	75/101	74.3	64.4-82.2	127/167	76.0	68.7-82.2	34/101	33.7	24.8-43.8	156/167	93.4	88.2-96.5

Results are displayed stratified for the visual impression of low-grade cervical intraepithelial neoplasia (CIN) or worse (any abnormality) versus high-grade CIN or worse (high-grade).

*including IC

Chapter 5

The increased detection of cervical intraepithelial neoplasia when using a second biopsy at colposcopy: a cross-sectional study

Romy van Baars*, Jacolien van der Marel*, Agata Rodriguez, Wim G.V. Quint, Miekel M. van de Sandt, Johannes Berkhof, Mark Schiffman, Aureli Torné, Jaume Ordi, David Jenkins, René H.M. Verheijen, Theo J.M. Helmerhorst, Bram W.A. ter Harmsel, Nicolas Wentzensen, Marta del Pino

*Both authors contributed equally

Submitted

1. **ABSTRACT**

2.

3. **Objective:** It has been suggested that colposcopy can miss a significant percentage of
4. high-grade cervical intraepithelial neoplasia (CIN2+). Improved disease ascertainment was
5. evaluated by taking multiple lesion-directed biopsies.

6. **Design:** Cross-sectional multicentre study.

7. **Setting:** Two colposcopy clinics in the Netherlands and Spain.

8. **Population:** 610 women with abnormal cytology referred for colposcopy.

9. **Methods:** Multiple directed biopsies were collected from lesions and ranked according to
10. impression. A non-directed biopsy of normal-appearing tissue was added if fewer than four
11. biopsies were collected. We evaluated the incremental CIN2+ yield for one and two directed
12. biopsies and in an additional analysis, CIN2+ outcomes for second biopsies in women who
13. had only one biopsy were imputed. Colposcopic images were reviewed for quality control.

14. **Main outcome measures:** CIN2+ and CIN3+.

15. **Results:** In women with at least two lesion-directed biopsies the yield for CIN2+ increased
16. from 51.7% (95% CI: 45.7-57.7) for one directed biopsy to 60.4% (95% CI: 54.4-66.2) for two
17. biopsies. The highest CIN2+ yield was observed in women who were HPV16-positive, had
18. high-grade squamous intraepithelial lesion (HSIL) cytology, and high-grade colposcopy
19. impression. The yield increased from 83.1% (95% CI: 71.5-90.5) with one directed biopsy
20. to 93.2% (95% CI: 83.8-97.3) with two directed biopsies. Only 4.5% additional CIN2+ were
21. detected in biopsies not targeting abnormal areas on the cervix.

22. **Conclusions:** A second lesion-directed biopsy is associated with a significant increase in
23. CIN2+ detection. Performing a second lesion-directed biopsy and using a low threshold for
24. abnormality of any acetowhiteness should become the standard practice of colposcopy.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

1. INTRODUCTION

2.

3. Colposcopy with lesion-directed biopsy is currently a widely used standard for the eval-
4. uation of women referred with abnormal cervical cytology. The aims of colposcopy are the
5. evaluation of the cervix, with particular attention for the cervical squamocolumnar junction
6. (SCJ) and to determine which abnormal areas should be biopsied. Current biopsy procedures
7. rely on the colposcopic identification of the area on the cervix that most likely represents
8. the worst lesion.¹ The biopsy result determines further management. Generally, if a CIN2 or
9. worse (CIN2+) is found the woman receives treatment. Despite the central role of colposcopy
10. in detecting CIN2+, it has been suggested that it can miss 30-55% of high-grade lesions.²⁻⁶ In
11. a study investigating women with atypical cells of undetermined significance (ASC-US) cytol-
12. ogy and CIN3 or invasive cervical cancer (ICC), it was found that gains in detecting cervical
13. precancer can be obtained by increasing the number of lesion-directed biopsies from one to
14. two.⁶ Moreover, in studies that include biopsies of regions without colposcopic abnormality
15. in addition to lesion-directed biopsies, 12 to 37% of the overall CIN2+ lesions were detected
16. in this biopsy only.^{5,7,8}

17. In this study, the benefit of collecting a second lesion-directed biopsy to detect CIN2+ in
18. women with abnormal cytology from two European study sites was investigated. Further-
19. more, the benefit of collecting an additional biopsy of visual normal appearing tissue (non-
20. directed biopsy) was examined. We studied CIN2+ yields taking into account the women's
21. referral cytology grade, Human Papillomavirus (HPV) status, and colposcopic impression.

22.

23.

24. METHODS

25.

26. Study population

27. Between August 2010 and October 2012, 610 women aged 17 years and older, visiting the
28. gynecological outpatient clinic of the Hospital Clínic in Barcelona, Spain or the Reinier de
29. Graaf Groep in Voorburg, The Netherlands, were enrolled in a cross-sectional study. In Spain,
30. there is opportunistic screening and all women with abnormal cytology are referred for
31. colposcopy. In the Netherlands, there is an organized 5-yearly screening program starting at
32. the age of 30. Cytology grading is done according to the CISOE-A (composition, inflamma-
33. tion, squamous epithelium, other and endocervical columnar epithelium, and adequacy of
34. the smear) classification.⁹ Women with Pap smears graded as borderline or mild dyskaryosis
35. (BMD) are recalled for repeat cytology after 6 and 18 months and are referred for colposcopy if
36. the repeat cytology result is abnormal (borderline dyskaryosis or worse). Outside the national
37. screening program, women with clinical symptoms indicative of cervical pathology (e.g. post
38. coital bleeding) also receive cytological examination. All women in this study were referred
39. for colposcopic evaluation because of abnormal cytology, which was detected at local health

1. centers between 1 and 6 months prior to the study visit. Inclusion and exclusion criteria and
2. patient characteristics have been described previously.¹⁰ This study was approved by the
3. medical ethical boards of both hospitals. All women provided signed informed consent. This
4. study is registered in the Dutch Trial register (NTR3464).

5.

6. **Cytology and high-risk HPV (hrHPV) detection**

7. Before colposcopy, a liquid based cytology sample using a Cervex-Brush® (Rovers Medical
8. Devices B.V., Oss, The Netherlands) was obtained. The Cervex-Brush was rinsed in ThinPrep®
9. medium (Hologic, Marlborough, MA) in Spain, and in SurePath™ medium (Klinipath BV,
10. Duiven, The Netherlands) in the Netherlands. Cytological examination and classification
11. was performed at the local laboratory in Spain according to the Bethesda 2001 classification
12. (negative, ASC-US, low-grade squamous intraepithelial lesion (LSIL), high-grade squamous
13. intraepithelial lesion (HSIL), atypical glandular cells of undetermined significance (AGUS),
14. atypical squamous cells- cannot exclude HSIL (ASC-H), adenocarcinoma in situ (AIS) or ICC).
15. In the Netherlands grading was done according to the CISOE-A classification, which was
16. translated into the Bethesda 2001 classification as described earlier.⁹

17. GP5+/6+ PCR based HPV genotyping was performed at both laboratories in the Nether-
18. lands and in Spain.¹⁰ In brief, DNA extraction was performed using 250µL of the cytology
19. specimen to obtain 100µL of eluate with the QIAamp MinElute Virus Spin kit (QIAgen Inc.,
20. Valencia, CA). In the Netherlands, 10 µL of isolated DNA was amplified and genotyped, using
21. the LMNX HPV GP Genotyping kit (Labo Bio-medical Products BV, Rijswijk, The Netherlands).
22. ¹¹ In Spain, HPV detection was performed using the GP5+/6+-PCR-EIA (Diassay, Rijswijk, The
23. Netherlands). The EIA-positive GP5+/6+ amplimers were genotyped by the Genotyping kit
24. HPV GP (Diassay). The strip-based genotyping test targets the same 18 HPV types as the
25. LMNX test.

26.

27. **Colposcopy procedure**

28. Colposcopic examination was performed using a digital colposcopy imaging system (Bound-
29. ary Marketing Tool) created by the National Cancer Institute (NCI) in collaboration with the
30. National Library of Medicine (NLM), Bethesda, USA.¹² Nine colposcopists were involved in
31. this study. Acetic acid 5% was applied for eliciting the acetowhite epithelial response. Up
32. to four directed biopsies were collected from different lesions or different regions within 1
33. lesion. Distinct areas within a large complex lesion were biopsied separately. If fewer than 4
34. directed biopsies were taken, a biopsy from normal appearing epithelium of the SCJ (non-
35. directed biopsy) was added. An endocervical curettage (ECC) was collected if the SCJ was
36. not or only partially visible, if there was suspicion of ICC, if the visualized lesion extended
37. in the endocervical canal and if the SCJ was visible but no or marginal abnormalities were
38. visualized. Overall colposcopic impression was graded as normal (including acetowhitening
39. suggestive for metaplastic changes), low-grade, high-grade or worse.^{13, 14} Biopsies were

1. ranked by order of severity according to their colposcopic impression. When the impression
2. was similar between two lesions, the two biopsies were ranked by order of collection. From
3. women with an available digital colposcopic image a review of the total colposcopic impres-
4. sion and the impression of the location of the non-directed biopsy was conducted. In total
5. 447/610 (73.3%) digital colposcopy images were available for review. Each coloscopist in
6. Voorburg reviewed a subset of the Barcelona images in order to have all images reviewed
7. and three of six coloscopists in Barcelona reviewed the Voorburg images. A low threshold
8. for abnormality (any acetowhiteness suggestive of metaplastic changes) was used in the
9. reviewing process.

10.

11. Pathological diagnosis and grading

12. Biopsy specimens were fixed in 10% formalin and paraffin-embedded. Hematoxylin and Eo-
13. sin (H&E) sections were examined by a local pathologist and classified as normal, CIN1, CIN2,
14. CIN3, including 2 cases with adenocarcinoma in situ (AIS), or ICC. The overall histological
15. diagnosis per case was based on the worst diagnosis found in all specimens of each woman.
16. All biopsies were independently reviewed by a second central gynaecological pathologist. In
17. case of disagreement between the original and review diagnosis, a third central pathologist
18. reviewed the discordant cases independently. Consensus diagnosis was determined by the
19. agreement of 2 of 3 interpretations. In case of 3 different diagnoses, the 2 central pathologists
20. came to an agreement after reviewing the discordant case together. P16 immunohistochemi-
21. cal staining (Clone JC8, SantaCruz Biotechnology Inc.) was performed on an adjacent section
22. and scoring was based on the extent of the staining. The scoring of p16 included nuclear and
23. cytoplasmic staining and was graded as negative/ patchy staining or positive staining.

24.

25. Statistical analysis

26. Contingency tables were used to report patient characteristics of the study populations in
27. Spain and the Netherlands. Because colposcopy is performed with knowledge of referral
28. cytology result, the populations were stratified by referral cytology and also by colposcopic
29. impression (normal, low-grade, high-grade or worse). Furthermore, since HPV16 is known to
30. be the most carcinogenic HPV type,¹⁵ populations were stratified by HPV16 status (HPV16
31. positive and HPV16 negative, including HPV negative and low-risk HPV).

32. Since only a minority (18.8%) of women received more than two directed biopsies, an
33. unbiased evaluation of the yield of CIN2+ for three and four lesion-directed biopsies was
34. not possible. Therefore we focused our main analyses on the yield of CIN2+ for the first and
35. second lesion-directed biopsy only excluding women with only 1 directed biopsy from our
36. analysis. Also, we excluded women with ECC only (n=19) from this analysis. The absolute yield
37. of CIN2+ was used to assess the incremental benefit of collecting two instead of one directed
38. biopsy. The absolute yield is the percentage of women with two or more directed biopsies
39. found to have CIN2+. For each woman, only one CIN2+ was included in the calculation of

1. yield, even if multiple CIN2+ lesions were detected. Furthermore, CIN2+ yield was calculated
2. for different combinations of cytologic, virologic, and colposcopic results with one and two
3. directed biopsies. Only risk stratifications with 15 or more cases were included because data
4. were unstable with lower numbers. We also performed a secondary analysis representing
5. absolute CIN2+ yields for the complete study population. To achieve this, we imputed CIN2+
6. outcomes for second biopsies that were not performed as previously described (Unpublished
7. observations by Wentzensen et al.) (Supplementary information 1). Comparison between
8. CIN2+ yield percentages were calculated using McNemar's test. All analyses were performed
9. using SPSS 20.0 (Armonk, NY) and SAS 9.1 (Cary, NC).

10.

11.

12. **RESULTS**

13.

14. **Characteristics of the study populations**

15. Patient characteristics per histological outcome for the study sites Voorburg, The Netherlands
16. and Barcelona, Spain are shown in Table 1. The median age of women included in the study
17. in Voorburg (n=99) was 39.0 years (range: 21-61) and 34.0 years (range: 17-92) in Barcelona
18. (n=511); p<0.001. Referral cytology grading and HPV status (HPV positivity, HPV16 positivity
19. and multiple hrHPV type infections) were similar in both sites; p=0.859 for cytology grad-
20. ing, p=0.507, p=0.510, and p=0.961 for HPV positivity, HPV16 positivity, and multiple hrHPV
21. infections respectively. Colposcopic impression was significantly different between both
22. sites; more high-grade impression was found in Voorburg and more negative/acetowhite
23. impression in Barcelona; p<0.001. The median number of biopsies in Voorburg was 3.0 and
24. in Barcelona 2.0; p<0.001. A larger proportion of CIN2+ cases was diagnosed in Voorburg
25. compared to Barcelona; p=0.006.

26. In the combined population, 172 (28.2%) women had one lesion-directed biopsy, 148
27. (24.3%) had two directed biopsies, 63 (10.3%) women had three directed biopsies, 52 (8.5%)
28. had four directed biopsies and 156 (25.6%) women received only a non-directed biopsy. We
29. found CIN2+ solely in endocervical curettage (ECC) in 19 women (7%) and this group had a
30. median age of 43 years.

31. In both study sites the CIN2+ yield increased when collecting increasing numbers of lesion-
32. directed biopsies and results for CIN3 or worse were similar although numbers were lower.
33. When we used a biomarker enhanced endpoint for CIN2+ following recent US guidelines for
34. grading CIN¹⁶ and excluded p16 negative CIN2 lesions to achieve high specificity for cervical
35. precancer, the CIN2+ yield per biopsy was slightly lower among women with low-grade and
36. high-grade impression although not significant (data not shown).

37.

38.

39.

1. **Table 1.** Patient characteristics per study site2. **Table 1a.** Patient characteristics Voorburg

		Histology									
		Total		Negative		CIN1		CIN2		CIN3+	
		n	%	n	%	n	%	n	%	n	%
Median age (range)		39.0 (21-61)		44.5 (21-61)		38.5 (23-57)		36.5 (21-61)		40.0 (25-60)	
Referral cytology	99	100		26	100	18	100	28	100	27	100
ASC-US	13	13.1		5	19.2	4	22.2	3	10.7	1	3.7
LSIL	31	31.3		11	42.3	7	38.9	9	32.1	4	14.8
HSIL	55	55.6		10	38.5	7	38.9	16	57.1	22	81.5
ASC-H	0	0		0	0	0	0	0	0	0	0
AGUS	0	0		0	0	0	0	0	0	0	0
Adenocarcinoma	0	0		0	0	0	0	0	0	0	0
HPV status*	97	100		25	100	18	100	27	100	27	100
HPV- / Low-risk HPV+	26	26.8		13	52.0	8	44.4	4	14.8	1	3.7
High-risk HPV+	71	73.2		12	48.0	10	55.6	23	85.2	26	96.3
HPV16+	28	28.9		5	41.6	1	10.0	7	30.4	15	57.7
Multiple HPV infection	19	19.6		3	25.0	3	30.0	6	26.1	7	26.9
Colposcopic Impression	99	100		26	100	18	100	28	100	27	100
Normal	2	2.0		2	7.7	0	0.0	0	0.0	0	0.0
Low-grade lesion	35	35.4		13	50.0	9	50.0	12	42.9	1	3.7
High-grade lesion	62	62.6		11	42.3	9	50.0	16	57.1	26	96.3
Median number of biopsies		3.0 (0-4)			2.0 (0-4)		3.0 (2-4)		3.0 (1-4)		3.0 (2-4)
P16 immunohistochemistry	99	100		26	100	18	100	28	100	27	100
Negative	34	34.3		22	84.6	10	55.6	2	7.1	0	0.0
Positive	65	65.7		4	15.4	8	44.4	26	92.9	27	100

26. * 2 Missing values are excluded

27. **Detection of CIN2+ and CIN3+ using lesion-directed biopsies**

29. In total 263/610 (43.1%) women with 2 or more lesion-directed biopsies were included in this
 30. analysis. CIN2+ and CIN3+ yields for one and two directed biopsies are shown in table 2. We
 31. first stratified the analysis of detection of CIN2+ and CIN3+ by colposcopic impression. No
 32. CIN2+ and CIN3+ was detected in women with no or marginal colposcopic abnormalities,
 33. but substantially more among women with low-grade and especially high-grade impression.
 34. Among 91 women with low-grade impression, the yield of CIN2+ increased from 30.8% for
 35. one biopsy to 38.5% for two biopsies. Among 172 women with high-grade colposcopic
 36. impression, the yield increased from 62.8% for one biopsy to 72.1% for two biopsies. In other
 37. stratified analyses, the highest CIN2+ yields for a second directed biopsy were observed for
 38. women with HPV16 positivity (83.7%) and HSIL+ (including HSIL, ASC-H, AGUS and Adeno-
 39. carcinoma) referral cytology (73.0%) (Table 2). In all strata (except for women with normal/

1. **Table 1b.** Patient characteristics Barcelona

		Histology									
		Total		Negative		CIN1		CIN2		CIN3+*	
		34.0 (17-92)	34.0 (19-74)	31.0 (17-64)	34.0 (20-74)	36.0 (23-92)	n	%	n	%	n
Median age (range)		n	%	n	%	n	%	n	%	n	%
Referral cytology		511	100	195	100	105	100	116	100	95	100
ASC-US		58	11.4	35	17.9	14	13.3	6	5.2	3	3.2
LSIL		169	33.1	103	52.8	49	46.7	15	12.9	2	2.1
HSIL		264	51.7	47	24.1	41	39.0	89	76.7	87	91.6
ASC-H		18	3.5	10	5.1	1	1.0	6	5.2	1	1.1
AGUS		1	0.2	0	0.0	0	0.0	0	0.0	1	1.1
Adenocarcinoma		1	0.2	0	0.0	0	0.0	0	0.0	1	1.1
HPV status		511	100	195	100	105	100	116	100	95	100
HPV- / Low-risk HPV+		121	23.7	90	46.2	21	20.0	7	6.0	3	3.2
High-risk HPV+		390	76.3	105	53.8	84	80.0	109	94.0	92	96.8
HPV16+		165	32.3	28	26.7	24	28.6	55	50.5	58	63.0
Multiple HPV infection		97	19.0	24	22.9	27	32.1	29	26.6	17	18.5
Colposcopic Impression		511	100	195	100	105	100	116	100	95	100
Normal		182	35.6	116	59.5	34	32.4	18	15.5	14	14.7
Low-grade lesion		165	32.3	56	28.7	52	49.5	37	31.9	20	21.1
High-grade lesion		164	32.1	23	11.8	19	18.1	61	52.6	61	64.2
Median number of biopsies		2.0 (0-5)		1.0 (0-4)		2.0 (0-4)		3.0 (0-4)		3.0 (0-4)	
P16 immunohistochemistry		511	100	195	100	105	100	116	100	95	100
Negative		220	43.1	182	93.3	27	25.7	8	6.9	3	3.2
Positive		291	56.9	13	6.7	78	74.3	108	93.1	92	96.8

25. *Including 6 carcinomas

26. 27. acetowhite colposcopic impression), the absolute increase in CIN2+ yield from the first to the
28. second biopsy was statistically significant and ranged from 5.5% to 10.2%. Yields for histo-
29. logical endpoint CIN3+ were lower, but the absolute increase in CIN3+ yield from the first to
30. the second biopsy was statistically significant in almost all strata, except for the women with
31. normal/acetowhite impression and ASC-US or LSIL referral cytology.

32. 33. When we studied the larger population of women with at least a directed or non-directed
34. biopsy (n=590) and imputed CIN2+ outcomes for second biopsies, we found similar relative
35. increases in yield for second directed biopsies in all risk strata of colposcopic impression,
36. although absolute CIN2+ yields per biopsy were lower (Supplementary table 1).

37.

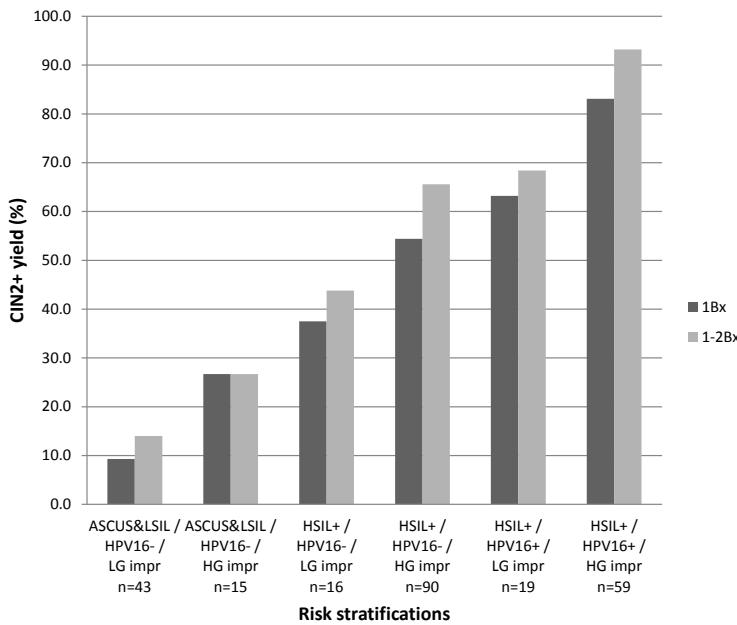
38.

39.

Table 2. Cumulative yield of CIN2+ and CIN3+ for 1 or 2 directed biopsies in women with ≥ 2 lesion-directed biopsies

	CIN2+ detected (n)	Cumulative CIN2+ yield (%)	95% CI	CIN3+ detected (n)	Cumulative CIN3+ yield (%)	95% CI
ALL (n=263)						
Bx1	136	51.7	45.7-57.7	63	24.0	19.2-29.5
Bx1-2	159	60.4	54.4-66.2	80	30.4	25.2-36.2
Colposcopy impression normal/acetowhitering (n=0)						
Bx1	0	0.0	n.a.	0	0.0	n.a.
Bx1-2	0	0.0	n.a.	0	0.0	n.a.
Colposcopy impression low-grade (n=91)						
Bx1	28	30.8	22.2-40.9	11	12.1	6.9-20.4
Bx1-2	35	38.5	29.1-48.7	12	13.2	7.7-21.7
Colposcopy impression high-grade (n=172)						
Bx1	108	62.8	55.4-69.7	52	30.2	23.9-37.5
Bx1-2	124	72.1	65.0-78.3	68	39.5	32.5-47.0
HPV16- (n=164)						
Bx1	63	38.4	31.3-46.0	22	13.4	9.0-19.5
Bx1-2	76	46.3	38.9-54.0	31	18.9	13.7-25.6
HPV16+ (n=98)						
Bx1	72	73.5	64.0-81.2	41	41.8	32.6-51.7
Bx1-2	82	83.7	75.1-89.7	49	50.0	40.3-59.7
Referral cytology ASC-US (n=18)						
Bx1	7	38.9	20.3-61.4	4	22.2	9.0-45.2
Bx1-2	8	44.4	24.6-66.3	4	22.2	9.0-45.2
Referral cytology LSIL (n=60)						
Bx1	12	20.0	11.8-31.8	4	6.7	2.6-15.9
Bx1-2	16	26.7	17.1-39.0	5	8.3	3.6-18.1
Referral cytology HSIL+ (n=185)						
Bx1	117	63.2	56.1-69.9	55	29.7	23.6-36.7
Bx1-2	135	73.0	66.2-78.9	71	38.4	31.7-45.6

Bx; Biopsy, Bx1; CIN2+ found with the first biopsy only, Bx 1-2; CIN2+ found with the first two biopsies


30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

1. **Detection of CIN2+ using non-directed biopsies targeting normal appearing areas**
2. In 492/610 women (80.7%) a non-directed biopsy was performed exclusively or in addition to lesion-targeted biopsies. In 156 women the non-directed biopsy was the only collected biopsy. In 158 women the non-directed biopsy was the second biopsy, in 124 the third, in 53 the fourth. Twelve of 156 women with a non-directed biopsy only yielded CIN2+. Among women with one directed biopsy adding the non-directed biopsy increased the CIN2+ yield from 53 to 62/158 (33.5% (95% CI: 26.7-41.2) to 39.2% (95% CI: 32.0-47.0)). This increase in yield was statistically significant ($p=0.004$). Among women with two directed biopsies the CIN2+ yield increased from 67 to 71/124 (54.0% (95% CI: 45.3-62.6) to 57.3% (95% CI: 48.5-65.6) which was not statistically significant ($p=0.125$). Among women with three directed biopsies there was no yield of CIN2+ when adding a non-directed biopsy (Table 3).
3. In an analysis that considered a biopsy as non-directed only if two independent reviewers of the colposcopic images called the impression at the biopsy site normal, without any acetowhiteening, only 12 (6.7%) additional CIN2+ were detected which is 4.5% in the total study population. Among women with one directed biopsy adding the consensus non-directed biopsy increased the yield of CIN2+ from 53 to 56/158 (33.5% (95% CI: 26.7-41.2) to 35.4% (95% CI: 28.4-43.2)). This increase was not statistically significant ($p=0.250$). Among women with two directed biopsies the yield increased from 67 to 68/124 (54.0% (95% CI: 45.3-62.6) to 54.8% (95% CI: 46.1-63.3)) which was not a statistical significant increase either ($p=1.000$) (Table 3).
4. **Table 3. Detection of CIN2+ by lesion-directed biopsies and additional yield by targeting normal appearing areas, by number of biopsies targeting cervical lesions**

Number of biopsies targeting lesions	Yield of CIN2+ based on lesion-directed biopsies	Additional yield of biopsy targeting normal areas	Additional yield of consensus non-directed biopsies
0	NA	12/156 (7.7%)	8/12 (6.6%)
1	53/158 (33.5%)	9/158 (5.7%)	3/96 (3.1%)
2	67/124 (54.0%)	4/124 (3.2%)	1/79 (1.3%)
3	37/53 (69.8%)	0/53 (0%)	0/25 (0%)

30. NA; not applicable

31. **Yield of CIN2+ using combined risk stratifications**
32. We calculated CIN2+ yield for different combinations of cytologic, virologic, and colposcopic results with one and two directed biopsies (Figure 1). Among women with HPV16-positive HSIL+ referral cytology and high grade colposcopic impression the yield of CIN2+ increased from 83.1% for those with one directed biopsy to 93.2% for women with two directed biopsies (Figure 1).
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.

Figure 1. Cumulative CIN2+ yield for one or two directed biopsies using different risk stratifications (cytology grade, HPV16 status and colposcopic impression) in women with ≥ 2 directed biopsies.

DISCUSSION

Main findings

Colposcopy of the cervix is a key diagnostic procedure in women with abnormal cytology that aims at the detection of cervical precancer. It requires experience to acquire expertise in this procedure but even then there is only moderate correlation between colposcopic assessment and the final histological diagnosis.^{3,4} New evidence in cervical cancer prevention strategies was being translated in a supplement of the European guidelines for Quality Assurance in Cervical Cancer Screening,¹ but colposcopic practice was not addressed in detail. A recent US study used an extended biopsy protocol in a US colposcopy referral population to evaluate the incremental benefit of taking up to four biopsies (Unpublished observations by Wentzensen et al.). We applied this protocol in a European study population of women referred according to conventional European screening practice with a median age of over 35 years (compared to 27 years in the US population). We showed that the yield of CIN2+ and CIN3+ increased significantly when a second biopsy from lesion-directed tissue was added. Even when there was a high-grade colposcopic impression, not all prevalent CIN2+ was detected with one directed biopsy, highlighting the difficulty of identifying the worst lesion on the cervix. When we excluded p16 negative CIN2 lesions to achieve high specificity for cervical precancer following the recent LAST guidelines,¹⁶ the results were similar. Dif-

1. ferences in number of collected biopsies and colposcopic impression for both study sites in
2. the Netherlands and Spain with comparable referral cytology and HPV results represent the
3. importance of the need of consensus colposcopic practice.

4.

5. **Strengths and limitations**

6. To our knowledge this is one of the first studies systematically investigating colposcopic
7. performance for the detection of high-grade cervical lesions by collecting multiple biop-
8. sies. Since this study has a cross-sectional design we did not use longitudinal histological
9. end point data and we might underestimate the prevalence of CIN2+. Women included in
10. the study receive 6 monthly cytological follow-up for at least 2 years after the first visit to
11. estimate missed prevalent and incident disease. This follow-up is currently ongoing. Since
12. only 19% of women received 3 or 4 lesion-directed biopsies in our study, we were unable to
13. draw conclusions from the CIN2+ yield for the third and fourth directed biopsies. To study
14. the more complete, heterogeneous population including women with less than 2 directed
15. biopsies, we performed an analysis where we imputed biopsies that were not collected in
16. all women with less than 4 directed biopsies (Supplementary information 1, Supplementary
17. table 1). This analysis reflects absolute yields for the first and second directed biopsies for the
18. complete study population. Consequently, absolute yields per biopsy were lower, but relative
19. increases in CIN2+ yields were similar to the original yields. Furthermore, an image review
20. was done on digital images which might not be representative for real time colposcopy.¹⁷ We
21. did not observe adverse events related to collection of multiple biopsies and the procedure
22. was well tolerated.

23.

24. **Interpretation**

25. Our findings are in agreement with previous studies that show that a single biopsy from the
26. most worrisome lesion can fail to detect CIN2+.^{2,6,7} The yield of the first directed biopsy was
27. higher compared to a recent similar US study (Unpublished observations by Wentzensen et
28. al.). The women in our study were referred according to conventional European screening
29. practice with a median age of over 35 years and on the basis of any abnormal cytology grade
30. including a single ASC-US smear. Compared to the US study the median age and the propor-
31. tion HSIL referral cytology in our study were higher, and more CIN2+ cases were diagnosed.
32. This shows that more high-grade disease was present in our study compared to the US study
33. population and this difference determines the yield of CIN2+ in both studies. We showed
34. that performing a second directed biopsy appeared particularly useful. For comparison, a
35. recent large study on the benefit of ECC found a yield of only 1% for endocervical sampling,
36. ¹⁸ which is lower compared to the 5-10% yield of a second biopsy observed in our study. In
37. other studies on cervical biopsies, multiple non-directed biopsies were collected and it was
38. estimated that 10-30% of CIN2+ were found by these non-directed biopsies.^{5,7,8,19} In our
39. study, the total additional benefit of non-directed biopsies for detecting CIN2+ was lower

1. (9.4%). We regarded 'acetowhitening suggestive for metaplastic changes' as 'normal'. When
2. considering a biopsy as non-directed only if two independent reviewers of the colposcopic
3. images called the impression at the biopsy normal (without any acetowhitening), even less
4. (6.7%) additional CIN2+ was found in women with non-directed biopsies. We found CIN2+
5. solely in an ECC in 7% of women and this group had a median age of 43 years. As the rate of
6. ECCs showing high-grade CIN increases with age, the proportion of CIN2+ diagnosed in an
7. ECC only in studies with younger populations will likely be less compared with our findings.
8. ^{7,20}

9.

10.

11. CONCLUSION

12.

13. The results of this study confirm the importance of performing colposcopy according to
14. standardized practice and affirm the importance of performing two instead of one lesion-
15. directed biopsy to detect high-grade cervical disease. Our results suggest that adding an
16. extra directed biopsy rather than collecting only one biopsy from the worst appearing site
17. increases the yield of CIN2+ significantly. Furthermore, when a very low threshold for abnor-
18. mality (any acetowhitening) is used, adding a non-directed biopsy to increase the yield in de-
19. tecting CIN2+ might be redundant because prevalent high-grade lesions could be detected
20. by directed biopsies. As a result of the increase in yield of CIN2+, management decisions for
21. women with cervical precancer can be made earlier. However, it remains to be elucidated
22. how relevant the earlier detection of CIN2 and also CIN3 lesions is because small lesions that
23. are not easy to detect with one biopsy are more likely to regress spontaneously than evident
24. lesions.²¹ A growing interest exists for clinical use of hrHPV testing to triage women who have
25. minor cervical cytological changes, in the follow-up of women who are treated for CIN2+,
26. and in primary screening against cervical cancer.²²⁻²⁵ Standardized colposcopic procedures
27. are necessary in optimizing these new triage, follow-up and screening strategies. Our find-
28. ings confirm that performing an additional lesion-directed biopsy will improve performance
29. and efficiency of cervical cancer screening.

30.

31.

32. ACKNOWLEDGEMENTS

33.

34. We thank Nadia Abu-Lhiga, Hospital Clínic; Frank Smedts, Reinier de Graaf Groep; for their
35. clinical assistance. We thank Lorena Marimon, Hospital Clínic; Hanna Breijer, Leids Cytolo-
36. gisch Pathologisch Laboratorium; Karin van Kampen; Reinier de Graaf Groep; Peter Lanser,
37. DDL Diagnostic Laboratory for their technical assistance. We thank Greg Rydzak, IMS Health,
38. for his statistical assistance. We wish to thank all colposcopists, laboratory personnel and the
39. women who have participated in this study.

1. DETAILS OF ETHICS APPROVAL

- 2.
3. Medical ethical approval from the institutional ethics boards from Hospital Clinic, Barcelona, Spain and from Reinier de Graaf Groep, Voorburg, The Netherlands was received (protocol number 10-023). The study was registered in the Dutch trial registry (NTR3464).
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.

1. REFERENCES

2. 1. Arbyn M, Anttila A, Jordan J, Ronco G, Schenck U, Segnan N, et al. European Guidelines for Quality Assurance in Cervical Cancer Screening. Second edition—summary document. *Ann Oncol*. 2010; **21**(3): 448-58.
5. 2. Stoler MH, Wright TC, Jr., Sharma A, Apple R, Gutekunst K, Wright TL. High-risk human papillomavirus testing in women with ASC-US cytology: results from the ATHENA HPV study. *Am J Clin Pathol*. 2011; **135**(3): 468-75.
8. 3. Bekkers RL, van de Nieuwenhof HP, Neesham DE, Hendriks JH, Tan J, Quinn MA. Does experience in colposcopy improve identification of high grade abnormalities? *Eur J Obstet Gynecol Reprod Biol*. 2008; **141**(1): 75-8.
11. 4. Massad LS, Collins YC. Strength of correlations between colposcopic impression and biopsy histology. *Gynecol Oncol*. 2003; **89**(3): 424-8.
12. 5. Pretorius RG, Zhang WH, Belinson JL, Huang MN, Wu LY, Zhang X, et al. Colposcopically directed biopsy, random cervical biopsy, and endocervical curettage in the diagnosis of cervical intraepithelial neoplasia II or worse. *Am J Obstet Gynecol*. 2004; **191**(2): 430-4.
14. 6. Gage JC, Hanson VW, Abbey K, Dippery S, Gardner S, Kubota J, et al. Number of cervical biopsies and sensitivity of colposcopy. *Obstet Gynecol*. 2006; **108**(2): 264-72.
16. 7. Pretorius RG, Belinson JL, Azizi F, Peterson PC, Belinson S. Utility of random cervical biopsy and endocervical curettage in a low-risk population. *J Low Genit Tract Dis*. 2012; **16**(4): 333-8.
17. 8. Nam K, Chung S, Kwak J, Cha S, Kim J, Jeon S, et al. Random biopsy after colposcopy-directed biopsy improves the diagnosis of cervical intraepithelial neoplasia grade 2 or worse. *J Low Genit Tract Dis*. 2010; **14**(4): 346-51.
20. 9. Bulk S, Van Kemenade FJ, Rozendaal L, Meijer CJ. The Dutch CISOE-A framework for cytology reporting increases efficacy of screening upon standardisation since 1996. *J Clin Pathol*. 2004; **57**(4): 388-93.
23. 10. van der Marel J, van Baars R, Quint W, Berkhof J, Del Pino M, Torne A, et al. The impact of human papillomavirus genotype on colposcopic appearance: a cross-sectional analysis. *BJOG*. 2014.
24. 11. Geraets DT, Heideman DA, de Koning MN, Snijders PJ, van Alewijk DC, Meijer CJ, et al. High-throughput genotyping of high-risk HPV by the digene HPV Genotyping LQ Test using GP5+/6+ PCR and xMAP technology. *J Clin Virol*. 2009; **46 Suppl 3**: S21-S6.
27. 12. Jeronimo J, Long LR, Neve L, Michael B, Antani S, Schiffman M. Digital tools for collecting data from cervigrams for research and training in colposcopy. *J Low Genit Tract Dis*. 2006; **10**(1): 16-25.
29. 13. Strander B, Ellstrom-Andersson A, Franzen S, Milsom I, Radberg T. The performance of a new scoring system for colposcopy in detecting high-grade dysplasia in the uterine cervix. *Acta Obstet Gynecol Scand*. 2005; **84**(10): 1013-7.
31. 14. Reid R, Stanhope CR, Herschman BR, Crum CP, Agronow SJ. Genital warts and cervical cancer. IV. A colposcopic index for differentiating subclinical papillomaviral infection from cervical intraepithelial neoplasia. *Am J Obstet Gynecol* 1984; **149**(8): 815-23.
34. 15. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El GF, et al. A review of human carcinogens—Part B: biological agents. *Lancet Oncol*. 2009; **10**(4): 321-2.
35. 16. Darragh TM, Colgan TJ, Thomas Cox J, Heller DS, Henry MR, Luff RD, et al. The Lower Anogenital Squamous Terminology Standardization project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. *Int J Gynecol Pathol*. 2013; **32**(1): 76-115.

17. Jeronimo J, Massad LS, Castle PE, Wacholder S, Schiffman M. Interobserver agreement in the evaluation of digitized cervical images. *Obstet Gynecol*. 2007; **110**(4): 833-40.
18. Gage JC, Duggan MA, Nation JG, Gao S, Castle PE. Detection of cervical cancer and its precursors by endocervical curettage in 13,115 colposcopically guided biopsy examinations. *Am J Obstet Gynecol*. 2010; **203**(5): 481-9.
19. Pretorius RG, Belinson JL, Burchette RJ, Hu S, Zhang X, Qiao YL. Regardless of skill, performing more biopsies increases the sensitivity of colposcopy. *J Low Genit Tract Dis*. 2011; **15**(3): 180-8.
20. Solomon D, Stoler M, Jeronimo J, Khan M, Castle P, Schiffman M. Diagnostic utility of endocervical curettage in women undergoing colposcopy for equivocal or low-grade cytologic abnormalities. *Obstet Gynecol*. 2007; **110**(2 Pt 1): 288-95.
21. Zaal A, Louwers JA, Berkhof J, Kocken M, Ter Harmsel WA, Graziosi GC, et al. Agreement between colposcopic impression and histological diagnosis among human papillomavirus type 16-positive women: a clinical trial using dynamic spectral imaging colposcopy. *BJOG*. 2012; **119**(5): 537-44.
22. Arbyn M, Sasieni P, Meijer CJ, Clavel C, Koliopoulos G, Dillner J. Chapter 9: Clinical applications of HPV testing: a summary of meta-analyses. *Vaccine*. 2006; **24 Suppl 3**: S3/78-S3/89.
23. Rijkaart DC, Berkhof J, van Kemenade FJ, Coupe VM, Rozendaal L, Heideman DA, et al. HPV DNA testing in population-based cervical screening (VUSA-Screen study): results and implications. *Br J Cancer*. 2012; **106**(5): 975-81.
24. Bulkmans NW, Rozendaal L, Snijders PJ, Voorhorst FJ, Boeke AJ, Zandwijken GR, et al. POBASCAM, a population-based randomized controlled trial for implementation of high-risk HPV testing in cervical screening: design, methods and baseline data of 44,102 women. *Int J Cancer*. 2004; **110**(1): 94-101.
25. Kitchener HC, Almonte M, Thomson C, Wheeler P, Sargent A, Stoykova B, et al. HPV testing in combination with liquid-based cytology in primary cervical screening (ARTISTIC): a randomised controlled trial. *Lancet Oncol*. 2009; **10**(7): 672-82.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.

1. **SUPPLEMENTARY DATA**

2.

3. **Supplementary information 1**

4.

5. *Imputation approach*

6. We imputed CIN2+ outcomes for biopsies that were not performed in order to present the
7. range of plausible assumptions. The first model imputed the unobserved yields based on an
8. assumption that an additional biopsy would not have detected any additional CIN2+ (i.e.,
9. that yield of a second directed biopsy would have been zero), which is the implicit assump-
10. tion of current clinical practice that takes only one biopsy from the worst lesion; this model
11. minimizes the yield estimate. The second model imputed based on the assumption that an
12. additional directed biopsy would have had the same marginal yield as among women from
13. whom a second directed biopsy was actually collected; this model maximizes yield. As an
14. intermediate, we estimated that a second directed biopsy had the same CIN2+ yield as an ad-
15. ditional biopsy from normal-appearing tissue. All three reasonable assumptions gave similar
16. answers; for data presentation, we showed the third imputation approach when estimating
17. yield of a second biopsy in risk strata of colposcopic impression, referral cytology result and
18. HPV16 result (Supplementary table 1).

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

1. **Supplementary table 1.** Imputed cumulative yield of CIN2+ for 1-2 directed biopsies

		CIN2+ detected (n)	Cumulative CIN2+ yield (%)	95% CI
2.				
3.	All women with ≥ 1 biopsy (n=590)			
4.	Bx1	195	34.9	31.1 - 38.9
5.	Bx1-2	218	42.3	38.4 - 46.5
6.	Colposcopy impression normal/acetowhiteness (n=168)			
7.	Bx1	3	8.3	4.8 - 13.9
8.	Bx1-2	3	~*	~*
9.	Colposcopy impression low-grade (n=199)			
10.	Bx1	53	26.6	20.8 - 33.4
11.	Bx1-2	60	32.2	25.8 - 39.2
12.	Colposcopy impression high-grade (n=224)			
13.	Bx1	139	62.3	56.2 - 69.2
14.	Bx1-2	155	70.4	64.0 - 76.3
15.	HPV16- (n=403)			
16.	Bx1	92	24.1	20.0 - 28.6
17.	Bx1-2	105	29.8	25.4 - 34.6
18.	HPV16+ (n=186)			
19.	Bx1	102	58.1	50.6 - 65.2
20.	Bx1-2	112	68.3	61.0 - 74.8
21.	Cytology ASC-US (n=67)			
22.	Bx1	10	14.9	7.8 - 26.2
23.	Bx1-2	11	19.6	11.1 - 31.2
24.	Cytology LSIL (n=194)			
25.	Bx1	21	11.9	7.8 - 17.5
26.	Bx1-2	25	14.0	9.5 - 19.8
27.	Cytology HSIL+ (n=330)			
28.	Bx1	164	52.4	46.9 - 57.9
29.	Bx1-2	182	62.3	56.9 - 67.6

29. Bx; Biopsy, Bx 1; CIN2+ found with the first biopsy only, Bx 1-2; CIN2+ found with the first two biopsies, * number of cases with \geq one targeted biopsy is less than 15

31.

32.

33.

34.

35.

36.

37.

38.

39.

Chapter 6

**Categorisation of CIN to
address histological problems
of CIN 1 and 2 by combining
viral biomarker panHPVE4,
proliferation marker MCM and
transformation marker p16**

Romy van Baars*, Heather Griffin*, Zhonglin Wu, Yasmina Soneji, Miekel M. van de Sandt, Rupali Arora, Jacolien van der Marel, Bram W.A. ter Harmsel, Robert Jach, Krzysztof Okon, Hubert Huras, David Jenkins, Wim G.V. Quint, John Doorbar

*Both authors contributed equally

In preparation

Chapter 7

CADM1 and MAL methylation status in cervical scrapes is representative for the most severe underlying lesion in women with multiple cervical lesions

Romy van Baars, Jacolien van der Marel, Peter J.F. Snijders, Agata Rodriguez-Manfredi, Bram ter Harmsel, Henk A.M. van den Munckhof, Jaume Ordi, Marta del Pino, Miekel M. van de Sandt, N. Wentzensen, Chris J.L.M. Meijer, Wim G.V. Quint

In preparation

Chapter 8

Oncogenic human papillomavirus-infected immature metaplastic cells and cervical neoplasia

Jacolien van der Marel, Romy van Baars, Inmaculada Alonso, Marta del Pino, Miekel M. van de Sandt, Jan Lindeman, Bram W.A. ter Harmsel, Mathilde Boon, Frank Smedts, Jaume Ordi, Aureli Torné, David Jenkins, Wim G.V. Quint

American Journal of Surgical Pathology 2014 Apr; 38(4):470-9

1. **ABSTRACT**

2.

3. Persistent cervical high-risk human papillomavirus (hrHPV) infection results in high-grade
4. cervical intraepithelial neoplasia (CIN2/3) and cervical carcinoma. The susceptibility of the
5. cervix to HPV carcinogenesis and the importance of HPV18 in cervical carcinoma despite rela-
6. tive infrequency in CIN2/3 could be linked to hrHPV infection of immature metaplasia (IM) at
7. the squamocolumnar junction. Atypical IM (AIM) is an equivocal category used to describe
8. changes in IM suggestive of high-grade neoplasia, which causes diagnostic and management
9. problems. We used laser capture microscopy combined with polymerase chain reaction in 24
10. women with HPV18, HPV16, or other HPV infections on cytologic analysis and a cervical loop
11. electrosurgical excision procedure to locate hrHPV in cervical tissue. HPV18-positive AIM and
12. CIN2/3 were present in 7/12 cases with HPV18 on cytologic analysis. In 2 cases with HPV18
13. and other HPV types, HPV18 was only present in AIM and not in CIN2/3. HPV16-positive AIM
14. was present in 3/7 and HPV16-positive CIN2/3 in 5/7 cases with HPV16. No cases had HPV16
15. AIM without CIN2/3. Other hrHPV-positive AIM and CIN2/3 cases were present, respectively,
16. in 1/6 and 5/6 cases positive for hrHPV types other than HPV16/18. In a subset, 94% HPV18
17. AIM regions showed CK17 and p16 positivity, and 41% were CK7 positive. CIN2/3 and AIM
18. with other hrHPVs showed similar patterns. AIM was a particular feature of HPV18 infection in
19. women with CIN2/3. HrHPV infection of CK7/17-positive AIM expressing p16 was particularly
20. seen for HPV18 with and without classical CIN2/3 and should be regarded as a high-grade
21. precancer.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

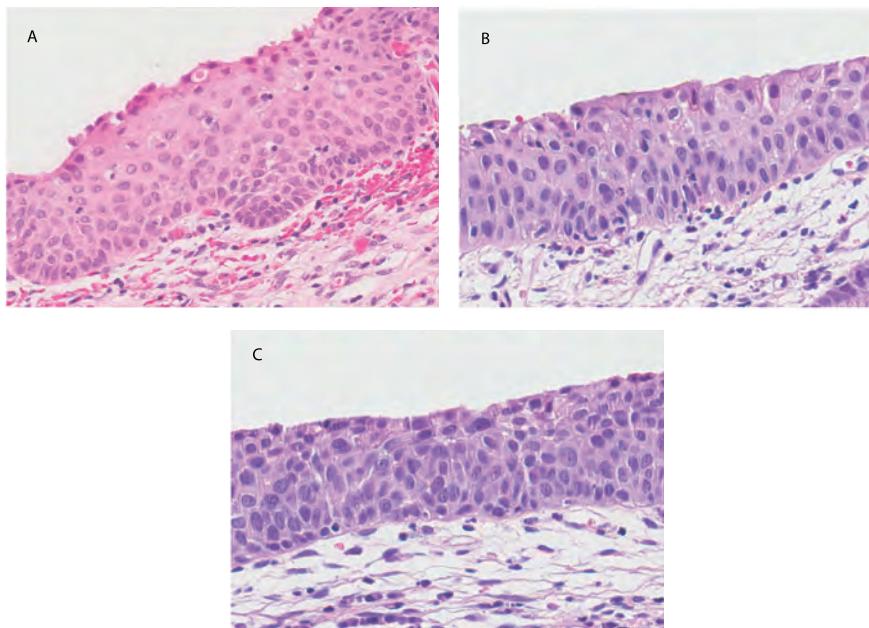
36.

37.

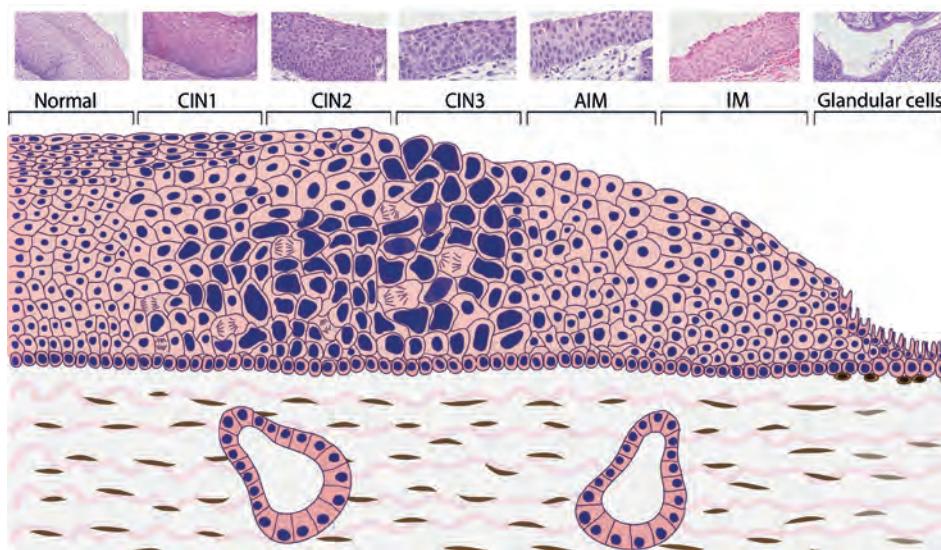
38.

39.

1. INTRODUCTION


2.

3. The model of human papillomavirus (HPV) carcinogenesis is HPV infection of basal proliferative cells of squamous epithelium evolving through cervical intraepithelial neoplasia (CIN) 4. grade 1 to high-grade CIN (HG-CIN; CIN2/3) and then cervical carcinoma (CC), but its validity 5. at the tissue level has never been established.¹⁻³ Molecular and epidemiological studies con- 6. firm the association between persistent HPV infection, cervical precancer, and cancer,^{4,5} with 7. approximately a dozen high-risk (hr)HPV types involved.⁶ Studies suggest that the high risk 8. of developing CC after exposure to hrHPV compared with other anogenital cancers relates to 9. epithelial metaplasia at the squamocolumnar junction (SCJ) of the cervix and the specialized 10. epithelial stem-like cells involved.^{2,7-10}


11. The frequency of individual hrHPV types differs between CIN2/3 and CC.^{11,12} HPV16 is the 12. most common in both CIN2/3 and CC.^{13,14} HPV18 is the second most frequent HPV type in 13. CC¹⁵⁻¹⁷ and particularly important in cervical adenocarcinoma (CADC) but has been found 14. less in CIN2/3.^{14,18-22} The relative infrequency of HPV18 in CIN2/3 and its importance in CADC 15. might be explained by infection of glandular cells in the endocervical canal or immature 16. metaplastic (IM) cells of the SCJ where lesions are less accessible for sampling and also result 17. from the fact that HPV18 cause poorly defined morphologic abnormalities that understate 18. the severity of the underlying disease.²³ The present study was undertaken to utilize laser 19. capture microscopy combined with sensitive polymerase chain reaction for HPV DNA (LCM- 20. PCR) to examine the presence of infection by HPV18, HPV16, and other hrHPV types in specific 21. zones and cell populations of cervical epithelium including IM, atypical IM (AIM), and CIN of 22. different grades.²⁴

23. Epithelial remodeling at the SCJ involves expansion of reserve cells that might act as a 24. "stem cell-like" population beneath endocervical glandular epithelial cells to produce prolif- 25. erating IM cells that mature into squamous metaplastic epithelium morphologically identical 26. to native ectocervical epithelium.^{2,25,26} Almost all cervical (pre)cancer lesions arise in relation 27. to this transformation zone of the cervix.²⁷ The reserve cells and cells of IM are positive for 28. cytokeratin (CK)17²⁸ and it has been suggested that the true progenitor cell population of 29. the SCJ comprises cuboidal cells expressing CK7 that remodel the SCJ through a "top-down" 30. differentiation process.^{1,2}

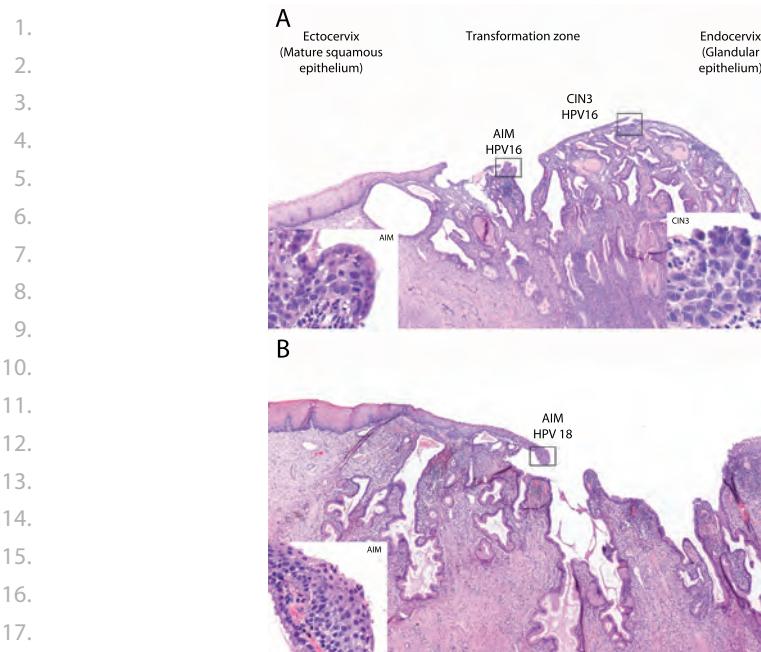

31. AIM was first described as an abnormal cytologic change²⁹ and has been linked to cervical 32. lesions with immature metaplastic and dysplastic features but not showing all cell arrange- 33. ment features of CIN3. AIM was described as having a uniform basal cell population, minimal 34. nuclear crowding, variable hyperchromatism, preserved polarity, cells with enlarged nuclei 35. confined to suprabasal areas, and no abnormal mitoses.³⁰ The main histologic features of 36. IM, AIM, and CIN3 are shown in Figures 1 and 2, and an example of AIM and classical CIN3 37. present in the SCJ is shown in Figure 3. AIM is not part of the CIN or Bethesda classifications 38. and remains a controversial but widely used diagnosis of uncertain biological and clinical 39. ³¹

Figure 1. Characteristic H&E staining of immature metaplasia (IM) with a regular arrangement of nuclei in a multi-layered epithelium showing minimal squamous differentiation (original magnification 20x) (Fig. 1A), atypical immature metaplasia (AIM) showing an undifferentiated epithelium with more irregular nuclear profiles and nuclear enlargement and hyperchromicity (Fig. 1B) and cervical intraepithelial neoplasia grade 3 (CIN3) showing no differentiation and densely packed overlapping nuclei (Fig. 1C). AIM differs from CIN3 in showing less marked nuclear enlargement and crowding and less irregularity of arrangement of nuclei and cells.

Figure 2. Schematic figure of the different histological types present on the squamo-columnar junction (SCI) combined with characteristic H&E stainings. The images showing IM, AIM and CIN3 in this figure are presented at higher magnification (20X) in Figure 1.

18. **Figure 3.** Low-magnification image showing the cervical transformation zone in cross-section with 40X original magnification of regions of
19. atypical immature metaplasia (AIM) and/or CIN3 in the transformation zone. The ectocervix is lined by mature squamous epithelium that shades
20. into the transformation zone. This is defined as the zone between the actual (squamo-columnar junction (SCJ) with endocervical glandular
epithelium and the original SCJ recognized by the outer limit of endocervical glands beneath squamous epithelium. Figure 3A: Example of an
21. HPV16 positive case. Figure 3B: Example of an HPV18 positive case.

23. significance, presenting a problem for deciding clinical management. A proportion of AIM
24. lesions is associated with cervical hrHPV infection.³² P16^{INK4a} (p16) is a specific biomarker of
25. dysplastic cervical epithelia.³³ Normal IM cells show negative or patchy positivity for p16
26. compared with diffuse positivity of cells in CIN2/3 or CC.^{34, 35} Expression of p16 in AIM has
27. received limited study,^{36, 37} although recent US guidelines for grading CIN recommend that
28. any p16-positive area that might be a CIN2 or worse should be managed as a high-grade
29. precancer.³⁸

30. The relation between keratin expression of cells at the SCJ and CIN is complex.³⁹ Subco-
31. lumnar reserve cells show a typical keratin expression pattern, of which CK17 is specific.⁴⁰
32. CK17 has also been described in CIN2/3 but is rarely seen in mature ectocervical squamous
33. epithelium.⁸ CK7 is described as a marker for a progenitor cell population at the SCJ and
34. is expressed in CIN2/3.^{1,2} It has been recently proposed that all p16+, SCJ marker (CK7)+
35. "cervical lesions" should be managed as a borderline high-grade squamous intraepithelial
36. lesion or query-squamous intraepithelial lesion group of lesions⁴¹ even when the lesion is
37. morphologically CIN1.⁸

38. We previously used LCM-PCR to demonstrate that individual areas of normal cervix and
 39. cervical precancer are associated with a single HPV type^{24, 42} and that a single HPV type is

1. found in CC.⁴³ Our new LCM-PCR findings provide evidence for the view that AIM associated
2. with hrHPV should be regarded as a HG-CIN lesion.

3.

4.

5. MATERIALS AND METHODS

6.

7. Case selection

8. The study included 24 women from a prospective cohort study at the Reinier de Graaf Hos-
9. pital, Voorburg, The Netherlands, and Hospital Clínic, Barcelona, Spain. We studied women
10. aged 18 years and older, undergoing colposcopy for an abnormal Pap smear. The medical
11. ethical boards of both hospitals approved this study. Written informed consent was obtained
12. from each subject. One important aim of the study was to investigate the location of HPV18
13. in women with CIN2/3 and HPV18 as part of a multiple infection. Twelve women with HPV18
14. as a single (n=4) or multiple (n=8) infection on cytologic analysis who underwent loop
15. electrosurgical excision procedure (LEEP) due to CIN2/3 in a biopsy were randomly selected,
16. including 1 woman positive for both HPV16 and 18 on cytologic analysis. Six women with
17. HPV16 as a single (n=2) or multiple infection (n=4) and 6 women with other HPV types (all
18. multiple types) were studied as representative of other hrHPV types.

19.

20. Cytologic HPV detection and genotyping

21. A liquid-based cytology sample using a Cervex-Brush (Rovers Medical Devices B.V., Oss, The
22. Netherlands) was obtained. The brush was rinsed in ThinPrep medium (Hologic, Marlborough,
23. MA) at the Hospital Clínic and in SurePath medium (Klinipath BV, Duiven, The Netherlands)
24. at the Reinier de Graaf Hospital. DNA isolation was performed using the QIAamp MinElute
25. Virus Spin kit (QIAgen Inc., Valencia, CA). HPV detection used the HPV-SPF₁₀-PCR-DNA en-
26. zyme immunoassay (DEIA) system (Labo Bio-medical Products, Rijswijk, The Netherlands),
27. as described elsewhere.^{44, 45} Briefly, 10 µL of isolated DNA was used for amplification by
28. broad-spectrum primers targeting a 65 bp region of the L1 gene. The amplification products
29. were detected by the HPV-SPF₁₀-PCR-DEIA system, and DEIA-positive SPF₁₀ amplimers were
30. used to detect and identify 25 HPV genotypes (6, 11, 16, 18, 31, 33, 34, 35, 39, 40, 42, 43, 44,
31. 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, and 74) by reverse hybridization on a line probe assay
32. (SPF₁₀-HPV-LiPA₂₅ version 1; Labo Bio-medical Products).⁴⁶

33.

34. Histologic processing and diagnosis of histologic samples

35. A total of 181 formalin-fixed paraffin-embedded (FFPE) tissue blocks were available, 4 to 12
36. for each of the 24 women from routine LEEP specimens including anterior and posterior lips
37. of the cervix. Sections of 4 µm thickness were cut, and hematoxylin-eosin (H&E) staining
38. was used for initial pathologic diagnosis. Additional sectioning was done using a sandwich
39. method to give one 4-µm-thick section for confirmation of diagnosis (H&E before); 2 sets of

1. 3x8- μ m-thick (24 μ m) sections for whole-tissue section (WTS)-PCR analysis; 1 slide covered
2. with a polyethylene naphthalate membrane (Zeiss Microimaging GmbH, Jena, Germany) for
3. LCM; and finally, a 4- μ m-thick section for pathologic confirmation (H&E after). From selected
4. cases, additional slides for immunohistochemical (IHC) analysis were made. A panel of expert
5. pathologists reviewed all sections independently without knowledge of the HPV status, and
6. consensus diagnosis on individual regions of IM, AIM, glandular and squamous epithelium,
7. and CIN was determined by agreement of 2 of 3 interpretations.

8.

9. **HPV detection and genotyping by LCM-PCR**

10. LCM-PCR was used to locate HPV genotypes in cervical epithelium. LCM samples of different
11. cervical regions were obtained for analysis on membrane slides. LCM-PCR was performed in
12. cases with HPV18 on cytologic analysis and HPV18 as a single-type or multiple type infection
13. in the WTS. For cases with HPV16 on cytologic analysis, LCM-PCR analysis was performed
14. on samples with a multiple infection and a random selection of HPV16 single infections in
15. the WTS. In cases positive for other types on cytologic analysis, LCM-PCR was performed if a
16. multiple-type infection was present in the WTS. The number of LCM regions selected ranged
17. from 5 to 82 per case and was determined by the number of HPV-positive blocks and the
18. presence and size of the different histologic areas. Sampling of multiple regions of mature
19. endocervical glandular tissue was stopped during the study because a large proportion of
20. these regions showed HPV negativity. Nine regions of stroma were sampled: all were nega-
21. tive for HPV. All slides were scanned using digital microscopy (Aperio Technologies Inc., Vista,
22. CA). A pathologist annotated multiple areas of interest defined by consensus review on the
23. membrane slides using the H&E slide as a diagnostic tool. Areas were selected according to
24. standard diagnostic criteria.^{26,30} The sample size ranged from 15,000 to 3,300,000 μ m². Us-
25. ing the annotated digital image, the selected regions were extracted with the Zeiss P.A.L.M.
26. microbeam ultraviolet laser microdissection and catapulting system and transferred to an
27. Adhesive Cap500 opaque tube (Zeiss, Jena, Germany). LCM-PCR was performed on a nega-
28. tive control (human placenta) to control for potential contamination of the patient samples.
29. No contamination was found. Total DNA from WTS and LCM specimens was isolated from
30. FFPE material by a proteinase K procedure as described elsewhere.^{24,47} Briefly, the tissue
31. was suspended in 100 μ L proteinase K solution (1 mg/mL). DNA isolation was performed
32. overnight at 70°C for WTS and on 56°C for LCM samples. Proteinase K was heat-inactivated at
33. 95°C for 10 minutes, and the HPV-SPF₁₀-PCR system was used for HPV detection and genotyp-
34. ing. Each run contained negative and internal and external positive controls to monitor for
35. efficiency of DNA isolation, PCR amplification, hybridization, and genotyping procedures.
36. Contamination or failure of analyses was not encountered. An internal DNA control (Rnase P
37. ⁴⁸) was used for all samples. Two LCM samples of glandular tissue were excluded due to poor
38. DNA quality.

39.

1. **Immunostaining procedures and antibodies**

2. Immunostaining was performed on additional sections of an available subset of the tissue
3. blocks with AIM areas. Primary antibodies to p16, CK7, and CK17 were applied. For p16,
4. the mouse anti-p16^{INK4a} (Roche diagnostics, Penzberg, Germany) was used. CK7 has been
5. reported as staining a progenitor cell population at the SCJ of the cervix and was detected
6. by anti-CK7 (clone OV-TL 12/30; Dako Netherlands BV, Belgium). CK17 (anti-CK17, clone E3;
7. Novocastra, Leica Microsystems, Newcastle, UK) labels basal and myoepithelial cells of com-
8. plex human epithelia⁴⁰ and, in the cervix, stains reserve cells and IM cells. Slides were stained
9. in an automated immunostainer (Bond-max, Leica Biosystems GmbH, Nussloch, Germany).
10. Antigen retrieval comprised a 20-minute TRIS buffer step. P16 immunostaining was eval-
11. uated using a semiquantitative score including both nuclear and cytoplasmic staining and was
12. graded as 0 (negative), 1 (patchy), 2 (strong staining but limited to basal layers; diffuse basal
13. staining), and 3 (strong and diffuse staining, uniform from basal layer to epithelial surface;
14. full thickness diffuse staining). Scores were summarized as negative staining (0 and 1) or
15. positive staining (2 and 3). Grading of CK7 and CK17 staining was done as follows: stratified
16. epithelia (squamous epithelium, IM, AIM, and CIN) were subdivided into a basal compart-
17. ment comprising half the thickness of the epithelium taken from the basement membrane
18. and a superficial compartment from about 50% thickness to the epithelial surface (extensive
19. staining). The staining in each compartment was scored as positive if >25% of cells were
20. stained. For analyses, scores were summarized as negative or positive staining. Staining in
21. endocervical columnar epithelium and reserve cells was noted separately.

22.

23.

24. **RESULTS**

25.

26. **Patient characteristics and histologic diagnoses**

27. We studied 24 women with HPV18, HPV16, or other hrHPV types as a single or multiple infec-
28. tion on cervical cytologic analysis, 11 with HPV18, 6 with HPV16, and 6 positive for other
29. types (HPV6, 53, 66, 31, 35, 51, 53, 56, 59, 68/73). One case was positive for both HPV16 and
30. 18. AIM was present in 1 or more tissue blocks from 6 HPV18-positive cases, in 3 of HPV16
31. cases, and in 1 case positive for other hrHPV types. In all these cases, HPV18, HPV16, or other
32. types were found in areas of AIM by LCM-PCR (Table 1).

33.

34. **LCM-PCR localizes HPV in different epithelia, and CIN is almost always hrHPV
35. positive**

36. We collected 596 LCM samples of which 263 (44%) were hrHPV DNA positive. The number of
37. selected LCM regions was determined by the number of HPV positive blocks and the presence
38. and size of AIM and CIN2/3 areas (see Supplementary table 1, which shows total sampled
39. LCM area sizes in mm² for AIM and CIN2/3 in HPV18, HPV16, and other hrHPV cytology cases).

1. **Table 1.** Overview of collected LCM-PCR samples per case, their histological diagnosis and HPV genotyping. The number of sampled LCM
 2. regions per HPV type and HPV negative samples are shown between brackets.

3. Subject	4. Histology (HPV type [n])					
	5. Glandular tissue	6. Squamous epithelium	7. IM	8. AIM	9. CIN1	10. CIN2/3
11. <i>HPV 18 cytology positive cases</i>						
12. 1	13. neg(8)	14. neg(14)	15. -	16. -	17. -	18. -
19. 2	20. -	21. neg(8)	22. neg(1)	23. 18(6)	24. -	25. 18(23)
26. 3	27. neg(5)	28. neg(3)	29. -	30. 18(1)	31. -	32. 18(4) neg(9)
33. 4	34. neg(2)	35. neg(3) 18(5)	36. 18(1)	37. 18(14) neg(8)	38. 18(2)	39. -
40. 5	41. neg(1)	42. neg(3) 18+68(1)	43. 68(1)	44. -	45. -	46. -
47. 6	48. neg(1)	49. 18(1) neg(4)	50. neg(1)	51. 18(1)	52. -	53. -
54. 7	55. neg(2)	56. neg(3)	57. -	58. -	59. -	60. -
61. 8	62. 18(1) 31(4) 63. neg(36)	64. neg(13)	65. 18(1) 18+31(1) 66. untyp(2) neg(2)	67. 18(3)	68. 18(2)	69. 18(2) 31(14) neg(1)
70. 9	71. -	72. neg(12)	73. -	74. 18(3)	75. -	76. 18(2)
77. 10	78. neg(23) 18(2)	79. neg(11) 18(1)	80. neg(1)	81. -	82. -	83. 18(7)
84. 11	85. 53(1)	86. 53(1) neg(6)	87. -	88. -	89. 68(1)	90. 68(3) 51+68(1) 18+68(1)
91. <i>HPV 16 and 18 cytology positive case</i>						
92. 12	93. neg(12) 56(2) 94. 18(1)	95. 56(1) neg(5)	96. 51(1) neg(2)	97. 18(1) 56(1) 98. neg(2)	99. -	100. 18(9) 16(3) 51(2) 51+56(2) 101. 56(1) 18+56(1) neg(2)
102. <i>HPV 16 cytology positive cases</i>						
103. 13	104. neg(3)	105. neg(6)	106. -	107. -	108. -	109. -
110. 14	111. 16(1) neg(4)	112. neg(11)	113. 16(2) neg(1)	114. 16(2)	115. -	116. 16(3)
117. 15	118. neg(1)	119. 11+52+53(1) neg(8)	120. neg(3)	121. -	122. -	123. 35(2)
124. 16	125. 16(1) 31(1) neg(4)	126. 16(1) neg(6)	127. neg(2)	128. 16(1) 31(1)	129. -	130. 16(7) 31(5) 16+31(1)
131. 17	132. neg(8)	133. 39(1) neg(11)	134. neg(7)	135. 16+39(1)	136. 16(1)	137. 16(20)
138. 18	139. -	140. neg(5)	141. 58(1)	142. -	143. -	144. 16(13) 58(6) 53+58(2)
145. <i>Other hrHPV type cytology positive cases</i>						
146. 19	147. -	148. neg(1)	149. -	150. -	151. 35(1)	152. 35(20)
153. 20	154. -	155. neg(3)	156. -	157. -	158. -	159. 56(6) 53(5)
160. 21	161. neg(3)	162. neg(9)	163. neg(1)	164. -	165. -	166. 33(1) neg(1)
167. 22	168. -	169. neg(7)	170. -	171. -	172. -	173. -
174. 23	175. neg(7)	176. 6(2) neg(12)	177. -	178. -	179. 31(2)	180. 35(2) 31+35(1) 31(5)
181. 24	182. neg(1)	183. 56(2) neg(4)	184. -	185. 31(1)	186. 51(1) 56(1)	187. 31(1)

33. AIM; atypical immature metaplasia, CIN; cervical intraepithelial neoplasia, HPV; Human papillomavirus, hrHPV; high-risk Human Papillomavirus,
 34. IM; immature metaplasia, LEEP; loop electrosurgical excisional procedure, Untyp; untypable by SPF_{10} -PCR, -; no LCM areas present

1. All LCM samples except 2 regions of glandular epithelium were suitable for HPV DNA testing.
2. All 9 regions of stroma were negative for HPV. HPV genotyping results by LCM-PCR per case
3. have been summarized (Table 1). For CIN of any grade, 186/199 (94%) LCM-PCR samples were
4. hrHPV positive, and HPV18, HPV16, and other types were found in all grades of CIN.

- 5.
6. **LCM-PCR shows high frequency of hrHPV located in IM and especially in AIM compared with normal glandular and squamous epithelium**
- 7.
8. Only 4% of LCM areas containing glandular tissue in the HPV18 cases were positive for HPV18
9. and 5% in the HPV16 cases. No areas of glandular tissue were positive for hrHPV in the other
10. hrHPV-type cases. A similar pattern of infrequent hrHPV positivity was seen in squamous epi-
11. thelium: 8/95 (8%), 1/56 (2%), and 4/40 (10%) of these areas in HPV18, HPV16, and other HPV
12. type cases, respectively, were positive for the index HPV type. AIM was extensive in HPV18
13. cases, and HPV positivity rates in AIM were high for HPV18, HPV16, and other HPV-type cases:
14. 29/40 (73%), 4/9 (44%), and 1/1 (100%), respectively (Table 2).

15.

16. **Table 2.** Numbers of LCM samples positive for HPV18, 16 and other hrHPV types by HPV index group (HPV18, 16 or other hrHPV types in
17. cytology) and by histological diagnosis. The proportion of HPV positive LCM samples is shown by diagnostic category.

Index HPV type in cytology	Histology					CIN1	CIN2/3
	Glandular tissue	Squamous epithelium	IM	AIM			
HPV18*							
LCM areas sampled	101	95	14	40	5	87	
HPV18 positive (% of areas sampled)	4 (4)	8 (8)	3 (21)	29 (73)	4 (80)	49 (56)	
HPV16*							
LCM areas sampled	38	56	19	9	1	79	
HPV16 positive (% of areas sampled)	2 (5)	1 (2)	2 (11)	4 (44)	1 (100)	47 (59)	
HPV other							
LCM areas sampled	11	40	1	1	5	42	
Other hrHPV types positive (% of areas sampled)	0 (0)	4 (10)	0 (0)	1 (100)	5 (100)	41 (98)	

* One case was positive for HPV 18 and 16 in cytology and LCM samples from this case are analyzed in the HPV18 and 16 index group. AIM; Atypical immature metaplasia, CIN; Cervical intraepithelial neoplasia, HPV; Human papillomavirus, hrHPV; High-risk Human Papillomavirus, IM; Immature metaplasia, LCM; Laser capture microdissection

- 32.
33. **AIM was not frequently found in cases positive for hrHPV types other than HPV18 and HPV16**
- 34.

35. In total, 51/100 (51%) LCM regions from cases positive for hrHPV other than HPV16 and 18
36. on cytologic examination were positive for hrHPV other than HPV16/18. Only 1 area of AIM
37. was available for sampling and was positive for hrHPV. In contrast, 41/42 (98%) of CIN2/3
38. areas were hrHPV positive (Table 2). Distribution of other hrHPV types in relation to the
39. histologic diagnoses of the LCM regions have been summarized (see Supplemental table 2,

1. which shows distribution of HPV types in LCM samples from cases positive for other hrHPV
2. types on cytologic examination).

3.

4. The presence of AIM and CIN2/3 in HPV18, HPV16, and other hrHPV-type cases

5. When we compared the presence of AIM and CIN2/3 on the case level, in 5 cases no AIM
6. and CIN2/3 was available for LCM-PCR. In 9 cases, both AIM and CIN2/3 were present and
7. sampled. In 8 cases, CIN2/3 was present but AIM was not, and in 2 cases AIM was present but
8. CIN2/3 was not (Table 1). HPV18 cytology-positive cases had relatively more HPV18-positive
9. AIM than HPV16 and other hrHPV cases (58% vs. 43% and 17% of cases, respectively) (Table
10. 3). CIN2/3 was positive for the index HPV type in 58%, 71%, and 83%, respectively (Table 3).

11.

12. **Table 3.** Comparison of HPV positivity per case in AIM and CIN2/3 for index HPV type in cytology

	Histology	
	AIM	CIN2/3
Index HPV type in cytology	n (%)	n (%)
HPV18 n=12 cases*	7 (58)	7 (58)
HPV16 n=7 cases*	3 (43)	5 (71)
Other hrHPV n=6 cases	1 (17)	5 (83)

* One case was positive for HPV 18 and 16 in cytology and analyzed in the HPV18 and 16 index group

AIM; Atypical immature metaplasia, CIN; Cervical intraepithelial neoplasia, HPV; Human papillomavirus, hrHPV; High-risk Human Papillomavirus

21.

22.

23. HrHPV-positive AIM is usually positive for p16, CK7, and CK17, similar to HG-CIN

24. Twenty-five FFPE tissue blocks from 10 cases were available for IHC staining: 14 with HPV18, 1 with HPV16 and 18, and 10 with HPV16. P16, CK7, and CK17 immunostaining patterns, correlated with HPV typing for each LCM region, are shown in Table 4. Sixteen of 17 (94%) HPV18-positive AIM LCM regions were positive for both p16 and CK17. Two CIN2 HPV18-positive regions were available for IHC, and both were positive for p16 and CK17. Three of 4 HPV16-positive AIM regions and 15/16 (94%) CIN2/3 regions were positive for p16 and CK17 (Table 4A). Both AIM regions with types other than HPV16 or 18 were positive for p16 and CK17. When combining p16 and CK7 positivity (Table 4B), 7 of 17 (41%) HPV18-positive AIM regions were positive for p16 and CK7 and 10/17 for p16 only. Three of 4 HPV16-positive AIM regions were both p16 and CK7 positive. All CIN2/3 regions, disregarding HPV type, showed positivity for p16 and CK7. Different epithelia with HPV genotypes and IHC patterns for p16, CK17, and CK7 are shown in Figure 4.

36.

37.

38.

39.

Table 4. Immunostaining patterns of p16, CK17 and CK7 in LCM areas of glandular tissue, squamous epithelium, IM, AIM, CIN1, 2 and 3.**Table 4A.** Immunostaining patterns for p16 combined with CK17.

Histological diagnosis by hrHPV type	Immunostaining pattern			
	p16+/ CK17- (n)	P16+/ CK17+ (n)	P16-/ CK17+ (n)	Total
HPV16 +				
Glandular tissue	0	0	0	0
Squamous epithelium	0	1	0	1
IM	0	1	1	2
AIM	0	3	1	4
CIN 1	0	1	0	1
CIN 2/3	1	15	0	16
HPV18 +				
Glandular tissue	0	0	0	0
Squamous epithelium	2	3	1	6
IM	0	0	1	1
AIM	1	16	0	17
CIN 1	0	1	0	1
CIN 2/3	0	2	0	2
Other hrHPV+				
Glandular tissue	0	0	0	0
Squamous epithelium	0	1	1	2
IM	1	0	1	2
AIM	0	2	0	2
CIN 1	0	0	0	0
CIN 2/3	1	5	0	6

Table 4B. Immunostaining patterns for p16 combined with CK7.

Histological diagnosis by hrHPV type	Immunostaining pattern			
	p16+/ CK7- (n)	P16+/ CK7+ (n)	P16-/ CK7+ (n)	Total
HPV16 +				
Glandular tissue	0	0	2	2
Squamous epithelium	1	0	0	1
IM	0	1	1	2
AIM	0	3	1	4
CIN 1	0	1	0	1
CIN 2/3	0	16	0	16
HPV18 +				
Glandular tissue	0	0	0	0
Squamous epithelium	3	2	0	5
IM	0	0	1	1
AIM	10	7	0	17
CIN 1	1	0	0	1
CIN 2/3	0	2	0	2
Other hrHPV+				
Glandular tissue	0	0	5	5
Squamous epithelium	0	1	1	2
IM	0	1	1	2
AIM	0	2	0	2
CIN 1	0	0	0	0
CIN 2/3	0	6	0	6

p16-/CK17-; Negative staining for p16 (including patchy staining) and CK17, p16+/CK17+; Positive staining for p16 and CK17, p16-/CK17+;

Positive staining for CK17 only, hrHPV: High-risk Human Papillomavirus, IM: Immature metaplasia, AIM: Atypical immature metaplasia, CIN: Cervical intraepithelial neoplasia

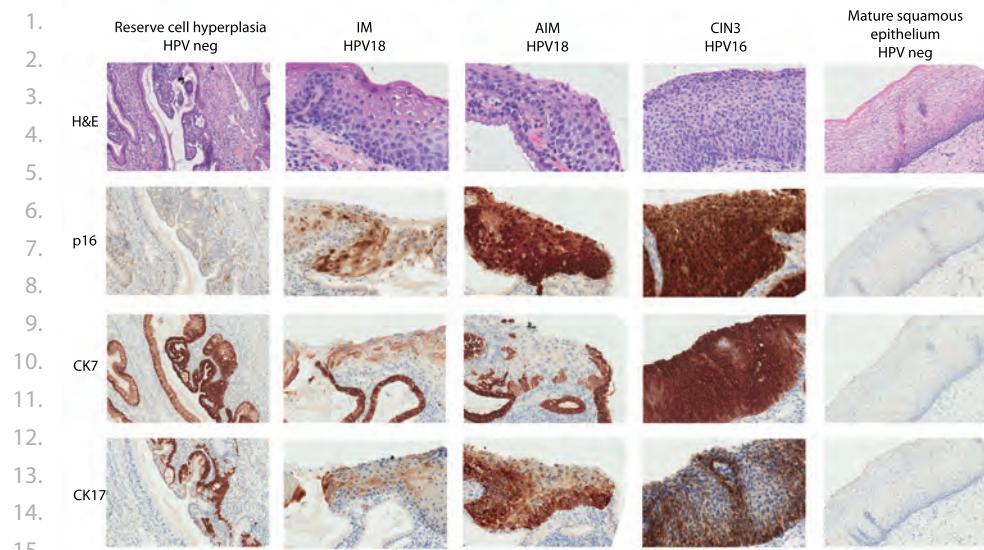
Data is shown for HPV16, HPV18, other hrHPV type positive LCM samples. Available cases: HPV18: 6 (14 blocks), HPV16&18: 1 (1 block), HPV16: 3 cases (10 blocks).

31.

32.

33.

34.


35.

36.

37.

38.

39.

Figure 4. Glandular tissue and mature cervical squamous epithelium without HPV infection, normal IM and AIM and CIN3 associated with HPV18 or 16 infection as seen by H&E, p16, CK7 and 17 staining. Normal mature cervical squamous epithelium does not express p16 or CK7 or CK17. In normal reserve cell hyperplasia and immature metaplasia there is usually expression of CK17, some of CK7, but not of p16. In morphologically normal immature metaplasia associated with hrHPV infection, particularly HPV18, there is also expression of p16. In AIM associated with HPV18 the pattern of p16 and CK7 and CK17 expression is similar to the one seen in CIN3. The subtle differences between IM, AIM and CIN3 in H&E sections are more difficult to identify than the changes in immunohistochemical biomarkers.

DISCUSSION

This study of cervical LEEP specimens from women with CIN2/3 showed that infection of IM cells, and particularly AIM, with hrHPV was more common than infection of mature squamous or glandular epithelium. Furthermore, we observed more extensive AIM areas positive for HPV18 in cases positive for this type on cytologic analysis compared with cases positive for HPV16 or other hrHPV types.

AIM was distinguished from IM by nuclear enlargement and atypia in an undifferentiated multilayered epithelium at the inner part of the SCJ and was positive for p16, CK17, and sometimes CK7. Both cytokeratins were associated with normal cervical remodeling and metaplasia and were also seen in CIN3 and CC as in previous studies.⁴⁰ We found diffuse p16 expression in AIM similar to HG-CIN, a pattern that is regarded as marking neoplastic transformation by HPV in the cervix. This pattern has been found in CIN1-expressing markers of epithelial cell remodeling.⁸ These findings suggest that infection by hrHPV (particularly HPV18) of IM cells in cervical epithelium being remodeled at the SCJ is a frequent event and in AIM is accompanied by p16 and cytokeratin patterns similar to HG-CIN. Transformation of IM cells by hrHPV provides a potential pathway for the development of CIN and CC in which AIM is an important step, rather than dedifferentiation of mature squamous cervical

1. epithelium by hrHPV producing CC through CIN1, 2, and 3. The frequency of AIM with HPV18
2. may be a key to explaining the important, unique role of HPV18 in cervical carcinogenesis.
3. Using LCM-PCR, we provide new evidence that hrHPV infection of specific CK7+ and/or
4. CK17+ cells at the SCJ could be potentially important in the pathway to CC. One previous
5. study showed a discrete population of CK7+ cuboidal cells at the SCJ of the embryonal cervix
6. persisting into adult life ¹ and suggested that this might be the key population susceptible
7. to neoplastic transformation by hrHPV. Interestingly, in our study 7/17 (41%) cases of HPV18-
8. associated AIM and most cases of other hrHPV associated AIM expressed CK7, and its pres-
9. ence was associated with complete absence of any squamous differentiation. Overall, CK7
10. staining was similar to that described previously but with wider endocervical expression.
11. CK7 staining was generally diffuse in CIN2/3 and AIM. We used CK17 as described previously
12. to mark reserve and IM cells. ²⁸ In the present study, CK17 and CK7 identified related but not
13. identical cell populations. Diffuse p16 expression in hrHPV-associated AIM was identical to
14. that seen in CIN2/3. AIM might be an unrecognized form of CIN3 or an immediate precursor.
15. ^{49, 50}
16. The cyto-histologic features of AIM have been known for many years, although the diagno-
17. sis remains controversial. We used 3 independent pathologists to ensure consistent diagno-
18. sis. AIM is recognized as showing features of neoplastic transformation but is distinguished
19. from usual CIN3 and "reactive" changes by showing less marked nuclear enlargement and
20. crowding, no abnormal mitoses, and less irregular, densely packed arrangement of nuclei
21. and cells than CIN3 (Figs. 1–3). Moreover, AIM may appear with more classical CIN2/3 lesions.
22. In our study, 9/11 cases with AIM also had CIN2/3, and in nearly all cases this was associated
23. with the same HPV type. Although accurate localization of hrHPV infection to AIM has not
24. previously been possible, it has been reported that 19% of AIM showed p16 immunostain-
25. ing identical to CIN2/3. ³⁶ Another study found hrHPV in whole biopsy specimens from 67%
26. of AIM cases. ³² A concurrent or subsequent diagnosis of CIN2/3 was made in 80% of their
27. hrHPV-positive AIM cases. Our study provides more conclusive evidence that AIM can contain
28. hrHPV, and when it does it is a form of HG-CIN.
29. Identifying HPV18-associated AIM as a precancerous lesion could explain why HPV18 has a
30. specific role in CC, different from other types. ^{51, 52} It is not frequently found in CIN, although
31. it is important in CC and especially CADC. ¹⁴ CK7/CK17 positivity of IM and AIM cells identifies
32. them as multipotential cells capable of differentiating to both squamous and glandular cells
33. ²⁶ and thus as possible precursor cells for CADC and squamous CC. The demonstration of
34. hrHPV infection, diffuse p16 expression, and CK7/CK17 positivity in routine practice could
35. give a more objective assessment of the difficult morphologic diagnoses posed by atypia in
36. IM cells, by identifying a subset of AIM cases as a form of HG-CIN with a metaplastic pheno-
37. type. ⁴⁹ That approach is consistent with the strategy currently recommended for using p16
38. in grading CIN in the United States. ³⁸
- 39.

1. This is a cross-sectional study of selected cases of HPV18, HPV16, and other hrHPV-associ-
2. ated cervical abnormalities and did not investigate HPV-associated AIM in women without
3. CIN2/3. More clinical studies are needed to support routine use of cell markers such as CK7
4. and CK17 in combination with p16 to identify more accurately true HG-CIN and predict
5. progression. Nonetheless, the uncertain histologic changes of AIM when associated with
6. hrHPV or AIM positive for p16, CK17, and/or CK7 should be regarded as potentially HG-CIN
7. and managed accordingly. The association of AIM particularly with HPV18 may explain the
8. relative infrequency of CIN2/3 associated with HPV18 compared with its important role in
9. cervical cancer.

10.

11.

12. **ACKNOWLEDGEMENTS**

13.

14. The authors thank Leonie van den Berg, Jordy Krijgsman, and Fiona Hartgring, DDL Diagnos-
15. tic Laboratory; Lorena Marimon, Hospital Clínic; and Jan Blom, Reinier de Graaf Groep, for
16. their technical assistance, and Frank van der Panne for his support in the graphical artwork.
17. The authors thank all colposcopists, laboratory personnel, and the women who participated
18. in this study.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

1. REFERENCES

2. Herfs M, Vargas SO, Yamamoto Y, Howitt BE, Nucci MR, Hornick JL, et al. A novel blueprint for 'top down' differentiation defines the cervical squamocolumnar junction during development, reproductive life, and neoplasia. *J Pathol.* 2013; **229**(3): 460-8.
5. Herfs M, Yamamoto Y, Laury A, Wang X, Nucci MR, McLaughlin-Drubin ME, et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. *Proc Natl Acad Sci U S A.* 2012; **109**(26): 10516-21.
7. Jarmulowicz MR, Jenkins D, Barton SE, Goodall AL, Hollingworth A, Singer A. Cytological status and lesion size: a further dimension in cervical intraepithelial neoplasia. *BJOG.* 1989; **96**(9): 1061-6.
9. Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV. The causal relation between human papillomavirus and cervical cancer. *J Clin Pathol.* 2002; **55**(4): 244-65.
11. Galani E, Christodoulou C. Human papilloma viruses and cancer in the post-vaccine era. *Clinical microbiology and infection.* 2009; **15**(11): 977-81.
13. Baseman JG, Koutsky LA. The epidemiology of human papillomavirus infections. *J Clin Virol.* 2005; **32 Suppl 1:** S16-24.
14. Bonfiglio TA, Patten SF. Histopathologic spectrum of benign proliferative and intraepithelial neoplastic reactions of the uterine cervix. *The Journal of reproductive medicine.* 1976; **16**(5): 253-62.
16. Herfs M, Parra-Herran C, Howitt BE, Laury AR, Nucci MR, Feldman S, et al. Cervical squamocolumnar junction-specific markers define distinct, clinically relevant subsets of low-grade squamous intraepithelial lesions. *Am J Surg Pathol.* 2013; **37**(9): 1311-8.
18. Koss LG. Detection of carcinoma of the uterine cervix. *JAMA.* 1972; **222**(6): 699-700.
20. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. *Lancet.* 2007; **370**(9590): 890-907.
22. Clifford GM, Smith JS, Aguado T, Franceschi S. Comparison of HPV type distribution in high-grade cervical lesions and cervical cancer: a meta-analysis. *Br J Cancer.* 2003; **89**(1): 101-5.
24. Smith JS, Lindsay L, Hoots B, Keys J, Franceschi S, Winer R, et al. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. *Int J Cancer.* 2007; **121**(3): 621-32.
26. Li N, Franceschi S, Howell-Jones R, Snijders PJ, Clifford GM. Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: Variation by geographical region, histological type and year of publication. *Int J Cancer.* 2011; **128**(4): 927-35.
28. Tjalma WA, Fiander A, Reich O, Powell N, Nowakowski AM, Kirschner B, et al. Differences in human papillomavirus type distribution in high-grade cervical intraepithelial neoplasia and invasive cervical cancer in Europe. *Int J Cancer.* 2013; **132**(4): 854-67.
30. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. *Lancet Oncol.* 2010; **11**(11): 1048-56.
33. Safaeian M, Schiffman M, Gage J, Solomon D, Wheeler CM, Castle PE. Detection of precancerous cervical lesions is differential by human papillomavirus type. *Cancer Res.* 2009; **69**(8): 3262-6.
34. Woodman CB, Collins S, Winter H, Bailey A, Ellis J, Prior P, et al. Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study. *Lancet.* 2001; **357**(9271): 1831-6.
37. Bulk S, Berkhof J, Rozendaal L, Fransen Daalmeijer NC, Gok M, de Schipper FA, et al. The contribution of HPV18 to cervical cancer is underestimated using high-grade CIN as a measure of screening efficiency. *Br J Cancer.* 2007; **96**(8): 1234-6.

19. Bulkmans NW, Bleeker MC, Berkhof J, Voorhorst FJ, Snijders PJ, Meijer CJ. Prevalence of types 16 and 33 is increased in high-risk human papillomavirus positive women with cervical intraepithelial neoplasia grade 2 or worse. *Int J Cancer*. 2005; **117**(2): 177-81.

20. Castle PE, Solomon D, Schiffman M, Wheeler CM. Human papillomavirus type 16 infections and 2-year absolute risk of cervical precancer in women with equivocal or mild cytologic abnormalities. *J Natl Cancer Inst*. 2005; **97**(14): 1066-71.

21. Kalantari M, Karlsen F, Johansson B, Sigurjonsson T, Warleby B, Hagmar B. Human papillomavirus findings in relation to cervical intraepithelial neoplasia grade: a study on 476 Stockholm women, using PCR for detection and typing of HPV. *Human pathology*. 1997; **28**(8): 899-904.

22. Kurman RJ, Schiffman MH, Lancaster WD, Reid R, Jenson AB, Temple GF, et al. Analysis of individual human papillomavirus types in cervical neoplasia: a possible role for type 18 in rapid progression. *Am J Obstet Gynecol*. 1988; **159**(2): 293-6.

23. Woodman CB, Collins S, Rollason TP, Winter H, Bailey A, Yates M, et al. Human papillomavirus type 18 and rapidly progressing cervical intraepithelial neoplasia. *Lancet*. 2003; **361**(9351): 40-3.

24. Quint W, Jenkins D, Molijn A, Struijk L, van de Sandt M, Doorbar J, et al. One virus, one lesion—individual components of CIN lesions contain a specific HPV type. *J Pathol*. 2012; **227**(1): 62-71.

25. Herfs M, Hubert P, Delvenne P. Epithelial metaplasia: adult stem cell reprogramming and (pre) neoplastic transformation mediated by inflammation? *Trends Mol Med* 2009; **15**(6): 245-53.

26. Robboy SJ, Mutter GL, Prat J, Bentley RC, Russell P, Anderson MC. Pathology of the female reproductive tract. 2nd ed. Philadelphia: Churchill Livingstone Elsevier; 2009.

27. Marsh M. Original site of cervical carcinoma; topographical relationship of carcinoma of the cervix to the external os and to the squamocolumnar junction. *Obstet Gynecol*. 1956; **7**(4): 444-52.

28. Martens JE, Arends J, Van der Linden PJ, De Boer BA, Helmerhorst TJ. Cytokeratin 17 and p63 are markers of the HPV target cell, the cervical stem cell. *Anticancer research*. 2004; **24**(2B): 771-5.

29. Traut HF, Papanicolaou GN. Cancer of the Uterus: The Vaginal Smear in Its Diagnosis. California and western medicine. 1943; **59**(2): 121-2.

30. Crum CP, Egawa K, Fu YS, Lancaster WD, Barron B, Levine RU, et al. Atypical immature metaplasia (AIM). A subset of human papilloma virus infection of the cervix. *Cancer*. 1983; **51**(12): 2214-9.

31. Babawale M, Seth R, Christian A, Al-Utayem W, Narula R, Jenkins D. Histological analysis of cervical intraepithelial neoplasia. *Methods Mol Med*. 2005; **119**: 41-8.

32. Geng L, Connolly DC, Isacson C, Ronnett BM, Cho KR. Atypical immature metaplasia (AIM) of the cervix: is it related to high-grade squamous intraepithelial lesion (HSIL)? *Human pathology*. 1999; **30**(3): 345-51.

33. Klaes R, Friedrich T, Spitzkovsky D, Ridder R, Rudy W, Petry U, et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. *Int J Cancer*. 2001; **92**(2): 276-84.

34. McCluggage WG. Immunohistochemical and functional biomarkers of value in female genital tract lesions. *Int J Gynecol Pathol*. 2006; **25**(2): 101-20.

35. McCluggage WG. Immunohistochemistry as a diagnostic aid in cervical pathology. *Pathology*. 2007; **39**(1): 97-111.

36. Iaconis L, Hyjek E, Ellenson LH, Pirog EC. p16 and Ki-67 immunostaining in atypical immature squamous metaplasia of the uterine cervix: correlation with human papillomavirus detection. *Archives of pathology & laboratory medicine*. 2007; **131**(9): 1343-9.

37. Skapa P, Robova H, Rob L, Zamecnik J. p16(INK4a) immunoprofiles of squamous lesions of the uterine cervix-implications for the reclassification of atypical immature squamous metaplasia. *Pathol Oncol Res*. 2013; **19**(4): 707-14.

38. Darragh TM, Colgan TJ, Cox JT, Heller DS, Henry MR, Luff RD, et al. The Lower Anogenital Squamous Terminology Standardization Project for HPV-Associated Lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. *J Low Genit Tract Dis.* 2012; **16**(3): 205-42.
39. Smedts F, Ramaekers FC, Vooijs PG. The dynamics of keratin expression in malignant transformation of cervical epithelium: a review. *Obstet Gynecol.* 1993; **82**(3): 465.
40. Smedts F, Ramaekers F, Troyanovsky S, Pruszczynski M, Robben H, Lane B, et al. Basal-cell keratins in cervical reserve cells and a comparison to their expression in cervical intraepithelial neoplasia. *Am J Pathol.* 1992; **140**(3): 601-12.
41. Herfs M, Crum CP. Laboratory management of cervical intraepithelial neoplasia: proposing a new paradigm. *Advances in anatomic pathology.* 2013; **20**(2): 86-94.
42. van der Marel J, Quint WG, Schiffman M, van de Sandt MM, Zuna RE, Dunn ST, et al. Molecular mapping of high-grade cervical intraepithelial neoplasia shows etiological dominance of HPV16. *Int J Cancer.* 2012; **131**(6): E946-53.
43. Guimera N, Lloveras B, Lindeman J, Alemany L, van de Sandt M, Alejo M, et al. The occasional role of low-risk human papillomaviruses 6, 11, 42, 44, and 70 in anogenital carcinoma defined by laser capture microdissection/PCR methodology: results from a global study. *Am J Surg Pathol.* 2013; **37**(9): 1299-310.
44. Kleter B, van Doorn LJ, ter Schegget J, Schrauwen L, van Krimpen K, Burger M, et al. Novel short-fragment PCR assay for highly sensitive broad-spectrum detection of anogenital human papillomaviruses. *Am J Pathol.* 1998; **153**(6): 1731-9.
45. van Doorn LJ, Quint W, Kleter B, Molijn A, Colau B, Martin MT, et al. Genotyping of human papillomavirus in liquid cytology cervical specimens by the PGMY line blot assay and the SPF(10) line probe assay. *J Clin Microbiol.* 2002; **40**(3): 979-83.
46. Kleter B, van Doorn LJ, Schrauwen L, Molijn A, Sastrowijoto S, ter Schegget J, et al. Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. *J Clin Microbiol.* 1999; **37**(8): 2508-17.
47. Quint WG, Scholte G, van Doorn LJ, Kleter B, Smits PH, Lindeman J. Comparative analysis of human papillomavirus infections in cervical scrapes and biopsy specimens by general SPF(10) PCR and HPV genotyping. *J Pathol.* 2001; **194**(1): 51-8.
48. Luo W, Yang H, Rathbun K, Pau CP, Ou CY. Detection of human immunodeficiency virus type 1 DNA in dried blood spots by a duplex real-time PCR assay. *J Clin Microbiol.* 2005; **43**(4): 1851-7.
49. Miyatake T, Ueda Y, Yoshino K, Shroyer KR, Kanao H, Sun H, et al. Clonality analysis and human papillomavirus infection in squamous metaplasia and atypical immature metaplasia of uterine cervix: is atypical immature metaplasia a precursor to cervical intraepithelial neoplasia 3? *Int J Gynecol Pathol.* 2007; **26**(2): 180-7.
50. Smedts F, Ramaekers F, Leube RE, Keijser K, Link M, Vooijs P. Expression of keratins 1, 6, 15, 16, and 20 in normal cervical epithelium, squamous metaplasia, cervical intraepithelial neoplasia, and cervical carcinoma. *Am J Pathol.* 1993; **142**(2): 403-12.
51. Clifford G, Franceschi S, Diaz M, Munoz N, Villa LL. Chapter 3: HPV type-distribution in women with and without cervical neoplastic diseases. *Vaccine.* 2006; **24 Suppl 3:** S3/26-34.
52. Schiffman M, Herrero R, Desalle R, Hildesheim A, Wacholder S, Rodriguez AC, et al. The carcinogenicity of human papillomavirus types reflects viral evolution. *Virology.* 2005; **337**(1): 76-84.

1. **SUPPLEMENTARY TABLES**

2. **Supplementary table 1.** Total sampled LCM area sizes of AIM and CIN2/3 in cases positive for HPV18, 16 and other hrHPV types in cytology

	Region size (mm ²)		
	HPV18	HPV16	Other hrHPV
AIM	5.0	0.3	0.04
CIN2/3	5.9	3.2	1.8

7. AIM; atypical immature metaplasia

8. CIN; cervical intraepithelial neoplasia, HPV; Human Papillomavirus

9. **Supplementary table 2.** Frequency of HPV DNA positivity of LCM samples in cases positive for other hrHPV types than HPV16 or 18 in

10. cytology.

11.	HPV type	Histologic diagnoses LCM regions						Total
		Glandular epithelium (n)	Squamous epithelium (n)	IM (n)	AIM (n)	CIN1 (n)	CIN2/3 (n)	
12.	6		2					2
13.	31			1	2	6	9	
14.	31+35					1	1	
15.	31+56							0
16.	33					1	1	
17.	35				1	22	23	
18.	51				1			1
19.	53					5	5	
20.	56		2		1	6	9	
21.	Total	0	4	0	1	5	41	51

22. AIM; atypical immature metaplasia, CIN; cervical intraepithelial neoplasia, HPV; Human Papillomavirus,

23. IM; immature metaplasia, LCM; Laser capture microdissection

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Chapter 9

Discussion

1. DISCUSSION

2.

3. The introduction of cervical cancer screening programs has significantly reduced cervical
4. cancer incidence and mortality in developed countries. The conventional screening algorithm
5. consists of cytomorphic assessment of cervical scrapes and if indisputably abnormal or
6. repeatedly borderline, colposcopy with confirmatory biopsy follows. Histological assessment
7. by the pathologist confirms absence or presence of clinically relevant lesions, and women
8. with HG-CIN or worse receive treatment. However, all steps in this screening system have
9. their limitations. In this thesis, we focused on three topics aiming at improving current cervi-
10. cal cancer prevention practice and clinical management: 1. performance and acceptability of
11. self-sampling devices, and corresponding transport modes in relation to various HPV detec-
12. tion methods to improve screening coverage, 2. the improvement of colposcopic detection
13. of HG-CIN through using HPV typing data and by performing multiple biopsies, and 3. the
14. use of additional immunohistochemical and DNA methylation biomarkers to understand
15. more and improve classification of precancer. In the following section the clinical implica-
16. tions of our findings and future research directions will be discussed.

17.

18. **Cytology-based screening**

19. Despites its effectiveness in population-based screening programs, cytology-based screen-
20. ing has several limitations. The main problem is its moderate sensitivity (50-70%), resulting
21. in false-negative results.¹ This limited sensitivity is compensated for by relatively frequent
22. screening (many countries use screening intervals of 1 to 3 years),² which is a burden for
23. the vast majority of women not at risk of cervical disease. Moreover, women with repeated
24. equivocal cytology results receive further examination, resulting in over-investigation, over-
25. diagnosis and overtreatment of a substantial number of women with insignificant lesions
26. that will regress spontaneously.³ Furthermore, interpretation of cytology is subjective and
27. has a low reproducibility.^{4,5} Thirdly, only about 65% of women respond to the invitation to
28. participate in the Dutch screening program.⁶ Finally, the detection of adenocarcinoma and
29. its precursor lesions is restricted.^{7,8} Thus, there is an opportunity for improvements.

30.

31. **HPV-based screening**

32. Several randomised-controlled trials have shown substantially higher sensitivity of hrHPV
33. testing compared to cytology testing for the detection of CIN3+.⁹⁻¹⁴ Therefore, the implemen-
34. tation of hrHPV testing as a primary screening test is expected to improve further cervical
35. cancer prevention. Consequently, in 2016 hrHPV testing will be implemented as the primary
36. screening test in the Netherlands. Because of the lower specificity of hrHPV testing, triage
37. testing will be needed to identify hrHPV positive women, who need further investigation (i.e.
38. colposcopy) to prevent too many women with transient hrHPV infections being referred for
39. colposcopy with resulting higher health care costs and overtreatment. At present, cytology

1. at baseline and repeat cytology at 6-12 months is the most feasible and logical option and
2. will be introduced in the Netherlands.¹⁵ However, it is expected that because cytology is
3. subjective, it will face growing competition from more objective biomarkers, some of which
4. are also applicable to self-sampled specimens.

5.

6.

Conclusions on HPV-based screening:

- 7. • HrHPV testing is more sensitive compared to cytology for the detection of CIN3 and cervical
- 8. cancer.
- 9. • Like the Health Council in the Netherlands has advised, hrHPV-based screening should
- 10. become the primary screening method.
- 11. • Women positive for hrHPV need to be triaged to prevent over-investigation, over-diagnosis
- 12. and over-treatment.

13.

14.

Impact of HPV vaccination on screening

15. In 2009, the prophylactic bivalent HPV vaccine was introduced in the Dutch National Immunisation Program for girls of 12 years old with a catch-up for 13-16-year old girls.¹⁶ The
16. HPV vaccines have shown to be highly effective against persistent and incident infections
17. with the vaccine HPV types and high-grade cervical lesions that can develop from such
18. infections.¹⁷⁻²¹ However, in the Dutch population the uptake of the HPV vaccine during the
19. catch-up campaign was around 55%. A lower vaccine uptake was observed in girls from
20. conservative religious communities and with lower socioeconomic status.²² The bivalent HPV
21. vaccination covers the most important HPV types HPV16 and 18, which together account for
22. approximately 70% of cervical cancer cases. Also some degree of cross-protection against
23. phylogenetically related HPV types 31, 33 and 45 has been reported.²³ Until HPV vaccine
24. uptake is increased, an immune cohort has been created, and all HPV types causing cervical
25. cancer have been covered, there is still a need for screening for cervical cancer prevention.
26. Hence, HPV-based screening and new developments to improve the specificity of detecting
27. cervical (pre)cancer will remain necessary for many upcoming years.

30.

31.

Conclusion on HPV vaccination:

32. HPV 16/18 vaccination has become available. However, until HPV vaccine uptake and HPV type

33. coverage is complete, screening will remain important to prevent cervical cancer for many

34. years, even for vaccinated women

35.

36.

Improved detection of women at risk with hrHPV self-sampling

37. In the Netherlands, about 35% of women do not respond to the invitation to the cervical
38. screening program (non-responders).⁶ Over half of the cervical cancer cases are detected in

1. this group of non-responders,²⁴⁻²⁶ and increasing the participation rate is therefore desirable.
2. Offering the option of hrHPV self-sampling has been shown to increase attendance rate for
3. screening.^{27, 28} Cervicovaginal self-collected samples have proved to be as reliable and ac-
4. curate as physician-obtained cervical samples for the detection of hrHPV.^{29, 30}
5. Furthermore, self-sampling has shown to facilitate access to cervical screening in develop-
6. ing countries with a lack of medical staff and without a screening program.^{31, 32} Introducing
7. hrHPV self-sampling in such countries may help to increase worldwide screening coverage
8. and reduce the global impact of cervical cancer which is mainly seen in developing coun-
9. tries. However, in low-resource settings there is limited access to refrigeration and special
10. attention should be paid to storage and transportation conditions at room temperature.
11. Here, brush sampling combined with solid state sample carriers might constitute a suit-
12. able self-collection and dry storage and transport system of cervicovaginal specimens for
13. hrHPV testing.^{33, 34} In **Chapter 2** we described that hrHPV detection on self-samples using
14. the Viba-brush combined with application of the brush sample to the Indicating FTA-elute
15. cartridge for storage and transport in combination with both the SPF₁₀ and the GP5+/6+
16. HPV assays was significantly lower compared to hrHPV detection on physician-obtained
17. samples. Remarkably however, the sensitivity and specificity for CIN2+ of the FTA cartridge
18. in combination with the highly sensitive SPF₁₀-PCR approached that of physician-obtained
19. samples combined with the clinical validated GP5+/6+-PCR. This underlines the fact that
20. the clinical performance is defined by all the different steps of the diagnostic chain, e.g. the
21. sample collection system as well as test method.
22. Previous studies have shown that hrHPV self-sampling is highly acceptable to women.
23. ³⁵⁻³⁹ A pilot study showed that self-sampling is also acceptable to women of non-Caucasian
24. ethничal groups and no cultural or religious barriers were foreseen.⁴⁰ Nonetheless, a subset
25. of women is insecure about performing self-sampling properly.²⁹⁻³³ The Evalyn brush was
26. developed to increase women's confidence and convenience of performing self-sampling
27. and was studied in **Chapter 3**. We found similar hrHPV detection with the Evalyn brush com-
28. pared to physician-taken smears. Furthermore, the Evalyn brush was highly acceptable to
29. the women who participated in the study. Most women preferred self-sampling to physician
30. sampling because it was simple, time saving by obviating the need for a visit to a physician,
31. easy to use, and less painful than a physician-obtained smear. Interestingly, it appeared that
32. with the dry stored Evalyn brush sufficient material of good quality for molecular testing was
33. obtained, obviating the need for a cartridge for dry storage and transport. Therefore, the
34. Evalyn brush is a good self-sampling device that might be suitable for cervical screening not
35. only in developed countries but also in the developing world. However, our studies were in
36. women referred for colposcopy and before introducing hrHPV self-sampling into the screen-
37. ing program clinical accuracy of hrHPV self-sampling versus hrHPV physician sampling for
38. detecting CIN2+ should be determined in a screening population.⁴¹
- 39.

1. Also, further triage testing of hrHPV positive women needs to be determined before the
2. introduction of hrHPV self-sampling. Cytological evaluation is not feasible on self-sampled
3. material.⁴² As a result, hrHPV positive women have to be referred to the gynaecologist for a
4. cervical smear, causing loss to follow-up. Triage testing directly applicable to self-samplers by
5. a non-morphological biomarker would be a fitting alternative. It has been shown that the de-
6. tection of methylation of tumour suppressor genes is feasible on self-samples.^{43,44} Moreover,
7. recently Verhoef et al. showed that direct triage on self-samples by methylation analysis of
8. MAL and miR124 is non-inferior to cytology triage on an additional physician-taken smear for
9. the detection of CIN2+.⁴⁵ This opens the way to full non-morphological screening.

10.

11. **Conclusions on hrHPV self-sampling:**

12. • Offering self-sampling for hrHPV testing is a promising method to improve screening
13. participation rates.

14. • Cervicovaginal self-collected samples obtained with the Evalyn brush are as reliable and
15. accurate as physician-obtained cervical samples for the detection of hrHPV.

16. • The Evalyn Brush is a well-accepted self-sampling method for women because it is easy to
17. use, time saving, and more comfortable than collection by a physician.

18. • Molecular triage on self-sampled material makes screening without interference of a
19. physician possible.

20.

21. **Improved colposcopic detection of lesions**

22. Women with abnormal cytology are offered colposcopy, which is the current standard for
23. identifying high-grade disease and targeting the location of biopsies. Current biopsy pro-
24. cedures rely on visual features of the lesion (i.e. mosaic and punctuation patterns, vessels,
25. acetowhitening, etc.) to identify the area on the cervix that most likely represents the worst
26. lesion.⁴⁶⁻⁵⁰ Further management of the woman depends on the biopsy result and thus on
27. the biopsy placement. Generally, if CIN2 or worse is found the woman receives treatment.
28. Despite the central role of colposcopy in detecting CIN2+, it has been found that it can miss
29. 30-55% of high-grade lesions.⁵¹⁻⁵⁵

30. We investigated which colposcopic characteristics are associated with the presence of
31. CIN2+ and CIN3+ and if HPV16 positive lesions have a colposcopic appearance different from
32. lesions positive for other hrHPV types (**Chapter 4**). In multivariate analysis, acetowhitening,
33. time of appearance and a lesion size of more than 25% of the visible cervix were the col-
34. poscopic characteristics associated with CIN2+. Thus these criteria, which the colposcopist
35. already uses to get an impression of the severity of the lesion and to locate the biopsy, cer-
36. tainly helps identifying women with CIN2+ lesions. In contrast to a previous study⁴⁶ we found
37. that the sensitivity for detecting CIN2+ during colposcopy was similar for HPV16 positive and
38. non-16 hrHPV positive CIN2+ lesions. The difference in results between our study and the
39. previous one might be due to the substantially higher age of our study population. HPV16

1. related high-grade lesions are known to evolve more rapidly than lesions caused by other
2. hrHPV types.^{56, 57} This might result in differences in detectability by colposcopy in a younger
3. population, in whom lesions caused by non-HPV16 types might be too small for visualization
4. by colposcopy. Conversely, in an older population high-grade lesions driven by non-HPV16
5. types have had the chance to grow over time, increasing their detectability.
6. In conclusion, the performance of colposcopy in detecting CIN2+ lesions is not improved
7. by HPV genotyping in the age category of most European screening programs as studied
8. here, which limits the benefit of this information during colposcopic examination. Moreover,
9. since colposcopic performance seems similar for any hrHPV-type-positive woman, it is likely
10. that the implementation of HPV16 and 18 vaccination should not influence the accuracy of
11. colposcopy in the future.
12. A previous study in women with ASCUS or LSIL cytology showed that a gain in sensitivity
13. can be obtained by increasing the number of biopsies.⁵⁸ Moreover, in a study performing
14. biopsies of colposcopically normal appearing areas, 37% of detected CIN2+ lesions were
15. found in this biopsy only.⁵⁹ The results of our study confirmed the importance of collecting
16. two instead of one lesion-directed biopsy to detect CIN2+ and CIN3+ (**Chapter 5**). However,
17. when using a very low threshold for abnormality (any acetowhitening), adding a non-direct-
18. ed biopsy showed only a minimal increase in CIN2+ yield. Therefore, a non-directed biopsy
19. might be redundant if the threshold for abnormality is set low. However, it still remains to be
20. elucidated how relevant the earlier detection of CIN2 and also CIN3 lesions is because small
21. lesions that are not easy to detect with one biopsy are more likely to regress spontaneously
22. than evident lesions.⁶⁰ Nevertheless, standardized colposcopic procedures are necessary
23. for optimising new triage, follow-up and screening strategies. Our findings confirm that
24. performing an additional lesion-directed biopsy will improve performance and efficiency
25. of cervical cancer screening. Based on these findings, we advocate implementing a second
26. lesion-directed biopsy and using a low threshold for abnormality in colposcopy guidelines to
27. detect cervical precancer.

28.

29.

Conclusion on colposcopy:

- 30. • The colposcopic appearance of HPV16-positive CIN2+ lesion is not different from CIN2+
- 31. lesions positive for other hrHPV types.
- 32. • Knowledge of the HPV type present does not have additional clinical value during
- 33. colposcopy.
- 34. • Performing a second lesion-directed biopsy improves CIN2+ detection significantly, and
- 35. should be implemented in colposcopy guidelines.

36.

37.

38.

39.

1. **Improved reproducibility of pathology grading by using immunohistochemical markers**
- 2.
3. Histology is the gold standard for the grading of cervical disease, but the gold standard itself
4. is hampered by a high inter- and intraobserver variability among pathologists.⁶¹⁻⁶⁴ Previous
5. studies have shown that p16 improves the interobserver agreement on histological diag-
6. nosis.^{65, 66} An impediment to the use of p16 staining in CIN grading is that up to 70% of
7. classical koilocytic CIN1 lesions are p16 positive (**Chapter 6**).^{67, 68} Recent guidelines have
8. recommended treatment of p16 positive lesions that histologically might be CIN2.⁶⁹ Given
9. the fact that CIN1 and 2 are the least reproducible histological grades,^{64, 70} this has been
10. predicted to lead to overdiagnosis of CIN2 and consequently overtreatment of CIN1 lesions
11. that are p16 positive.⁷¹
12. In **Chapter 6** we showed that adding panHPVE4 to p16 staining helps to provide a simple,
13. reliable approach to diagnosing and categorising CIN lesions. We identified with this combi-
14. nation of panHPVE4 and p16 4 distinct staining patterns indicating:
15. 1. Absence of lesions;
16. 2. Lesions with features of a productive infection;
17. 3. Intermediate lesions (both productive and transforming features);
18. 4. Lesions representing transforming infections.
19. Our data indicate that the CIN2 category is a heterogeneous category that can represent
20. both intermediate (productive and transforming) lesions and transforming infections. This is
21. in line with the paper from Castle et al. who suggest CIN2 to be a mixture of transient HPV
22. infections and true cancer precursors.⁷² This, together with a relatively high regression rate
23. of CIN2^{73, 74} suggests that the use of panHPVE4 combined with p16 could provide a reliable
24. approach for grouping CIN2 into two subcategories: CIN2 lesions that are p16 and E4 posi-
25. tive might indicate lesions that are likely to regress, while CIN2 lesions that express p16 but
26. not E4 are more likely to progress to cervical cancer. Therefore, the combination of p16 and
27. E4 might be promising to diagnose CIN more objectively and as a result prevent overtreat-
28. ment of CIN2 lesions that would have regressed. However, before panHPVE4 staining can be
29. introduced into clinical practice, immunofluorescence staining has to be transformed into a
30. DAB staining and the feasibility of E4 staining on cytology preparations has to be studied.
31. Furthermore, follow-up studies are needed to investigate the frequency and natural history
32. of the subcategories in relation to age, incident HPV infection, regression rate and treatment
33. response to define the best approach to patient management.
34. Proliferation markers such as MCM and ki-67 are not specific markers for cervical dysplasia
35. as they are also upregulated by inflammation, tissue repair or metaplasia (**Chapter 6**). There-
36. fore, a proliferation marker seemed less clinically useful in grading CIN.
- 37.
- 38.
- 39.

1.

Conclusions on CIN grading:

- p16 staining improves diagnostic accuracy of CIN grading and reduces interobserver variability.
- With the aid of HPV-E4 and p16 staining 4 distinct staining patterns can be identified.
- CIN2 is a mixture of productive infections and true premalignant lesions.
- Combined HPV-E4 and p16 staining provides an objective approach to categorising CIN2 into these two groups.

2.

3.

Improved risk assessment by using methylation markers

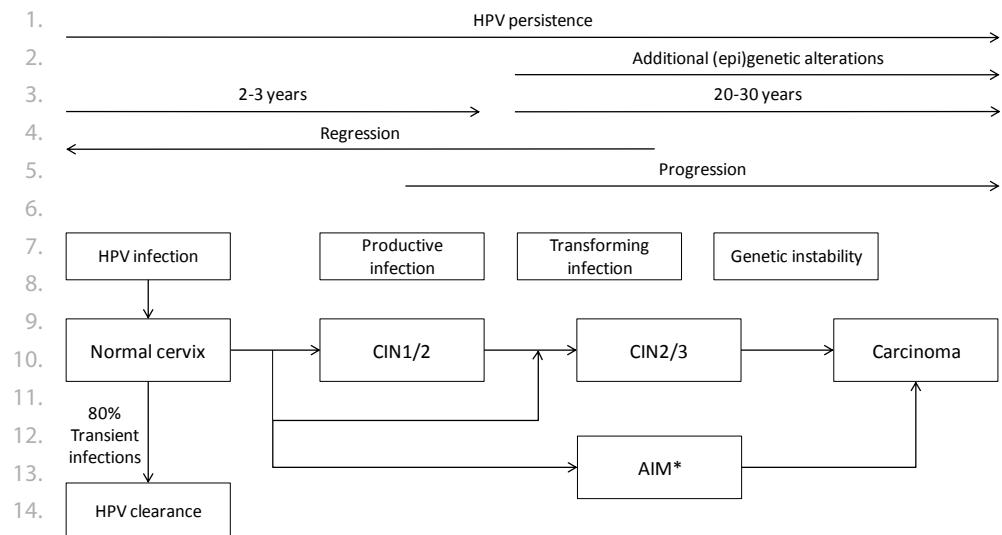
4. In order to prevent over-referral rates for colposcopy of women with transient HPV infections
 5. triage testing of hrHPV positive women is needed. Host genome DNA methylation testing of
 6. the combination of CADM1 and MAL has shown to be a promising triage tool.^{75,76} CADM1
 7. and MAL promotor methylation levels in cervical smears of hrHPV positive women are pro-
 8. portionally related to persistence of hrHPV infections of more than 5 years and increasing
 9. severity of underlying cervical (pre)malignant disease.⁷⁷ These findings suggest that CADM1
 10. and MAL methylation testing can distinguish women with persistent infections from those
 11. with transient hrHPV infections and early lesions with a high likelihood of regression.

12. However, multiple lesions or complex lesions consisting of different histological grades
 13. and duration can be present on the cervix⁷⁸ and these can even contain distinct HPV types.

14. ⁷⁹ It is currently unknown to what extent the methylation status of the cervical scrape reflects
 15. methylation of the respective lesions in case of multiple lesions. To explore the possible
 16. variation in epigenetic alterations between different CIN lesions present in the same women,
 17. we examined the MAL and CADM1 methylation status in multiple biopsies of varying histo-
 18. logical grade present on the cervix. In addition, we correlated the expression of methylation
 19. markers CADM1 and MAL on corresponding cervical scrapes to that of the different biopsies
 20. of these women (**Chapter 7**). The methylation status varied between the individual biopsies
 21. representing different degrees of disease. Most biopsies representing CIN2/3 lesions were
 22. hypermethylated, while almost all histologically negative or CIN1 biopsies were methylation
 23. negative. Moreover, all carcinomas were methylation positive. In some women hypermethyl-
 24. ated HG-CIN biopsies were present in coexistence with hypermethylation negative HG-CIN
 25. biopsies. This indicates that hypermethylation is not a homogeneous process on the cervix
 26. reflecting a kind of field effect, but is clearly restricted to particular high-grade lesion areas. A
 27. good agreement in methylation status between biopsies and scrapes was found. This agree-
 28. ment increased with lesion grade and a perfect agreement was found in women with cervical
 29. carcinoma. Lack of concordance between scrapes and biopsies, as observed in some women,
 30. may reflect inadequacy of either or both sample types, incorrect sampling at colposcopy,
 31. and/or differences in cell composition between scrape and biopsy, resulting in different lev-
 32. els of background methylation (**Chapter 7**).^{76,80} Accordingly, assay thresholds for positivity
 33. need to be adjusted to the type of sample. Other sample types may even need adjustment

1. of the marker panel. For example, whereas CADM1 and MAL have been shown to be informative for cervical scrapes^{75,76} and histological specimens (**Chapter 7**), CADM1 was less suited to self-sampled specimens and needed to be replaced by another marker (i.e. miR124) for cervicovaginal self-samples.^{44,45} Also, other human DNA methylation markers and viral DNA methylation have been suggested as alternative triage markers.⁸¹⁻⁸⁵ Nevertheless, our work has shown that despite the epigenetic heterogeneity of even high-grade cervical lesions, methylation analysis of a cervical scrape as a triage test is representative of the most severe underlying lesion.

9. However, as in previous studies,^{75,76} we found that only 65% of cervical scrapes of women 10. with CIN3+ lesions were hypermethylated. Therefore, hrHPV positive, methylation negative 11. women cannot be dismissed from further follow-up and need a repeat HPV test after 12 to 12. 18 months to determine viral clearance or persistence and decide for further follow-up steps.


13. **Conclusions on methylation:**

14. • CADM1 and MAL methylation is heterogeneous on the cervix and lesion-specific.
15. • Despite this heterogeneity and possible presence of alternating CIN lesions, the overall
16. methylation status determined on the cervical scrape is representative for the methylation
17. status of the underlying cervical lesion, particularly in women with CIN3+.
18. • This supports the suitability of CADM1/MAL methylation analysis as a triage test for HPV
19. positive women.
20.

21. **HrHPV positive atypical immature metaplasia shows strong evidence for being a
22. cancer precursor lesion**

23. Although atypical immature metaplasia (AIM) was already described in 1943 by Traut and
24. Papanicolaou⁸⁶ as a cytological abnormality and in 1983 by Crum et al.⁸⁷ as a histological
25. entity, it remained an equivocal diagnosis and was not included in the Bethesda or CIN clas-
26. sification.⁸⁸ As a result clinical management of these lesions has been uncertain.

27. Infection with hrHPV is regarded to be an important initiating factor of cervical carcinogen-
28. esis.^{89,90} We studied the presence of HPV18, HPV16 and other hrHPV types using laser capture
29. microdissection in combination with SPF_{10} -PCR⁷⁹ in specific regions and cell populations
30. of the cervical epithelium, including immature metaplasia (IM), AIM and CIN (**Chapter 8**).
31. HPV18 was particularly found in AIM areas in women with CIN2/3. The prevalence of HPV18
32. in normal glandular tissue and normal squamous epithelium was 4% and 8%, respectively, in
33. women with HPV18 in cervical scrapes. By contrast, 73% of AIM regions were HPV18 positive
34. in HPV18 positive cases, comparable to whole tissue results from Geng et al., who found 67%
35. of AIM to be hrHPV positive.⁹¹ HrHPV-positive AIMs are more likely to have concurrent or
36. subsequent CIN3 than HPV-negative AIMs.⁹¹ Furthermore, in a subset of AIM, we found p16
37. and cytokeratin (CK) 7 and 17 expression patterns similar to those of HG-CIN. P16 is consid-
38. 39.

Figure 1. Progression model of cervical cancer [Adapted from Snijders *et al.* 2006].⁹⁰

* HrHPV infected, p16 positive, CK7 and/or CK17 positive AIM might be a high-grade precursor lesion of cervical carcinoma

HPV: human papillomavirus, CIN: cervical intraepithelial neoplasia, IM: immature metaplasia, AIM: atypical immature metaplasia, CK: cytokeratin

ered a specific biomarker for transforming hrHPV infections⁹² and previous studies described that p16 positive AIM may represent a spectrum of HG-CIN.^{93,94} Herfs *et al.* recently proposed that CK7 positive cuboidal cells at the SCJ might represent the cell population that is most susceptible to neoplastic transformation by hrHPV.⁹⁵ Consequently, they suggested that all p16 positive, CK7 positive cervical lesions should be managed as a borderline HSIL, or query (Q)-SIL group of lesions.⁷¹ With progression of CIN, increased expression of CK17 is found.⁹⁶ Given these findings, hrHPV positive AIM with p16 and CK7 and/or CK17 overexpression can be considered a precancerous entity, similar to HG-CIN (Figure 1). The preferential association of AIM with HPV18 may explain the relative infrequency of HPV18 in CIN2/3, compared with its important role in cervical cancer.⁹⁷⁻⁹⁹ The demonstration of hrHPV infection, diffuse p16 expression, and CK7/CK17 positivity in routine practice could provide an objective tool to identify the precancerous AIM lesions as counterparts of HG-CIN.¹⁰⁰ Therefore, hrHPV positive AIM showing strong p16, and CK7 and/or CK17 immunostaining should be regarded as potentially precancerous and treated as such.

Future studies are needed to determine whether combined CK7/CK17 and E4/p16 marker testing on cervical smears can be used as triage marker of hrHPV positive women. Moreover, it would be highly interesting to explore further the molecular changes of AIM, by testing the methylation status of these lesions.

38.

39.

1.

Conclusion on atypical immature metaplasia:

2.

Atypical immature metaplasia positive for hrHPV, p16, CK7 and/or CK17 should be regarded as a premalignant lesion and treated as such.

3.

4.

5.

6.

7.

Conclusion

8.

The studies presented in this thesis demonstrated several ways of improving cervical cancer prevention. These new insights might help to improve existing screening algorithms as described in this chapter. We found that improvements can be expected by increasing the participation rate of the screening program through introducing suitable hrHPV self-sampling methods. Self-collected cervicovaginal samples obtained with the Evalyn brush are as reliable and accurate as physician-obtained cervical samples for the detection of hrHPV. Moreover, the Evalyn brush is a well-accepted self-sampling method for women because it is easy to use, time saving, and more comfortable than collection by a physician. Providing hrHPV positive women the option of molecular triage on self-sampled material makes screening without interference of a physician possible. Furthermore, CIN2+ detection during colposcopy can be increased by performing a second lesion-directed biopsy and should therefore be implemented in colposcopy guidelines. Finally, improvements can be made by identification of true precancerous lesions by the use of biomarkers in triage and histological assessment. Although cytology has shown to be an effective triage method in hrHPV positive women, cytology is subjective and unfeasible in low-resource countries. Combined CADM1 and MAL methylation analysis on cervical samples is a suitable triage test to identify women with true precancerous lesions. Histological or cytological assessment with combined CK7/CK17 and E4/p16 staining are also biomarkers that can be used to identify women with true precancerous lesions. Therefore, it is likely that biomarker panels such as mentioned above will play a more prominent role in secondary prevention of cervical cancer in the near future.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

1. REFERENCES

2. 1. Cuzick J, Clavel C, Petry KU, Meijer CJ, Hoyer H, Ratnam S, et al. Overview of the European and North American studies on HPV testing in primary cervical cancer screening. *Int J Cancer*. 2006; **119**(5): 1095-101.
5. 2. Eddy DM. Screening for cervical cancer. *Annals of internal medicine*. 1990; **113**(3): 214-26.
6. 3. Arbyn M, Sasieni P, Meijer CJ, Clavel C, Koliopoulos G, Dillner J. Chapter 9: Clinical applications of HPV testing: a summary of meta-analyses. *Vaccine*. 2006; **24 Suppl 3**: S3/78-89.
7. 4. Fahey MT, Irwig L, Macaskill P. Meta-analysis of Pap test accuracy. *American journal of epidemiology*. 1995; **141**(7): 680-9.
9. 5. Nanda K, McCrory DC, Myers ER, Bastian LA, Hasselblad V, Hickey JD, et al. Accuracy of the Papanicolaou test in screening for and follow-up of cervical cytologic abnormalities: a systematic review. *Annals of internal medicine*. 2000; **132**(10): 810-9.
11. 6. Rebolj M, van Ballegooijen M, Berkers LM, Habbema D. Monitoring a national cancer prevention program: successful changes in cervical cancer screening in the Netherlands. *Int J Cancer*. 2007; **120**(4): 806-12.
14. 7. Anttila A, Pukkala E, Soderman B, Kallio M, Nieminen P, Hakama M. Effect of organised screening on cervical cancer incidence and mortality in Finland, 1963-1995: recent increase in cervical cancer incidence. *Int J Cancer*. 1999; **83**(1): 59-65.
17. 8. Bulkman NW, Rozendaal L, Voorhorst FJ, Snijders PJ, Meijer CJ. Long-term protective effect of high-risk human papillomavirus testing in population-based cervical screening. *Br J Cancer*. 2005; **92**(9): 1800-2.
20. 9. Bulkman NW, Rozendaal L, Snijders PJ, Voorhorst FJ, Boeke AJ, Zandwijken GR, et al. POBASCAM, a population-based randomized controlled trial for implementation of high-risk HPV testing in cervical screening: design, methods and baseline data of 44,102 women. *Int J Cancer*. 2004; **110**(1): 94-101.
23. 10. Kitchener HC, Almonte M, Thomson C, Wheeler P, Sargent A, Stoykova B, et al. HPV testing in combination with liquid-based cytology in primary cervical screening (ARTISTIC): a randomised controlled trial. *Lancet Oncol*. 2009; **10**(7): 672-82.
25. 11. Mayrand MH, Duarte-Franco E, Rodrigues I, Walter SD, Hanley J, Ferenczy A, et al. Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer. *N Engl J Med*. 2007; **357**(16): 1579-88.
28. 12. Naucler P, Ryd W, Tornberg S, Strand A, Wadell G, Elfgrén K, et al. Human papillomavirus and Papanicolaou tests to screen for cervical cancer. *N Engl J Med*. 2007; **357**(16): 1589-97.
30. 13. Rijkaart DC, Berkhof J, Rozendaal L, van Kemenade FJ, Bulkman NW, Heideman DA, et al. Human papillomavirus testing for the detection of high-grade cervical intraepithelial neoplasia and cancer: final results of the POBASCAM randomised controlled trial. *Lancet Oncol*. 2012; **13**(1): 78-88.
33. 14. Rodriguez AC, Schiffman M, Herrero R, Hildesheim A, Bratti C, Sherman ME, et al. Longitudinal study of human papillomavirus persistence and cervical intraepithelial neoplasia grade 2/3: critical role of duration of infection. *J Natl Cancer Inst*. 2010; **102**(5): 315-24.
35. 15. Health Council of the Netherlands. Population screening for cervical cancer. 2011. Cited February 21th, 2014; publication no. 2011/07. Available from: <http://www.gr.nl/sites/default/files/Summary%20Population%20screening%20cervical%20cancer.pdf>

16. Health Council of the Netherlands. Vaccination against cervical cancer. [Report] 2008. Cited February 21th, 2014; Publication no. 2008/11. Available from: <http://www.gezondheidsraad.nl/sites/default/files/200808baarmoederhalskanker.pdf>
17. Paavonen J, Naud P, Salmeron J, Wheeler CM, Chow SN, Apter D, et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. *Lancet*. 2009; **374**(9686): 301-14.
18. Munoz N, Manalastas R, Jr., Pitisuttithum P, Tresukosol D, Monsonego J, Ault K, et al. Safety, immunogenicity, and efficacy of quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine in women aged 24-45 years: a randomised, double-blind trial. *Lancet*. 2009; **373**(9679): 1949-57.
19. Ault KA. Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma in situ: a combined analysis of four randomised clinical trials. *Lancet*. 2007; **369**(9576): 1861-8.
20. Harper DM, Franco EL, Wheeler C, Ferris DG, Jenkins D, Schuind A, et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. *Lancet*. 2004; **364**(9447): 1757-65.
21. Villa LL, Costa RL, Petta CA, Andrade RP, Paavonen J, Iversen OE, et al. High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of follow-up. *Br J Cancer*. 2006; **95**(11): 1459-66.
22. Rondy M, van Lier A, van de Kassteele J, Rust L, de Melker H. Determinants for HPV vaccine uptake in the Netherlands: A multilevel study. *Vaccine*. 2010; **28**(9): 2070-5.
23. GlaxoSmithKline. Cervarix summary of product characteristics. Cited February 21th, 2014; Available from: <http://www.medicines.org.uk/emc/medicine/20204/SPC/cervarix/>
24. Bos AB, Rebolj M, Habbema JD, van Ballegooijen M. Nonattendance is still the main limitation for the effectiveness of screening for cervical cancer in the Netherlands. *Int J Cancer*. 2006; **119**(10): 2372-5.
25. Gok M, Rozendaal L, Berkhof J, Visser O, Meijer CJ, van Kemenade FJ. Cytology history preceding cervical cancer diagnosis: a regional analysis of 286 cases. *Br J Cancer*. 2011; **104**(4): 685-92.
26. van Ballegooijen M, Hermens R. Cervical cancer screening in the Netherlands. *Eur J Cancer*. 2000; **36**(17): 2244-6.
27. Gok M, Heideman DA, van Kemenade FJ, Berkhof J, Rozendaal L, Spruyt JW, et al. HPV testing on self collected cervicovaginal lavage specimens as screening method for women who do not attend cervical screening: cohort study. *BMJ*. 2010; **340**: c1040.
28. Virtanen A, Nieminen P, Luostarinen T, Anttila A. Self-sample HPV tests as an intervention for nonattendees of cervical cancer screening in Finland: a randomized trial. *Cancer Epidemiol Biomarkers Prev*. 2011; **20**(9): 1960-9.
29. Ogilvie GS, Patrick DM, Schulzer M, Sellors JW, Petric M, Chambers K, et al. Diagnostic accuracy of self collected vaginal specimens for human papillomavirus compared to clinician collected human papillomavirus specimens: a meta-analysis. *Sex Transm Infect*. 2005; **81**(3): 207-12.
30. Petignat P, Faltin DL, Bruchim I, Tramer MR, Franco EL, Coutlee F. Are self-collected samples comparable to physician-collected cervical specimens for human papillomavirus DNA testing? A systematic review and meta-analysis. *Gynecol Oncol*. 2007; **105**(2): 530-5.
31. Holanda F, Jr., Castelo A, Veras TM, de Almeida FM, Lins MZ, Dores GB. Primary screening for cervical cancer through self sampling. *Int J Gynaecol Obstet*. 2006; **95**(2): 179-84.

32. Lazcano-Ponce E, Lorincz AT, Cruz-Valdez A, Salmeron J, Uribe P, Velasco-Mondragon E, et al. Self-collection of vaginal specimens for human papillomavirus testing in cervical cancer prevention (MARCH): a community-based randomised controlled trial. *Lancet*. 2011; **378**(9806): 1868-73.

33. Gustavsson I, Sanner K, Lindell M, Strand A, Olovsson M, Wikstrom I, et al. Type-specific detection of high-risk human papillomavirus (HPV) in self-sampled cervicovaginal cells applied to FTA elute cartridge. *J Clin Virol*. 2011; **51**(4): 255-8.

34. Lenselink CH, de Bie RP, van Hamont D, Bakkers JM, Quint WG, Massuger LF, et al. Detection and genotyping of human papillomavirus in self-obtained cervicovaginal samples by using the FTA cartridge: new possibilities for cervical cancer screening. *J Clin Microbiol*. 2009; **47**(8): 2564-70.

35. Anhang R, Nelson JA, Tolerant R, Chiasson MA, Wright TC, Jr. Acceptability of self-collection of specimens for HPV DNA testing in an urban population. *J Womens Health (Larchmt)*. 2005; **14**(8): 721-8.

36. Dijkstra MG, Heideman DA, van Kemenade FJ, Hogewoning KJ, Hesselink AT, Verkuijten MC, et al. Brush-based self-sampling in combination with GP5+/6+-PCR-based hrHPV testing: High concordance with physician-taken cervical scrapes for HPV genotyping and detection of high-grade CIN. *J Clin Virol*. 2012; **54**(2): 147-51.

37. Dzuba IG, Diaz EY, Allen B, Leonard YF, Lazcano Ponce EC, Shah KV, et al. The acceptability of self-collected samples for HPV testing vs. the pap test as alternatives in cervical cancer screening. *J Womens Health Gend Based Med*. 2002; **11**(3): 265-75.

38. Harper DM, Noll WW, Belloni DR, Cole BF. Randomized clinical trial of PCR-determined human papillomavirus detection methods: self-sampling versus clinician-directed—biologic concordance and women's preferences. *Am J Obstet Gynecol*. 2002; **186**(3): 365-73.

39. Waller J, McCaffery K, Forrest S, Szarewski A, Cadman L, Austin J, et al. Acceptability of unsupervised HPV self-sampling using written instructions. *J Med Screen*. 2006; **13**(4): 208-13.

40. Forrest S, McCaffery K, Waller J, Desai M, Szarewski A, Cadman L, et al. Attitudes to self-sampling for HPV among Indian, Pakistani, African-Caribbean and white British women in Manchester, UK. *J Med Screen*. 2004; **11**(2): 85-8.

41. Arbyn M, Verdoort F, Snijders PJ, Verhoef VM, Suonio E, Dillner L, et al. Accuracy of human papillomavirus testing on self-collected versus clinician-collected samples: a meta-analysis. *Lancet Oncol*. 2014.

42. Nobbenhuis MA, Helmerhorst TJ, van den Brule AJ, Rozendaal L, Jaspars LH, Voorhorst FJ, et al. Primary screening for high risk HPV by home obtained cervicovaginal lavage is an alternative screening tool for unscreened women. *J Clin Pathol*. 2002; **55**(6): 435-9.

43. Eijsink JJ, Yang N, Lendvai A, Klip HG, Volders HH, Buikema HJ, et al. Detection of cervical neoplasia by DNA methylation analysis in cervico-vaginal lavages, a feasibility study. *Gynecol Oncol*. 2011; **120**(2): 280-3.

44. Hesselink AT, Heideman DA, Steenbergen RD, Gok M, van Kemenade FJ, Wilting SM, et al. Methylation marker analysis of self-sampled cervico-vaginal lavage specimens to triage high-risk HPV-positive women for colposcopy. *Int J Cancer*. 2014.

45. Verhoef VM, Bosgraaf RP, van Kemenade FJ, Rozendaal L, Heideman DA, Hesselink AT, et al. Triage by methylation-marker testing versus cytology in women who test HPV-positive on self-collected cervicovaginal specimens (PROTECT-3): a randomised controlled non-inferiority trial. *Lancet Oncol*. 2014.

46. Jeronimo J, Massad LS, Schiffman M. Visual appearance of the uterine cervix: correlation with human papillomavirus detection and type. *Am J Obstet Gynecol*. 2007; **197**(1): 47 e1-8.

39.

47. Louwers JA, Kocken M, van der Bijl JC, Berkhof J, Snijders PJ, Meijer CJ, et al. Colposcopic characteristics of high-risk human papillomavirus-related cervical lesions. *J Low Genit Tract Dis.* 2010; **14**(1): 49-55.
48. Petry KU, Luyten A, Scherbring S. Accuracy of colposcopy management to detect CIN3 and invasive cancer in women with abnormal screening tests: results from a primary HPV screening project from 2006 to 2011 in Wolfsburg, Germany. *Gynecol Oncol.* 2013; **128**(2): 282-7.
49. Reid R. Biology and colposcopic features of human papillomavirus-associated cervical disease. *Obstetrics and gynecology clinics of North America.* 1993; **20**(1): 123-51.
50. Reid R, Herschman BR, Crum CP, Fu YS, Braun L, Shah KV, et al. Genital warts and cervical cancer. V. The tissue basis of colposcopic change. *Am J Obstet Gynecol.* 1984; **149**(3): 293-303.
51. Stoler MH, Wright TC, Jr., Sharma A, Apple R, Gutekunst K, Wright TL. High-risk human papillomavirus testing in women with ASC-US cytology: results from the ATHENA HPV study. *Am J Clin Pathol.* 2011; **135**(3): 468-75.
52. Bekkers RL, van de Nieuwenhof HP, Neesham DE, Hendriks JH, Tan J, Quinn MA. Does experience in colposcopy improve identification of high grade abnormalities? *Eur J Obstet Gynecol Reprod Biol.* 2008; **141**(1): 75-8.
53. Massad LS, Collins YC. Strength of correlations between colposcopic impression and biopsy histology. *Gynecol Oncol.* 2003; **89**(3): 424-8.
54. Pretorius RG, Zhang WH, Belinson JL, Huang MN, Wu LY, Zhang X, et al. Colposcopically directed biopsy, random cervical biopsy, and endocervical curettage in the diagnosis of cervical intraepithelial neoplasia II or worse. *Am J Obstet Gynecol.* 2004; **191**(2): 430-4.
55. Gage JC, Hanson VW, Abbey K, Dipperry S, Gardner S, Kubota J, et al. Number of cervical biopsies and sensitivity of colposcopy. *Obstet Gynecol.* 2006; **108**(2): 264-72.
56. Khan MJ, Castle PE, Lorincz AT, Wacholder S, Sherman M, Scott DR, et al. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice. *J Natl Cancer Inst.* 2005; **97**(14): 1072-9.
57. Cogliano V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F. Carcinogenicity of human papillomaviruses. *Lancet Oncol.* 2005; **6**(4): 204.
58. Gage JC, Hanson VW, Abbey K, Dipperry S, Gardner S, Kubota J, et al. Number of cervical biopsies and sensitivity of colposcopy. *Obstet Gynecol.* 2006; **108**(2): 264-72.
59. Pretorius RG, Zhang WH, Belinson JL, Huang MN, Wu LY, Zhang X, et al. Colposcopically directed biopsy, random cervical biopsy, and endocervical curettage in the diagnosis of cervical intraepithelial neoplasia II or worse. *Am J Obstet Gynecol.* 2004; **191**(2): 430-4.
60. Zaal A, Louwers JA, Berkhof J, Kocken M, Ter Harmsel WA, Graziosi GC, et al. Agreement between colposcopic impression and histological diagnosis among human papillomavirus type 16-positive women: a clinical trial using dynamic spectral imaging colposcopy. *BJOG.* 2012; **119**(5): 537-44.
61. de Vet HC, Knipschild PG, Schouten HJ, Koudstaal J, Kwee WS, Willebrand D, et al. Interobserver variation in histopathological grading of cervical dysplasia. *Journal of clinical epidemiology.* 1990; **43**(12): 1395-8.
62. Ismail SM, Colclough AB, Dinnen JS, Eakins D, Evans DM, Gradwell E, et al. Observer variation in histopathological diagnosis and grading of cervical intraepithelial neoplasia. *BMJ.* 1989; **298**(6675): 707-10.
63. Robertson AJ, Anderson JM, Beck JS, Burnett RA, Howatson SR, Lee FD, et al. Observer variability in histopathological reporting of cervical biopsy specimens. *J Clin Pathol.* 1989; **42**(3): 231-8.

64. Stoler MH, Schiffman M. Interobserver reproducibility of cervical cytologic and histologic interpretations: realistic estimates from the ASCUS-LSIL Triage Study. *JAMA*. 2001; **285**(11): 1500-5.

65. Bergeron C, Ordi J, Schmidt D, Trunk MJ, Keller T, Ridder R. Conjunctive p16/INK4a testing significantly increases accuracy in diagnosing high-grade cervical intraepithelial neoplasia. *Am J Clin Pathol*. 2010; **133**(3): 395-406.

66. Dijkstra MG, Heideman DA, de Roy SC, Rozendaal L, Berkhof J, van Krimpen K, et al. p16(INK4a) immunostaining as an alternative to histology review for reliable grading of cervical intraepithelial lesions. *J Clin Pathol*. 2010; **63**(11): 972-7.

67. Galgano MT, Castle PE, Atkins KA, Brix WK, Nassau SR, Stoler MH. Using biomarkers as objective standards in the diagnosis of cervical biopsies. *Am J Surg Pathol*. 2010; **34**(8): 1077-87.

68. Yildiz IZ, Usubutun A, Firat P, Ayhan A, Kucukali T. Efficiency of immunohistochemical p16 expression and HPV typing in cervical squamous intraepithelial lesion grading and review of the p16 literature. *Pathology, research and practice*. 2007; **203**(6): 445-9.

69. Darragh TM, Colgan TJ, Cox JT, Heller DS, Henry MR, Luff RD, et al. The Lower Anogenital Squamous Terminology Standardization Project for HPV-Associated Lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. *J Low Genit Tract Dis*. 2012; **16**(3): 205-42.

70. Carreón JD, Sherman ME, Guillén D, Solomon D, Herrero R, Jerónimo J, et al. CIN2 is a much less reproducible and less valid diagnosis than CIN3: results from a histological review of population-based cervical samples. *Int J Gynecol Pathol*. 2007; **26**(4): 441-6.

71. Herfs M, Crum CP. Laboratory management of cervical intraepithelial neoplasia: proposing a new paradigm. *Advances in anatomic pathology*. 2013; **20**(2): 86-94.

72. Castle PE, Stoler MH, Solomon D, Schiffman M. The relationship of community biopsy-diagnosed cervical intraepithelial neoplasia grade 2 to the quality control pathology-reviewed diagnoses: an ALTS report. *Am J Clin Pathol*. 2007; **127**(5): 805-15.

73. Castle PE, Schiffman M, Wheeler CM, Solomon D. Evidence for frequent regression of cervical intraepithelial neoplasia-grade 2. *Obstet Gynecol*. 2009; **113**(1): 18-25.

74. Moscicki AB, Ma Y, Wibbelsman C, Darragh TM, Powers A, Farhat S, et al. Rate of and risks for regression of cervical intraepithelial neoplasia 2 in adolescents and young women. *Obstet Gynecol*. 2010; **116**(6): 1373-80.

75. Hesselink AT, Heideman DA, Steenbergen RD, Coupe VM, Overmeer RM, Rijkaart D, et al. Combined promoter methylation analysis of CADM1 and MAL: an objective triage tool for high-risk human papillomavirus DNA-positive women. *Clinical cancer Res*. 2011; **17**(8): 2459-65.

76. Overmeer RM, Louwers JA, Meijer CJ, van Kemenade FJ, Hesselink AT, Daalmeijer NF, et al. Combined CADM1 and MAL promoter methylation analysis to detect (pre-)malignant cervical lesions in high-risk HPV-positive women. *Int J Cancer*. 2011; **129**(9): 2218-25.

77. Bierkens M, Hesselink AT, Meijer CJ, Heideman DA, Wisman GB, van der Zee AG, et al. CADM1 and MAL promoter methylation levels in hrHPV-positive cervical scrapes increase proportional to degree and duration of underlying cervical disease. *Int J Cancer*. 2013.

78. Bekkers RL, Melchers WJ, Bulten J, Boonstra H, Quint WG, Hanselaar AG, et al. Localized distribution of human papillomavirus genotypes in the uterine cervix. *European journal of gynaecological oncology*. 2002; **23**(3): 203-6.

79. Quint W, Jenkins D, Molijn A, Struijk L, van de Sandt M, Doorbar J, et al. One virus, one lesion—individual components of CIN lesions contain a specific HPV type. *J Pathol*. 2012; **227**(1): 62-71.

80. Feng Q, Balasubramanian A, Hawes SE, Toure P, Sow PS, Dem A, et al. Detection of hypermethylated genes in women with and without cervical neoplasia. *J Natl Cancer Inst*. 2005; **97**(4): 273-82.

1. 81. Clarke MA, Wentzensen N, Mirabello L, Ghosh A, Wacholder S, Harari A, et al. Human papilloma-virus DNA methylation as a potential biomarker for cervical cancer. *Cancer Epidemiol Biomarkers Prev.* 2012; **21**(12): 2125-37.
2. 82. Cuzick J, Bergeron C, von Knebel Doeberitz M, Gravitt P, Jeronimo J, Lorincz AT, et al. New technologies and procedures for cervical cancer screening. *Vaccine.* 2012; **30 Suppl 5:** F107-16.
3. 83. Eijsink JJ, Lendvai A, Deregowki V, Klip HG, Verpoeten G, Dehaspe L, et al. A four-gene methylation marker panel as triage test in high-risk human papillomavirus positive patients. *Int J Cancer.* 2012; **130**(8): 1861-9.
4. 84. Wentzensen N, Sherman ME, Schiffman M, Wang SS. Utility of methylation markers in cervical cancer early detection: appraisal of the state-of-the-science. *Gynecol Oncol.* 2009; **112**(2): 293-9.
5. 85. Vasiljevic N, Scibior-Bentkowska D, Brentnall AR, Cuzick J, Lorincz AT. Credentialing of DNA methylation assays for human genes as diagnostic biomarkers of cervical intraepithelial neoplasia in high-risk HPV positive women. *Gynecol Oncol.* 2014.
6. 86. Traut HF, Papanicolaou GN. Cancer of the Uterus: The Vaginal Smear in Its Diagnosis. California and western medicine. 1943; **59**(2): 121-2.
7. 87. Crum CP, Egawa K, Fu YS, Lancaster WD, Barron B, Levine RU, et al. Atypical immature metaplasia (AIM). A subset of human papilloma virus infection of the cervix. *Cancer.* 1983; **51**(12): 2214-9.
8. 88. Babawale M, Seth R, Christian A, Al-Utayem W, Narula R, Jenkins D. Histological analysis of cervical intraepithelial neoplasia. *Methods Mol Med.* 2005; **119:** 41-8.
9. 89. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papilloma-virus is a necessary cause of invasive cervical cancer worldwide. *J Pathol.* 1999; **189**(1): 12-9.
10. 90. Snijders PJ, Steenbergen RD, Heideman DA, Meijer CJ. HPV-mediated cervical carcinogenesis: concepts and clinical implications. *J Pathol.* 2006; **208**(2): 152-64.
11. 91. Geng L, Connolly DC, Isaacson C, Ronnett BM, Cho KR. Atypical immature metaplasia (AIM) of the cervix: is it related to high-grade squamous intraepithelial lesion (HSIL)? *Human pathology.* 1999; **30**(3): 345-51.
12. 92. Klaes R, Friedrich T, Spitzkovsky D, Ridder R, Rudy W, Petry U, et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. *Int J Cancer.* 2001; **92**(2): 276-84.
13. 93. Iaconis L, Hyjek E, Ellenson LH, Pirog EC. p16 and Ki-67 immunostaining in atypical immature squamous metaplasia of the uterine cervix: correlation with human papillomavirus detection. *Archives of pathology & laboratory medicine.* 2007; **131**(9): 1343-9.
14. 94. Skapa P, Robova H, Rob L, Zamecnik J. p16(INK4a) immunoprofiles of squamous lesions of the uterine cervix-implications for the reclassification of atypical immature squamous metaplasia. *Pathol Oncol Res.* 2013; **19**(4): 707-14.
15. 95. Herfs M, Vargas SO, Yamamoto Y, Howitt BE, Nucci MR, Hornick JL, et al. A novel blueprint for 'top down' differentiation defines the cervical squamocolumnar junction during development, reproductive life, and neoplasia. *J Pathol.* 2013; **229**(3): 460-8.
16. 96. Smedts F, Ramaekers F, Troyanovsky S, Pruszczynski M, Robben H, Lane B, et al. Basal-cell keratins in cervical reserve cells and a comparison to their expression in cervical intraepithelial neoplasia. *Am J Pathol.* 1992; **140**(3): 601-12.
17. 97. Bulk S, Berkhof J, Rozendaal L, Fransen Daalmeijer NC, Gok M, de Schipper FA, et al. The contribution of HPV18 to cervical cancer is underestimated using high-grade CIN as a measure of screening efficiency. *Br J Cancer.* 2007; **96**(8): 1234-6.

98. Kurman RJ, Schiffman MH, Lancaster WD, Reid R, Jenson AB, Temple GF, et al. Analysis of individual
1. human papillomavirus types in cervical neoplasia: a possible role for type 18 in rapid progression.
2. Am J Obstet Gynecol. 1988; **159**(2): 293-6.

3. 99. Tjalma WA, Fiander A, Reich O, Powell N, Nowakowski AM, Kirschner B, et al. Differences in human
4. papillomavirus type distribution in high-grade cervical intraepithelial neoplasia and invasive
5. cervical cancer in Europe. Int J Cancer. 2013; **132**(4): 854-67.

6. 100. Miyatake T, Ueda Y, Yoshino K, Shroyer KR, Kanao H, Sun H, et al. Clonality analysis and human
7. papillomavirus infection in squamous metaplasia and atypical immature metaplasia of uterine
8. cervix: is atypical immature metaplasia a precursor to cervical intraepithelial neoplasia 3? Int J
Gynecol Pathol. 2007; **26**(2): 180-7.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Chapter 10

Summary
Samenvatting

1. SUMMARY

- 2.
3. Worldwide, cervical cancer is the third most common cancer in women with the highest
4. incidence in developing countries. In countries with cervical cancer screening programs,
5. the incidence and mortality of cervical cancer have significantly decreased. However, all
6. different steps in current screening algorithms also have their drawbacks. In this thesis, we
7. have explored alternative methodologies aiming at improvements at various steps, including
8. sampling method for the primary screening test, the diagnostic work-up step (colposcopy),
9. and the use of biomarkers.
- 10.
11. **Chapter 1** is a general introduction describing cervical cancer incidence, human papillo-
12. mavirus (HPV) infections, cervical cancer screening and treatment and the use of additional
13. biomarkers.
- 14.
15. In the new screening program, self-sampling for high risk (hr)HPV detection will be offered
16. to non-responders for primary screening in the Netherlands. In **Chapter 2** we evaluated the
17. clinical sensitivity and specificity for high grade cervical intraepithelial neoplasia (HG-CIN)
18. of self-sampling using the Viba-brush combined with application of the brush sample to the
19. Indicating FTA-elute cartridge for dry storage and transport for hrHPV testing using a clinical
20. validated (GP5+/6+) and highly sensitive (SPF₁₀) HPV test. We found that hrHPV detection with
21. both the SPF₁₀ and the GP5+/6+ HPV assays was significantly lower in the self-samples stored
22. on the FTA cartridge compared to physician-obtained samples. However, self-collection by
23. FTA-based self-sampling combined with SPF₁₀ hrHPV testing showed a clinical performance
24. close to that of GP5+/6+ on physician-taken samples in this cohort of women referred be-
25. cause of an abnormal smear. This combined collection and test algorithm might therefore
26. be valuable when a liquid-based medium cannot be used, for example in screening of non-
27. responders and in low-resource settings. Our results showed that the clinical performance of
28. hrHPV detection is determined by both the sample collection system and the test method.
- 29.
30. In **Chapter 3**, we investigated the clinical feasibility of the Evalyn Brush as a dry transport
31. system compared to concurrently physician-obtained samples for the detection of hrHPV.
32. We also investigated the acceptability of self-sampling using this device and women's pref-
33. erences for self-sampling or physician sampling. In this study, the dry stored Evalyn Brush
34. showed good agreement for hrHPV detection with the physician-taken smears with both
35. the GP5+/6+ HPV test and the SPF₁₀ test. Moreover, the Evalyn Brush was a highly acceptable
36. self-sampling device to 98% of the women in this study.
- 37.
38. In **Chapter 4** we evaluated the visual appearance of the cervix using colposcopic charac-
39. teristics combined with HPV genotyping to predict CIN2+ and CIN3+ in women who were

1. referred for colposcopy. The outcome of our study revealed that HPV16 related CIN2+ is
2. detected at younger age than lesions positive for other types, but does not show worse
3. colposcopic characteristics. Furthermore, colposcopic sensitivity for HPV16 positive lesions is
4. not improved compared to that for other types in this population of women with an average
5. age over 35 years, following European screening practice.
- 6.
7. Because colposcopy can miss 30-50% of HG-CIN lesions, we systematically studied the
8. incremental benefit of one and two lesion-directed biopsies in a study designed for this
9. purpose in **Chapter 5**. A second lesion-directed biopsy was associated with a significant
10. increase in CIN2+ detection. In women with at least two lesion-directed biopsies the yield
11. for CIN2+ increased from 51.7% (95% CI: 45.7-57.7%) for one directed biopsy to 60.4% (95%
12. CI: 54.4-66.2%) for two biopsies. The highest CIN2+ yield was observed in women who
13. were HPV16-positive, had high-grade squamous intraepithelial lesion (HSIL) cytology, and
14. high-grade colposcopy impression. The yield increased from 83.1% (95% CI: 71.5-90.5%)
15. with one directed biopsy to 93.2% (95% CI: 83.8-97.3%) with two directed biopsies. The total
16. additional benefit of non-directed biopsies for detecting CIN2+ was 9.4%. When biopsies
17. were only considered non-directed in case two reviewers called the impression at the biopsy
18. site normal (i.e. without any acetowhiteness), only 4.5% additional CIN2+ was detected in
19. non-directed biopsies. These results support that performing a second lesion-directed using
20. a low threshold for abnormality of any acetowhiteness should become the standard practice
21. of colposcopy.
- 22.
23. In **Chapter 6** we examined the immunohistochemical expression patterns of E4, p16^{INK4a} (p16)
24. and MCM in different histological grades of cervical lesions and we investigated whether E4
25. gave additional information beyond p16^{INK4a} and MCM in grading CIN objectively. Distinct
26. immunostaining patterns were found in different grades of CIN. All agreed histological
27. negative regions were E4 negative; 82% were p16 negative and had only basal MCM staining.
28. Extensive p16 and MCM staining identified missed CIN3 lesions. Agreed CIN1 was typically E4
29. positive with limited p16 staining below MCM positive layers, indicating productive hrHPV
30. infection. Some CIN1 resembled CIN2 and was positive for E4 and p16. CIN2 was divided into
31. lesions expressing E4 and p16 (intermediate lesions) and lesions that expressed p16 but not
32. E4 (transforming lesions). CIN3 showed consistent high levels of MCM and p16 with no or
33. minimal superficial E4 staining, indicating transforming lesions. The combination of E4 and
34. p16^{INK4a} provided a simple approach to diagnosing CIN and might therefore provide a basis
35. for refining management decisions about CIN1 and CIN2.
- 36.
37. To gain knowledge about possible epigenetic heterogeneity of CIN lesions, in **Chapter 7** we
38. studied CADM1 and MAL methylation in women of whom multiple biopsies representing dif-
39. ferent CIN grades were taken. We found that methylation positivity increased proportionally

1. with lesion grade and, importantly, all carcinomas were methylation positive. However, the
2. methylation status varied between the various biopsies representing different degrees of
3. disease. Most HG-CIN biopsies were hypermethylated, while almost all histologically nega-
4. tive or CIN1 biopsies were methylation negative. In some women hypermethylated HG-CIN
5. biopsies were present in coexistence with hypermethylation negative HG-CIN biopsies.
6. Despite the presence of alternating lesions, methylation results of the cervical scrapes were
7. in good agreement with those of the biopsies of the most severe lesion. Hence, methylation
8. status measured in cervical scrapes is representative for the worst underlying lesions, further
9. supporting the use of methylation analysis as disease biomarker.
- 10.
11. In **Chapter 8** we studied the presence of HPV18, HPV16 and other hrHPV types using laser
12. capture microdissection combined with SPF_{10} -PCR (LCM-PCR) in specific areas of the cervi-
13. cal epithelium, including immature metaplasia (IM), atypical IM (AIM) and CIN. HPV18 was
14. particularly found in AIM areas in women with CIN2/3. Furthermore, immunostaining with
15. p16, cytokeratin (CK) 7 and 17 was performed in an available subset of the tissue blocks with
16. AIM areas. In those hrHPV positive AIM, we found p16 and CK7 and 17 expression patterns
17. similar to those of HG-CIN, suggesting that these lesions represent cancer precursor lesions.
- 18.
19. Finally, in **Chapter 9** a general discussion is provided of the results presented in this thesis,
20. and discusses possible future developments, prospects and clinical consequences.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.

1. SAMENVATTING

2.

3. Baarmoederhalskanker is wereldwijd de op twee na meest voorkomende vorm van kanker
4. onder vrouwen en komt met name voor in ontwikkelingslanden. In landen met een bevol-
5. kingsonderzoek voor het opsporen van baarmoederhalskanker zijn de incidentie en sterfte
6. aan deze vorm van kanker aanzienlijk afgangen. Niettemin hebben de verschillende aspec-
7. ten van het huidige bevolkingsonderzoek ook hun nadelen. In dit proefschrift hebben we
8. alternatieve methoden onderzocht gericht op de verbetering van deze verschillende facet-
9. ten, waaronder de afnamemethode van de screeningstest, de diagnostische vervolgstep
10. (colposcopie) en het gebruik van biomarkers.

11.

12. **Hoofdstuk 1** is een algemene introductie over de incidentie van baarmoederhalskanker,
13. humaan papillomavirus (HPV) infecties, de ontstaanswijze van baarmoederhalskanker, de
14. preventie en de behandeling van baarmoederhalskanker en het gebruik van aanvullende
15. biomarkers.

16.

17. In Nederland zal in het nieuwe bevolkingsonderzoek een zelftest voor de detectie van
18. hoog risico (hr)HPV worden aangeboden aan vrouwen die niet deelnemen aan het bevolk-
19. ingsonderzoek als primaire screenings methode. In **Hoofdstuk 2** hebben we de klinische
20. betrouwbaarheid van hrHPV-detectie en typering voor het detecteren van hooggradige
21. cervicale intraepitheliale neoplasia (HG-CIN) afwijkingen onderzocht van zelfafnames die
22. aangebracht zijn op een filterpapier dat verkleurt na het aanbrengen van het materiaal,
23. de 'indicating FTA cartridge'. Hierbij hebben we gebruik gemaakt van een klinisch gevali-
24. deerde (GP5+/6+) en een zeer gevoelige (SPF_{10}) HPV-test. Hoog risico HPV-detectie op de
25. zelfafgenomen FTA cartridge was lager in vergelijking met het conventionele, door een
26. gynaecoloog afgenoem, in vloeistof bewaard uitstrijkje. In dit cohort van vrouwen die
27. waren verwezen vanwege een afwijkend uitstrijkje, gaf de zelfafname gecombineerd met
28. de SPF_{10} hrHPV-test een klinische sensitiviteit en specificiteit vergelijkbaar met die van de
29. GP5+/6+ hrHPV-test op een door de gynaecoloog afgenoem uitstrijkje. De combinatie van
30. zelfafname met de GP5+/6+-test kan bruikbaar zijn wanneer een vloeistof bewaarmedium
31. niet gebruikt kan worden, bijvoorbeeld bij het screenen van vrouwen die niet reageren op
32. de uitnodiging van het bevolkingsonderzoek (non-responders) en in ontwikkelingslanden.
33. Uit onze resultaten blijkt tevens dat de klinische betrouwbaarheid van hrHPV-detectie wordt
34. bepaald door zowel de afnamemethode als de gebruikte HPV test.

35.

36. In **Hoofdstuk 3** hebben we de detectie van hrHPV op een nieuw ontworpen borstel voor
37. zelfafname, de Evalyn Brush, vergeleken met een door de gynaecoloog afgenoem uitstrijk.
38. De Evalyn brushes werden droog, zonder bewaarmedium, verzonden. Daarnaast hebben
39. we onderzocht wat de vrouwen van het gebruiksgemak van de nieuwe borstel vonden en

1. gekeken naar de voorkeur van de vrouwen voor zelfafname of een door een arts afgenoem
2. uitstrijkje. In deze studie kwam de hrHPV positiviteit op de droog bewaarde Evalyn Brushes
3. overeen met die op het door de gynaecoloog afgenoemde uitstrijkje en werd het gebruiksgemak door 98% van de vrouwen hoog gewaardeerd.
- 4.
- 5.
6. In **Hoofdstuk 4** beschrijven we een studie in een Europese populatie van vrouwen verwezen voor colposcopie vanwege een afwijkend uitstrijkje. We onderzochten de coloscopische impressie en karakteristieken van HPV16-positieve vrouwen in vergelijking met vrouwen positief voor andere hrHPV types (niet-16 hrHPV-positief). De uitkomst van deze studie was dat HPV16-positieve CIN2+ afwijkingen op jongere leeftijd werden gedetecteerd dan niet-16 hrHPV-positieve CIN2+ afwijkingen. Alle bekende coloscopische karakteristieken waren voor-spellend voor CIN2+, maar er was geen verschil in zowel de impressie alsook de coloscopische karakteristieken tussen HPV16-positieve vrouwen en niet-16 hrHPV-positieve vrouwen.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
15. Omdat met het coloscopisch onderzoek 30-50% van de HG-CIN afwijkingen gemist kan worden, hebben we in **Hoofdstuk 5** de opbrengst van CIN2+ voor één en twee laesiegerichte biopten systematisch bestudeerd in een studie ontworpen voor dit doeleinde. Een tweede laesiegericht biopt bleek geassocieerd met een significante toename van het opsporen van CIN2+. In vrouwen met tenminste twee laesiegerichte biopten nam de detectie van CIN2+ toe van 51,7% (95% CI: 45,7-57,7%) met één gericht biopt tot 60,4% (95% CI: 54,4-66,2%) met twee biopten. De hoogste CIN2+ opbrengst werd gevonden in de groep vrouwen die HPV16 positief waren, een ernstige dysplasie (HSIL) in de uitstrijk hadden en een hooggradige coloscopische impressie vertoonden.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.

1. p16-kleuring beneden MCM- positieve lagen, indicatief voor productieve hrHPV infecties. Som-
2. mige CIN1 laesies leken op CIN2 laesies en waren positief voor E4 en p16. CIN2 was verdeeld in
3. afwijkingen die E4 en p16 tot expressie brachten (intermediaire laesies) en afwijkingen die p16
4. tot expressie brachten, maar geen E4 (transformerende laesies). CIN3 toonde consistente MCM-
5. en p16-kleuring van de volledige dikte van het weefsel, zonder of met minimale oppervlakkige
6. E4 kleuring, indicatief voor transformerende laesies. De combinatie van E4 en p16 leverde een
7. simpele benadering voor het diagnostiseren van CIN en kan mogelijk een basis zijn voor het
8. optimaliseren van het beleid van vrouwen met CIN1 of CIN2 laesies.
- 9.
10. Epigenetica bestudeert omkeerbare erfelijke veranderingen in de genfunctie die optreden zonder
11. wijzigingen in de volgorde van de basenparen van het DNA. DNA methylatie is een epigenetisch
12. proces, waarbij een methylgroep (CH_3) aan een cytosine wordt gekoppeld, waardoor de structuur
13. van het DNA verandert. Dit kan leiden tot inactivatie van het gen. Als tumorsuppressorgen
14. geïnactiveerd worden door methylatie, kan dit leiden tot de verandering van een normale cel in
15. een kankercel. CIN laesies kunnen bestaan uit verschillende delen van uiteenlopende duur die
16. elk veroorzaakt kunnen worden door diverse HPV types (met andere woorden; CIN laesies zijn
17. heterogeen). Om de kennis over de mogelijke epigenetische heterogeniteit te vergroten, hebben
18. we in **Hoofdstuk 7** CADM1- en MALmethylatie in verschillende CIN-afwijkingen bij vrouwen met
19. meerdere biopten onderzocht. Methylatiepositiviteit nam proportioneel toe met de ernst van de
20. afwijking. Alle carcinomen waren methylatie positief. De methylatiestatus varieerde echter wel
21. tussen de diverse biopten met een verschillende laesiegraad in dezelfde patient. De meeste HG-
22. CIN biopten waren gehypermethyleerd, terwijl bijna alle histologisch negatieve of CIN1 biopten
23. methylatiennegatief waren. Sommige vrouwen hadden gehypermethyleerde HG-CIN biopten
24. naast hypermethylatiennegatieve HG-CIN biopten. Ondanks de aanwezigheid van verschillende
25. laesies kwam het methylatieresultaat van het uitstrijkje overeen met het resultaat van het biot
26. met de meest ernstige afwijking. Methylatie gemeten in uitstrijkjes is dus representatief voor de
27. onderliggende meest ernstige afwijking en kan worden gebruikt voor moleculaire analyses.
- 28.
29. In **Hoofdstuk 8** hebben we met behulp van laser-capture microdissection (waarmee je door
30. middel van een laser microscopisch kleine stukjes weefsel kunt bemachtigen) in combinatie met
31. SPF_{10} -PCR (LCM-PCR) de aanwezigheid van HPV18, HPV16 en andere hrHPV types bestudeerd in
32. specifieke regio's van het cervicale epitheel, waaronder immature metaplasie (IM), atypische IM
33. (AIM) en CIN. HPV18 werd voornamelijk gevonden in AIM-regio's in vrouwen met CIN2/3. Daarna-
34. ast hebben we een beschikbaar gedeelte van de paraffineblokken met AIM regio's immunohisto-
35. chemisch gekleurd met p16, cytokeratine (CK) 7 en 17. De p16, CK7 en 17 kleuringspatronen van
36. AIM waren vergelijkbaar met de kleuringspatronen van hooggradige CIN.
- 37.
38. Tenslotte bevat **Hoofdstuk 9** een algemene discussie over de resultaten van dit proefschrift,
39. de mogelijke toekomstige ontwikkelingen en de klinische implicaties.

Addendum

[List of abbreviations](#)

[Affiliations of co-authors](#)

[Bibliography](#)

[PhD Portfolio](#)

[About the author](#)

[Dankwoord](#)

1. LIST OF ABBREVIATIONS

- 2.
3. AGUS Atypical glandular cells of undetermined significance
4. AIM Atypical immature metaplasia
5. AIS Adenocarcinoma in situ
6. ASC-H Atypical squamous cells- cannot exclude HSIL
7. ASC-US Atypical squamous cells of undetermined significance
8. CADC Cervical adenocarcinoma
9. CADM1 Cell adhesion molecule 1
10. CC Cervical carcinoma
11. CI Confidence Interval
12. CIN Cervical intraepithelial neoplasia
13. CIN2+ CIN2, CIN3 or cancer
14. CIN3+ CIN3 or cancer
15. CISOE-A Composition, Inflammation, Squamous epithelium, Other and endometrium,
16. Endocervical columnar epithelium and Adequacy of the smear
17. CK Cytokeratin
18. Cq Quantification cycle
19. DEIA DNA enzyme immuno assay
20. DNA Deoxyribonucleic acid
21. ECC Endocervical curettage
22. FFPE Formalin fixed paraffin embedded
23. H&E Hematoxylin and Eosin
24. HG High-grade
25. HPV Human papillomavirus
26. HrHPV High-risk human papillomavirus
27. HSIL High-grade squamous intraepithelial lesion
28. ICC Invasive cervical carcinoma
29. IHC Immunohistochemistry
30. IM Immature metaplasia
31. κ Kappa-value
32. LCM Laser capture microdissection
33. LEEP Loop electrosurgical excision procedure
34. LG Low-grade
35. LiPA Line probe assay
36. LSIL Low-grade squamous intraepithelial lesion
37. N Normal
38. NPV Negative predictive value
39. MAL T-lymphocyte maturation associated protein

1. MCM Minichromosome maintenance protein
2. MiR124-a2 MicroRNA124-a2
3. PCR Polymerase Chain Reaction
4. qMSP Quantitative methylation specific PCR
5. QSiL Questionable squamous intraepithelial lesion
6. SCC Squamous cell carcinoma
7. SCJ Squamocolumnar junction
8. SPF Short PCR fragment
9. OR Odds ratio
10. PCR Polymerase chain reaction
11. PPV Positive predictive value
12. SCJ Squamocolumnar junction
13. SD Standard deviation
14. TZ Transformation zone
15. WTS Whole tissue section
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.

1. AFFILIATIONS OF CO-AUTHORS

2.

3. **Alonso I. (Inmaculada) MD PhD** *Department of Obstetrics and Gynaecology Hospital Clínic, Barcelona, Spain*

5.

6. **Arora R. (Rupali) MD** *Department of Cellular Pathology University College Hospital, London, United Kingdom*

8.

9. **Bekkers R.L.M. (Ruud) MD PhD** *Department of Obstetrics and Gynaecology Sint Radboud University Medical Centre, Nijmegen, The Netherlands*

11.

12. **Berkhof J. (Hans) PhD** *Department of Epidemiology and Biostatistics VU University Medical Center, Amsterdam, The Netherlands*

14.

15. **Boon M.E. (Mathilde) MD PhD** *Leids Cytologisch Pathologisch Laboratorium, Leiden, The Netherlands*

17.

18. **Bosgraaf R.P. (Remko) MD** *Department of Obstetrics and Gynaecology Sint Radboud University Medical Centre, Nijmegen, The Netherlands*

20.

21. **del Pino M. (Marta) MD PhD** *Department of Obstetrics and Gynaecology Hospital Clínic, Barcelona, Spain*

23.

24. **Doorbar J. (John) PhD** *Department of Pathology University of Cambridge, Cambridge, United Kingdom*

26.

27. **Geraets D.T. (Daan), MSc** *DDL Diagnostic Laboratory, Rijswijk, The Netherlands*

28.

29. **Griffin H. (Heather)** *Department of Pathology University of Cambridge, Cambridge, United Kingdom*

31.

32. **Helmerhorst Th.J.M. (Theo) MD PhD** *Department of Obstetrics and Gynaecology ErasmusMC University Medical Center, Rotterdam, The Netherlands*

34.

35. **Huras H. (Hubert) MD PhD** *Department of Obstetrics and Gynaecology Jagiellonian University Medical College, Krakow, Poland*

37.

38. **Jach R. (Robert) MD PhD** *Department of Obstetrics and Gynaecology Jagiellonian University Medical College, Krakow, Poland*

1. **Jenkins D. (David) MD PhD** DDL Diagnostic Laboratory, Rijswijk, The Netherlands
- 2.
3. **Lindeman J. (Jan) MD PhD** DDL Diagnostic Laboratory, Rijswijk, The Netherlands
- 4.
5. **Meijer C.J.L.M. (Chris) MD PhD** *Department of Pathology* VU University Medical Center, Amsterdam, The Netherlands
- 6.
- 7.
8. **Melchers W.J.G. (Willem) MD PhD** *Department of Medical Microbiology* Sint Radboud University Medical Centre, Nijmegen, The Netherlands
- 9.
- 10.
11. **Okon K. (Krzysztof) MD PhD** *Department of Pathomorphology* Jagiellonian University Medical College, Krakow, Poland
- 12.
- 13.
14. **Ordi J. (Jaume) MD PhD** *Department of Pathology* Hospital Clínic, Barcelona, Spain
- 15.
16. **Quint W.G.V. (Wim) PhD** DDL Diagnostic Laboratory, Rijswijk, The Netherlands
- 17.
18. **Rodríguez A. (Agata), MD** *Department of Obstetrics and Gynaecology* Hospital Clínic, Barcelona, Spain
- 19.
- 20.
21. **Schiffman M. (Mark) MD PhD** *Division of Cancer Epidemiology and Genetics* National Cancer Institute, Bethesda, MD, USA
- 22.
- 23.
24. **Smedts F. (Frank) MD PhD** *Department of Pathology* Reinier de Graaf Hospital, Delft, The Netherlands
- 25.
- 26.
27. **Snijders P.J.F. (Peter), PhD** *Department of Pathology* VU University Medical Center, Amsterdam, The Netherlands
- 28.
- 29.
30. **Soneji Y. (Yasmina)** National Institute for Medical Research, London, United Kingdom
- 31.
32. **ter Harmsel W.A. (Bram) MD PhD** Roosevelt Kliniek, Leiden, The Netherlands
- 33.
34. **Torné A. (Aureli) MD PhD** *Department of Obstetrics and Gynaecology* Hospital Clínic, Barcelona, Spain
- 35.
- 36.
37. **van der Marel J. (Jacolien) MD** DDL Diagnostic Laboratory, Rijswijk, The Netherlands
- 38.
39. **van der Munckhof H.A.M. (Henk) PhD** DDL Diagnostic Laboratory, Rijswijk, The Netherlands

1. **van de Sandt M.M. (Miekel) MD PhD** DDL Diagnostic Laboratory, Rijswijk, The Netherlands
- 2.
3. **Verheijen R.H.M. (René) MD PhD** *Division of Woman and Baby, Gynaecological Oncology*
4. University Medical Center Utrecht, Utrecht, The Netherlands
- 5.
6. **Wentzensen N. (Nicolas) MD PhD** *Division of Cancer Epidemiology and Genetics* National
7. Cancer Institute, Bethesda, MD, USA
- 8.
9. **Wu Z. (Zhonglin)** National Institute for Medical Research, London, United Kingdom
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.

1. BIBLIOGRAPHY

- 2.
3. **van Baars R**, van der Marel J, Snijders PJF, Rodriguez-Manfredi A, ter Harmsel B, van den Munckhof HAM, Ordi J, del Pino M, van de Sandt MM, Meijer CJLM, Quint WGV. CADM1 and MAL methylation status in cervical scrapes is representative for the most severe underlying lesion in women with multiple cervical lesions. *In preparation*
- 7.
8. **van Baars R**, Griffin H, Wu Z, Soneji Y, van de Sandt MM, Arora R, van der Marel J, ter Harmsel B, Jach R, Okon K, Huras H, Jenkins D, Quint WGV, Doorbar J. Reliable categorisation of CIN to address histological problems of CIN 1 and 2 by combining viral biomarker E4, proliferation marker MCM and transformation marker p16. *In preparation*
- 12.
13. Griffin H, Soneji Y, **van Baars R**, Arora R, Jenkins D, van de Sandt MM, Wu Z, Jach R, Okon K, Huras H, Singer A, Quint WGV, Doorbar J. Stratification of HPV-Induced Cervical Pathology using the Virally-Encoded Molecular Marker E4 in Combination with p16 and MCM. *Submitted*
- 16.
17. van der Marel J, Rodriguez A, del Pino M, **van Baars R**, Jenkins D, van de Sandt MM, Torné A, Ordi J, ter Harmsel B, Verheijen RHM, Schiffman M, Gage J, Quint WGV, Wentzensen N. The additional value of endocervical curettage versus biopsy in women without colposcopic abnormalities: an observational study. *Submitted*
- 21.
22. del Pino M, **van Baars R**, Rodriguez-Manfredi A, van der Marel J, Cardona M, Quint WGV, Torné A, Ordi J. HPV genotyping does not predict absence of lesion in the conization specimen of women treated for CIN2-3. *Submitted*
- 25.
26. **van Baars R**, van der Marel J, Rodriguez A, Quint WGV, van de Sandt MM, Berkhof J, Schiffman M, Torné A, Ordi J, Jenkins D, Verheijen RHM, Helmerhorst ThJM, ter Harmsel B, Wentzensen N, del Pino M. The increased detection of cervical intraepithelial neoplasia when using a second biopsy at colposcopy. *Submitted*
- 30.
31. van der Marel J, **van Baars R**, Alonso I, del Pino M, van de Sandt MM, Lindeman J, ter Harmsel B, Boon M, Smedts F, Ordi J, Torné A, Jenkins D, Quint WGV. Oncogenic human papillomavirus infected immature metaplastic cells and cervical neoplasia. Am J Surg Pathol 2014 Apr; 38(4):470-9
- 35.
36. **van Baars R**, van der Marel J, Quint WGV, Berkhof J, del Pino M, Torné A, Ordi J, Wentzensen N, Schiffman M, van de Sandt MM, Lindeman J, Jenkins D, Helmerhorst ThJM, Verheijen RHM, ter Harmsel B, Alonso I. The impact of Human Papillomavirus genotype on colposcopic appearance: a cross-sectional analysis. BJOG 2014 Aug; 121(9):1117-26

1. **van Baars R**, Geraets DT, Alonso I, Ordi J, Torné A, Melchers WJG, Meijer CJLM, Quint WG. 1.
2. Clinical evaluation of high-risk HPV detection on self-samples using the Indicating FTA-elute 2.
3. solid-carrier cartridge. *J Clin Virol* 2013 Mar; 57(2): 125-9 3.
- 4.
5. **van Baars R**, Bosgraaf RP, ter Harmsel B, Melchers WJ, Quint WG, Bekkers RL. Dry storage 5.
6. and transport of a cervicovaginal self-sample by use of the Evalyn brush, providing reliable 6.
7. human papillomavirus detection combined with comfort for women. *J Clin Microbiol* 2012 7.
8. Dec; 50(12): 3937-43 8.
- 9.
10. Santegoets LA, **van Baars R**, Terlou A, Heijmans-Antonissen C, Swagemakers SM, van der 10.
11. Spek PJ, Ewing PC, van Beurden M, van der Meijden WI, Helmerhorst ThJM, Blok LJ. Different 11.
12. DNA damage and cell cycle checkpoint control in low- and high-risk human papillomavirus 12.
13. infections of the vulva. *Int J Cancer* 2012 Jun; 130(12): 2874-85 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.

1. PhD PORTFOLIO

2.

3. Summary of PhD training and teaching

4.

5. Name PhD student: Romy van Baars	PhD period: 2010-2014
6. Erasmus MC Department: Obstetrics & Gynaecology	Promotor(s): Prof. Th.J.M. Helmerhorst,
7. Research School: Molecular Medicine	Prof. P.J.F. Snijders
8.	Supervisor: W.A. ter Harmsel, W.G.V. Quint

9. PhD training

		Year	ECTS
10.	General courses		
11.	- Good Clinical Practice, Postgrade, Zeist	2010	0.3
12.	- Biomedical English Writing and Communication, VUmc, Amsterdam	2011	2.3
13.	- Basic Methods and Reasoning in Biostatistics, Boerhaave, Leiden	2011	1.8
14.	- Access database course	2011	1.8
15.	In-depth courses		
16.	- Colposcopy course, Stichting O.O.G.	2010	1.7
17.	- Vulvar pathology, Stichting O.O.G.	2011	1.0
18.	- MGC Special Course Epigenetic Regulation in Health and Disease, LUMC, Leiden	2014	0.6
19.			
20.	Presentations		
21.	- Journal Club HumaVac	2010	1.5
22.	- Study presentation for Department of Gynaecology & Obstetrics, Reinier de Graaf Groep, Delft	2010	1.0
23.	- Scientific meeting at DDL Diagnostic Laboratory, Rijswijk	2011	1.0
24.	- Refereeravond Rotterdams Cluster Obstetrie en Gynaecologie	2012	1.0
25.	- Scientific meeting at DDL Diagnostic Laboratory, Rijswijk	2013	1.0
26.	(Inter)national conferences		
27.	- Human papillomavirus (HPV) congres, Amsterdam	2010	0.6
28.	- 27 th International papillomavirus Conference, Berlin, Germany (oral poster)	2011	2.0
29.	- 28 th International papillomavirus Conference, Puerto Rico (poster)	2012	2.0
30.	- 29 th International papillomavirus Conference, Seattle, USA (oral)	2014	2.0
31.	- IFCPC 15 th World Congress for Cervical Pathology and Colposcopy, London, UK (poster)	2014	2.0
32.			
33.	Teaching activities		
34.		Year	ECTS
35.	- Supervising 3 th year internship of MLO students: Fiona Hartgring en Jordy Krijgsman	2012-2013	2.0
36.	- Supervising MLO master's thesis, Charissa Strikwerda, ROC Leiden	2013-2014	2.0
37.			

38.

39.

1. ABOUT THE AUTHOR

2.

3. Romy van Baars was born on the 9th of August, 1984 in Rotterdam, The Netherlands. In 2002 she completed her secondary school (Gymnasium) at the Comenius College in Capelle aan den IJssel. From 2002 to 2008 she studied medicine at the Erasmus University in Rotterdam. In 2005 she did an internship at the Tribhuvan University Teaching Hospital in Kathmandu, Nepal. Under supervision of prof. dr. Th.J.M. Helmerhorst and dr. ir. L.J. Blok she performed her graduation thesis on "Evaluation of immunohistochemical markers for different vulvar disorders" at the department of Obstetrics and Gynaecology (division Oncological Gynaecology) at the Erasmus University.

4. After her graduation she worked as a junior resident at the department of Obstetrics and Gynaecology of the Reinier de Graaf Gasthuis in Delft (under supervision of dr. W.A. ter Harmsel and dr. H.A. Bremer). In April 2010 she started her PhD project under supervision of prof. dr. Th.J.M. Helmerhorst, prof. dr. P.J.F. Snijders, dr. W.G.V. Quint and dr. W.A. ter Harmsel. During her PhD period she ran the marathon of Rotterdam.

5. After the defense of her thesis she will start as a resident in Obstetrics and Gynaecology at the Sint Franciscus Gasthuis (under supervision of dr. R.M.F. van der Weiden) in Rotterdam.

6. Romy lives together with Berend de Graaf in Rotterdam.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A

1. DANKWOORD

2.

3. Onderzoek doe je niet alleen. Ik wil op deze plek iedereen die op welke manier dan ook
4. heeft bijgedragen aan dit proefschrift bedanken. In het bijzonder wil ik de volgende mensen
5. bedanken.

6.

7. Ten eerste wil ik alle deelneemsters aan de EVAH-studie bedanken. Zonder uw deelname was
8. dit proefschrift nooit tot stand gekomen.

9.

10. Beste Professor Helmerhorst, u was degene die me in navolging van mijn afstudeeronderzoek
11. heeft aangedragen bij de HumaVac. Ik ben u dan ook heel dankbaar voor deze kans. Bedankt
12. dat u altijd achter mij stond en voor uw ondersteuning bij mijn carrière.

13.

14. Beste Peter, heel erg bedankt voor al je snelle reacties op mijn e-mails en alle waardevolle
15. input in mijn thesis en het methylatie manuscript. Mede dankzij jou heb ik mijn thesis op tijd
16. kunnen afronden.

17.

18. Beste heren van de HumaVac, ik wil jullie bedanken dat ik door de HumaVac-constructie de
19. mogelijkheid heb gekregen om aan mijn onderzoek te beginnen. Er werd heel wat afgela-
20. chen op de HumaVac-vergaderingen en ik heb ook zeker veel geleerd van jullie expertise op
21. de verschillende vakgebieden.

22.

23. Beste Wim, heel erg bedankt voor het vertrouwen dat je altijd in me hebt gehad en de moe-
24. lijkheid om op DDL mijn promotie voort te kunnen zetten. Ik vind het erg waardevol dat ik
25. laboratorium en klinische ervaring in mijn promotie kon combineren.

26.

27. Beste Bram, ik heb tijdens dit promotietraject jouw diplomatieke kant leren kennen en ben
28. heel dankbaar dat je dit zo goed hebt ingezet voor mij op bepaalde momenten. Het was altijd
29. erg leuk en leerzaam om met jou colposcopie poli te doen. De geur van 'geLEEPde' kipfilet zal
30. ik nooit vergeten!

31.

32. Dear David, although not officially, you were one of my co-promotors, a real driving force for
33. this thesis. I'm very thankful for your help with the English, the pathology reviews and your
34. fantastic scientific view. I admire your broad knowledge of science, politics, and poetry. I will
35. never forget all the scientific and personal discussions we had.

36.

37. Graag wil ik professor Burger, professor van Kemenade en professor Meijer bedanken voor
38. het lezen en beoordelen van mijn proefschrift.

39.

1. Dear John, I admire your work and it's been an honour to work with you. Thank you for taking
2. place in the thesis defense committee.
- 3.
4. I also want to thank all my co-authors for the collaboration, help and feedback on the manus-
5. cripts. I want to thank Imma Alonso, Jaume Ordi, Aureli Torné, Marta del Pino, Agatha Rodri-
6. guez and Lorena Marimon for the pleasant collaboration. All our trips to Barcelona have not
7. only been very enjoyable, but also very useful. Without your input the EVAH-study would not
8. have been possible. Hans Berkhof, heel erg bedankt voor je hulp bij de statistiek. Jouw kennis
9. van zowel het HPV gebied als de statistiek heeft geleid tot hele mooie grafieken en inzichten
10. over hoe HPV16 anders is van ander HPV types, maar toch niet tot duidelijker afwijkingen
11. tijdens colposcopie leidt. Remko, Ruud Bekkers, Willem Melchers bedankt voor jullie hulp
12. bij en feedback op de self-sampling manuscripten. Nicolas Wentzensen and Mark Schiffman
13. thank you for your help in the design of the EVAH-study and your useful feedback on the
14. manuscripts. Frank Smedts and Casia Pirog thank you for the review of the slides from the
15. EVAH-study. Dear Heather, thank you for introducing me in the immunofluorescence world!
- 16.
17. Ik wil alle analisten van DDL, in het bijzonder Henk en Leonie, en ook de managers Anco,
18. Bernhard, Dirk, Maurits, Linda en Leen-Jan, heel erg bedanken voor alles wat ik heb mogen
19. leren op moleculair biologisch gebied. Jordy, Fiona, Charissa en Laura heel erg bedankt voor
20. jullie inzet bij de hulp van het testen van alle samples. Miek, bedankt voor alle gezellige
21. uurtjes achter de microscoop. Brenda, Monique en Ingrid heel erg bedankt voor alle prak-
22. tische ondersteuning. Joris en Peter, blij dat jullie van mij(n computerproblemen) af zijn? ;-)
- 23.
24. Ger bedankt voor alle hulp bij de immuno's. Zonder jou was het niet gelukt om dit op poten
25. te krijgen!
- 26.
27. Lieve HPV meiden; Margot, Maaike, Roos, Jacolien en Viola. Heel erg bedankt voor de door
28. jullie gezellige HPV-015 polidagen, etentjes en natuurlijk de leuke congressen! Berlijn, met
29. zijn allen in een appartement, en het gay hotel in Puerto Rico zijn onvergetelijk. Mariëlle,
30. Jacqueline en Afra, niet alleen de gestructureerde manier waarop jullie de HPV-015 hebben
31. opgezet en gedocumenteerd, maar ook jullie artikelen waren een goed voorbeeld. Denise
32. heel erg bedankt voor al je hulp.
- 33.
34. Daan, Nuria, Jacolien, Ellen en Annemiek. Heel erg bedankt voor alle memorabele PhD din-
35. ners! Het waren mooie tijden in Voorburg en samen op de kamer in Rijswijk. Annemiek, de
36. EVAH-studie is bij jou in goede handen, dat weet ik zeker. Heel veel plezier en succes met
37. jouw traject. Heel veel succes allemaal met het afronden van jullie promoties!
- 38.
- 39.

1. Lieve Jacolien, weet je nog? "Wij komen er wel." En we zijn er gekomen! Alle poli dagen samen zijn onvergetelijk. We kunnen er een boek over schrijven. Ik heb bewondering voor je onder-nemerschap. Dank je dat je naast me wilt staan in oktober. Jij zo dadelijk in februari!
- 4.
5. Lieve Sabine, samen begonnen in Delft, waar we lief en leed deelden. Daarna onderzoeks-buddies en nu hardloopmaatjes. En ik weet zeker, volgend jaar AIO-buddies. Ook jij bedankt dat je mijn paranimf wilt zijn.
- 8.
9. Dames van de poli in Voorburg bedankt voor alle lekkere cappuccino's, echt een service dat jullie die altijd kwamen brengen. Mandy bedankt voor je hulp bij de logistiek van de poli's.
- 11.
12. Yvonne en Wendy, heel erg bedankt voor alle gezellige koffies en jullie adviezen over de dingen die bij de koffie besproken werden.
- 14.
15. Ik wil al mijn lieve vriendinnetjes heel erg bedanken voor alle ontspanningsmomentjes.
16. Zonder ontspanning, geen inspanning.
17. Lieve Larissa, al 25 jaar vriendinnen! Wie kan dat zeggen? Heel bijzonder. Ik heb heel erg zin in ons lustrumuitje!
19. Lieve Angela, wij zijn alweer 17 jaar vriendinnen. Ik vond het erg mooi om op jouw huwelijk getuige te mogen zijn.
21. Lieve Brigitjes, heel erg bedankt voor jullie belangstelling en support. Op naar het volgende lustrum!
- 23.
24. Lieve papa en mama, heel erg bedankt voor al jullie steun en geloof in mij al die jaren. Jullie zijn de liefste! Papa, ik waardeer het enorm dat je ondanks dat je zelf erg druk bent, je ook nog bereid bent om 's nachts mijn teksten of sollicitatiebrieven op taalfouten na te kijken. Lieve
27. Lieven, ik ben megatrots op je! Wat jij allemaal bereikt hebt en hoe je je overal doorheen vecht! Petje af. Korneel, met je VWO diploma op zak begint je leven pas. Ik vind het mooi dat je mijn artikelen hebt geprobeerd te lezen ("Is het gek dat ik het niet helemaal snap?").
- 30.
31. Lieve Mabel, Jan, Peggy en Iris, heel erg bedankt voor het warme bad waarin ik ben beland en dat jullie altijd zo geïnteresseerd waren hoe het met mijn onderzoek ging.
- 33.
34. Lieve Berend, heel erg bedankt voor je eindeloze geduld, alle maaltjes die voor me klaar stonden als ik thuis kwam en vooral je onaflatende steun en liefde. Ik hou van je. Hopelijk gaan we samen heel erg oud worden.
- 37.
38. Romy
- 39.