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Propositions accompanying the PhD thesis 

Image analysis for contrast enhanced ultrasound carotid plaque imaging 

 

1) Motion compensation is crucial for accurate quantification of intraplaque 
neovascularization (IPN). (this thesis) 
 

2) Quantitative CEUS imaging parameters can replace qualitative visual scoring to 
measure the degree of IPN in an objective and reproducible manner. (this 
thesis) 
 

3) Currently available commercial contrast quantification tools are not suitable for 
analysis of carotid IPN due to artifacts and intermittent perfusion of plaques. 
(this thesis) 

 
4) Systematic comparison of different IPN analyses over patient datasets requires 

the use of identical patient-specific regions of interest for all analyses. (this 
thesis). 

 
5) Simultaneous acquisition of BMUS and CEUS allows an accurate carotid plaque 

segmentation and IPN quantification in CEUS. (this thesis) 
 
6) Even though it has been shown and published that IPN assessment in the far 

wall of the carotid artery using CEUS is unreliable due to the pseudo-
enhancement artifact, this artifact is still neglected in many CEUS studies. 
(ref.: Atherosclerosis, 229:451-52)  
 

7) It is better to have a simple method that doesn't work than a complex method 
that doesn't work. (S. Klein) 

 
8) Confidence and hard-work is the best medicine to kill the disease called failure. 

(Abdul Kalaam) 
 
9) If you judge a fish on its ability to climb a tree, it will live its whole life 

believing that it is stupid. (A. Einstein) 
 
10) Wisdom begins in wonder. (Sokrates) 

 
11) Do not be satisfied with the stories that come before you. Unfold your own 

myth. (Mevlana Rumi) 
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1. INTRODUCTION 

 
1.1 Carotid Arteries 

The carotid arteries are the large arteries which are located at both sides of 
the neck under the jaw (see Figure 1). Their pulse can be felt as they are quite 
superficial (about 1 to 3cm away from the skin). The right common carotid artery 
(CCA) starts from a branch of the aorta (brachiocephalic artery) and the left CCA 
starts directly from the aortic arch. Just below the jaw, they bifurcate into two 
branches which are called internal and external carotid arteries. The internal 
carotid arteries (ICA) supply blood to the face and the external carotid arteries 
(ECA) supply blood to the brain. The bifurcation is a frequent location for 
atherosclerosis. 

 

Figure 1: Anatomy of carotid artery (original available at 
www.vascularconcept.com). 

1.1.1 Atherosclerosis and Intraplaque Neovascularization 
 

Atherosclerosis is a disease of the arteries, which causes narrowing of an 
artery lumen due to accumulation of fatty substances and calcium within the wall 
of the artery. The depositions of these substances are called plaques. They narrow 
the artery lumen and obstruct the oxygen-rich blood flow to organs of the body 
(see Figure 2).   
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Figure 2: Depiction of carotid plaques and intraplaque neovascularization (original 
available at www.lucid-echo.com) 

Patients with carotid plaques carry an increased risk of cardiovascular events 
such as stroke, transient ischemic attack, amaurosis fugax, and myocardial infarct 
[1]. If a plaque ruptures, pieces of the plaque or blood clots split from the site of 
injury travel through the blood stream and block a smaller artery in the brain or 
eye. This causes a stroke in the brain or loss of vision in the eye.  

According to the World Health Organization, 15 million people suffer from 
stroke worldwide each year [2]. Five million of these people die and another 5 
million are permanently disabled. In Europe, approximately 650,000 people die 
from stroke each year. In US, one American dies from a stroke every 4 minutes on 
average [3]. Therefore, early detection of plaques at risk of rupture (vulnerable 
plaques) may allow prevention of the stroke and save lives. 

Large European and North American clinical trials have established the benefit 
of carotid endarterectomy in reducing the risk of recurrent stroke for symptomatic 
patients with severe stenosis. However, the difficulty in identifying vulnerable 
plaques means that many patients undergo needless operations. There is an 
increasing realization that the degree of stenosis is a poor predictor of individual 
stroke risk and that current risk stratification models should to be improved. 
Current clinical practice for selecting patients for carotid endarterectomy operation 
is heavily reliant on assessing the degree of arterial lumen narrowing. This is 
widely assessed using non-invasive ultrasound which provides anatomical images 
and measurements of blood flow velocity. 

Alternatively, neovascularization within plaques (see Figure 2) has been 
examined in several histo-pathological studies [4-6]. It was demonstrated that 
intraplaque neovascularization (IPN) is associated with progressive atherosclerotic 
disease and plaque vulnerability. Neovascularization is the development of 
functional microvascular networks with red blood cell perfusion. As plaques are 
also a tissue developed within an artery wall, the body encourages development of 
blood vessels to feed this tissue. Recent developments in contrast enhanced 
ultrasound (CEUS) have shown that these small microvasculature networks with 
slow flow can be visualized by the use of ultrasound contrast agents. Quantification 
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of IPN by CEUS may allow early detection of vulnerable plaques and may be of 
clinical value for selecting patients for carotid endarterectomy. 

So far, assessment of IPN relies mostly on subjective visual assessment as 
quantification tools for IPN are scarce. Recently, a review paper [7] presented the 
methods used to assess IPN so far and discussed the current status of CEUS in 
carotid atherosclerosis.  

 
1.2 Diagnostic Ultrasonography 

Diagnostic ultrasonography is an ultrasound-based imaging technique used 
for visualizing and diagnosing pathological changes of internal body structures 
such as muscles, vessels, heart or other organs. For example, vascular sonography 
has been widely used to examine vessels and pathological changes of the vessel 
wall. Ultrasound can also be used therapeutically (e.g. high intensity focused 
ultrasound is used to heat and destroy tumors). 

Ultrasound is a sound pressure wave with a frequency higher than the 
human hearing range (20Hz-20kHz). An ultrasound transducer which consists of 
piezo-electric material is used to transmit and receive the sound wave. The sound 
wave is transmitted into the tissue and the reflected echo (wave) is recorded and 
used to construct an ultrasound image. As the average speed of sound through 
biological soft tissue is approximately 1540 m/s, the time of flight between the 
transmitted and received echo is used to localize an object and construct an 
acoustic image of the interrogated region. The propagation of an acoustic wave is 
characterized by its speed 𝑐 and wavelength 𝜆:  𝑐 = 𝑓𝜆 . 

Ultrasound has several advantages compared to other medical imaging 
techniques. It is safe as it does not use harmful ionizing radiation like X-ray and 
CT. It is considerably lower in cost. Images are provided in real-time. It is portable, 
can be transported to a patient's bedside, and is useful for patient screening and 
follow-up. The disadvantages of ultrasound include its strong operator 
dependence, and inability to examine areas of the body containing gas and bones. 

1.2.1  Modes of Ultrasound 

Different types of images can be formed by using ultrasound. There are several 
modes of ultrasound that are used in diagnostic ultrasonography. The most 
common are: 

B-mode: Brightness mode (B-mode) is the most well-known ultrasound mode. A 
2D cross section of a tissue is displayed by scanning an ultrasound beam over the 
tissue. 
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M-mode: Movement mode (M-mode) displays movement of structures over time. 
First, a scan line is placed on a region of interest in a B-mode image. The M-mode 
displays how the structure crossed by that scan line move toward or away from 
the probe over time.  

Doppler mode: In this mode, blood flow is measured and visualized by using the 
Doppler effect which is the shift in frequency of a wave for an observer moving 
relative to its source. In diagnostic ultrasound, an ultrasound wave is emitted with 
a particular frequency by using an ultrasound probe. Ultrasound waves reflected 
from red blood cells (moving objects) return to the probe with a Doppler shift. This 
shift in frequency is used to calculate the velocity of the blood flow. Velocity 
information is presented as a color-coded overlay on top of a B-mode image, which 
is called color Doppler. 

Harmonic mode: In this mode, a wave with a fundamental frequency is emitted 
into the body and the second harmonic of the wave is detected. In this way, noise, 
clutter and artifacts (side lobes and reverberations) are greatly reduced. Harmonic 
imaging also improves resolution and signal-to-noise ratio. 

Contrast Mode: Contrast mode imaging is used for visualization of the lumen of 
cardiac cavities and blood vessels. Secondly, it is used to quantify blood perfusion 
in organs by use of ultrasound contrast agents. This mode is useful in vascular, 
cancer, and cardiology research for detecting perfusion abnormalities of tissues. 
 
1.3 Contrast Enhanced Ultrasound 
 

Contrast enhanced ultrasound (CEUS) can provide information about blood 
perfusion of organs by use of ultrasound contrast agents (microbubbles). Contrast 
agents can penetrate into the microvasculature network and are confined to the 
microvasculature. This also allows detection of plaque neovascularization (IPN) by 
using CEUS. Compared to B-mode anatomical ultrasound images, the tissue 
information is suppressed and only contrast agents flowing within the blood are 
displayed. CEUS is widely used to diagnose perfusion abnormalities of organs such 
as liver, prostate and myocardium. Beside this, CEUS is used to assess perfusion of 
atherosclerotic plaques. This allows detecting of these small microvessels by using 
CEUS. There are two types of contrast enhanced ultrasound: 1) non-targeted CEUS 
using free-floating microbubbles 2) targeted CEUS using targeted microbubbles 
which bind to certain receptors on endothelial. In this thesis work, we only focused 
on non-targeted CEUS.  
 
1.3.1  Ultrasound Contrast Agents 
 

Ultrasound contrast agents are gas-filled microbubbles with a size distribution 
of 1 to 10µm, as small as red blood cells. They are intravenously injected and small 
enough to pass the lungs. Subsequently, they reach the left ventricle of the heart 
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and enter the systemic circulation. Later, they are mainly eliminated by the lungs. 
A microbubble consists of a shell and a gas core. The shell material affects 
mechanical elasticity and residence time of the microbubble in the systemic 
circulation [8]. Currently, the shell of the microbubble is made of lipid, albumin, or 
polymers [9]. The gas core of the microbubble provides an efficient scattering due 
to high compressibility. Microbubbles contain gasses such as air, sulphur-
hexafloride (SF6) or octofluoropropane (C3F8). The gases such as SF6 and C3F8 have 
low solubility in blood and increase the residence time of microbubbles in the 
systemic circulation. In this thesis work, we only used SonoVue contrast agent, 
manufactured by Bracco Inc., which has phospholipid coating and contains SF6 
gas. SonoVue has shown to be safe, is not trapped in microvasculature networks, 
and not diffusing across vascular or microvessel walls. There has been no evidence 
of harmful effects of SonoVue.  Microbubbles respond to ultrasound insonification 
nonlinearly due to their high compressibility and resonance, which is different than 
the linear response of a tissue. This difference between the tissue and 
microbubbles allows separating the tissue and microbubble responses. Several 
contrast imaging techniques have been developed so far based on nonlinear 
response of microbubbles. 
 
1.4 Contrast Detection Techniques 
 

Proper detection of ultrasound contrast agents is very important for their 
usability in diagnostic ultrasound. The strong scattering property of microbubbles 
can be used to change the response of the blood from echolucent (dark) to 
echogenic (bright) of the lumen of large arteries or the chambers of heart. 
However, when microbubbles are flowing within a microvasculature network 
surrounded by a tissue, their detection will be more difficult due to the combined 
response from tissue and microbubbles. To be able to detect microbubbles within 
the microvascular network, contrast-specific detection techniques are necessary. 
Pulse inversion and amplitude modulation techniques are the most common 
techniques that have been used to detect contrast agents. In addition, a technique 
called counter-propagation has been recently introduced by Renaud et al. [10] to 
detect microbubbles and suppress contrast-specific artifacts that are produced by 
the most common techniques. 
 
1.4.1  Pulse Inversion 

 
In pulse inversion technique, two pulses are transmitted, where the second 

pulse is a phase inverted copy of the first one. Their responses are added up. The 
tissue which is a linear target will reflect identical but inverted echoes back to the 
transducer as a response of these two pulses. Summing up these two responses 
will cancel out the linear response of the tissue. However, microbubbles will 
respond differently to these inverted pulses. When the received echoes for 
microbubbles are added, they do not cancel completely. The fundamental 
components and the odd harmonics (3rd, 5th, etc.) of the response signal cancel 
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each other but the even harmonics (2nd, 4th, 6th, etc.) produced by microbubbles 
are added. 

 
 

1.4.2  Amplitude (Power) Modulation 
 

This technique is also based on suppression of linear echoes and obtaining 
harmonic response. In this case, the scaling property of linearity is used to 
distinguish between the linear tissue and nonlinear microbubble responses. In 
power modulation, three pulses (two single-amplitude pulses and one double-
amplitude pulse) of the same shape are transmitted. Summing up the response of 
the two single-amplitude pulses and subtracting from the response of the double-
amplitude pulse will give no remaining signal for the linear tissue. However, 
microbubbles will respond differently to the two amplitudes. The generation of 
harmonics is dependent on the fundamental signal amplitude and therefore the 
double-amplitude pulse will generate stronger harmonics than the single-amplitude 
pulses. In this case, adding the responses of the two single-amplitude pulses and 
subtracting from the response of the double-amplitude pulse will result in a 
remaining harmonic signal that will allow distinguishing microbubbles from the 
tissue. 
 
1.4.3  Counter-Propagation Technique 
 

The techniques like pulse inversion and amplitude modulation require linear 
propagation along the tissue to detect nonlinear response of microbubbles. 
However, when a transmitted pulse crosses cavities with a high concentration of 
contrast agent, the waveform of the pulse is distorted due to nonlinear 
propagation medium. This will cause the tissue right behind these cavities to be 
misclassified as microbubbles, called pseudo-enhancement artifacts [11]. Renaud 
et al. [10] proposed a technique which distinguishes microbubbles from tissue 
based on the response of microbubbles to two acoustic waves propagating in 
opposite directions. In biological tissues, there will no effect observed when two 
waves pass over each other. However, microbubbles create an interaction between 
the two waves when they are passing over each other. This is used to detect 
microbubbles and create images free from nonlinear propagation artifacts (pseudo-
enhancement artifacts).  This technique has been recently developed but has not 
been used in clinical practice yet. 
 
1.5 Ultrasound Image Analysis 
 

Ultrasound is an operator dependent imaging modality. Therefore, ultrasound 
image acquisition and interpretation includes variability between operators or 
physicians.  Furthermore, visual interpretation of ultrasound image sequences is a 
tedious task for physicians. In ultrasound image analysis, much effort has been put 
into the cardiovascular applications (e.g. the analysis of heart, carotid arteries, or 
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coronary arteries) to reduce the variability between physicians and to assist 
interpretation of images. Main challenges in ultrasound image analysis are 
suppressing noise and artifacts, compensating for motion, and registration and 
segmentation of anatomical structures.  

 
1.5.1  Noise Filtering 
 

Ultrasound images are generally contaminated with speckle noise which is 
produced by scatterers smaller than the wavelength of a transmitted ultrasound 
pulse. A reliable speckle reduction is a challenge in ultrasound imaging. Noise 
reduction is often applied as a pre-processing step for further analysis. The most 
commonly used filters to reduce noise are neighbourhood-based filters such as 
average, median, and Gaussian filtering. These filters will partly suppress the noise 
but they may also cause blurring of edges of anatomical structures. Therefore, 
anisotropic filters are used instead of neighbourhood-based filters to prevent 
smoothing sharp boundaries [12]. For further speckle reduction methods that have 
been developed so far, we refer to the literature [13]. 
 
1.5.2  Motion Analysis 
 

Ultrasound imaging for the cardiovascular applications contains considerable 
motion such as heart movement, pulsation, body movement and probe motion. To 
be able to follow a region of interest, motion analysis is necessary. So far, block 
matching (also known as speckle tracking) [14], multidimensional dynamic 
programming (MDP) combined with block matching [15], optical flow [16], and 
Kalman-filter based techniques [17] have been used to analyse motion in 
ultrasound images. Block matching is the most commonly used technique. In this 
technique, a template of a structure is defined and scanned over a search field. For 
each position in the search field a measure of similarity to the template is 
calculated (e.g. sum of absolute differences, or normalized cross correlation). The 
similarity maxima are followed over time for motion analysis. MDP can be used to 
find an optimal connective displacement path over time.    

 
1.5.3  Image Registration 
 

Image registration has been widely used in medical imaging field to find the 
best spatial correspondence of anatomical structures between the same or 
different imaging modalities. This allows comparing images for different cardiac 
phases or images obtained at different times. Medical image registration can also 
be used for monitoring disease progression. Image registration approaches can be 
classified as landmark-based [18], intensity-based [19], and combination of 
landmark and intensity based [20] approaches. In landmark-based approaches, 
anatomical or geometrical landmarks (e.g. contours of objects) are extracted from 
images. Geometrical measures such as Euclidian distance are used to find the 
similarity between these landmarks in images. In intensity-based approaches, a 
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measure of correspondence (e.g. sum of absolute differences, normalized cross 
correlation, or mutual information) between intensities of images is used. 
Intensity-based approaches are the most widely used registration techniques in 
medical imaging.  

  
Registration is an iterative optimization framework for finding spatial 

correspondence between intensities or landmarks of a fixed and moving image. In 
each of iteration, a spatial transform is estimated and applied to the moving 
image. After that, the similarity between the fixed and moving image is calculated. 
The resulting similarity matrix is given as an input to an optimizer based on the 
computation of gradients (e.g. gradient descent or ascent). This process is 
repeated until alignment converges to a steady state or a maximum number of 
iterations is reached. 
 
1.5.4  Image Segmentation 

 
Image segmentation is the process of partitioning of an image into multiple 

segments which have different visual characteristics. The segmentation process 
locates objects and boundaries in the image. Several segmentation approaches for 
ultrasound images have been presented in the literature. These methods have 
been reviewed in several recent surveys [21-23].  Noble et al. stated that a good 
ultrasound image segmentation method needs to make use of all constraints (e.g. 
imaging physics, anatomical shape, and temporal constraints) and concluded that 
more segmentation validations are necessary to better understand the strengths 
and limitations of available methods. Naik et al. [15] presented a survey for carotid 
artery segmentation in ultrasound images. They concluded that none of the 
existing techniques were very good in all aspects (e.g. automation, robustness to 
noise, computation time, or being suitable for clinical applications), and that 
performance of semi-automatic segmentation techniques is better than that of 
fully-automatic techniques. 

 
Segmentation methods can be divided into two groups which are region-based 

and edge-based approaches. Region-based segmentation approaches include 
methods such as thresholding, region growing, watershed approach, classification-
based and morphological methods. Edge-based segmentation approaches include 
methods such as level-set, active contours, active shape models, classification-
based, and graph-based methods. In this thesis work, we only focus on regional 
classification-based and graph-based approaches. 

 
In classification-based approaches, segmentation is formulated as a probability 

estimation problem for given prior information such as image intensity 
distributions. Probabilities of each image pixel belonging to a given class are 
calculated by using a maximum-likelihood or Bayesian maximum a posteriori 
criterion. This results in a fuzzy segmentation of the image. The most commonly 
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used method is Expectation-Maximization [24]  which iteratively maximizes the a 
posteriori likelihood.  

  
In graph-based segmentation approaches, an optimal connective path is 

searched by finding a minimal cost path, e.g. using dynamic programming. In this 
case, the image is considered as a graph of nodes (image pixels). Every node has 
a cost value (e.g. pixel intensity). The optimal connective path is searched from 
left to right or vice versa in a 2D image by calculating cumulative cost. In the last 
column of the image, the lowest cumulative cost is found and the optimal path is 
found by backtracking.  
 
1.6 Scope and Outline 

 
1.6.1  Aim of Thesis 
 

We aim at development of novel, robust, accurate and objective quantification 
tools for intraplaque neovascularization (IPN) to replace tedious, subjective, and 
qualitative visual IPN scoring that has been used for assessment of IPN so far. In 
this work, we developed several IPN quantification tools and derived several 
quantitative imaging parameters. We also aim at selection of the best quantitative 
IPN imaging parameters among the derived IPN parameters. Furthermore, we aim 
at accurate segmentation of the lumen and wall of carotid artery in patients with 
atherosclerotic plaques to fully automate plaque segmentation and IPN 
quantification. In addition, all developed tools were implemented in a software 
package that we developed as a platform for carotid IPN quantification. Our 
software package was developed for clinical research use and has been used as 
such. This thesis work was performed in the context of a large consortium project, 
CTMM-ParisK (Plaque At Risk), which investigates molecular, morphological, 
biomechanical and imaging biomarkers of carotid artery atherosclerotic plaque to 
detect plaque at risk of rupture. 
 
1.6.2  Thesis Outline 
 
Motion analysis 
 
Chapter 2 describes an essential pre-processing step for IPN quantification, which 
is motion compensation for carotid plaques. Multidimensional dynamic 
programming combined with block matching is used to obtain the motion pattern 
of plaques over time.  
 
Quantification Methods 
 
Chapter 3 describes a quantification tool that was developed to detect and track 
contrast spots within the region of interest (ROI) of plaques. In this method, 
contrast spots and stationary artefact spots are discriminated based on their 
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displacement. The method gives the number of microvessel paths detected within 
the plaque ROI as an imaging biomarker for IPN. 
 
Chapter 4 describes motion compensated perfusion quantification tools (i.e. time 
intensity curve and maximum intensity projection analyses) for plaques. The 
imaging parameters derived from motion compensated perfusion analysis and 
those in Chapter 3 are compared to visual IPN scoring to select the best IPN 
imaging parameters. 
 
Chapter 5 describes a method that statistically segments contrast spots. In this 
method, intensities within the plaque ROI are classified into background, contrast 
spots, and artifacts. The method is quite insensitive to artifacts compared to the 
methods in Chapters 3 and 4. 
 
Software development 
 
Chapter 6  describes the concept, design and capabilities of a software package 
which is developed as a platform for IPN quantification. The parameters derived in 
Chapter 5 are compared to the parameters in Chapters 3 and 4, and to visual 
IPN scoring.  
 
Image registration and segmentation 
 
Chapter 7 describes a nonrigid motion compensation method for combined B-
mode and contrast enhanced ultrasound images and a fully automatic method for 
segmentation of the lumen of the carotid artery. The method also allows studying 
the lumen geometry over time (e.g. for distensibility measurements). 
 
Chapter 8 describes a fully automatic carotid plaque segmentation method in 
combined B-mode and contrast enhanced ultrasound images. 
 
Clinical application 
 
Chapter 9 describes assessment of IPN in patients with familial 
hypercholesterolemia, using the software described in Chapter 6 and 
quantification tools described in Chapters 3-5.  
 
Discussion and conclusion 
 
Chapter 10 discusses the merits of the developed IPN analysis tools and provides 
the future perspectives and conclusion of this study.  
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Chapter 2 
 
 

Motion Compensation Method using Dynamic Programming for 
Quantification of Neovascularization in Carotid 

Atherosclerotic Plaques with Contrast Enhanced Ultrasound (CEUS) 
 
 

Intraplaque neovascularization (IPN) has been linked with progressive 
atherosclerotic disease and plaque instability in several studies. Quantification of 
IPN may allow early detection of vulnerable plaques. A dedicated motion 
compensation method with normalized-cross-correlation (NCC) block matching 
combined with multidimensional (2D+time) dynamic programming (MDP) was 
developed for quantification of IPN in small plaques (<30% diameter stenosis). 
The method was compared to NCC block matching without MDP (forward tracking 
(FT)) and showed to improve motion tracking. Side-by-side CEUS and B-mode 
ultrasound images of carotid arteries were acquired by a Philips iU22 system with a 
L9-3 linear array probe. The motion pattern for the plaque region was obtained 
from the B-mode images with MDP. MDP results were evaluated in-vitro by a 
phantom and in-vivo by comparing to manual tracking of three experts for 
multibeat-image-sequences (MIS) of 11 plaques. In the in-vivo images, the 
absolute error was 72±55µm (mean±SD) for X (longitudinal) and 34±23µm for Y 
(radial). The method’s success rate was visually assessed on 67 MIS. The tracking 
was considered failed if it deviated >2 pixels (~200µm) from true motion in any 
frame. Tracking was scored as fully successful in 63 MIS (94%) for MDP vs. 
52(78%) for FT. The range of displacement over these 63 was 1045±471µm (X) 
and 395±216µm (Y). The tracking sporadically failed in 4 MIS (6%) due to poor 
image quality, jugular vein proximity and out-of-plane motion. Motion 
compensation showed improved lumen-plaque contrast separation. In conclusion, 
the proposed method is sufficiently accurate and successful for in vivo application. 
 
 
 
 
©SPIE 
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1. INTRODUCTION 
 

Many studies have shown that patients with carotid plaques carry an increased 
risk of sudden cardiovascular events, such as stroke, transient ischemic attack, 
myocardial infarction and even death. The benefit of carotid endarterectomy has 
been established in reducing the risk of recurrent stroke for symptomatic patients 
with severe stenosis by large European and North American clinical trials [16-17]. 
For a carotid endarterectomy operation, current clinical practice for selecting 
patients is heavily based on assessing the degree of arterial lumen narrowing. 
However, there is an increasing consciousness that not the size of the plaque, but 
its composition and risk of rupturing is related to these acute cardiovascular 
events. Therefore, the degree of stenosis is actually a poor predictor of individual 
stroke risk and improved risk stratification models should focus on plaque 
vulnerability rather than size.  
 

Some studies suggested some other parameters to be included in plaque 
analysis. Plaque echogenicity was assessed by taking its gray scale median (GSM) 
after normalizion of image gray values to those of blood and adventitia [1]. 
Furthermore, echolucency of plaques was examined and it was hypothesized that it 
may represent an increased risk of cerebrovascular events [2]. Analysis of plaque 
image texture in addition to quantification of GSM has also been investigated in 
efforts to improve reliability and demonstrate the clinical value of greyscale image 
analysis [3]. 
 
Alternatively, the neovascularization within the plaque was examined and several 
pathological studies demonstrated that intraplaque neovascularization (IPN) is 
associated with progressive atherosclerotic disease and plaque vulnerability [4-5]. 
Recent developments in contrast enhanced ultrasound (CEUS) have shown that 
small microvessels with slow flow can be visualized by the use of ultrasound 
contrast agents.  Therefore our research aims at an accurate quantification of IPN 
by CEUS, which may allow early detection of vulnerable plaques and may be of 
clinical value for selecting patients for carotid endarterectomy. Since the carotid 
artery shows considerable motion due to the pulsating blood pressure, breathing 
and swallowing motion compensation of the plaque is a prerequisite step for 
analysis of identical regions of interest (ROI) for an accurate quantification of IPN. 
A dedicated method of motion compensation for this purpose is explored in this 
study.  
 

In a previous study, Chan [7] presented two approaches to carotid plaque and 
tissue motion. A number of points was selected and tracked based on salient 
features such as high contrast edges or corners to estimate tissue motion. Besides, 
the boundary of plaque in each frame was extracted based on gray-level histogram 
thresholding and motion of the boundary was used to estimate the plaque motion. 
Golemati et al. [6] introduced region tracking and quantification of the carotid wall 
motion by block matching using normalized-cross-correlation (NCC) with 
3.2x2.5mm (49x41 pixels) templates on ultrasound B-mode images. Bang et al. [8] 
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demonstrated a block matching technique using NCC with 21x21 templates for 
multiple points over a region to track intraplaque motion and quantified various 
plaque motion parameters. Akkus and Ramnarine [9] assessed dynamic plaque 
motion and intraplaque deformation in carotid artery at high frame rate with a 
forward tracking block matching technique using NCC with a fixed 3x3 mm 
template. Dave and Forsberg [10] introduced a motion compensation method 
based on sum of absolute differences to improve the quantification of breast lesion 
with contrast enhanced ultrasound. Akkus et al.[12] presented a motion 
compensation method with forward tracking block matching technique using NCC 
with a fixed ~5x5 mm (49x49 pixels) template and subpixel detection for 
quantification of IPN in CEUS images . The main drawbacks of forward tracking 
with block matching are the sensitivity to temporary disturbances (artifacts, out-of-
plane motion, reduced or noisy NCC values, peak hopping) resulting in a temporary 
or permanent loss of tracking. These limitations may be overcome by more 
advanced robust tracking approaches.  
 

Gastounioti et al. [11] presented a comparison of Kalman filter-based 
approaches for block matching in carotid wall motion analysis. They concluded that 
the combination of adaptive block matching and Kalman filtering yielded average 
displacement error reduction of 24% with respect to block matching without 
Kalman filtering. Kalman filtering based approaches are more robust to noise than 
block matching and thereby they will result in considerable improvement in the 
quality of motion estimation. 
 

Üzümcü et al [13] presented time continuous tracking and segmentation of 
cardiovascular magnetic resonance images using multidimensional dynamic 
programming (MDP). Nevo et al.[14]presented an automated tracking of the mitral 
valve motion in echocardiographic images using MDP combined with apodized 
block matching. Hoogi et al. [15]  presented an algorithm for tracking contrast 
spots using MDP combined with apodized block matching for quantification of IPN. 
 
In this study, we propose a dedicated motion compensation method using 
multidimensional dynamic programming combined with apodized block matching to 
overcome forward tracking limitations and for accurate quantification of IPN. We 
make use of the observation that the plaque itself is generally a unique landmark 
in the B-mode image, in contrary to healthy carotid wall sections. The plaque 
region itself is a suitable template for motion tracking. Therefore, side by side 
simultaneous contrast and B-mode images were acquired and the local motion 
pattern of the plaque region was extracted from the B-mode image with 
multidimensional (2D+t) dynamic programming and the extracted motion pattern 
was used to correct the plaque motion to quantify neovascularization accurately in 
the contrast image. 

  
2. DATA ACQUISITION 
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Simultaneous side-by-side standard B-mode ultrasound and CEUS were 

acquired using a Philips iU22 system with a L9-3 linear array probe to achieve 
visualization of the plaque morphology and vascularization. The mechanical index 
for CEUS was adjusted to 0.06-0.08 for maximum contrast signal visualization. 
SonoVue contrast agent (Bracco S.p.A., Milan, Italy) was used to perform contrast 
enhanced ultrasound (CEUS). The ultrasound contrast agent was injected in the 
antecubital vein using an 18 Gauge intravenous cannula. The cannula was flushed 
with a 5.0 ml NaCl 0.9% solution bolus injection before the first injection of the 
ultrasound contrast agent. The ultrasound contrast agent was injected in boluses 
of 0.5-1.0 ml. Each contrast agent bolus was followed by a saline flush using 2.0 
ml NaCl 0.9% solution. The arrival and appearance of contrast enhancement in the 
carotid lumen was observed within 10-30 seconds after the contrast injection. After 
administration of contrast agent, high-quality contrast images could be obtained 
and stored for approximately 1 minute. Contrast administration was repeated when 
required up to a maximum total dose of 10.0 ml. Both right and left carotid arteries 
were examined using a standard acquisition protocol. Cine clips and still frames 
were digitally stored as a DICOM (Digital Imaging and Communications in 
Medicine) format for offline analysis. The study was approved by the ethical 
committee and all patients gave written informed consent. 
  
3. METHOD 

 
The carotid artery wall shows considerable motion due to the pulsating blood 

pressure, breathing and swallowing. For an accurate quantification of small 
microvessels within the carotid plaques motion compensation is a prerequisite 
step. The contrast spots associated with these microvessels have sizes of a few 
pixels, while the plaque motion can amount to tens of pixels. The motion 
compensation method should be accurate and reliable enough for this purpose. In 
CEUS images, only ultrasound contrast agent is seen and tissue is suppressed so 
that it is quite difficult to extract plaque motion from CEUS images. Therefore we 
acquired simultaneous side-by-side B-mode images and CEUS images and the 
motion pattern of plaque was extracted from B-mode images and applied to the 
contrast images to follow identical plaque region. Plaque itself in B-mode images is 
quite a unique landmark in both directions, in contrary to healthy carotid wall 
sections, which are highly similar when moving along the vessel direction. For 
determining motion in image sequences, several techniques are commonly applied, 
such as image registration, optical flow, or block matching. Image registration 
approaches, employing either rigid or nonrigid deformations from frame to frame, 
determine a continuous field of deformations that transform the previous image 
into the next. Optical flow determines local direction of movement from the 
relation between spatial and temporal intensity gradients. Block matching 
approaches take a small local sample and search the most similar sample in the 
next frame. Our task does not match well with registration or optical flow. Motion 
is highly discontinuous near the plaque, because of the flowing blood and close-by 
tissues like jugular vein and muscle moving in different directions. Furthermore, 
image intensities are non-constant; there is a high level of (speckle) noise and 
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artifacts like saturation and shadowing. All these factors violate the assumptions 
underlying registration and optical flow. Therefore, a block matching technique is 
preferred. Blockmatching has been most popular for tracking in ultrasound images 
in general, and the discontinuity issues for small carotid plaques further strengthen 
this choice. Given this choice for blockmatching, we further need to focus on a 
reliable similarity measure and a  robust tracking approach to tackle the 
noise/artifact issues. We considered MDP combined with apodized block matching 
using NCC similarity  a good choice. In block matching NCC was preferred instead 
of sum of absolute difference (SAD) or sum of square differences (SSD) because 
NCC is insensitive to brightness and contrast changes of the image and template.   
 
3.1 Block Matching using Normalized Cross Correlation 
 

In case of a plaque motion tracking plaque displacement is assessed through an 
ultrasound image sequence by tracking the positions of small regions of speckle 
pattern through consecutive frames. A small rectangular region of the first image 
containing the speckle pattern (the template) is scanned around a defined search 
field in the second image to find the position where they best match. This 
determines the shift in location of the template from the first ultrasound image and 
all subsequent images in the sequence, as shown in figure 1 and figure 2. The 
similarity of the template to the image, at each point in the search field, is 
assessed by calculating their normalized cross correlation (NCC). NCC is commonly 
used in ultrasound tissue motion tracking since it is not affected by changes in the 
brightness and contrast of the image and template. The NCC is defined in equation 
1 [14]. Here, f(x,y) are the pixels values in the image. The position (x1,y1) is the 
user-indicated position in or near the plaque in the first frame that should be 
tracked. The rectangular template t1 around position (x1,y1) of size 2M+1 by 2N+1 
pixels contains the tracked structure.  )1,,(1 yxI  are the pixel values within this 
template in the first frame. The template is compared to match blocks ),,( tvuIt of 
the same size in other frames, that are displaced by u in the x direction and v in 
the y direction with respect to (x1,y1). All offset combinations (u,v) within a search 
region around (x1,y1) are tested and for each one, the correlation value NCC(u,v,t) 
between template and match block is calculated according to eq.(1). 

),,( tvyuxIt ++ is the matching block at frame t where the template )1,,(1 yxI is 
scanned through each position in the search region by displacing u pixels in the x 
direction and v pixels in the y direction. Pixel values of the template )1,,(1 yxI and 
the region under the template ),,( tvyuxIt ++ are normalized at each position (u, v) 

by subtracting their mean values ( 1I , tI ) and dividing by their standard deviation. 
),(ˆ1 yxI and ),,,(ˆ vuyxIt  are the normalized template and the region under the 

template (matching block) respectively. The coefficients can range in value from –
1.0 to +1.0. The correlation results in 1 when an identical pattern is found. In the 
case of noisy images and deformable tissue this will not happen: the best 
correlation will be the value closest to 1. The correlation coefficients for each 
position u,v are stored in a matrix. The highest NCC value in the matrix defines the 
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most likely position, where the template best matches the speckle in the search 
field. 
 

The template and the match block in the image are apodized by multiplication 
with a 2D Gaussian kernel (W) which gives higher weight to central pixels and 
decreases the contribution of peripheral pixels during the calculation of cost value 
for each pixel in the search field. The size of the 2D Gaussian kernel is the same as 
the template size.   

 
     Figure 1: Block matching diagram  
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In this study, we chose the parameters of our tracking to match our problem. 
We are tracking relatively small carotid artery plaques that are located between the 
carotid lumen and the adventitial wall, close to independently moving blood and 
tissue like muscle and jugular vein. The motion is relatively small, in the order of 
few pixels per frame and 5-15 pixels maximum displacement over several 
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heartbeats. We try to track over prolonged periods spanning several seconds and 
hundreds of images. We chose to use a fixed template, ~6 x 4 mm (61 x 41 pixels 
(x,y)), derived from the first image of sequence. To prevent drift in the tracking or 
loss of tracking, this template is not updated (updating means taking a new 
template at the detected ‘best position’). The image scene is expected to remain 
stable during the whole sequence, except for transient periods of swallowing etc., 
so updating is unnecessary and potentially dangerous. 
 

The size of chosen template should be big enough to enclose a distinctive 
plaque region with uniform motion. When the template size is decreased, the 
uniqueness of the template pattern decreases; the probability of encountering 
another similar pattern will increase and false positioning may occur. If template 
size is increased, other structures with different motion may be included and 
interfere with the positioning. After several experimental trials the chosen size of 
the fixed template of 6 x 4 mm proved to be a good compromise. The normalized 
cross correlation was used to obtain the cost value for each pixel position. The 
basic cost function was constructed as 1-NCC, which is optimal when it is minimal.  
 
 

The template was scanned over the following frames to obtain cost values in a  
6x2mm search region and cost values are stored in a three dimensional (u,v,t) 
matrix for using as an input to MDP.  
  
 

  
Figure 2: Block matching. The plaque region is outlined manually in the contrast 
image (left) and shown in the b-mode image   (right). A representative tissue 
point within or near the plaque is indicated manually in the b-mode. A template 
around this point is extracted and compared to all positions within the search 
field in consecutive B-mode frames to obtain cost value (1-NCC) for each pixel. 
 

3.2 Multidimensional dynamic programming (2D + t)  
 

Dynamic programming (DP) is a method for solving variational problems by 
finding locally optimal solutions successively. DP algorithms enable to find an 
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optimal connective path through a graph of nodes. In image processing, the graph 
is generally a matrix of cost values related to an image. Each node has a cost and 
the optimal path is searched through the graph of nodes - the path for which the 
sum of the costs is minimal. The step size which is the maximum distance between 
two nodes in consecutive columns is selected based on desired connectivity. An 
example of DP search for a 1D path is shown in figure 3. On the left (fig. 3a) we 
see the nodes of the cost matrix, and the connectivity between the nodes when 
going from left to right. Each node has maximum 3 predecessors in the previous 
column. Each node has a cost which is derived from an image related cost 
function. In fig. 3b the cumulative cost for each node is calculated from left to 
right. In the leftmost column, the cumulative cost is the cost of the node itself. In 
the next column, for each node the predecessors are compared and the one with 
lowest cumulative cost is chosen. The cost of the node itself is added to this lowest 
one to get the cumulative cost for the current node. From left to right, all columns 
of cumulative costs are filled. In the cost matrix on the right side (fig 3c), the 
optimal path is found by taking the node in the last column with the lowest 
cumulative cost and going from right to left using back propagation. The minimal 
cumulative costs are shown in color and the optimal path connects minimal 
cumulative costs. This results in a globally optimal path. Note that a simple forward 
search for the neighbor with lowest cost would not find the optimal path with 
lowest cost 9, but a suboptimal path with cost 10. 
 
 

  
Figure 3: Example of DP search for a 1D path. a: original cost matrix with its 
connectivity graph b: Cost matrix with cumulative cost c: The optimal path 
found by backtracking    

 
DP has been widely used in medical image segmentation and tracking. It 

provides robust solutions and enforces spatial or temporal continuity. In our case 
we use multidimensional DP for an optimal path search for motion tracking of 
carotid plaques while enforcing temporal continuity. In this case, we used two 
dimensional dynamic programming to find the optimum path through a stack of 2D 
cost function over time (a 3D (2D+t) data set) since the motion is two 
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dimensional, horizontal and vertical as it is illustrated in figure 4. 2D cost function 
is obtained from block matching as it explained in section 3.1. The method is 
based on Nevo et al [14] where it was used for mitral valve tracking. We adapted 
the method for carotid plaque tracking. Hoogi et al. [15] used a similar approach 
for motion tracking of contrast spots. Constraints on temporal continuity are 
imposed by setting limits to the allowed displacement changes between two 
consecutive frames. Generally, horizontal or vertical displacement is in the order of 
few pixels from frame to frame. The step size for horizontal displacement from 
frame to frame was chosen as 5 pixels and 3 pixels for vertical motion, which are 
considered the maximum displacements that can be seen in two consecutive 
frames. A side step penalty was applied in both x and y direction during the 
calculation of cumulative cost in order to penalize fast movements. Then the 
optimal (minimum cost) path was searched along the time dimension with MDP. To 
refine the tracking results, a 1:10 subpixel detection was performed in a second 
iteration of MDP by 1:10 cubic spline interpolation of NCC in neighborhoods of the 
detected point in each frame.   
 

 
     Figure 4: An illustration of multidimensional dynamic programming. 
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In equation 2, CumCost is the cumulative cost which is calculated for each 

node. Cost is the basic cost which is the 1-NCC for each position. k is the frame 
number. Δx and Δy are side steps from the current pixel. fx and fy are the amount 
of side step penalty applied in horizontal and vertical directions respectively. The 
magnitude of these side step penalties were decided after several experimental 
trials. fx was selected 10 and fy was selected 20 to penalize fast movements.  After 
applying side step penalization, the minimum of the cumulative pathcosts for the 
neighborhood of predecessors of the current position is taken to assign the 
cumulative cost for the current position in equation 3. This procedure is repeated 
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for each position in the column and subsequently for the next column, until all 
cumulative costs have been found. The position in the last column with minimal 
cumulative cost is the end of the optimal path, which is found by backtracking (fig 
3c).   
    
4. VALIDATION 
 

The MDP was validated in-vitro with a phantom, mimicking carotid lumen and 
wall, that was moved by a computerized XYZ positioning system with 1mm steps in 
X and Y directions over 7mm with an accuracy of 5 micron (figure 5a). A b-mode 
image with the tracked position is shown in fig.5b. The tracked translation is 
shown in fig 6. The mean error and standard deviation between true motion and 
measured motion was calculated by taking into account all measured points except 
for the transition points between the steps (total number of frames N=368 for 
X, N=372 for Y), shown in table 1.  

 
     Figure 5: In vitro validation: a: Illustration of in-vitro setup. b: B-mode image 
of phantom 
 

 
     Figure 6: Longitudinal(x) displacement (left) and radial (Y) displacement (right) 

In-vivo validation was done by comparing MDP to manual tracking of plaque by 
three experts for multibeat image sequences (MIS) of 11 plaques (N=1650 
frames). Independently, three experts manually tracked the motion of a preferred 
plaque point in 150 frames of each 11 plaques. The first manual tracking point of 
each expert was used to initialize an automated tracking. All trackings were 
expressed as displacements from their respective start positions i.e. displacement 
for the start frame was 0. This allows direct comparison of the displacement 
pattern between trackings, irrespective of the absolute start position. The average 
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of three manual trackings was used as the best estimate of ground truth. 
Therefore, the standard deviation (SD) of the three from ground truth was 
considered a measure for the observer variability. The SD of the three automated 
(MDP) tracking patterns from average of the three was considered a measure for 
the MDP reproducibility. Mean and standard deviation of these differences (within 
experts, within MDP and between each MDP and ground truth) were calculated. 
The results were averaged for 11 plaques and shown in table 2. For comparison, 
the mean and standard deviation of the ground truth displacement is 384 ± 372 
µm  for X and 75 ± 95 µm for Y (averaged for 11 plaques). 
 

Furthermore, the MDP success rate was visually assessed on 67 atherosclerotic 
wall plaque MIS (N=7964 frames). The tracking was considered failed if the MDP 
visually deviated more than 2 pixels from true motion in any frame. 

 
5. RESULTS 

 
In the phantom validation, the error was 18 ± 19 µm (mean ± standard 

deviation) for X (longitudinal) and 92 ± 57 µm for Y (radial). This is the error 
between true motion and measured motion by MDP over 7 mm. 
 

Table 1: Statistics of MDP tracking results in the in vitro validation.  
All results expressed as mean ± standard deviation in μm. 

 
Error    

(mean ± SD) 
Range of 

Displacement 
X-translation 18 ± 19 µm 7000 µm 
Y-translation 92 ± 57 µm 7000 µm 

 
This shows that there is hardly any bias in X and standard deviation is in the 

order of 0.1 pixel, so the subpixel accuracy is indeed achieved. For Y, there is a 
half of a pixel bias and standard deviation is about one third of a pixel. From the 
linear regression on the data, strong correlation was found between measured and 
true motion (regression line, y =1.0077 x – 0.0056, R2 = 0.999968 for X and y = 
0.9739x + 0.0036, R2 = 0.999988 for Y).  
 

Tracking was visually scored as fully successful in 63 of 67 MIS (94%). The 
range of displacement over these 63 in X (longitudinal) and Y (radial) was 
respectively 1045±471µm (mean ± standard deviation) and 395±216µm. The 
tracking sporadically failed in 4 (6%) MIS due to jugular vein proximity, poor 
image quality, and out-of-plane motion. In the quantitative evaluation against 
manual tracking by three experts, absolute error was 72 ± 55 µm for X and 34 ± 
23 µm for Y.  
 

Motion compensation showed improved lumen-plaque contrast separation as 
shown in figure 7. Dynamic programming (MDP) improvement on tracking can be 
seen on several cases where the forward tracking method fails, such as in figure 
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10. Success rate with forward tracking was 78% (52 plaques) among 67 plaques. 
With MDP the success rate increased to 94% (63 plaques). Failure rate was 
reduced by factor of 4. 

 

 
Figure 7: Maximum intensity projection of image sequence of 130 frames without 
& with motion compensation. 
 

Motion correction showed improved lumen-plaque contrast separation in the 
maximum intensity projection (MIP) of a contrast image sequence. In a MIP, the 
maximum intensity over all frames is determined for each pixel. In the case of a 
moving bubble, the MIP should show the path of the bubble. As can be seen in 
figure 7, the microvessel path is much clearer with motion compensation than in 
the MIP image without motion compensation and there is no contrast filling in 
plaque region from lumen. It is clear that for future analysis of plaque 
neovasculature, the motion compensation is indispensable. 
 

A typical example of manual and automated tracking is shown in figure 8. 
Strong correlation was found (R2 =0.96 for X and R2 =0.83 for Y) between the 
displacement obtained by the MDP automated tracking and manual tracking. Linear 
regression result for longitudinal displacement is shown in figure 9. 
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Figure 8: Manual tracking (mean of three experts, red), mean manual tracking ± 
SD (cyan), and mean of 3 MDP (green) of a plaque in longitudinal and radial 
direction.  (1 pixel = 0.1056 mm). 
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Figure 9: Results of linear regression of longitudinal and radial displacement of 
plaque region obtained by manual and automated tracking.  

 
Table 2: Statistics of manual (three experts) tracking and automated tracking 

(MDP) results.  
All results expressed as mean ± standard deviation in μm. 

Absolute Error 

Manual tracking 
(interobserver 

variability) 
Automated (MDP) tracking 
(automated reproducibility) 

Ground truth(mean 
manual) vs. Automated 

tracking(MDP) 

Longitudinal(X) 75 ± 45 13 ± 12 72 ± 55 

Radial(Y) 32 ± 21 3 ± 3 34 ± 23 
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Figure 10: Manual tracking (mean of three experts, blue), mean manual tracking ± 
SD (cyan), forward tracking (red), and MDP (green) of a plaque in longitudinal and 
radial direction.  (1 pixel = 0.1056 mm). 
 
6. DISCUSSION  

 
We introduced a dedicated motion tracking method with MDP combined with 

apodized block matching. The proposed method gives detailed motion tracking 
with 1:10 subpixel detection, which prevents quantization distortion with respect to 
integer pixel detection. A template size of 6 x 4 mm was chosen, which is wider 
than the one that was used by Golemati et al. [6] for wall lumen interface. Having 
a wider template in longitudinal direction experimentally proved to be less subject 
to tracking loss. Bang et al. [8] used a smaller template but this was used for 
multiple grid points over a region and averaged to obtain regional motion. In our 
case we focused on one point tracking to obtain local motion pattern, and thereby 
the template size should be big enough. Then the optimum motion path is 
searched with MDP. 
 

In MDP, the maximum allowed step size from frame to frame in X and Y was 
selected based on the fastest motion that can be seen in our dataset. Generally the 
motion from frame to frame is not bigger than a few pixels. During the calculation 
of cumulative cost an additional side step penalty was applied to penalize fast 
movements. The side step penalty should be selected carefully. If it is too high, it 
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can cause an over-smoothed path. In the case of a very small penalty, it might not 
help to improve tracking results. The chosen values represent a reasonable 
compromise.  
 

Accuracy of the method was evaluated in vitro and in vivo. In phantom 
validation, the mean error is about half of a pixel for Y directional movements and 
is about one tenth of a pixel for X direction. It shows there is a systematic error in 
Y direction, which may be caused by deviation in the speed of sound which 
depends on the water temperature in the experiment. This seemingly higher error 
is fully attributable to a small scaling error. This shows that there was a 3% scaling 
error in Y direction, probably due to a small speed-of-sound difference due to 
temperature. In X direction, this error is absent for a linear array probe. From the 
regression coefficient, it can be seen that the random errors in the y direction are 
smaller than for the X direction, as can be expected in this type of ultrasound 
image, since the axial resolution is better than the lateral resolution. In the in-vivo 
validation, in the comparison of three manual trackings against the ground truth, 
there is a systematic error smaller than a pixel for X and less than half of a pixel 
for Y, and standard deviation is about half of a pixel for X and smaller than half of 
a pixel for Y due to variability of manual point selection and interpretation 
difference of three experts while following true motion. The error between 
automated tracking and one expert is in the same range as the error of three 
experts. In the comparison of three automated tracking for the selected points of 
three experts in table 1, it can be seen that the systematic error is one tenth of a 
pixel for X and almost 0 for Y and its standard deviation is much lower than the 
standard deviation of three experts. It means that automated tracking is as good 
as expert tracking but more reproducible. 
 

The visual assessment of 67 plaques shows that the method is fully successful 
in a large part (96%) of the cases. However, it failed in some frames of other 
cases, due to jugular vein proximity, wall saturation, poor image quality, or out of 
plane motion. The failure rate was reduced by a factor of 4 with MDP when 
compared to forward tracking. The main drawbacks of forward tracking with block 
matching are the sensitivity to sudden disturbances and tendency to loss of 
tracking when there are artifacts, out-of-plane motion, reduced or noisy NCC 
values, or peak hopping. If gain setting on the machine is not optimized well for 
the B-mode image, wall or plaque echo might be saturated. When the tissue is 
moving this saturation can shift with respect to the tissue, causing unreliable 
tracking. Detection or suppression of such artifacts may prevent such problems. 
Poor image quality and out of plane motion can cause the loss of tracking due to 
poor correlation. Proximity of the jugular vein to the carotid artery is another 
reason for tracking to fail since this induces opposing motion patterns close 
together. In this case a smaller or vertically shifted template might help to exclude 
jugular vein to improve tracking. To be able to deal with the sporadical failure of 
tracking in the cases of bad image quality, out of plane motion, or wall saturation, 
MDP will help and improve the tracking results. For some severe cases, other 
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solutions would be needed, but for the large majority of cases the method is 
robust enough in practice. 
 
7. CONCLUSION 
 

Multidimensional dynamic programming provided improved tracking. When the 
correlation is good the dynamic programming will give the same results as forward 
tracking of the best correlation. In the case of transient loss of correlation MDP 
provides an overall optimal continuous path for tracking and thereby MDP is less 
subject to tracking loss. The MDP combined with apodized block matching method 
is more robust to noise than forward tracking. In the in-vivo comparison, the 
automated method performed within the range of interobserver variability. In 
conclusion, the proposed motion tracking method is sufficiently accurate and 
successful for in vivo application. Our method will allow improved quantification of 
IPN.  
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Chapter 3 
 

Quantitative analysis of ultrasound contrast flow behavior in Carotid 
Plaque Neovasculature 

 

Intraplaque neovascularization is considered as an important indication for 
plaque vulnerability. We propose a semiautomatic algorithm for quantification of 
neovasculature, thus, enabling assessment of plaque vulnerability. The algorithm 
detects and tracks contrast spots using multidimensional dynamic programming. 
Classification of contrast tracks into blood vessels and artifacts was performed. The 
results were compared with manual tracking, visual classification and maximal 
intensity projection. In 28 plaques, 97% of the contrast spots were detected. In 
89% of the objects, the automatic tracking determined the contrast motion with an 
average distance of less than 0.5 mm from the manual marking. Furthermore, 
75% were correctly classified into artifacts and vessels. The automated 
neovascularization grading agreed within 1 grade with visual analysis in 91% of 
the cases, which was comparable to the interobserver variability of visual grading. 
These results show that the method can successfully quantify features that are 
linked to vulnerability of the carotid plaque. 
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INTRODUCTION 
 

Atherosclerosis, a systemic disease of the arterial wall, may be considered at 
some stages as a form of cardiovascular inflammatory disease (Amini et al. 1990; 
Ogata et al. 2005). The important contribution of carotid atherosclerosis to the 
pathogenesis of cerebral events has been recognized (Gomez 1990). 
Atherosclerosis-related stroke or myocardial infarction have been linked to the 
presence of neovascularization and inflammation in the atheromatous plaque, 
which are considered reliable markers of vulnerability of the plaque and predictors 
of its rupture (Huang et al. 2008). Moreover, the study of (Barger et al. 1984) 
indicated that in most cases, atherosclerotic plaques and the neovascularization 
process come together. The role of the neovascularization in the plaque 
vulnerability is as following: The first stage in the formation of atherosclerotic 
plaques is vessel wall thickening as a result of endothelial damage. Vessel wall 
thickening is caused by infiltration of low-density lipoproteins (LDL) into the intima 
complex of the vessel wall. Consequently, monocytes are triggered to migrate 
through the vessel wall and differentiate to macrophages. The macrophages take 
up the modified LDL and form the so called macrophage foam cells. This leads to a 
more complex inflammatory response in the affected vessel wall (Libby et al. 
2011). As this process progresses, more advanced atherosclerotic plaques are 
formed. During the formation of these plaques, the vessel wall thickness will 
exceed the oxygen diffusion threshold. This will lead to a release of a number of 
angiogenic growth factors such as hypoxia inducible transcription factor (HIF). 
These factors will trigger the physiologic vasa vasorum to proliferate into the 
atherosclerotic plaque (Falk 2006; Sluimer and Daemen 2009; Sluimer et al. 
2008).  The immature neovessels may promote the formation and destabilization 
of this atherosclerotic plaque and these vessels are associated with future 
cardiovascular events (Hellings et al. 2010). 

Hence, the indication for carotid endarterectomy, which is commonly based on 
the degree of diameter stenosis may be insufficient, while risk evaluation based on 
the plaque composition would be valuable in the treatment decision process  
(Nandalur et al. 2005; Barnett et al. 2002). Therefore, developing a non-invasive 
imaging method based on quantification of plaque vascularization to assess plaque 
vulnerability is highly desirable. In addition, monitoring neovascularization 
response to drug treatment, as an expression of the inflammation process, may be 
obtained (Lin and Alessio 2009; Parker et al. 1988; Rissanen et al. 2008). In our 
study, the plaque is monitored by 2D ultrasound (US) imaging which is a 
noninvasive, reliable, accessible, and cheap image acquisition modality (Molinari et 
al. 2007). The spatial resolution of carotid ultrasound imaging is approximately 0.1 
mm which is better than with MR, CT or X-ray angiography imaging of the carotids 
(Lin and Alessio 2009). This resolution refers to a 4 cm depth and a fundamental 
frequency of at least 7MHz (Stein et al. 2008). Moreover, contrast-enhanced 
ultrasound imaging (CEUS) allows detection of contrast microbubbles in very small 
vessels with high sensitivity. Since CEUS can detect single microbubbles due to 
their strong reflectivity, blood flow within vessels of sizes less than 50 microns can 
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be detected (Hsu and Chen 2008; Willmann et al. March 2010). Several researches 
utilized the advantage of CEUS imaging in detecting neovascularization (Lin and 
Alessio 2009; Hoogi et al. 2011; Giannarelli et al. 2010). 

Several semi-quantitative visual approaches to quantify contrast enhancement 
of intra-plaque neovascularization on contrast-enhanced ultrasound images have 
been reported (Fleiner et al. 2004; Giannoni et al. 2009; Coli et al. 2008), usually 
by using a discrete limited grading system. Those authors categorized the 
echogenicity as low if no bubbles were detected and as high if extensive contrast 
enhancement was depicted (Shah et al. 2007) used a semi-quantitative grading 
system based on visual interpretation alone, from the absence of 
neovascularization (grade 0) to high echogenicity (grade 3) caused by a high 
amount of contrast agent enhancement.  

Several studies used maximum intensity projection (MIP) to reconstruct an 
arterial tree (Hoogi et al. 2011; van Ooijen et al. 2003; Suri et al. 2002). Maximum 
intensity projection (MIP) is a 2D projection image obtained from a time sequence 
of 2D data by searching for every pixel the highest intensity value over time. In 
un-enhanced ultrasound imaging, MIP can be used to evaluate the general 
morphology of relevant objects, such as the carotid plaques. However, in contrast-
enhanced ultrasound (CEUS) it has additional contribution in detection of the 
vessel trajectories. A major drawback of MIP is its high sensitivity to noise and to 
the quality of the applied motion compensation, thus a MIP analysis can produce 
an over-estimated arterial tree. Therefore, using MIP enforces a preliminary high 
quality filtering (Anderson et al. 1990). Another drawback of MIP is its absence of 
any temporal information on the examined objects. Therefore, it encounters 
difficulties in differentiation between artifacts and blood vessels and produces 
over-estimated results of the neovascularization inside the plaque. To our 
knowledge, there are no other studies published in the literature quantifying the 
intra-plaque neovascularization by demonstrating the 2D behavior of a contrast 
spot over time. We utilize the importance of the temporal behavior as described in 
the following pages.  

In the present study, a semi-automatic algorithm is developed. A 
multidimensional dynamic programming (MDP) method is implemented to 
reconstruct the neovascularization tree in a CEUS image of the carotid plaque. The 
main advantage of this method is its ability to take discrete contrast blobs and 
generate continuous routes, demonstrating the temporal behavior of bubbles’ flow. 
It was tested on a large set of clinical cases, and required minimal intervention of 
the operator. In comparison to common methods such as forward tracking, the 
algorithm is robust to noise and allows differentiation between blood vessels and 
artifacts. Therefore, it provides much more accurate results than other methods 
which do not have any temporal information, such as the MIP described above.  

MATERIALS AND METHODS 

Patients' population and imaging acquisition 
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Seventy six patients without established atherosclerotic disease were recruited 
if they had at least one clinical risk factor for the development of atherosclerosis 
(i.e. Hypercholesterolemia, Diabetes, Smoking, Hypertension, positive family 
history). The study was approved by the institutional review board (Dutch 
NTR2239) and a written informed consent was obtained from each participant. 
Standard carotid ultrasound and CEUS were performed with a Philips iU-22 
ultrasound system (Philips Medical Systems, Bothell, USA), equipped with an L9-3 
probe. Image acquisition was performed by a trained sonography technician using 
a standard scanning protocol according to the American Society of 
Echocardiography consensus statement (Stein et al. 2008). The left and the right 
common carotid artery (CCA), carotid bifurcation, internal carotid artery (ICA), 
external carotid artery (ECA), and vertebral arteries were imaged by B-mode 
ultrasound, color Doppler and pulse-wave Doppler. Each side was extensively 
evaluated for the presence of carotid plaques. The degree of stenosis of the CCA, 
ICA and ECA was assessed according to current guidelines on the basis of spectral 
Doppler velocities. After standard carotid ultrasound, CEUS was performed using 
intravenous administration of SonoVue contrast agent (Bracco S.p.A., Milan, Italy). 
The ultrasound system settings were optimized for CEUS, using a dual display 
mode for simultaneous standard B-mode ultrasound and CEUS. The mechanical 
index for CEUS was lowered to 0.06-0.08 and the frame rate was adjusted to 
20Hz. Before injection of the ultrasound contrast agent the intravenous access was 
flushed with a 5.0 ml saline (NaCl 0.9%) solution bolus injection. The ultrasound 
contrast agent was injected in boluses of 0.5 ml. Each contrast agent bolus was 
followed by a 2.0 ml saline flush. After administration of contrast agent, high-
quality contrast images could be obtained for approximately 1 minute. Contrast 
administration was repeated when required up to a maximum total dose of 10.0 
ml. Still frames and cine clips were digitally stored for offline analysis. Loops were 
acquired of longitudinal cross-sections that best visualized the plaque. Since we 
dealt with two dimensional planes, they were recorded from different angles, to 
fully characterize the atherosclerotic plaques. Cine loops were recorded, starting 
from the time the contrast agent was seen in the carotid lumen (after the flash) till 
most of it had disappeared. From the total set of acquisitions, cine loops were 
selected for analysis based on plaque size, plaque location and presence of 
artifacts. Plaques of thickness below 1.5 mm, or obscured by heavy shadowing or 
saturation in the plaque were excluded from analysis. Plaques smaller than 1.5 mm 
are hard to analyze reliably. The effect of out-of-plane motion caused by every 
heartbeat is more obvious in these small plaques than in the bigger plaques. Small 
plaques can completely disappear out of plane, making motion compensation and 
bubble tracking impossible. 

Plaques in the distal wall and proximal plaques below significant contrast in the 
jugular vein were excluded because of the significant contrast-induced artifacts 
reported for such locations (ten Kate et al. 2012). Therefore, we only analyzed 
plaques that were located at the proximal wall of the artery (CCA, ICA or ECA) 
near the bifurcation of the carotid. 
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From the remaining sequences, a subset was drawn randomly. In total, cine 
loops of 28 different plaques (of 27 different patients) were selected for analysis. 
The characteristic length of the analyzed sets was 118 ± 49 frames (about 6 
seconds). The high prevalence of atherosclerotic plaques in this asymptomatic 
population with an increased risk is similar to that found in other studies (Chahal et 
al. 2011) 
 
Data analysis 

The cine loops that were acquired during each clinical examination were 
transferred as DICOM files to a computer workstation for off-line post-processing 
and were analyzed by an algorithm especially developed for this purpose, using 
Matlab software (The Mathworks Inc., Natick, Massachusetts,US). Figure 1 
presents the various steps of the algorithm.  

 

Fig. 1: The main steps of the developed algorithm for quantification of the neovascularization inside the 
plaque. 
 
Motion compensation 

The first step of the algorithm is motion compensation that is performed by 
applying a forward-tracking block matching (BM) method as described in (Akkus et 
al. 2011).  The local motion pattern of the plaque region is extracted from the B-
mode image with BM and applied to the corresponding region in the contrast 
image. First, the user selects the point to be tracked in the first image of a given 
sequence. A fixed template of 49 x 49 pixels around this point is derived from the 
first image of the sequence. Then the plaque displacement is assessed through the 
sequence by tracking the template’s speckle pattern with BM through consecutive 
frames. The template’s center position is scanned over all positions within a 
defined search field in each image to find the position where they best match. This 
determines the shift in location of the template from the first ultrasound image and 
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all subsequent images in the sequence, as shown in figure 2. The search field 
extends 10 pixels in each direction from the best position found in the previous 
frame. This is big enough to handle the maximum motion from frame to frame, 
which is in the order of a few pixels. The similarity of the template to the image, at 
each point in the search field, is assessed by normalized cross correlation (NCC). 
This similarity measure is commonly used since NCC is insensitive to local 
variations. . The local plaque motion pattern is obtained by following the highest 
correlation values through the image sequence. The contrast images are aligned to 
the first contrast image based on detected plaque displacement in X and Y 
direction for motion correction. 
 

 
Fig. 2: Block matching method. The plaque region is manually outlined in the contrast image (left) and 
shown in the bmode image (right). A representative tissue point within the plaque is indicated manually 
in the B-mode. A template around this point is extracted and compared with all positions within the 
search field in consecutive B-mode frames. The obtained motion pattern for the plaque region is applied 
to the contrast images. 
 
Noise reduction 

Noise reduction is performed by using a 2D Gaussian filter of 5*5 pixels with
. The width of the window is carefully chosen in order to prevent 

smoothing and blurring of the contrast accumulations, thus it should be smaller 
than the characteristic size of a contrast accumulation. Those accumulations have 
characteristic size bigger than 7*7 pixels. In addition to the Gaussian filter that is 
applied over all frames, an adaptive threshold is calculated as an additional way to 
eliminate noise. This threshold is calculated in a region of interest (ROI) which is 
manually chosen by the user.  The ROI should be close enough to the borders of 
the plaque without taking into account the lumen or the arterial wall, thus 
preventing artifacts. The threshold is independently calculated in the first frame for 
each patient by using the 10th percentile of the gray values in this ROI. All values 
below the threshold are set to zero and the rest are left intact. The 10th percentile 
is a safe choice for the threshold since we assume that most of the plaque area is 
background (non-contrast). 

This low threshold will minimize false negative cases, at the cost of more false 
positives (that can be eliminated in a later stage).  

1σ =
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After applying the noise reduction, the US sequence is divided into overlapping 
groups of 10 frames each. Time duration of 10 frames is supposed to be sufficient 
to see continuous presence of an object (as opposed to noise) and to detect a 
reasonable amount of motion of the object (as opposed to artifacts). In the first 
frame of the group, candidate objects are detected whose motion is followed over 
the group. An eight frames overlap (80%) between subsequent groups is chosen 
to minimize false negative cases. The following object detection is implemented 
only on the first frame of each group. 

Contrast spot detection 

An artificial 'bubble' template is used for the detection of contrast-like objects. 
It exploits the geometrical characteristic and the gray levels distribution of a typical 
contrast spot. An artificial template is constructed resembling a typical pattern of 
real bubbles (Fig 3a). The template takes into account parameters as reasonable 
‘radius’ and varying gray levels. Maximal intensity is determined at the center point 
and constant linear decrease of gray levels is applied in correspondence with the 
distance from that point. 

The artificial template is correlated with different areas in the chosen ROI using 
normalized cross correlation. A correlation coefficient matrix is calculated (Fig 3c) 
and the maximal correlation is located. Then, the correlation values in a 5*5 
neighborhood around this location are set to zero. The detection of the maximal 
correlation, as well as the deletion of its close neighborhood, are performed 
iteratively till the maximal correlation value is below 0.6, which we take as the 
threshold for a contrast spot to be considered as a bubble (Fig 3d).  Several radii 
of 3,5,7 and 9 pixels are examined for the artificial bubble template. The sets of 
found points are united to obtain a complete detection of the objects.  

After detecting the contrast spots in the first frame of each group, tracking is 
performed by dynamic programming between the first frame of each group and its 
last frame. 

Bubble tracking by dynamic programming 

Dynamic Programming (DP) is an optimal approach for solving variational 
problems by finding locally optimal solutions consecutively. The idea is to track the 
two-dimensional displacement of a bubble in the plaque over time. This 
corresponds to finding a connective path in the time direction through a three-
dimensional (X,Y,T) matrix with minimal total cost by multidimensional DP (Fig.4) 
(Nevo S . T . et al. 2007).  After the tracking process has detected the 'optimal 
path' over 10 frames, the gray values of the object along the path are evaluated. 
By removing all path points where the gray level is below a predefined threshold 
(the detailed 10th percentile threshold) one can decide when a bubble is gone. 

The resulting optimal path is determined by the following parameters described 
below: costs (correlation values) and path smoothness (allowed step size and side 
step penalty)  
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Fig. 3: Objects detection by an artificial template. (a) An artificial bubble with a 9-pixel ‘‘radius.’’ (b) 
Original image with two intra-plaque objects and their corresponding locations in the correlation matrix. 
(c) The correlation matrix. (d) The final detection. 
 
Correlation values  

For each object a template of 13*13 pixels around its center is taken from the 
first frame of each group. Similar to the motion compensation process, each 
template is correlated for the other 9 frames in the group within a search area of 
41*41 pixels around the location of the detected object in the first frame. The size 
of the search area is large enough to accommodate a maximal displacement of 20 
pixels over 10 frames. Before the correlation process takes place, both templates 
are apodized similar to (Nevo S . T . et al. 2007) with a 2D Gaussian weighting 
characterized by σ=3. This weighting is applied to reduce the relative contribution 
of the background to the NCC. NCC is optimal when it is close to its maximal value 
of 1. To use NCC properly in the MDP minimization process we use for the basic 
cost function: (1 − 𝑁𝐶𝐶)1/3 (equation 1, part A).  

Step size  

The connectivity of the graph should fit the maximum distance that a bubble 
accumulation can pass in two sequential frames. The allowed step size is taken as 
3 pixels, corresponding to 6mm/s, large enough to handle the possible motion of 
bubbles in small vessels. Furthermore, temporal smoothness of the motion is 
controlled by the side step penalty which is presented in (equation 1, part B) (Nevo 
S . T . et al. 2007). 
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𝐹(𝑥,𝑦) = (1 − 𝑁𝐶𝐶)1/3 ∙ �(1 + 1 𝑓𝑥⁄ )|∆𝑥| ∙ (1 + 1 𝑓𝑦⁄ )|∆𝑦|� 

       𝐴     𝐵    (1) 

where ∆𝑥 and ∆𝑦 are the distances that a specific pixel can go through in 
sequential frames. These distances can be in the allowed range of [-3, 3], in x and 
y direction respectively. 𝑓𝑥 and 𝑓𝑦 are the weights corresponding to those distances. 
Their value was chosen to be 10 to penalize fast movements. 

Relative to forward tracking, our method has several advantages for evaluating 
the contrast spots motion. First, it exploits the MDP advantages: relatively 
insensitive to noise and small disturbances, efficient and producing a time 
continuous motion (Rabben et al. 2000). When the correlation is good the dynamic 
programming will give the same results as forward tracking of the best correlation. 
However, in the case of transient loss of correlation or excessive noise, MDP 
provides an overall optimal continuous path for tracking and thereby is less subject 
to tracking loss. Another benefit from the MDP search is the 2D path derived from 
it. In this way, our technique is capable of evaluating the spatial displacement of 
the intra-plaque objects in both the horizontal and the vertical direction. Third, it 
takes the advantages of block matching using normalized cross correlation (NCC): 
robust against linear changes, fast and proven (Nevo S . T . et al. 2007).  

 
Fig. 4: Example of 2-D dynamic programming. Each slice represents the cost function at a certain 
frame. The optimal path is shown with arrows. 
 
Contrast spot classification and routes merging 

After detecting the objects' routes by using the MDP, the following steps are 
applied. First, a classification of the objects into two categories is performed: 
actual blood vessels and artifacts. The classification is necessary to remove 
artifacts from further processing and exclude them from plaque vulnerability 
estimates. The classification is based on a minimum expected displacement for 
moving bubbles as opposed to stationary artifacts. We apply a threshold of 8 pixels 
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(~0.8mm) for the XY displacement (eqn. 2) of an object over a group of 10 
frames. Below this threshold, the object is classified as artifact. This threshold 
corresponds to a bubble velocity of 2mm/s, which is low for blood flow even in 
capillaries. 

 

Second, a merging of reconstructed routes which are supposed to be of the 
same vessel is performed. . Merging means that different routes which probably 
represent the temporal behavior of the same object should be handled as 
following: the shorter one is deleted while the longer route remains to represent 
both of them. For the merging process two parameters should be measured. The 
first one is the mean distance between two examined routes. Three pixels 
(~0.3mm) distance threshold was predefined due to experimental trials, taking into 
account the characteristic size of a bubble (bigger than 7*7 pixels). The second is 
the overlapping percentage between two routes. Above 60% pixels overlapping is 
needed for one route deletion (60% of the short route is located in a distance 
smaller than 3 pixels from the longer one).  

Algorithm validation  

Manual marking of contrast routes, maximal intensity projection (MIP) and 
visual grading were performed and compared to the algorithm results for its 
validation. To evaluate the accuracy of the tracking, two independent observers 
manually marked the location of each object over time. An object was visually 
detected based on its area and gray level. For every plaque with contrast spots 
inside, the observers manually tracked each object (artifact or vessel) from the 
frame it appeared till it disappeared. Plaques without any contrast spots inside 
were visually classified as neovascularization grading 0, and had no manual 
contrast tracking. For each object, the mean distance between routes that were 
manually marked by the 2 observers was measured, as well as standard deviation 
(SD) values.  An average route between those 2 routes was calculated. The total 
XY displacement along this route and its total length were calculated. This average 
route was compared to the algorithm results. Mean and SD values of the distances 
between the automatically reconstructed route and the average manual route were 
calculated. Mean distance smaller than 5 pixels (0.525 mm) was considered as a 
high accuracy of the algorithm analysis, since characteristic size of a contrast spot 
is above 0.8 mm. Interobserver variation was around 0.2 mm. 

The equivalent XY displacement and total length of the automatically 
reconstructed route was also measured.  

The XY displacement results were also compared to the Maximal Intensity 
Projection (MIP) results to show the advantage of our method over commonly 
used methods such as the MIP. 

2 2
max min max minXY displacement = {(X -X ) +(Y -Y ) } (2)
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The MIP was implemented on the plaque area after motion compensation and 
after applying the same 10th percentile threshold which is used in the 'noise 
reduction' section of the presented algorithm. The MIP image was examined and 
analyzed only if discrete routes could be seen inside. If not, the MIP image of the 
specific plaque was ignored. For plaques of which the MIP image could be 
analyzed, a skeleton was implemented to extract the blood vessels centerlines. 
Thresholding followed by a thinning procedure is a common method which is 
presented in several papers (Parker et al. 1988; Poli and Valli 1997; Tozaki et al. 
1994). The XY displacement of each reconstructed centerline route was calculated 
and compared to the results obtained by our method. Due to lack of temporal 
information and the stringent requirements of optimal noise reduction and motion 
compensation while using MIP (Anderson et al. 1990), the detection of blood 
vessels can be inaccurate. As a result, the neovascularization grading will be 
inaccurate.  

The visual classification of objects into actual blood vessels and artifacts, was 
based on their visually assessed motion pattern and gray value appearance over 
time.  

The decision process of the automated neovascularization grading is performed 
analogous to the physician’s decision using the number of detected blood vessels: 
0 for no vessels, 1for 1 vessel, 2 for 2 vessels and 3 for 3 or more vessels.  

RESULTS 

One hundred and four objects were visually detected in 28 movies. One 
hundred and one objects were automatically detected and only three objects were 
missed. The automated detection additionally found 4 false positive objects.  

Figure 5 presents the detection of an object inside a plaque and its whole 
reconstructed route over time, obtained by the MDP method.  

 

 
Fig. 5: Detecting and tracking an intra-plaque object. (a) The intra-plaque detected object. (b) Its 

reconstructed route over time. 
 

In figure 6, a comparison between the automatic and the manual reconstructed 
routes of the same object is presented. They show a very similar motion pattern 
with a small bias of 1-2 pixels.  
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Fig. 6: Comparison between a reconstructed route using the presented method and the manual result. 
(a) X position over time. (b) Y position over time. 
 

Ninety objects were accurately tracked, following the constraint that was 
presented in the methods section. In the other 11 objects tracking was lost over 
time due to noisy images or very blurry objects inside the plaque. 

The 104 objects were classified visually into 40 actual blood vessels and 64 
artifacts. The mean and SD values of the XY displacements of objects visually 
classified as blood vessels and artifacts were 1.14 ± 0.36 𝑚𝑚 and 0.53 ± 0.31 𝑚𝑚 
respectively. The difference between those populations was significant (p<0.001). 
Therefore, a 0.8mm threshold to differentiate between those populations was 
chosen. Applying this threshold, one can see in Table 1 that 76 of the 90 well 
tracked contrast spots were correctly classified in comparison to the visual 
classification.  

Table 1: Classification of 90 objects into blood vessels and artifacts according to visual analysis and 
automated analysis 

Visual Blood vessels Artifacts 
Algorithm     
Blood vessels 35 12 
Artifacts 2 41 

 

Figure 7 presents an example of 3 identified spots in a carotid plaque and their 
classification. 

Figure 8 presents the merging process over two examples of plaques. Figure 
8(a-b) presents the all detected blood vessels over the whole cine and before the 
merging process. Figure8 (c-d) shows the final neovascularization tree after the 
routes were merged. In Fig.8a and 8c, 2 separate routes of different contrast spots 
were reconstructed. In Fig.8b and 8d, 2 routes which split from a common 'trunk' 
of the arterial tree are shown (the flow is from the right side of the image to the 
left side). 
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Fig. 7: Classification of three detected objects inside a carotid plaque. (1) Blood vessels. (2) Artifacts. 

 

Table 2 compares the automatic and the manual results. It presents the 
average and the SD results that were calculated over 31 classified vessels from the 
28 plaques (the vessels that are mentioned in table 1). 

Comparison to the maximal intensity projection (MIP) method was performed. 
In twenty-two plaques discrete routes could be seen, thus could be analyzed. In 
other 6 plaques the MIP image didn't include any clear routes inside but large 
undefined areas, thus have not been analyzed. Figure 9 presents a typical example 
of blood vessels routes that were detected by manual marking (green), the 
automatic (red) and the MIP algorithms. The presented image is already the MIP 
image inside the plaque and its skeleton is yellow colored. The cyan marking 
represents the ROI that was chosen in the first frame of the US cine. It is clearly 
seen that the MIP generates an inaccurate reconstructed tree, while the manual 
and the automated reconstructions are similar to each other. This inaccuracy is 
expressed by the purple and the orange circled areas. Figure 9 shows an 
overestimated grading due to intra-plaque artifacts (orange) and non-optimal 
preliminary noise reduction and motion compensation (purple colored). 

The characteristic XY displacement of the defined blood vessels was 2.73 ±
1.24 𝑚𝑚, which is  in average 130% bigger than the manual and the automated 
measured XY displacement for the same vessels. 

The last step of the presented method is to determine the neovascularization 
grading inside the plaques. As one can see in table 3, the two physicians had 
consensus on 68% of the cases (19 out of 28 plaques, dark gray), their scores 
differed 1 grade in 25% (7 cases, mid gray) and 2 grades in 7% (2 cases, light 
gray).  In table 4, comparison of the automated scoring against the physicians’ 
visual scoring can be seen. Scores of both physicians were treated as independent 
scores, so there were 56 pairs of scores in total. The automated score was 
identical to the physicians’ visual scoring in 64% of the cases (36 out of 56 cases, 
dark gray), 1 grade difference in 27%(15 cases, mid gray), and 2 grades 
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difference in 9% (5 cases, light gray). Obviously, the differences between the 
automated and the visual scores are very comparable to the differences between 
two independent observers. 

Table 2: Comparison of the automatically reconstructed blood vessels routes and the manually 
reconstructed routes by measuring XY displacement and length of blood vessels. The comparison 
includes 31 vessel paths from 28 different plaques. 
 

Interobserver variability of manual tracking 0.21 ± 0.14 mm 
Distance between the average manual route 0.23 ± 0.15 mm 
and the automated reconstructions 

 XY displacement of the manually 1.19 ± 0.54 mm 
reconstructed blood vessels 

 XY Displacement of the automatically 1.14 ± 0.36 mm 
reconstructed blood vessels 

 Mean length of the blood vessels routes— 1.93 ± 0.66 mm 
manually reconstructed 

 Mean length of the blood vessels routes— 1.84 ± 0.69 mm 
automatically reconstructed   

 

 
Fig. 8: Routes merging. Two different cases of reconstructed arterial tree before and after routes 

merging: (a) routes which belong to two different vessels before the merging process (over the whole 
cine); (b) split of two routes from a common ‘‘trunk’’ before the merging process. (c) The plaque which 

presents in 8 (a) , after the merging process. (d) The arterial tree which presents in 8 (b), after the 
merging process. 
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Fig. 9: Overestimation neovascularization grading using the MIP. Comparison between the manual 
marking (green), our method (red) and the MIP (yellow colored skeleton).The ROI is cyan marked. 
False detection (non-vessels detection) by the MIP is purple and orange colored. 
 
Table 3: Comparison of intraplaque neovasularization visual scores of physician 1 against physician 2. 
28 plaques were examined. Consensus (dark gray), 1 grade off (mid gray), 2 grades off (light gray)  

  Physician 2 (Visual Scoring) 

P
hy

si
ci

an
 1

 
(V

is
ua

l S
co

ri
ng

)   Grade 0 Grade 1 Grade 2 Grade 3 

Grade 0 3 0 2 0 

Grade 1 0 6 2 0 

Grade 2 0 4 10 0 

Grade 3 0 0 1 0 
 

Table 4: Comparison of intraplaque neovasularization algorithm scoring against visual scores of 
physician 1 & 2. 28 plaques were examined (56 visual scorings for 2 physicians). Consensus (dark 
gray), 1 grade off (mid gray), 2 grades off (light gray) 

  Visual Scoring (Physician 1 & 2) 

A
lg

or
it

h
m

   Grade 0 Grade 1 Grade 2 Grade 3 

Grade 0 6 2 0 0 

Grade 1 0 9 1 0 

Grade 2 2 6 21 1 

Grade 3 0 3 5 0 
 
 
DISCUSSION 

In our research, we developed a semiautomatic technique for detecting and 
tracking the contrast spots motion using MDP combined with block matching, and 
morphological artificial templates. Based on that analysis, the reconstruction of the 
neovascularization arterial tree inside the plaque was performed. Our method deals 
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with a chain of 4 independent steps: detection of the intra-plaque objects, tracking 
those objects, classification into artifacts and actual blood vessels and overall 
grading of the neovascularization inside each plaque. Each step can be 
independently improved, so in this paper we report each step’s success. We 
applied this method on clinical recorded data from 27 patients. There was quite 
some variability in the data. Movies differ by various criteria as movie quality and 
the extent of change in the shape of the contrast spots over the time. This 
enforced us to examine various combinations of the following parameters:  the 
threshold for noise removal, the allowed step size and its penalty for tracking 
process. Those parameters were chosen experimentally (see details in the Methods 
section). The 10th percentile threshold for noise removal and the 0.6 threshold for 
template correlation were chosen because it allows the detection of almost all 
(97%) relevant objects at the cost of 3.8% of false positive cases. The maximum 
allowed step size was selected based on the fastest motion seen in the movies - 
not larger than 3 pixels over 2 sequential frames. A side step penalty is applied to 
penalize large movements. MDP provides an overall optimal continuous path for 
tracking, less subject to transient loss of correlation and more robust to noise than 
forward tracking. The side step penalty was carefully selected: if it is too high, it 
can cause an over-smoothed path and if it is too small, it might not help to 
improve tracking results.  

Detecting the contrast spots inside the plaque using artificial templates exploits 
the geometrical characteristic and the gray level distribution of the contrast spots. 
All visually identifiable contrast spots (one hundred and four different contrast 
spots) in 28 plaques were manually marked.  Of those, 101 (97%) were also 
automatically detected. Tracking the intra-plaque contrast spots based on manual 
annotation is a cumbersome and tedious procedure with poor repeatability. To 
overcome this limitation, we propose a semiautomatic method based on MDP that 
requires minimal user interaction. In 90 of those 101 detected objects the 
automatic tracking determined the contrast motion correctly (89%).  We validated 
the algorithm by using manual and visual interpretations of those cases. The 
reconstruction of the blood vessels routes was validated by comparing to a manual 
tracking of the contrast spots. As shown in the example of figure 8, in most of the 
cases, the automatically reconstructed route is smoother than the manual due to 
the detailed advantages of the MDP method. 

The mean and the SD values of the distance between the automatically and the 
manually reconstructed routes are close to the equivalent values that were 
calculated between the routes manually marked by the 2 observers. Therefore, 
one can conclude that the algorithm results are accurate, within the range that 
human observers cover. The automatic tracking is a bit smoother than the manual 
tracking, as is expected because of its smoothness constraint. Moreover, the 
automated results are objective, since no human interaction is involved. The 
observers manually selected the brightest location inside the contrast spot, while 
the algorithm sometimes detected another location inside the object as its 
representative. A characteristic size of a contrast spot is above 7 pixels and a mean 
distance threshold of 5 pixels (0.525 mm) was chosen. Therefore, if the mean 
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distance between the manual marking and the automated one was smaller than 
this threshold, it can be considered as a tracking after different locations inside the 
same object.  

The minor difference between the XY displacement results of manual and 
automatically found tracks can occur due to the stop term of the algorithm and the 
manual tracking. The algorithm stops tracking when a contrast spot has gray level 
below 10. However, the manual tracking stops when the observer can no longer 
distinguish the contrast spot.  

Seventy-six of the 90 well tracked contrast spots were correctly classified in 
comparison to the visual classification (84%). When considering the whole 
population (104 identified objects), 73% was eventually correctly classified. Twelve 
objects which were visually classified as artifacts were automatically classified as 
blood vessels due to their large displacements over the time. These displacements 
were caused because of noisy images or inaccurate motion compensation. 

The validation of the automated neovascularization grading was performed by 
comparing it to the physicians' grading. The physicians were blind to each other 
and analyzed all clips related to plaque of each patient. The two physicians had 
consensus on 68% of the cases. Variability can be caused by taking into account 
the adventitial vasa vasorum. It can be considered as relevant neovasculariztion by 
one observer, while the other one will ignore that. In addition, an artifact may be 
considered by an observer as a blood vessel due to a significant XY displacement, 
that the second observer will ignore.  

It is clear that even with well-defined criteria, the visual scores can differ 
considerably between independent observers. This stresses the need for an 
objective, automated analysis.  The automated score was identical to the 
physicians’ visual scoring in 64% of the cases, 1 grade difference in 27%, and 2 
grades difference in 9%. Therefore, the automated neovascularization grading 
agreed within 1 grade with visual analysis in 91% of the cases. Obviously, the 
differences between the automated and the visual scores are very comparable to 
the differences between two independent observers. 

We also compared the results to the maximum intensity projection (MIP) 
analysis. The XY displacement of the blood vessels reconstructed by the MIP was 
130% bigger than the manual analysis of the same parameter.  This deviation of 
the MIP analysis is caused by suboptimal predefined filtering and motion 
compensation, resulting in overestimated routes. Moreover, due to the absence of 
temporal behavior of the examined objects, static artifacts are also included in the 
reconstructed arterial tree. Those MIP inaccuracies can affect the analysis of the 
blood vessel characteristics and the neovascularization grading. 

The proposed algorithm was developed on 2D echocardiography images. 
Currently no high-frame rate 3D contrast images of carotid arteries are available. 
Such images would be ideal for analyzing the complete neovasculature in 3D over 
the whole plaque, rather than in a single slice. The same analysis method may be 
applied in 3D with straightforward extensions. 
A limitation of the current study is the fact that there was no strict separation of 
test and training data. Several of the parameters of the algorithm were determined 
empirically from a few sequences in the test set. This paper concentrates on the 
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description of the methods and proof of its principles, the reported results are a 
preliminary estimate of the capabilities of the method. Considerable improvements 
can still be expected by more elaborate choice of parameters, but given the large 
variability of the gold standard (visual classification) we consider this very 
promising. In future work the algorithm will be evaluated on a larger, independent 
set of data to establish its overall clinical performance in a blinded way.   
 
CONCLUSIONS 
 

We developed a number of tools for preliminary quantification of 
neovascularization in carotid plaques. This includes a technique for detection of 
contrast spots in the plaque, tracking of such spots over time by MDP, classifying 
them into artifacts and vessels and reconstructing the arterial tree. This study 
showed that the technique is feasible and valuable in evaluating accurate intra-
plaque neovascularization grading. The method provides efficient analysis with 
minimal user interaction and agrees well with manual and visual validations.  
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Chapter 4 
 
 

New Quantification Methods for Carotid Intraplaque Neovascularization 
using Contrast Enhanced Ultrasound 

 
As carotid intraplaque neovascularization (IPN) is linked to progressive 

atherosclerotic disease and plaque vulnerability, its accurate quantification might 
allow early detection of plaque vulnerability. We therefore developed several new 
quantitative methods for analyzing IPN perfusion and structure. From our analyses, 
we derived six quantitative parameters – IPN surface area (IPNSA), IPN surface 
ratio (IPNSR), plaque mean intensity, plaque-to-lumen enhancement ratio, mean 
plaque contrast percentage, and number of microvessels (MVN) – and compared 
them to visual grading of IPN by two independent physicians. A total of 45 carotid 
arteries with symptomatic stenosis of 23 patients were analyzed. IPNSA 
(correlation r=0.719), IPNSR (r=0.538) and MVN (r=0.484) were found to be 
significantly correlated to visual scoring (p<0.01). The IPNSA parameter matched 
the best to visual scoring. These results show that IPNSA, IPNSR and MVN may 
thus have the potential to replace qualitative visual scoring and to measure the 
degree of carotid IPN. 
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INTRODUCTION 

Several studies have shown that patients with carotid plaques carry an 
increased risk of sudden cardiovascular events, such as stroke, transient ischemic 
attack (TIA), myocardial infarction and even death (Naghavi et al. 2003; Spagnoli 
et al. 2004). The benefit of carotid endarterectomy in reducing the risk of recurrent 
stroke for symptomatic patients with severe stenosis has been established by large 
European and North American clinical trials (Ferguson et al. 1999; Rothwell et al. 
2003). For a carotid endarterectomy operation, current clinical practice for 
selecting patients is heavily based on assessing the degree of arterial lumen 
narrowing. However, there is an increasing consciousness that not the size of the 
plaque, but its composition and risk of rupturing is related to these acute 
cardiovascular events  (Schaar et al. 2004; Feinstein 2006; Hellings et al. 2010; 
Staub et al. 2010). Therefore, the degree of stenosis is actually a poor predictor of 
individual stroke risk and improved risk stratification models should focus on plaque 
vulnerability rather than size. Early identification of atherosclerotic plaques at risk 
for instability and rupture may improve treatment strategies for the prevention of 
cardiovascular events. Several pathological studies demonstrated that intraplaque 
neovascularization (IPN, also called plaque vasa vasorum) is associated with 
progressive atherosclerotic disease and plaque vulnerability (Fleiner et al. 2004; 
Hellings et al. 2010; Michel et al. 2011). Recent developments in contrast 
enhanced ultrasound (CEUS) enable detection of atherosclerosis and small 
microvessels with slow flow within the plaque by the use of ultrasound contrast 
agents (Feinstein 2006; Coli et al. 2008).  

Mostly, visual scoring of IPN has been used to assess degree of IPN (Feinstein 
2006; Shah et al. 2007; Coli et al. 2008; Staub et al. 2010). A good correlation 
between the visual scoring of IPN and the number of intraplaque neovessels in 
histological samples was reported in several validation studies (Magnoni et al. 
2009; Schinkel et al. 2010).  However, assessing IPN visually is observer 
dependent and different studies use different grading scales (Shah et al. 2007; 
Staub et al. 2010; Staub et al. 2011). Staub et al. (2010) reported substantial intra-
observer agreement and moderate inter-observer agreement for visual IPN scoring.  
A review paper for assessment of carotid IPN with CEUS was presented by (ten 
Kate et al. 2013). However, quantification methods for IPN are scarce. 

Huang et al. (2008) presented dynamic evaluation of the plaque enhancement. 
Plaque contrast enhancement was greater in soft plaques than in mixed plaques. 
Xiong et al. (2009) reported that stroke and TIA patients had significantly more 
intraplaque contrast enhancement than asymptomatic patients. Papaioannou et al. 
(2009) presented a case of far wall carotid atherosclerotic plaque imaged by CEUS 
for the evaluation of IPN. An increase in gray level after injection of contrast was 
reported. All these studies were based on analysis of Time Intensity Curves (TIC). 
Hoogi et al. (2011)  presented the first method which segments the contrast spots 
within the plaque in the individual images and calculates IPN surface area. They 
reported a good correlation between contrast based and histology based IPN to 
plaque surface area ratio (R2 = 0.7905).  



Carotid intra-plaque neovascularization quantification | 55 
 
Limitations of previous quantification methods 

The enhancement of plaques after injection of contrast material was generally 
analyzed quantitatively by use of a TIC analysis in the previous studies (Huang et 
al. 2008; Xiong et al. 2009). However, it may be questioned whether common TIC 
analysis as applied in large well-perfused organs like the liver, prostate or heart is 
applicable to quantification of microvessels in plaques. The plaques are very small 
and weakly perfused. The flow within the plaques is not continuous but 
characterized by occasional appearance of a faint and moving contrast spot. In 
addition, the high intensity contrast in the carotid lumen is directly adjacent to the 
plaque, and the plaque is moving due to arterial pulsation and breathing. This 
complicates the generation of a valid non-contaminated plaque region of interest 
(ROI) for the TIC derivation. For these reasons, it is hard to obtain bolus kinetic 
parameters from time intensity curves for plaque.  

Huang et al. (2008), Xiong (2009) and Papaioannou et al. (2009) analyzed far 
wall carotid plaques but it is not possible to reliably analyze atherosclerotic plaques 
that are located on the far wall of the carotid artery (ten Kate et al. 2012; Thapar 
et al. 2012) due to the pseudo-enhancement artifact in the far wall plaques. Due to 
this artifact, the contrast enhancement in the far wall plaques will show a similar 
perfusion pattern as the lumen and will be overestimated.  

The method presented by Hoogi et al. (2012) applied ECG gating to limit 
motion and only one CEUS image per cardiac cycle was used. Therefore, continuity 
of microvessel paths after time integration may be lost. Some additional motion 
compensation was performed, but this was done on the CEUS image itself where 
the tissue is not visualized. Therefore it is quite difficult to extract plaque motion 
from CEUS images.  

In our study, we avoided the known limitations of automated quantification 
methods in the previous studies. All images of the plaque within the selected frame 
interval in the image sequence were used.  Side by side images, contrast and B-
mode, were acquired simultaneously to obtain the motion pattern of plaque from 
the B-mode image sequence. Our motion compensation prevented the plaque ROI 
from including parts of saturation artifacts and lumen, and minimized the risk of 
false peak intensities that could have contaminated the TICs. Perfusion and 
structure analyses of IPN with accurate motion compensation were performed and 
several quantification parameters were derived to estimate neovascularization 
degree of carotid plaques. The proposed IPN analyses were tested on a patient 
dataset. The derived parameters were compared to visual scores of IPN. The 
purpose of our study is finding the parameters which match significantly to the 
visual consensus scores, to replace subjective visual scoring and provide a 
quantitative IPN assessment in CEUS.  
 

METHODS 
Simultaneous side-by-side, contrast mode and B-mode, images were acquired 

at 20-23Hz frame rate using a Philips iU22 system (Philips Medical Systems, 
Bothell, USA) with a L9-3 linear probe. This probe has a slice thickness of about 
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2mm for 3cm depth (Hudson 2011). The cine loops that were acquired during each 
clinical examination were transferred as DICOM files (JPEG compressed) to a 
computer workstation for off-line analysis.  

User-friendly and well-structured carotid intraplaque neovascularization 
quantification software (CINQS) was developed in MevisLab, a development 
environment for medical image processing and visualization (MeVis Medical 
Solutions AG and Fraunhofer MEVIS, Bremen, Germany) The IPN quantification 
algorithms were implemented in MATLAB (The Mathworks Inc., Natick, 
Massachusetts, US), and run through a MeVisLab-MATLAB interface module.  
Communication between MevisLab modules and graphic user interface (GUI) is 
controlled via Python scripts.  

Within CINQS, three regions of interest (ROI) were manually defined. After 
motion compensation, perfusion and structure analyses of plaque were performed 
to derive several quantitative parameters.  
 
Motion compensation 

Due to the pulsating blood pressure, breathing and swallowing, the carotid 
artery wall shows considerable motion. To quantify small microvessels accurately 
within the carotid plaques, motion compensation is a prerequisite step. The 
contrast spots associated with these microvessels have sizes of a few pixels (1 pixel 
~ 0.1 mm), while the plaque motion can amount to tens of pixels. The motion 
compensation method should be accurate and reliable enough for this purpose. In 
CEUS images, only ultrasound contrast agent is seen and tissue is suppressed so 
that it is quite difficult to extract plaque motion from CEUS images. We therefore 
acquired simultaneous side-by-side B-mode images and CEUS images and 
extracted the motion pattern of plaque from B-mode images, applying it to the 
contrast images to follow the identical plaque region, as is illustrated in figure 1. 
Plaque itself in B-mode images is quite a unique landmark in longitudinal and 
transversal directions, unlike healthy carotid wall sections, which are highly similar 
when moving along the vessel direction.  

The motion pattern is performed by using multidimensional dynamic 
programming (MDP) combined with apodized block matching (BM) as described in 
(Akkus et al. 2012). First, the user chooses a point on the plaque in a B-Mode 
image of the sequence. A fixed template of 61 x 41 pixels (6x4 mm) around this 
point is derived from the chosen image of the sequence. To find the similarity of 
the template to image pattern in any image, normalized cross correlation (NCC) is 
used. The center position of the template is scanned over all positions within a 
defined search field (61 x 21 pixels (6x2 mm)) in each image. The results of NCC 
for all positions are used as a 3D matrix input to MDP. The optimal plaque 
displacement was obtained with MDP as described in detail in (Akkus et al. 2012) 
and the contrast images are aligned to the reference contrast image based on the 
detected plaque displacement in X and Y direction. 
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Fig. 1: An example of a side-by-side contrast image (on the left side) and B-mode image (on the right 
side), and illustration of motion compensation. 
 
Plaque Perfusion Analysis 

In this analysis, contrast perfusion of the plaque is analyzed over time. First, 
three ROIs are manually drawn on the contrast image for plaque, lumen and 
background. The background ROI is used to measure the noise level in the tissue 
part in the contrast image. Motion compensation is applied to the plaque ROI as 
explained in the previous section. After this, time intensity curve (TIC, Fig. 2) and 
maximum intensity projection (MIP, Fig. 3) of plaque over time are calculated. The 
term ‘intensity’ in this paper refers to contrast image intensity, which is the log 
compressed signal power (gray scale values). In MIP, the maximum intensity of 
each pixel over time is projected onto a 2D image as illustrated in Fig. 4. In TIC 
analysis, the intensity within the ROI at each time point is  represented as sum, 
mean, median, or standard deviation of intensities of all pixels within the ROI.From 
TIC, plaque mean intensity (PMI), lumen mean intensity (LMI), plaque to lumen 
enhancement ratio (PLER) and mean plaque contrast percentage (MPCP) 
parameters are derived. In PMI, the time average of plaque intensity is calculated. 
In LMI, the time average of lumen intensity is calculated. In PLER, the ratio of PMI 
and LMI is taken as a percentage. In MPCP, a fixed threshold (on a scale of 0 to 
255) is applied to separate contrast from background and the time average of the 
percentage of plaque filled with contrast is calculated. The gray scale level of 2 
(BTh) was chosen based on the maximum level of mean background noise in our 
data set. From the perfusion MIP image, the IPN surface area (IPNSA) and IPN 
surface area to plaque area ratio (IPNSR) with adaptive threshold (ATh) are 
derived. We calculated IPN surface area score (IPNSAS) as Log(IPNSA+1).  

The adaptive threshold (equation 1) is calculated by taking into account 
background ROI, lumen ROI, and a visual limitation.  

ATh = max (VL, BGMI + 4 x BGMSD) + (LM I − V L)  x 10%                                      
(1) 
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Fig. 2: Time intensity curve of a plaque. PMI: Plaque mean intensity. 
 

 
Fig. 3: Maximum intensity projection (MIP) of intraplaque neovascularization(IPN) before and after 
motion compensation. 
 
Since we found that gray scale level below 10 (on a scale of 0 to 255) could not 
visually be detected, we employed a visual limitation (VL = 10). The background 
ROI was used to estimate background noise mean and standard deviation. We 
obtained the maximum of VL and time average of background ROI mean intensity 
(BGMI) plus four times the time average of background ROI standard deviation 
(BGMSD) for threshold. Threshold was also corrected for concentration of contrast 
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within the lumen by adding 10% of the LMI after subtraction of visual limitation. 
The formulations of IPN quantification parameters can be seen in Table 1. 
 
 To show the improvement of IPNSA with motion compensation, we 
analyzed our plaques twice with and without motion compensation. 
  
Table 1: Formulations of IPN quantification parameters 

  IPNSA (𝑚𝑚2)

= pa × � p(i, ATh)
n

i=1

 where  �1, if 𝐼𝑐(𝑖) > 𝐴𝑇ℎ
0, otherwise         

  𝑃𝑀𝐼 =
∑ ��∑ 𝐼𝑐𝑛

𝑗=1 � 𝑛⁄ �𝐹
𝑖=1

𝐹
      

  𝐼𝑃𝑁𝑆𝑅 (%) =  
∑ p(i, ATh)n
i=1

𝑛 
 × 100%       𝐿𝑀𝐼 =

∑ ��∑ 𝐼𝑐𝑚
𝑗=1 � 𝑚⁄ �𝐹

𝑖=1

𝐹
    

  𝑀𝑃𝐶𝑃(%) =
∑  ∑ p(i, BTh)n

i=1  
𝑛

𝐹
𝑗=1

𝐹
  × 100%    

  𝑃𝐿𝐸𝑅(%) =
𝑃𝑀𝐼
𝐿𝑀𝐼

  × 100% 

ATh = adaptive threshold; BTh = background noise threshold; F = number of frames; Ic(i) = contrast 
intensity of pixel i; IPNSA = intra-plaque neovascularization surface area; IPNSR=intra-plaque 
neovascularization surface ratio; LMI=lumen mean intensity; m= number of pixels for lumen region of 
interest; MPCP = mean plaque contrast percentage; n = number of pixels for plaque region of interest; 
pa = pixel area (mm2); PLER = plaque-to-lumen enhancement ratio; PMI = plaque mean intensity. 

 
Fig. 4: Maximum intensity projection (MIP) illustration.  Blue, yellow, and green objects moving over 
time in different direction and resulting projected image. 
 

To compare our findings to previous studies, we reproduced a common 
parameter for plaque IPN (plaque contrast enhancement, PE) derived from TIC 
(Huang et al. 2008; Xiong et al. 2009). For this, we used the QLAB ROI 
quantification tool (Philips Medical Systems, Bothell, USA). We redrew the plaque 
ROIs as similar as possible to our analysis. A gamma-variate curve was fitted to the 
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resulting TIC. The fit was considered invalid only if the peak occurred at the first or 
last frame of the interval.  From the fitted curve, we recorded peak intensity and 
baseline intensity (intensity within the plaque ROI right after the flash frame). PE 
was calculated by subtracting baseline intensity from peak intensity.   
  
Vascular Structure Analysis 

In vascular structure analysis (VSA), the structure of IPN was analyzed by a 
microbubble tracking algorithm as described in Hoogi et al. (2012). This contains 
several steps for detecting vessel paths.  

First, the plaque ROI is manually drawn or is adopted from perfusion analysis. 
Second, motion compensation is applied as described in the motion compensation 
section. Noise reduction is performed using a 2D Gaussian filter of 5*5 pixels with 
sigma = 1 and beside this an additional adaptive threshold which is 10 percentile 
of intensity distribution within the plaque ROI is used to eliminate noise. The image 
sequence is divided into 10-frame groups with 80% overlap. The algorithm detects 
contrast spots by using different radii of artificial bubbles in the first frame of each 
group; it then tracks them using MDP combined with apodized BM for each group. 
After that, contrast tracks are classified into blood vessels and artifacts. This 
classification, which is necessary to remove artifacts from further processing and 
discard them from plaque vulnerability estimates, is based on a minimum expected 
displacement for moving bubbles in contrast to stationary artifacts. A threshold of 8 
pixels (0.8 mm) is applied for the Euclidian distance of an object over a group of 10 
frames. If displacement is below the threshold (corresponding to a velocity of 
about 1.5mm/s), the object is classified as an artifact. This implies that vessels that 
run almost perpendicular to the image plane will also be classified as artifacts. If 
the vessel directions are spatially distributed uniformly, less than 10% of vessels 
should be missed with this threshold. 

In the final step of the algorithm, reconstructed routes which are supposed to 
be of the same vessel are merged. Different routes which probably represent the 
temporal behavior of the same object are combined. The number of detected 
vessels (MVN) is counted to estimate IPN degree. 

 
Acoustic Shadow Detection 

Acoustic shadowing of plaque (mostly associated with plaque calcification or 
heavy fibrosis) is a clinically interesting parameter but may also obscure the 
detection of IPN (both visually and automatically). Shadowing was assessed 
automatically by looking at the amount of shadowing below the plaque 0.5s after 
the flash frame when the lumen is filled with contrast again. The percentage of 
shadowing was estimated by calculating the shadow width below the plaque region 
relative to the atherosclerotic plaque width (see Fig. 5). The mean lumen intensity 
profile over a zone of 1cm below the plaque border including a neighborhood of 30 
pixels left and right of the plaque is calculated. After that, a linear curve is fitted to 
the mean lumen intensity profile of both 30 pixels border neighborhood of the 
plaque to estimate local lumen mean intensity. A linear interpolation is applied 
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between the intensity values of the two corner points of the plaque to estimate 
original lumen mean intensity without presence of shadowing. For every plaque 
position, if lumen mean intensity is less than 30% of the estimated original lumen 
mean intensity, the plaque position was classified as shadowed. The 30% cut-off 
was decided based on the observed signal level in shadowed regions in our 
dataset. The presence of >50% of shadowing was considered to be substantial 
shadowing. Because shadowing in atherosclerotic plaques may have influence on 
both visual scoring and automated scoring of IPN, statistical analyses were 
performed both on plaques with and without substantially shadowed plaques. 

 
Fig. 5: Acoustic shadow detection: Mean intensity profile below the plaque width ± 30 pixels. 
 
Patient population and study protocol 

We included 25 patients with carotid atherosclerotic disease who suffered from 
stroke, transient ischemic attack, or ischemic ocular event. Patients had moderate 
to severe carotid stenosis (≥70%) as determined on CT-angiography or carotid 
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duplex ultrasonography. A total of 45 plaques of 23 patients (one per carotid 
artery, near wall) were included in the final analysis. Five carotid arteries were 
excluded from analysis. One carotid artery was excluded due to a prior surgical 
intervention. In one patient, the ultrasound clips of both arteries were excluded 
due to poor quality. In another patient, no atherosclerotic plaques were detected in 
the near wall of the carotid arteries. In these cases the carotid arteries were 
excluded from further analysis due to possible pseudo-enhancement in the far wall 
of the carotid artery.  The study protocol was approved by the ethical committee at 
Erasmus Medical Center and all study participants provided informed consent. 
Carotid ultrasound acquisition 

The standard carotid ultrasound examination and the CEUS examination of the 
carotid arteries was performed using a Philips iU22 ultrasound system with a L9-3 
linear array probe. A standardized image acquisition protocol was followed. The 
protocol was based on the American Society of Echocardiography consensus 
statement (Stein et al. 2008). CEUS was performed using intravenous 
administration of 0.5mL bolus of SonoVue ultrasound contrast agent (Bracco 
S.p.A., Milan, Italy). The bolus was injected in a consistent manner (0.5mL of 
SonoVue followed by a 2mL saline flush, consistent timing). For the CEUS 
examination, power modulation technique and a mechanical index of 0.06-0.08 
was used for optimal contrast enhanced ultrasound images. The image log 
compression was always set to the same value (C50). For optimal coordination of 
the ultrasound examination, we used side-by-side display mode with a 
simultaneous B-mode and CEUS image. After arrival of the bolus, we recorded one 
or more 20 seconds cine clips starting with a flash and showing the replenishment.  
For both standard carotid ultrasound and CEUS of the carotid arteries, cineclips 
were digitally stored and reviewed offline. 

 
Visual carotid ultrasound analysis 

Two independent readers who were blinded from patient specific data 
reviewed the standard carotid ultrasound clips and CEUS clips. The clips were 
analyzed in a predefined sequence. The size of the atherosclerotic plaque was 
defined as the maximum plaque thickness measured perpendicular to the luminal 
flow. The atherosclerotic plaques were scored for the presence of IPN by using the 
CEUS clips. Contrast-enhancement in the atherosclerotic plaque was considered to 
represent IPN. For each carotid artery, the presence of IPN was graded in the 
CEUS clip with maximum enhancement using a previously published grading scale.  
No IPN was scored as 0, limited or moderate IPN as 1, and severe IPN as 2 (Staub 
et al. 2011). In case of a discrepancy in the scores of the independent readers, 
consensus was reached afterwards. The visual IPN score was only used for 
atherosclerotic plaques visible at the near wall of the carotid artery. Plaques at the 
far wall were excluded from analysis. Contrast enhancement in atherosclerotic 
plaques on the far wall is not reliable because of the far-wall pseudo-enhancement 
artifact (ten Kate et al. 2012; Thapar et al. 2012). 
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Automated IPN analysis 

Automated analysis was applied on the same clips as used in visual analysis. All 
analyses were performed according to a structured protocol by two independent 
readers. After selecting the time frame interval for the analysis, three regions of 
interest (ROI) were drawn in the CEUS image: the atherosclerotic plaque, part of 
the carotid lumen and part of the background. Saturation artifacts in or around the 
atherosclerotic plaque were manually avoided during the drawing of the plaque 
ROI to prevent overestimation of IPN. In the B-mode image, a point of the 
atherosclerotic plaque was manually selected for motion compensation of the 
atherosclerotic plaque ROI. After the plaque ROI was aligned over time with 
motion compensation, perfusion and structure analyses of plaque were performed 
to derive several quantitative parameters. The results of parameters were saved in 
an excel file. The performed analyses and ROI objects were saved as XML file to 
retrieve them back later.  
Statistical analysis 

The results were statistically analyzed using SPSS PASW software for Windows 
(Version 17.0.2, SPSS Inc., Chicago, IL, USA). Categorical variables were 
expressed as counts and percentages. Continuous data was expressed as mean ± 
standard deviation. Before statistical analysis, all parameters were log-transformed. 
To test the association between the visual IPN score and the automated score derived 
from individual parameters, Spearman rank correlation was used. To test 
differences between the automated scores in the visual IPN score groups, 
Kruskall Wallis test was used. Since our data is not normally distributed, we 
used the Kruskall Wallis test which does not assume a normal distribution. 
The Intra-observer (n=45 plaques) and inter-observer (n=15 plaques) 
variability were measured using Bland-Altman plots and intraclass correlation 
coefficients (ICC) to assess the reproducibility of IPN parameters.  

 

 
Fig. 6 (a) Association of automated IPN surface area score with visual IPN scoring groups (n=45). (b) 
Association of automated IPN surface area score with visual IPN scoring groups after exclusion of 
plaques with substantial shadowing (n=37). + = p <0.01, ++ = p <0.005. 
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RESULTS 

The mean number of frames and standard deviation in the time-frame 
intervals selected for analysis was 307 ± 97. The average maximum plaque 
thickness was 6.82 ± 1.24 mm. In 45 analyzable plaques, 11 % (5 plaques) had 
IPN score 0, 64% (29 plaques) had IPN score 1 and 24% (11 plaques) had IPN 
score 2. Visual IPN score was 1.13 ± 0.59 (mean ± standard deviation). All 45 
carotid arteries were evaluated using CINQS. Mean atherosclerotic plaque surface 
area was 11.6 ± 8.6 mm2. The output of derived IPN parameters can be seen in 
Table 2. The correlations between output parameters and visual scoring groups 
were calculated. IPNSA, IPNSR and MVN were found to be significantly associated 
with visual scoring (Table 2). The MPCP, PMI and PLER were not associated with 
the visual IPN score (Table 2). The associations between the different visual IPN 
scoring groups and the IPN surface area are seen in Figure 6a. A total of 8 plaques 
(18%) were considered to have substantial shadowing. The correlations of all IPN 
parameters (Table 2) improved after exclusion of these plaques. The associations 
between the different visual IPN scoring groups and the IPN surface area after 
exclusion of plaques with substantial shadowing can be seen in Figure 6b. As it can 
be seen from Table 3 and Fig. 7, Inter-observer variability was low and inter-
observer agreement was good to excellent (ICC: 0.68-0.94, p<0.01). Intra-
observer variability was low and intra-observer agreement was excellent (ICC: 
0.84-0.98, p<0.001).  

 

 
Fig. 7: (a) Bland-Altman plot of intra-observer variability of automated IPN surface ratio (IPNSR). (b) 
Bland-Altman plot of inter-observer variability of IPNSR.  
 

In the comparison of PE as in (Xiong et al. 2009) and visual IPN scores, no 
valid gamma-variate curve fit could be found in 10 plaques out of 45. For the 
remaining fits, the correlation between the PE and visual IPN scores was very low 
(r=0.105). The PE parameter was therefore not further included in comparisons.  

In absence of motion compensation, the found IPN surface area was 
considerably overestimated (>50% for some cases) due to the lumen or artifact 
infiltration (fig. 8). The correlation of visual IPN scores and IPNSA was decreased 
when motion compensation was left out (0.697 vs. 0.719). 
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Fig. 8: Bland-Altman plot of intra-plaque neovascularization surface area (IPNSA) with and without 
motion compensation (MC) 

DISCUSSION 
Several pathological studies have recently linked IPN to atherosclerotic plaque 

progression, vulnerability, and rupture (Feinstein 2006; Coli et al. 2008; Hellings et 
al. 2010; Staub et al. 2010). As methods for IPN quantification are limited, we 
developed new quantification methods in our study. It is clear that qualitative 
assessment (visual scoring) of IPN presented in previous studies might include 
subjectivity. Although some studies have quantitatively evaluated IPN in CEUS  
images (Huang et al. 2008; Papaioannou et al. 2009; Xiong et al. 2009; Hoogi et 
al. 2011) they suffer from some limitations in their quantification methods.  

As described in the introduction, one reported approach for IPN quantification 
is calculating plaque enhancement from TIC. Plaque contrast enhancement (PE) is 
calculated from peak intensity (PI) after fitting a curve to TIC (Huang et al. 2008; 
Xiong et al. 2009). Based on observations in our dataset, it is not reliable to obtain 
bolus kinetic parameters from TIC because flow within plaque is not continuous 
and not all microvessels will be perfused. An example of TIC of a plaque (Fig. 2) 
shows several peaks when the plaque is perfused over time and the peak of the 
fitted curve will not represent the true peak enhancement within the plaque. In our 
study, we derived PMI and PLER from TIC, but both of them were not associated 
with visual IPN score as can be seen in table 1. The classical PE showed even lower 
correlation with visual IPN in our dataset. 

In addition, motion within the carotid images (i.e. pulsation, breathing, and 
body or probe motion) is generally ignored in the previous studies. However, 
motion compensation is essential for following identical ROI and to avoid contrast 
from lumen and saturation artifact around the plaque. In absence of motion 
compensation, PI might be influenced by outlier measurements and this will cause 
errors in detection of PI and in calculation of PE. In our study, our motion 
compensation prevented the plaque ROI from including parts of saturation artifacts 
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and lumen, and minimized the risk of contamination of the TICs.  

Another reported IPN quantification approach is calculating IPN surface area 
(Hoogi et al. 2011). As stated before, using ECG gating and one image per cardiac 
cycle might not give an accurate time integration of contrast spots.  This will cause 
contrast appearance in all intermediate frames to be missed and continuity of 
microvessel paths after time integration will be lost. Furthermore, ECG gating will 
not remove breathing and other motion artifacts. As explained, extracting plaque 
motion from CEUS images is less reliable than extracting from B-mode images. In 
our study, we therefore used a more reliable motion compensation method 
extracting plaque motion from simultaneous B-mode images, and analyzed contrast 
appearance in all time frames to improve the calculation of IPN surface area.  

The calculation of IPNSA of 45 plaques without motion compensation showed 
substantial influence on the outcome (fig. 8). It caused on average 10% of 
overestimation. The overestimation seems mainly caused by contrast from lumen 
or intensity from saturation artifacts that infiltrates the plaque ROI. As seen in 
figure 8, there are also some underestimated IPNSA. This seems to be caused by 
contrast spots that move out of the plaque ROI when no motion compensation is 
applied. Motion compensation will be crucial especially in case of small plaques, 
plaques surrounded with saturation artifacts, and adjacency of contrast from the 
jugular vein.  

Comparing automated quantification to visual scoring, we had some debatable 
cases. Although two cases of 45 analyzed plaques were visually scored as 1, MIP of 
contrast provided IPN surface area close to zero for those cases. In these cases the 
plaques had very faint spots and visual assessment may also have been influenced 
by spots close to the plaque ROI. In two cases of visual score 0, some contrast 
spots were detected with MIP. The contrast appears in only few images of those 
two sequences and thereby they might have been missed during the visual 
assessment.   

The automated quantification software that we developed will allow an 
objective, reproducible assessment of IPN and comparison of CEUS studies. We 
show a clear improvement with respect to the subjectivity of visual IPN scoring as 
reported in previous studies (Staub et al. 2010). To the best of our knowledge, this 
is the first study to extensively describe automated quantification methods of 
carotid IPN using an accurate motion compensated analysis tools for contrast-
enhanced ultrasound. This automated quantification software may also allow to 
detect changes in IPN and assess the effectiveness of medical therapies on IPN 
progression. 

The relatively small study population is a limitation in this study. Another 
limitation is the use of visual scoring as the ground truth for automated 
quantification of IPN, which might be a suboptimal reference. To confirm the 
present findings, future studies including histological assessment of IPN are 
necessary. This was beyond the scope of the present study.   

As a third limitation, the automatically derived IPN from ultrasound will 
overestimate the actual size of IPN (as determined from histology) due to the point 
spread function (psf) of the ultrasound signal.  The axial resolution in the 
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ultrasound contrast is about ~ 700 µm for a 3.5 MHz 3-cycle pulse used for 
contrast detection. Microvessels with diameters of 10-400 µm within the plaque will 
be displayed as about 7 pixels (~700 µm) diameter in the contrast image. Still a 
good correlation between histological IPN and CEUS IPN is expected. Consistently, 
Hoogi et al. (2011) reported a good correlation between IPN detected in CEUS and 
the IPN from histology.  

Fourth limitation is the pseudo-enhancement artifact in the far wall plaques 
(ten Kate et al. 2012; Thapar et al. 2012). This limitation of CEUS might be 
overcome by development of new pulse sequences (Renaud et al. 2012). 

 A further limitation is the possibility of out of plane motion due to 2D imaging.  
This should be small for accurate compensation of inplane motion. Finally, 
microvessels within the plaque that are running in a direction almost perpendicular 
to the imaging plane are considered as artifact in VSA, but this should not result in 
errors above 10%. 

 
CONCLUSIONS 

IPN quantification methods were described in this paper and several IPN 
parameters were derived to evaluate IPN degree. Our automated IPN quantification 
tools will provide simpler and more standardized quantification/grading methods 
than those used in previous studies. Three of the derived parameters (IPNSA, IPNSR 
and MVN) are correlated significantly with visual scoring of IPN. IPNSA showed the 
best distinction between the visual IPN scoring groups. These results show that the 
proposed quantitative parameters have the potential to replace qualitative visual 
scoring and to measure IPN degree in an objective and reproducible manner. 
Future studies are needed to confirm that these quantitative parameters 
outperform visual scoring in the prediction of cardiovascular events or the presence 
of IPN in histology. 
 
Table 3: Intra-observer (n=45 plaques) and Inter-observer (n=15) agreement of different IPN 
parameters assessed using automated quantification software on all atherosclerotic plaques. ICC = intra 
class correlation, MD = Mean difference between observations, SD = standard deviation.  

 Intra-observer Inter-observer 

 Parameter ICC MD±SD ICC MD±SD 

IPNSA (mm2)  0.984  (p<0.001)  -0.12 ±0.63 0.960  (p<0.001)  -0.08 ±0.63 

IPNSR (%)  0.971  (p<0.001)   0.36 ±5.92 0.968  (p<0.001)  -0.59 ±6.71 

PMI 0.905  (p<0.001)  -0.05 ±0.58 0.833  (p<0.001)  -0.15 ±0.42 

PLER (%)  0.887  (p<0.001)  -0.03 ±0.58 0.921  (p<0.001) 0.11 ± 0.28 

MPCP (%) 0.916  (p<0.001)  -0.74 ±4.89 0.825 (p<0.001)  -2.14 ±3.98 

MVN 0.835  (p<0.001)  -0.44 ±1.87 0.682  (p=0.002)   0.11 ±0.70 
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Chapter 5 
 

Statistical Segmentation of Carotid Plaque Neovascularization 
 

In several studies, intraplaque neovascularization (IPN) has been linked 
with plaque vulnerability. The recent development of contrast enhanced ultrasound 
enables IPN detection, but an accurate quantification of IPN is a big challenge due 
to noise, motion, subtle contrast response, blooming of contrast and artifacts. We 
present an algorithm that automatically estimates the location and amount of 
contrast within the plaque over time. Plaque pixels are initially labeled through an 
iterative expectation-maximization (EM) algorithm. The used algorithm avoids 
several drawbacks of standard EM. It is capable of selecting the best number of 
components in an unsupervised way, based on a minimum message length 
criterion. Next, neighborhood information using a 5x5 kernel and spatiotemporal 
behavior are combined with the known characteristics of contrast spots in order to 
group components, identify artifacts and finalize the classification. Image 
sequences are divided into 3-seconds subgroups. A pixel is relabeled as an artifact 
if it is labeled as contrast for more than 1.5 seconds in at least two subgroups. For 
10 plaques, automated segmentation results were validated with manual 
segmentation of contrast in 10 frames per clip. Average Dice index and area ratio 
were 0.73±0.1 (mean±SD) and 98.5±29.6 (%) respectively. Next, 45 
atherosclerotic plaques were analyzed. Time integrated IPN surface area was 
calculated. Average area of IPN was 3.73±3.51 mm2. Average area of 45 plaques 
was 11.6±8.6 mm2. This method based on EM contrast segmentation provides a 
new way of IPN quantification. 
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1. INTRODUCTION  

Patients with carotid plaques carry an increased risk of sudden cardiovascular 
events, such as stroke, transient ischemic attack (TIA), myocardial infarction and 
even death [1, 2]. The benefit of carotid endarterectomy in reducing the risk of 
recurrent stroke for symptomatic patients with severe stenosis has been 
established by large European and North American clinical trials [3, 4]. Current 
clinical practice for choosing patients for a carotid endarterectomy operation is 
mainly based on assessing the degree of arterial lumen narrowing. However, there 
is an increasing awareness that not the size of the plaque, but its composition and 
risk of rupturing is related to these acute cardiovascular events [5-8]. Thus, the 
degree of stenosis is actually a poor predictor of individual stroke risk and 
improved risk stratification models should focus on plaque vulnerability rather than 
size. Early identification of atherosclerotic plaques at risk for instability and rupture 
may improve treatment strategies for the prevention of cardiovascular events. 
Several pathological studies demonstrated that intraplaque neovascularization 
(IPN) is associated with progressive atherosclerotic disease and plaque 
vulnerability [7]. Recent developments in contrast enhanced ultrasound (CEUS) 
enable detection of atherosclerosis and small microvessels with slow flow within 
the plaque by the use of ultrasound contrast agents [6]. 

 In validation studies, a good correlation was found between the visual scoring 
of IPN and the number of intraplaque neovessels in histological samples [10-11]. 
Staub et al. [8] investigated 147 patients using CEUS. The degree of adventitial 
and plaque vasa vasorum was visually assessed (Grade 1: absent; Grade 2: 
present). The presence and degree of adventitial vasa vasorum and IPN were 
directly associated with established cardiovascular disease. These findings support 
that IPN is a sign of plaque vulnerability. Huang et al. presented dynamic 
evaluation of the plaque enhancement by using time intensity curve (TIC) of 
plaque. Vascularization was observed in 94% of the plaques qualified as soft based 
on the ultrasound characteristics and in 73% of plaques qualified as mixed. No 
vascularization was observed in the hard and calcified plaques [21]. Xiong et al. 
reported that the stroke and TIA patients had significantly more intraplaque 
contrast enhancement obtained from TIC than asymptomatic patients [22]. 
However, it may be questioned whether common TIC analysis as applied in large 
well-perfused organs like the liver or heart is applicable to quantification of 
microvessels in plaques. The plaques are very small and weakly perfused. The flow 
within the plaques is not continuous but characterized by occasional appearance of 
a faint moving contrast spot. Furthermore, the high intensity contrast in the carotid 
lumen is directly adjacent to the plaque, and the plaque is moving due to arterial 
pulsation and breathing. This complicates the generation of a valid non-
contaminated plaque region of interest (ROI) for the TIC derivation. For these 
reasons, it is hard to obtain bolus kinetic parameters from time intensity curves for 
plaque. Hoogi et al. [12] presented an alternative approach: a quantitative method 
which segments the contrast spots within the plaque by using a Chan-Vese active 
contour algorithm  [17]  to calculate an IPN surface area. They reported a good 
correlation between IPN to plaque surface area ratio and histological IPN to plaque 
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surface area ratio (R2 = 0.7905). However, the presented method also suffers from 
some limitations: ECG gating was applied to limit motion and only one CEUS image 
per cardiac cycle was used. Therefore, contrast appearance in other frames is 
missed and continuity of microvessel paths after time integration may be lost. 
Some additional motion compensation was performed, but this was done on the 
CEUS image itself. In CEUS images, only ultrasound contrast agent is visualized 
and tissue is suppressed. Therefore it is quite difficult to extract plaque motion 
from CEUS images.  

The current contrast detection methods (i.e. amplitude modulation, pulse 
inversion) which are available in clinical ultrasound systems provide also artifacts, 
i.e. saturation artifacts and far wall pseudo-enhancement artifacts [20]. Especially 
calcified carotid plaques or heavily fibrotic carotid wall may produce high and low 
intensity saturation artifacts in CEUS images. In addition, the point spread function 
of the ultrasound system will provide blooming of contrast and artifacts. 
Furthermore, the persistence setting (temporal averaging) used in ultrasound 
systems may cause reduction of the signal of moving contrast spots. Therefore, a 
simple segmentation by (adaptive) thresholding will not suffice and a more 
elaborate classification of the observed intensities within the plaques in CEUS 
images is crucial for an accurate quantification of IPN. We investigated statistical 
distribution of gray level intensities of contrast within the plaque combined with 
neighborhood relations for an accurate quantification of IPN.     

In statistical modeling of observed data, finite mixtures are a powerful 
probabilistic modeling tool. One of the most common methods used to fit finite 
mixture models to the observed data is the expectation and maximization (EM) 
algorithm which converges to a maximum likelihood (ML) estimate of mixture 
parameters [16]. Linguraru et al. [18] presented a statistical segmentation of 
surgical instruments in 3D ultrasound images by using an EM algorithm. The 
results compared well to expert-annotated images. However, the EM algorithm has 
several drawbacks such as sensitivity to initialization or the possibility of 
convergence to a singular estimate at the boundary of the parameter space. 
Figueiredo and Jain (2002) presented an unsupervised EM algorithm for learning a 
finite mixture model from multivariate data. The algorithm is capable of selecting 
the number of components, does not require a careful initialization and avoids the 
boundaries of the parameter space [15].   

In this study, we present an algorithm that automatically classifies all pixels 
within the plaque into background, contrast and artifacts for all time frames by 
using an unsupervised EM algorithm. A time integrated total IPN surface area is 
calculated. We avoid the known limitations of quantification methods in the 
previous studies. For the analysis of the selected plaque, all images of the 
ultrasound sequence are used. Proper motion compensation is performed by 
deriving the plaque motion from the simultaneously acquired B-mode images. The 
algorithm was implemented as a tool in the CINQS software package that we 
previously developed for quantification of IPN. In the in vivo validation, we 
analyzed 45 carotid plaques and the IPN surface area calculated from statistical 
segmentation of contrast spots was compared to IPN surface area calculated from 
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a maximum intensity projection (MIP) image. The methodology of the intraplaque 
contrast  segmentation with EM is described in the following sections. 

2. METHODS 

Our analysis methods require CEUS images that have simultaneously acquired 
contrast mode and B-mode, stored as DICOM files. An example can be seen in 
figure 1. In this study we have been using the Philips iU22 system (Philips Medical 
Systems, Bothell, USA) with L9-3 probe. The contrast mode is using a power 
modulation technique and a mechanical index of 0.06-0.08 is chosen for optimal 
contrast enhanced ultrasound images. CEUS was performed using intravenous 
administration of SonoVue ultrasound contrast agent (Bracco S.p.A., Milan, Italy). 

The cine loops acquired during clinical examination are transferred as DICOM 
files to a computer workstation for off-line post-processing. A custom developed, 
user-friendly and well-structured, carotid intraplaque neovascularization 
quantification software (CINQS) is used to analyze data. The CINQS is developed in 
MevisLab, a development environment for medical image processing and 
visualization (MeVis Medical Solutions AG and Fraunhofer MEVIS, Bremen, 
Germany) The IPN quantification algorithms are implemented in MATLAB (The 
Mathworks Inc., Natick, Massachusetts, US), and run through a MeVisLab-MATLAB 
interface module.  The communication between MevisLab modules and graphical 
user interface (GUI) is controlled via Python scripts.  

 

 
Figure 1: An example of side by side contrast and B-mode image acquired by Philips iU22 system. 
Contrast spots can be seen within the plaque region in the contrast image 

 
The general analysis procedure is as follows. First, the time frame interval for 

the analysis is selected. The plaque region of interest is manually drawn in the 
CEUS image. In the B-mode image, a point of the atherosclerotic plaque is 
manually selected for motion compensation of the atherosclerotic plaque ROI. After 
motion compensation, the unsupervised EM algorithm [15] first selects the best 
number of components within the plaque based on gray level distribution and then 
the probability of each pixel belonging to each component is computed through an 
iterative EM algorithm using information from the neighboring pixels through a 
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Gaussian smoothing kernel with sigma=0.5. The resulting components are grouped 
by using a priori information obtained from expert-segmented contrast spots within 
a collection of plaques. Then neighboring and spatiotemporal information are used 
to distinguish artifacts and true contrast spots and to finalize classification. This is 
repeated for each frame and contrast spots are integrated over time using a logical 
OR operation to calculate the total IPN surface area. The different parts of the 
analysis procedure are detailed in the following sections.        
 
2.1 Motion compensation 

The carotid artery wall shows considerable motion due to the pulsating blood 
pressure, breathing and swallowing. Motion compensation is a prerequisite step for 
an accurate quantification of small microvessels within the carotid plaques. The 
contrast spots associated with these microvessels have sizes of a few pixels, while 
the plaque motion can amount to tens of pixels. The motion compensation method 
should be accurate and reliable enough for this purpose. In CEUS images, only 
ultrasound contrast agent is seen and tissue is suppressed so that it is quite 
difficult to extract plaque motion from CEUS images. Therefore we acquire 
simultaneous side-by-side B-mode images and CEUS images and the motion 
pattern of plaque is extracted from B-mode images and is applied to the plaque 
ROI in the contrast images to follow the identical plaque region. Plaque itself in B-
mode images is quite a unique landmark in longitudinal and transversal directions, 
in contrary to healthy carotid wall sections, which are highly similar when moving 
along the vessel direction. In the first step of IPN analysis, motion compensation is 
performed by using multidimensional dynamic programming (MDP) combined with 
apodized block matching (BM) as was described in [13]. First, the user chooses a 
point on the plaque in a B-Mode image of the sequence. A fixed template of 61 x 
41 pixels (6x4 mm) around this point is derived from the chosen image of the 
sequence. Then, the similarity of speckle pattern of template and speckle patterns 
in the consecutive images is calculated by using normalized cross correlation 
(NCC). The center position of the template is scanned over all positions within a 
defined search field (61 x 21 pixels (6x2 mm)) to find NCC coefficients. After this, 
the results of NCC are used as an input to MDP. The optimal plaque displacement 
is obtained with MDP as described in detail in [13] and the contrast images are 
aligned to the chosen contrast image based on detected plaque displacement in X 
and Y direction for motion correction. 
 
2.2 Expectation-maximization 

EM is an iterative procedure which finds local maxima of the maximum 
likelihood. The maximum likelihood parameters are computed iteratively starting 
with initial estimation. The algorithm converges to a steady state when a local 
maximum is reached [15, 16]. We use EM algorithm to solve a mixture estimation 
problem and separate background, blooming of contrast, contrast spots and 
artifact. We approximated the probability density function (pdf) of contrast by 
Gaussian distribution as seen in figure 8. The EM algorithm tries to determine the 
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probability of a pixel belonging to one of the defined classes (c). We describe the 
distribution function as a sum of four Gaussians (𝑝(𝑦|𝜇,𝜎)): 
 

𝑝(𝑦 | 𝜃) = �𝜔𝑐𝑝(𝑦| 𝜇𝑐,𝜎𝑐)
4
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                                                                                     (1) 

        
 The parameters of the Gaussian mixture model are: 

�𝜔𝑐 = 1
4

𝑐=1

                   𝜇𝑐 =  
1
𝑁

  �𝑦𝑖

𝑁

𝑖=1

                   𝜎𝑐2 =   
1
𝑁

  �(𝑦𝑖 − 𝜇𝑐)2 
𝑁

𝑖=1

         (2)                 

 
There are two steps at each iteration: 
 

1. Expectation step: The parameters of the four distributions are calculated in 
this step. 
Let Y = (y1,y2,……yN) be the observations from the mixture of four Gaussians  
𝜃 = { 𝜔, 𝜇,𝜎 }, 𝜔 = (𝜔1,𝜔2,𝜔3,𝜔4), 𝜇 = (𝜇1, 𝜇2, 𝜇3, 𝜇4),   𝜎 = (𝜎1,𝜎2,𝜎3,𝜎4)  
must be estimated from Y.  
Then the probability of each pixel belonging to one of the four defined 
classes Ψ 1, Ψ 2, Ψ 3, and Ψ 4 is computed by using the parameters 𝜃 and 
Bayes’s law. In equation 3, 𝜔𝑗 is the a priori probability that a pixel 
belongs to that class Ψ𝑗. 𝑃�𝑦𝑖 ∈ Ψ𝑗� is the posterior probability of that pixel. 
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The expectation of log-likelihood will be computed for given parameters 𝜃  

ln𝑝(𝑌|𝜃) =  � ln𝑝(𝑦𝑖|𝜃)
𝑁
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                                                                    (4) 

   
2. Maximization Step: The parameters 𝜃 = { 𝜔, 𝜇,𝜎 }, will be updated with 

each iteration until the algorithm converges to a steady state.  
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The used EM algorithm adopted from Figueiredo and Jain [15] avoids several 

drawbacks of standard EM such as sensitivity to initialization and possible 
convergence to the boundary of the parameter space.  It is capable of selecting 
the number of components in an unsupervised way. The method used for selecting 
the number of components is based on a minimum message length (MML) criterion 
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which is directly implemented by a modified EM algorithm. The important feature 
of this EM algorithm is the integration of estimation and model selection in a single 
algorithm instead of using MML as a model selection criterion to choose the best 
one among candidates.  The MML criterion was used as a cost function and it was 
minimized through EM. The M-step of EM was used as a component annihilator. 
When one of the components becomes too weak, which means that it is not 
represented by data anymore, it is simply annihilated. The algorithm starts with a 
larger number of components than the true number of mixture components all 
over the space and the unnecessary ones are removed.  

The best number of components within the plaque is selected in an 
unsupervised way. Then, the probability of each pixel belonging to each 
component is computed through an iterative EM algorithm using information from 
the neighboring pixels through a Gaussian smoothing kernel with sigma 0.5. Based 
on our observations of in vivo images, there are four meaningful classes to 
consider within the plaque. However, each class can contain more than one of the 
detected components. Therefore, the detected Gaussian distribution components 
are grouped into 4 classes, being a background class (background), intermediate 
class (blooming of contrast), contrast spot class and artifact class. The grouping is 
based on the mean of the Gaussian distribution components. The Gaussians which 
have mean between 0-5, 6-15, 16-150, 151-255 are assigned to background class, 
intermediate class, contrast spot class, and artifact class respectively, as an initial  
grouping of the found components. This a priori information was obtained from 3 
representative plaques which includes the four classes. Each class was segmented 
by an expert in several frames of the 3 plaques (10 frames in total). The 
normalized histograms of expert segmentation of those four classes are seen in 
figure 7 and normalized fitted Gaussian probability distribution functions are seen 
in figure 8. The mean, standard deviation and mean error between Gaussian fit 
and histogram data is seen in table 1. As can be seen in figure 7-8, the overlap 
between blooming of contrast and contrast spot class and the overlap between 
artifact class and contrast spot are the main uncertainty in the EM algorithm.   
 
2.3 Neighboring information 

After this rough grouping into 4 classes, a 5-by-5 (pixels) kernel is scanned 
over the plaque region and intermediate class labels are reassigned to contrast 
spot class or background class.  
• First, the central pixel of the 5-by-5 kernel has to be the intermediate class 
The criteria for assigning a contrast spot class label to an intermediate class label: 
• The amount of contrast spot labels have to be higher than the amount of 

background class labels in the kernel and at least 4 pixels have to belong to 
contrast spot class. 

The criteria for assigning background class label to an intermediate class label: 
• The amount of background class labels have to be higher than the amount of 

contrast spot class labels and at least 4 pixels have to belong to background 
class in the kernel.  
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In both cases, if less than 4 pixels (contrast spot or background) are found the 
intermediate class label remains unchanged. 

 
2.4 Spatiotemporal behavior of contrast  

Contrast spots within the plaque are moving with a slow velocity between 
1mm/s and 6mm/s, which is obtained from tracking of spots in [14]. There are two 
types of artifacts within or around the plaque: low intensity stationary artifacts and 
high intensity saturation artifacts. These artifacts can move and change shape 
slowly over time, but they are relatively stationary in comparison to contrast 
motion. This property is exploited to distinguish between true contrast spots and 
artifacts. The image sequence is divided into 3 seconds subgroups of images. For 
each pixel in the plaque, the number of frames within the subgroup in which it was 
labeled as contrast is counted. If a pixel was labeled as contrast spot for more than 
50% of frames in at least two 3-seconds subgroups, it was considered as an 
artifact and relabeled to the artifact class. After this a 9-by-9 pixels kernel is 
scanned over the plaque region to refine neighborhood of artifacts class. An 
example of classification of the plaque into artifact, contrast spot, blooming of 
contrast and background can be seen in figure 4. 
The criteria for assigning intermediate class or spot class to artifact class: 
• The central pixel of 9-by-9 kernel has to be the intermediate class or contrast 

spot class 
• If the number of pixels belonging to artifact class is the highest, the pixel is 

assigned to artifact   
 
2.5 In Vivo Classification Validation 

All analyses were performed according to a structured protocol by one 
physician. For 10 atherosclerotic plaques, automated segmentation results were 
validated with manual segmentation of contrast by an expert in 10 frames per clip. 
The frames for manual segmentation were selected as every 10th frame right after 
the flash frame. Average Dice index and area ratio were calculated.  
 
2.6 Comparison to visual scoring: Patient population and study protocol 

A total of 45 plaques of 23 patients were included for analysis. Patients were 
scheduled for elective carotid endarterectomy (CEA). The indication for CEA was 
made in consensus by the treating neurologist and vascular surgeon. All patients 
were known to have a >70% stenosis of the internal carotid artery as determined 
on CT-angiography. Mean age of the patients was 65 ± 9 years. Mean body-mass 
index (BMI) of the patients was 29 ± 6 kg/m2. Fourteen patients (56%) were 
known to have hypertension, 6 patients (24%) were known to have diabetes and 
11 patients (44%) were current smokers. The majority of the patients (92%) had 
ipsilateral cerebrovascular symptoms (i.e. stroke, TIA, ischemic ocular event). All 
patients underwent a bilateral standard carotid ultrasound examination and a CEUS 
examination of the carotid arteries on the day prior to CEA. The study protocol was 
approved by the ethical committee of the Erasmus Medical Center and all study 
participants provided informed consent. 
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One clip per carotid artery was chosen for automated analysis. Median number 
of frames in the selected time-frame intervals for analysis was 315 ± 97.  
 
2.7 Visual carotid ultrasound analysis 

All standard carotid ultrasound clips and CEUS clips were reviewed offline by 
two independent observers. Both observers were blinded from patient specific 
data. The analysis of the clips was performed in a predefined sequence. Standard 
carotid ultrasound clips were evaluated before the CEUS clips. The atherosclerotic 
plaques were scored for the presence of IPN by using the CEUS clips. Contrast 
enhancement in the atherosclerotic plaque was considered to represent IPN. For 
each carotid artery the presence of IPN was graded using a previously published 
grading scale: (0) no IPN, (1) limited or moderate IPN, or (2) severe IPN [19]. If 
there was a discrepancy in the scores of the independent readers, a consensus was 
reached afterwards. The visual IPN score was only used for atherosclerotic plaques 
visible at the near wall of the carotid artery. Plaques at the far wall were excluded 
from analysis because of a recently discovered artifact [20]. Contrast enhancement 
in atherosclerotic plaques on the far wall is not reliable because of this far-wall 
pseudo-enhancement artifact. The plaques selected for analysis were visually 
characterized. The average maximum plaque thickness was 6.82 ± 1.24 mm and 
the median Gray-Weale score of the atherosclerotic plaques was 3.   
 
2.8 Automated IPN analysis 

Forty-five (45) atherosclerotic plaques right after the flash frame were 
analyzed. Contrast spots are statistically segmented in each frame and total 
surface area of IPN was calculated after logical OR operation of contrast spot class 
over time. The natural logarithm of calculated IPN surface area was taken to 
compare with visual IPN scores as seen in figure 5. An example of IPN surface 
area is seen in figure 2, 4. The obtained results were compared to IPN surface 
area calculated from MIP image using an adaptive threshold which takes into 
account lumen intensity, background noise from tissue, and visual limitation. In our 
data set, we excluded saturation artifacts from nearby plaque ROI during the 
drawing of plaque ROI for comparison of MIP and statistical segmentation results. 
An example of saturation artifacts within the plaque ROI and results of MIP and 
statistical segmentation can be seen in figure 4.  

 

 
Figure 2: a) maximum intensity projection of 311 frames for plaque region. b) Segmentation of IPN 
over 311 frames after logical OR operation of contrast spot classification 
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Figure 3: An example of manual and automated segmentation of contrast spots within the plaque 
 

 
Figure 4: Classification of contrast within a plaque ROI. a) Maximum intensity projection (MIP) of 328 
frames. b) Regions of different classes indicated in MIP image c) Labeled image after classification and 
OR operation over time. Red labels (artifacts). Yellow labels (contrast spot). Cyan labels (blooming of 
contrast). Blue labels are background. d) Only contrast spot class   
 

3. RESULTS 
 

In the in-vivo validation, average Dice index and area ratio of contrast spots 
were found to be 0.73±0.1 (mean±SD) and 98.5±29.6 (%) respectively. For 33% 
of the 100 chosen plaque images, both algorithm and expert detected contrast. 
Both algorithm and expert detected nothing in 57% of chosen plaque images. 
Algorithm gave false positive response in 4% of images and false negative in 5% 
of images. An example of manual and automated segmentation of contrast in the 
plaque can be seen in figure 3.  

Average surface area of IPN calculated after time integration of segmented 
contrast spots with logical OR operation for 45 atherosclerotic plaques was 
3.73±3.51 mm2. Average surface area of IPN calculated after MIP image was 
3.49±3.44 mm2. Average area of the 45 plaques was 11.6±8.6 mm2. The 
difference between IPN surface area derived from statistical contrast segmentation 
and IPN surface area derived from MIP image was 0.24±0.84 mm2. An example of 
segmentation and time integration of contrast spots after logical OR operation and 
maximum intensity projection image over 311 images can be seen in figure 2. In 
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figure 6, an example of the probability map within a plaque obtained by EM is 
shown as an RGB image. It shows the probabilities of each pixel belonging to each 
of three classes (background, blooming of contrast and contrast spot) in the blue, 
green and red channel, respectively. 

 

 
Figure 5: The association between visual IPN scores and automated IPN surface area score (Ln (IPN 
surface area (mm2) +1)) obtained from statistical segmentation of contrast.  
 

 
Figure 6: Probability map of pixel class probabilities within the plaque obtained by EM shown as an 
RGB image. Blue channel (probability of background class ), green channel (blooming of contrast), Red 
channel (contrast spots) . All black pixels (0) are background as well. There is no artifact class in this 
image.  

4. DISCUSSION 
The presence and severity of IPN in atherosclerotic plaques has been linked to 

plaque vulnerability in several studies [6, 7, and 8]. In many of them, a visual 
grading scale was used for the assessment of IPN using CEUS. Although some 
studies have quantitatively evaluated IPN in CEUS images, they suffer for some 
limitations in their quantification methods [12, 21, and 22] as explained in the 
introduction. In our study, we overcome the known limitations of automated 
quantification methods in the previous studies. We used an accurate motion 
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compensation to avoid plaque ROI to hit lumen and analyzed the whole image 
sequence which is selected for analysis. 

Classification of contrast within the plaque into background, contrast spot and 
artifact will allow an accurate quantification of IPN. This will avoid inclusion of 
artifacts in calculation of time integrated IPN surface area. MIP however will 
consider artifacts as contrast spots within the plaque. Therefore, our statistical 
segmentation of contrast spots is expected to provide more reliable and accurate 
results than MIP if there is an artifact within the plaque ROI.  In this study, plaque 
ROIs were used that excluded the main artifacts; therefore the results of MIP and 
EM-based method are not very different. It would be worth comparing the results 
for ROIs including artifacts. There is a small bias (24 pixels) in the difference of the 
results of the two methods and standard deviation is around 89 pixels.  When 
examining our data set, we found that in some cases, faint bubbles are suppressed 
due to the hard threshold used in MIP. However, the neighboring information 
applied in the EM-based method allows detecting them. The EM-based method also 
suppressed some individual contrast pixels and penetration of lumen at the edges 
of the plaque ROI that MIP preserved.   

In the in vivo validation, the detection of presence/absence of contrast by the 
EM algorithm was identical to manual segmentation in 90% of the cases. There 
was false positive detection in 4% of the cases and false negative detection in 5% 
of the cases.  The spots in those cases were small and faint and thereby it was 
hard to determine whether they were indeed contrast spots or noise. The surface 
area ratio between manual and automated segmentation, was on average almost 
100%. There was a 30% standard deviation. This relatively large standard 
deviation can be attributed to the small size of the contrast spots. A few pixels 
variation in segmentation of those small contrast spots will already cause this. 

One of the limitations in our study is that visual analysis was used as the 
reference or ground truth for automated quantification of IPN. Visual analysis may 
be a suboptimal reference, and future studies including histological assessment of 
IPN are needed to confirm the relation of our present findings to histology. In two 
cases of 45 analyzed plaques, although they were visually scored 1, our method 
did not detect any contrast. That is why the lowest bound of score 1 box plot 
stretched to 0 in figure 5. MIP of contrast also provided IPN surface area close to 
zero for those cases. Either the plaques had faint spots or visual assessment was 
influenced by spots close to the plaque ROI. In two cases of visual score 0, some 
contrast spots were detected with both our method and MIP. The contrast appears 
hardly ever in those two sequences and thereby they might be missed during the 
visual assessment. Second, due to the pseudo-enhancement artifact in the far wall 
plaques it is not possible to reliably analyze atherosclerotic plaques that are located 
on the far wall of the carotid artery [20]. Therefore, plaques in the far wall were 
excluded from analysis. Development of new pulse-sequences that overcome this 
artifact will probably provide a solution for this limitation of CEUS [23]. 
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5. CONCLUSIONS 
Our algorithm enables to automatically estimate the location and amount of 

contrast within the plaque over time.  
The proposed method for segmentation of neovascularization is capable of 

classifying the plaque into four classes as background, blooming of contrast, 
contrast spot, and artifact. Artifacts within plaques can be detected and discarded 
after classification. The validation results show a correct segmentation and 
positioning of contrast spots. Automated IPN surface area shows a good distinction 
between different visual IPN scoring groups as seen in figure 5. Our EM-based 
method provides a new and potentially more accurate quantification of IPN to 
identify vulnerable plaques. 
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Table 1: The gray value mean and standard deviation of the distribution of background, blooming of 
contrast, contrast spot, and saturation artifacts class estimated from 10 expert segmented images of 3 
plaques. Root mean square (RMS) error is determined between actual distributions and Gaussian 
distributions for the same mean and standard deviation.  
 

  mean standard deviation RMS error 
Background  2.3 1.8 0.0691 
Blooming of contrast 10.4 4.9 0.055 
Contrast spot 41.4 21.8 0.2847 
Saturation artifact 168.53 59.3 0.4952 
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Figure 7: The normalized histograms of background, blooming of contrast, contrast spot and saturation 
artifact, which were obtained from manual segmentation in 10 frames of 3 plaques. 

 
Figure 8: The normalized approximate Gaussian distribution of background, blooming of contrast, 
contrast spot and saturation artifact, which were obtained from manual segmentation in 10 frames of 3 
plaques. 
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Chapter 6 
 
Carotid Intraplaque Neovascularization Quantification Software (CINQS) 

 
Intraplaque neovascularization (IPN) is an important biomarker of atherosclerotic 

plaque vulnerability. As IPN can be detected by contrast enhanced ultrasound 
(CEUS), imaging-biomarkers derived from CEUS may allow early prediction of 
plaque vulnerability. To select the best quantitative imaging-biomarkers for 
prediction of plaque vulnerability, a systematic analysis of IPN with existing and 
new analysis algorithms is necessary. Currently available commercial contrast 
quantification tools are not applicable for quantitative analysis of carotid IPN due 
to substantial motion of the carotid artery, artifacts, and intermittent perfusion of 
plaques. We therefore developed a specialized software package called Carotid 
Intraplaque Neovascularization Quantification Software (CINQS). It was designed 
for effective and systematic comparison of sets of quantitative imaging-biomarkers. 
CINQS includes several analysis algorithms for carotid IPN quantification and 
overcomes the limitations of current contrast quantification tools and existing 
carotid IPN quantification approaches. CINQS has a modular design which allows 
integrating new analysis tools. Wizard-like analysis tools and its graphical-user-
interface facilitate its usage. In this paper, we describe the concept, analysis tools, 
and performance of CINQS, and present analysis results of 45 plaques of 23 
patients. The results in 45 plaques showed excellent agreement with visual IPN 
scores for two quantitative imaging-biomarkers (The area under the receiver 
operating characteristic curve was 0.92 and 0.93).  
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I. INTRODUCTION 

Several pathological studies have presented intraplaque neovascularization (IPN) 
as an important biomarker for plaque instability and rupture [1-3]. These small 
microvessels within arterial atherosclerotic plaques can be visualized using contrast 
enhanced ultrasound (CEUS). Therefore, quantitative imaging biomarkers based on 
CEUS may allow early prediction of plaque vulnerability. To select the best 
quantitative imaging biomarkers, a systematic evaluation and optimization of 
existing and new IPN analysis algorithms, and an effective and systematic 
comparison of sets of multiple imaging biomarkers need to be done on patient 
populations. 

IPN is seen in a CEUS image sequence as the subtle intermittent appearance of 
small moving contrast spots within the dark plaque. Currently available commercial 
tools for contrast quantification, e.g. QLAB ROI quantification tool (Philips Medical 
Systems, Bothell, USA) and VueBox (Bracco Suisse SA, Geneva, Switzerland), are 
not suitable for quantitative analysis of IPN. These quantification tools have been 
developed mainly for large organs such as heart, liver and prostate, not for 
plaques. Plaques are relatively small and weakly perfused structures, and directly 
adjacent to the bright artery lumen. Saturation and shadowing artifacts are 
common. Plaques are also moving substantially due to pulsation of the artery, 
breathing, or patient motion. Therefore, accurate tracking of the motion of the 
plaque is essential for intensity analysis to prevent contamination of the ROI by 
contrast from the lumen and high intensity artifacts. Currently available contrast 
quantification tools are based on time intensity curves (TIC). TICs of 
atherosclerotic plaques are characterized by a number of short peaks 
corresponding to the passage of single (or clusters of) contrast bubbles (see fig.1) 
and do not resemble the typical massive bolus passage or flash/replenishment 
curves seen in the lumen of an artery or in the perfusion pattern of large organs or 
tumors. As can be seen in fig.1, fitting a curve model for bolus perfusion (such as 
Gamma-Variate [4] or local density random walk (LDRW) [5]) to the TIC of IPN 
does not capture the true perfusion characteristics of IPN. In some studies [6-7], 
such bolus passage parameters such as plaque enhancement (PE) (PE=Peak 
intensity (PI) – Baseline intensity (BI, intensity at time 0)) and PE to lumen 
enhancement ratio parameters were used to assess IPN. They were derived from 
TIC curve fitting in the same way as for large organs. In our opinion, this is not a 
suitable approach. Therefore, there is a considerable demand for specialized IPN 
quantification tools. 

So far, assessment of IPN relies mostly on subjective visual assessment as 
quantification tools for IPN are scarce. Recently, a review paper [9] presented the 
methods used so far to assess IPN and discussed the current status of CEUS in 
carotid atherosclerosis. There are some reported quantitative approaches [6-8] but 
they suffer from a number of limitations as described in [10]. 

 



Carotid Intraplaque Neovascularization Quantification Software (CINQS)| 89 
 

 
Figure 1: Time intensity curve (TIC) of a plaque and local density random walk (LDRW) and gamma-
variate curve fits obtained with QLAB ROI quantification tool. PE = plaque enhancement. PI = peak 
enhancement. BI = baseline intensity, intensity at time 0. 
 

In our study, we focus on carotid artery plaques at risk of rupture by using non-
invasive CEUS imaging. Our work is performed in the context of a large consortium 
project, CTMM-ParisK (Plaque At Risk), which investigates molecular, biological, 
morphological, biomechanical and imaging biomarkers of carotid artery 
atherosclerotic plaque to detect plaque at risk of rupture. Our purpose is to 
compare existing and new IPN parameters derived from CEUS and to select 
suitable IPN parameters for prediction of plaque vulnerability. For this purpose, we 
need a platform which allows evaluation and optimization of IPN quantification 
tools for CEUS images. Requirements for such a platform include: 

1. Development and optimization of new and existing IPN analysis algorithms 
2. Testing existing and new IPN analysis algorithms systematically on patient 

datasets 
3. Measuring intra-observer and inter-observer variability for reproducibility of 

results 
4. Open to integration of new analysis tools for comparison 
5. Reproducible and repeatable usage of analysis tools and platform 
6. Tools should be usable by clinicians without programming knowledge 

We therefore developed a software package called Carotid Intraplaque 
Neovascularization Quantification Software (CINQS). CINQS was developed for 
internal use within the CTMM-ParisK project. It contains a collection of different 
IPN analysis tools for carotid artery CEUS image sequences that can overcome the 
limitations of currently available contrast quantification tools and reported IPN 
quantification approaches. It enables systematic analysis of IPN with different 
analysis tools on large datasets (up to several hundred patients), comparing their 
outputs, and selecting suitable parameters for measuring IPN degree. In this 
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paper, we describe the concept, design, analysis tools and performance of CINQS. 
We also present analysis results of 45 plaques of 23 patients.   

II. CONCEPTS OF CINQS 

CINQS requires side-by-side simultaneously acquired contrast and B-mode image 
sequences. This choice was made because the plaque motion is a serious issue in 
IPN analysis, and this motion can be obtained more accurately from B-mode 
images than from contrast images.  It was designed for the side-by-side carotid 
contrast images (see fig. 2) of the Philips iU22 system but it could be easily 
extended for other ultrasound systems which provide such side-by-side images.  
 
The features of CINQS are listed below: 

1. Specialized IPN analysis tools for carotid CEUS image sequences: Currently 
available contrast quantification tools (e.g. QLAB and VueBox) generally provide 
only TIC analysis for a ROI (without motion compensation suitable for plaques). In 
addition to TIC perfusion analysis, CINQS includes motion compensation tools 
tailored for plaques; time integrated parametric images of plaque perfusion such as 
maximum intensity projection (MIP), and analogously, minimum, mean, and 
standard deviation intensity projection images over time; detection and tracking of 
individual contrast spots within a plaque ROI to detect microvasculature paths; and 
segmentation of individual contrast spots based on statistical models of intensity 
distributions, and their time integration to find neovascularization area.  

2. Saving and retrieving of objects and analyses:  Objects (ROIs of plaque, lumen 
and background, or motion compensation points) and complete analyses (e.g. a 
MIP including ROI, motion compensation points and all analysis settings) are saved 
separately into XML files and can be retrieved separately as well. Objects can be 
reused and assigned to multiple IPN analysis tools.  Retrieving previously defined 
objects for every patient allows systematic comparison of different IPN analysis 
tools over patient datasets. Furthermore, this allows comparing different versions 
of IPN analysis algorithms and optimizing their parameters for the same objects. 
CINQS also allows retrieving complete analyses without displaying the previously 
defined objects. This allows observers to redefine objects with previous analysis 
settings (e.g. frame interval, motion compensation pattern) while being blinded to 
the previous objects, for measuring intra-observer and inter-observer variability. In 
currently available contrast quantification tools, objects such as ROIs generally 
cannot be shared between different analyses: for each analysis, a user has to draw 
a new ROI. That makes it hard to perform exact comparisons of methods. To 
compare intraobserver or interobserver variability of different methods, the same 
set of ROIs defined by observer(s) should be applied to each of the methods. 
CINQS uses an independent database for DICOM files. A local copy of DICOM files 
are obtained before analysis. Objects and analyses are also saved to this database. 

3. User-friendly operation: CINQS hosts an extensive toolbox of freely selectable 
analysis tools in a graphical user interface (GUI), which makes it very versatile and 
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flexible in use and requires no scripting or programming for the user. On the other 
hand, a very structured use of these tools is desired to perform patient studies. To 
provide a structured interface for the clinical users, the different complex analyses 
are offered as a so-called wizard structure: a checklist-like interface that provides 
different required steps in a predefined order, with associated help and 
suggestions for each step. This enforces the clinical users to use the analysis tools 
in a repeatable fashion throughout a study.  

4. Extendable with new analysis tools: CINQS has a modular design and this 
allows integrating new analysis tools without restructuring software. 

In addition to the features listed above, CINQS allows exporting output 
parameters, graphs, images, and clips. Numerical output parameters and graphs 
can be exported as an Excel file with specific time, date and version number. This 
allows comparing parameters of different versions of analysis algorithms in a 
systematic way and importing the results into a statistical software package such 
as SPSS (SPSS Inc., Chicago, IL, USA) for extensive statistical analyses and tests. 
Screenshots of CEUS clips can be saved as JPEG format. Video clips with or without 
overlaid objects can be recorded as AVI format.  

 
Figure 2: Side-by-side contrast (a) and B-mode (b) image of a carotid artery with plaques 

 
Furthermore, CINQS allows creation of an overlay image (contrast on B-mode, 

figure 3) for drawing ROIs, which helps to delineate the inner and outer border of 
plaques more accurately than the duplication of ROI in contrast or B-mode as used 
in commercial tools (e.g. QLAB and VueBox).  

 
Figure 3: An example of a contrast image overlaid on B-mode for plaque ROI drawing 
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III. SOFTWARE DESIGN 

CINQS was mainly built in MevisLab (MeVis Medical Solutions AG and Fraunhofer 
MEVIS, Bremen, Germany), a development environment for medical image 
processing and visualization. The IPN quantification algorithms were implemented 
in MATLAB (The Mathworks Inc., Natick, Massachusetts, US), and run through a 
MeVisLab-MATLAB interface module (MatlabScriptWrapper). The communication 
between MevisLab modules and the graphical user interface (GUI) was controlled 
via Python scripts. The GUI (fig. 8, 9) was designed with the internal MevisLab 
definition language. 
CINQS has a modular design as shown in fig. 4. The main modules are GUI, file 
input/output (I/O), objects and graph management, and analyses. 
   

 
 
Figure 4: The modules and interaction scheme of CINQS. GUI = Graphical User Interface. I/O = 
Input/output. ROI = Region of Interest. GSM = Grayscale Median 

 
A brief description of the CINQS framework components is presented here. The 

File I/O module handles reading and writing of DICOM image files, saving and 
retrieving objects and analysis files as XML files, and exporting numerical and 
graph data as EXCEL files. All IPN analysis modules use motion compensation as a 
prerequisite step. All graphs, drawn objects and their properties are organized by 
the objects & graphs module. This module also handles the conversion of log-
compressed image data into linearly scaled data for graph representation. The GUI 
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module allows general image and result viewing, user interactions, and guides the 
user to follow analysis procedures through wizards as described in the following 
section. 

IV. GRAPHICAL USER INTERFACE 

The graphical user interface consists of two main parts, which are the file I/O 
GUI and the analysis GUI. In the file I/O part, DICOM images, objects lists, and 
analysis lists can easily be browsed and loaded. DICOM files can also be previewed 
before loading. When an object or analysis list is loaded the related DICOM images 
will be automatically loaded. A screenshot of the file I/O GUI is seen in fig 8. The 
analysis GUI is shown in fig. 9. It contains wizard-like analysis tools, and sections 
for image and graph viewing, object handling, export, analysis tree, and output 
parameters. The image viewer (fig. 9E), graph viewer (fig. 9F) and image slider 
are synchronized with each other. Selecting an image frame will show the 
corresponding graph point and vice versa.  In the analysis tree section (fig. 9G), a 
log of all user interactions is kept to remind the user of changes in the analysis, 
e.g. a change in the selected frame interval. To perform an analysis, the user is 
guided by its specific analysis wizard to perform several interactions: defining the 
frame interval, drawing ROIs (e.g. for plaque, lumen, background, or adventitia) 
and assigning meaning to each ROI, placing a marker for tracking of plaque 
(motion compensation) and running the analysis.  

V. ANALYSIS TOOLS 

A. Motion Compensation 
Carotid artery walls show considerable motion due to the arterial pulsation, 

breathing and probe motion. For accurate quantification of IPN, motion 
compensation is a prerequisite step. CINQS contains two motion compensation 
methods for plaques, speckle tracking (SPT) and multidimensional dynamic 
programming (MDP) combined with SPT. Both of them were validated in vitro and 
in vivo [11-12]. In addition to automated motion compensation, CINQS allows 
manual indication or correction of tracking points in each frame. This allows users 
to correct motion in long image sequences if there is any temporary disturbance, 
such as swallowing or out-of-plane motion. 

In SPT, the displacement of plaque is assessed by tracking the positions of small 
regions of speckle pattern through consecutive frames of an ultrasound image 
sequence [11]. First, the user chooses a point on the plaque in a B-Mode image of 
the sequence. A small square region around this point containing the speckle 
pattern is scanned over a defined search field in each subsequent image to find the 
position where they best match. The similarity of the template to the image, at 
each point in the search field, is assessed by calculating their normalized cross 
correlation (NCC).  The point of highest correlation provides the new template 
position for each subsequent image.  



94 | Carotid Intraplaque Neovascularization Quantification Software (CINQS) 
 

In the second motion compensation method, the results of NCC obtained from as 
described in SPT for all positions are used as a 3D matrix input to MDP. The 
optimal plaque displacements in X and Y direction are obtained as a continuous 
path with MDP as described in detail in [12]. 

B. Perfusion Analysis 
In this analysis, a plaque’s perfusion is characterized by analyzing its TIC and 

maximum intensity projection image (MIP). First, we draw three ROIs subsequently 
for the plaque, lumen and background. Next, motion compensation is applied to 
align the plaque ROI over time. After that, the plaque MIP and TIC are derived 
from the contrast images. From the TIC, we calculate the time average of plaque 
intensity (PMI: plaque mean intensity), the ratio of PMI and average lumen 
intensity (PLER: plaque to lumen enhancement ratio), and time average of the 
percentage of plaque filled with contrast based on average background noise 
threshold (MPCP: mean plaque contrast percentage). From the MIP image, time 
integrated IPN surface area (MIPNSA) and IPN to plaque ROI surface area ratio 
(MIPNSR) based on an adaptive threshold are derived to estimate IPN degree [10]. 
The adaptive threshold is calculated by taking into account background noise and 
lumen intensity to adjust for attenuation and gain variations. 

To compare our findings, we reproduced the PE parameter explained in the 
introduction by using the QLAB ROI quantification tool. First, we redrew the plaque 
ROIs as similar as possible to our analysis. Next, a gamma-variate curve was fitted 
to the resulting TIC and the PE was obtained. The fit was considered invalid only if 
the peak occurred at the first or last frame of the interval.  

C. Micro-vascular Structure Analysis 
In this analysis, we examine spatial structure of IPN. First, the plaque ROI is 

drawn or chosen from the list of previously drawn ones. Next, motion 
compensation is applied. After that the micro-vascular structure analysis is 
performed. The image sequence is divided into 10-frame groups with 80% overlap. 
In the first frame of each 10-frame group, microbubbles within the plaque ROI are 
detected by block matching with templates mimicking contrast spots of several 
radii. The detected spots are tracked over time in the 10-frame groups. Next, the 
tracked spots are classified into moving contrast spots or stationary artifacts based 
on their minimal displacement. In the final step, the paths detected several times 
over time are merged. The number of microvessels (MVN) is calculated as another 
estimate of IPN degree [13].  

D. Statistical Segmentation of Contrast Spots 
In this analysis, intensities within the plaque ROI are classified into background, 

contrast spot, and artifact [14]. First, the plaque ROI is manually drawn/selected 
and motion compensation is applied.  Next, components within the plaque ROI are 
found from the intensity histogram through an Expectation-Maximization algorithm 
[15]. The found components are assigned to four initial classes (i.e. background, 
contrast spot, saturation artifact, and an intermediate class). The final classification 
is assigned after neighborhood operations. Then, spatiotemporal information is 
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used to exclude stationary artifacts. In a final step, contrast spots in each frame 
are integrated over time with a logical-OR operation. Statistical segmentation 
based IPN surface area (SSIPNSA) and IPN to plaque surface area ratio (SSIPNSR) 
is calculated as an estimate of IPN degree. Compared with MIP, this method will 
suppress stationary or saturation artifacts and will be less sensitive to artifacts 
nearby or within the plaque ROI (fig. 5). 

 

 
Figure 5: Plaque ROI including artifacts. a) Maximum intensity projection of 130 frames (6.5 seconds) 
with adaptive threshold. b) Time integrated classes of statistical segmentation (blue = background, 
yellow = contrast spot class, cyan = intermediate class, red = artifacts)  

E. Gray-scale-median Analysis 
GSM analysis of B-mode images was adopted from [16].   Plaque echogenicity is 

measured after gray scale normalization. For a selected image in the sequence, 
three ROIs are drawn for plaque, lumen and adventitia. The image gray scale 
values are normalized to the median values of blood and adventitia. After 
normalization, the median gray scale value for the plaque ROI is determined to 
estimate plaque echogenicity.  

VI. VALIDATION OF OUTPUTS AND PERFORMANCE EVALUATION 

Numerical and graphical outputs of CINQS were validated with synthetic image 
sequences with known gray values for each pixel. The synthetic image sequences 
and some motion patterns were generated by using MATLAB. The output results of 
the CINQS were validated against the pre-calculated numerical results for these 
synthetic sequences.   

All analyses were performed on a computer with Intel(R) Core(TM) 2 Duo CPU 
(E8600 @ 3.3GHz) and 8GB memory. The performance of CINQS was evaluated 
based on these computer features and an image sequence of 400 frames (see 
Table 1).  

VII. STATISTICAL ANALYSIS 

Recently, 45 plaques of 23 symptomatic patients were analyzed with CINQS 
[10]. In that study, the derived IPN parameters were compared to the consensus 
visual score of two experienced physicians (at least 2 years of experience in carotid 
CEUS analysis) based on a 3-point scale (0: no IPN, 1: mild/moderate IPN, 2: 
severe IPN).  Spearman rank correlation was used for testing the correlation 
between the visual IPN score and an automated score derived from individual 
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parameters. The Kruskal-Wallis test was used to compare the output of individual 
parameters to the visual scoring groups. Receiver operator characteristic (ROC) 
curve and c-statistic (area under the curve (AUC)) were provided for the two best 
parameters after dividing our data into no/weak-neovascularization (score 0 and 1) 
and robust neovascularization (score 2). The optimal operating point (OPT) was 
obtained by finding the point on the ROC curve with the smallest Euclidian distance 
to the optimum (100% specificity and sensitivity). The Intra-observer (n=45 
plaques) and inter-observer (n=15 plaques) variability were measured using 
intraclass correlation coefficients (ICC) to assess the reproducibility of IPN 
parameters. We only analyzed variability in the image analysis, caused by user 
interactions (e.g. drawing ROIs).  The study protocol was approved by the ethical 
committee at Erasmus Medical Center and all study participants provided informed 
consent. 

VIII. RESULTS 

A. Application 
Several parameters showed a good correlation with the visual score (correlations 

(r): MIPNSA r = 0.719, MIPSNSR r = 0.538, MVN r = 0.484, all p<0.05). Other 
parameters showed non-significant correlations with the visual score (correlations: 
PMI r = 0.227, PLER r = 0.356, MPCP r = 0.151, all p>0.05). The PE parameter 
reported in previous studies [6, 7] also showed non-significant correlation with the 
visual IPN score in our dataset (r = 0.105).  The MIPNSA was able to provide a 
distinction between the different visual IPN scoring groups (p<0.05) (figure 6a). 
The PMI, PLER and MPCP parameters were not able to provide a clear distinction 
between the visual scoring groups [10]. In addition to the parameters and results 
presented in [10], we included here two more parameters: SSIPNSA and SSIPNSR, 
from the statistical segmentation analysis of contrast spots. These two parameters 
showed a good correlation with the visual score (correlations: SSIPNSA r =0.698, 
SSIPNSR r =0.527, both p<0.05). The SSIPNSA was also able to provide a clear 
distinction between the different visual scoring groups (p<0.05) (figure 6a). As 
seen in ROC curve (figure 6b), AUC for MIPNSA and SSIPNSA are 0.93 and 0.92 
respectively. Their performance is almost the same. 
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Figure 6: (a) Association of MIPNSA score and SSIPNSA with Visual IPN scoring groups (n=45) 
(p<0.001). (b) Receiver operating characteristic curve for the best two parameters. Blue asterisk shows 
the OPT for MIPINSA (91% Sensitivity, 80% Specificity). Red asterisk shows the OPT for SSIPNSA (82% 
Sensitivity, 83% Specificity). 
 

TABLE I 
THE PERFORMANCE OF CINQS 

Performance  Computation Time 
 
Loading a DICOM clip a few seconds 
User interactions 1-3 minutes 
SPT 0.66 minute 
MDP combined with SPT 4.33 minute 
Perfusion Analysis 1.04 minute 
Statistical Segmentation ~ 2 minutes 
Micro-vascular Structure Analysis a few minutes to hours 
  
  

 
Figure 7: Difference of MIPNSA with and without motion compensation (MC) compared to MIPNSA with 
MC (units are mm2). 
 

We selected 8 plaques which had saturation artifacts nearby or within the plaque 
ROI to verify if SSIPNSA improved the suppression of artifacts. We analyzed them 
twice, with saturation artifacts included and excluded from the ROI.  SSIPNSA was 
3.9 ± 3.2 mm2 (mean ± standard deviation) for artifacts included and 3.8 ± 3.2 
mm2 for artifacts excluded. MIPNSA was 9 ± 3.3 mm2 for artifacts included and 
3.2 ± 2.9 mm2 for artifacts excluded. 
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Mean difference and standard deviation in calculation of MIPNSA with and 
without motion compensation was 0.34 ± 0.88 (mm2) for 45 plaques (see fig. 7). 
The mean and standard deviation of MIPNSA with motion compensation for the 
dataset was 3.49 ± 3.44 (mm2). In the absence of motion compensation, the 
found IPN surface area was considerably increased or decreased (>50% for some 
cases) due to the lumen or artifact infiltration (see fig. 7).  

The intra-observer and inter-observer variability for each parameter was 
presented in our previous study [10]. Intra-observer variability and inter-observer 
variability for parameters were low. The results showed good agreement in intra-
observer (intra class correlation (ICC) range:  0.84-0.98) and inter-observer (ICC 
range: 0.68-0.96) for all parameters. The parameters which gave the best 
distinction between visual scores (MIPNSA & SSIPNSA) are reproducible with low 
intra- and inter-observer variability (ICC > 0.95). One parameter (MVN) showed 
less reproducibility compared to other parameters (ICC = 0.84 for intra-observer, 
ICC = 0.68 for inter-observer).   

IX. DISCUSSION 

CINQS is designed as a special-purpose platform for IPN quantification tools for 
carotid plaques. CINQS replaces subjective, qualitative and tedious visual 
assessment with reproducible quantitative IPN parameters. It allows selection of 
suitable parameters for measuring the degree of IPN by enabling comparison of 
existing and new IPN parameters with a reference (e.g. visual IPN scoring or 
histology). The presented analysis tools overcome the limitations of the reported 
IPN quantification approaches [6-8] and current contrast quantification tools. 
CINQS could also be used to check changes in neovascularization over time, and to 
check the outcome of novel therapies on neovascularization. 

The parameters are reproducible with low intra-observer and inter-observer 
variability for user-dependent selections. The image acquisition and bolus injection 
are standardized in our study [10]. Small variations in this will cause variability in 
the resulting IPN parameters, but it is beyond the scope of this study to investigate 
this. For very different image acquisition or bolus injections, the parameters of the 
IPN quantification algorithms should be re-optimized. These issues could be 
investigated in further studies. 

The software can be run on Windows-compatible computers, from a simple 
desktop pc up to a sophisticated high-end workstation. CINQS was developed in a 
modular and extensible way and provides a user-friendly tool for analyzing carotid 
IPN in CEUS. Using CINQS is quite easy because of its wizard-like design for 
analysis tools and it requires no specialized knowledge apart from carotid 
ultrasound image knowledge. To the best of our knowledge, this is the only 
dedicated software for carotid IPN analysis so far. 

The modularity and extensibility of CINQS is based on the modular development 
framework in MevisLab. MevisLab allows easy integration of external algorithms 
(e.g. C++ or Matlab code) into a module that can be simply used within the 
MevisLab framework. To use the new modules within CINQS, some lines need to 
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be added to the Python script that controls the communication between modules 
and GUI.  

As stated before, TICs of plaque are not similar to the typical TIC curves seen in 
heart, liver, prostate, or tumor perfusion. Therefore, typical bolus and 
replenishment kinetics parameters for large organs are not applicable to IPN 
quantification. The PE parameter derived from the bolus curve models fitted to 
TICs of plaques gave the lowest correlation with visual IPN scores.  In addition to 
TIC, we used MIP perfusion parameters (MIPNSA, MIPNSR) which estimate 
vascularization of plaque better than those of TIC.   

The motion compensation is an important step in the calculation of MIPNSA of 
45 plaques (fig. 7). Leaving out the motion compensation caused on average 10% 
increase of MIPNSA. This increase of MIPNSA is mainly caused by contrast from 
lumen or saturation artifacts that infiltrate the plaque ROI. As seen in figure 7, 
there are also some cases where MIPNSA is decreased. This is caused by some 
contrast spots that move out of the plaque ROI when no motion compensation is 
applied. Motion compensation will be especially crucial in case of small plaques, 
plaques surrounded with saturation artifacts, and adjacency of contrast from the 
jugular vein to the plaque.  

Vavuranakis et al. [17] reported that enhancements in CEUS do not always 
reflect neovascularization. If there are artifacts within the atherosclerotic plaque 
ROI, SSIPNSA will suppress artifacts and give more reliable results than MIPNSA. 
SSIPNSA (3.9±3.2 mm2 with artifact vs. 3.8±3.2 mm2 without artifact) gave slightly 
higher areas but proved to be almost insensitive to artifacts while MIPNSA was 
sensitive to artifacts (9±3.3 mm2 with artifacts vs. 3.2±2.9 mm2 without artifacts).  

CINQS was structured for systematic analysis of carotid IPN but its structure may 
also be useful for microvasculature ROI analysis of other organs such as liver, 
prostate and myocardium. Especially, CINQS may be useful for other small and 
relatively poorly perfused structures that are subject to motion. Many tools of 
CINQS can easily be adopted for analysis of other organs. This will help extend 
CINQS for other projects.      

The use of consensus visual IPN scoring as the ground truth for quantitative IPN 
parameters is a limitation. Future studies on larger numbers of plaques including 
histological validation and possibly long term patient follow up are necessary to 
confirm the present findings. Furthermore, dynamic contrast enhanced MRI of 
plaques could also be used for comparison to the present findings. However, this 
was beyond the scope of the present study. 

CINQS is limited by the required computation time for running the IPN analysis 
algorithms. IPN analysis algorithms were written in MATLAB and the code was not 
optimized for speed. Computation time would decrease if IPN analysis algorithms 
were written in C or C++. Still, current computation time is satisfactory for clinical 
applications in datasets of a few hundred patients. For very large patient 
populations (thousands of patients), speed optimization and integration of CINQS 
to PACS (Picture Archiving and Communication System) would be desired.  
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X. CONCLUSION 

We have developed and presented a software package, CINQS, for 
systematic analysis of IPN in CEUS images of carotid plaques. It is well structured, 
user-friendly and requires minimal user intervention. It enables systematic testing 
and comparing different IPN analysis tools, and selecting the best parameters for 
measuring the degree of IPN. This represents an important step towards prediction 
of plaque vulnerability. As it has a modular design, it is easily extendable with new 
IPN analyses. It overcomes the limitations of current available contrast 
quantification tools for IPN quantification. MIPNSA and SSIPNSA showed excellent 
agreement with visual IPN scores for dichotomized data (no/weak IPN vs. robust 
IPN). 
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PE: Plaque Enhancement 
PLER: Plaque to Lumen Enhancement Ratio 
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ROI: Region Of Interest 
TIC: Time Intensity Curve 
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Figure 8: CINQS GUI - file I/O part. A: User info. B: DICOM load panel. C: Object list load panel.  D: 

Analysis list load panel. E: Preview panel. 

 
Figure 9: CINQS GUI - analysis part. A: analysis tools panel structured as a wizard. B: Object list panel. 
C: Saving object or analysis.  D: Export results. E: Viewer panel. F: Graph panel. G: Analysis tree panel. 

H: Parameter output panel. I: Graph settings. 
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Chapter 7 
 
Lumen Segmentation and Motion Estimation in B-mode and Contrast 
Enhanced Ultrasound Images of the Carotid Artery in Patients with 

Atherosclerotic Plaque 
 
 

 In standard B-mode ultrasound (BMUS), segmentation of the lumen of 
atherosclerotic carotid arteries and studying lumen geometry over time are difficult 
owing to irregular lumen shapes, noise, artifacts, and echolucent plaques. Contrast 
enhanced ultrasound (CEUS) improves lumen visualization, but lumen 
segmentation remains challenging owing to varying intensities, CEUS-specific 
artifacts and lack of tissue visualization. To overcome these challenges, we propose 
a novel method using simultaneously acquired BMUS&CEUS image sequences. 
Initially, the method estimates nonrigid motion (NME) from the image sequences, 
using intensity-based image registration. The motion-compensated image 
sequence is then averaged to obtain a single ‘epitome’ image with improved signal-
to-noise ratio. The lumen is segmented from the epitome image through an 
intensity joint-histogram classification and a graph-based segmentation. NME was 
validated by comparing displacements with manual annotations in eleven carotids. 
The average root-mean-square-error (RMSE) was 112±73µm. Segmentation 
results were validated against manual delineations in the epitome images of two 
different datasets containing eleven (RMSE 191±43µm) and ten (RMSE 
351±176µm) carotids, respectively. From the deformation fields, we derived 
arterial distensibility with values comparable to the literature. The average errors in 
all experiments were in the inter-observer variability range. To the best of our 
knowledge, this is the first study exploiting combined BMUS&CEUS images for 
atherosclerotic carotid lumen segmentation. 
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1. Introduction 
 Stroke is a major healthcare problem and one of the main causes of death and 
long-term disability worldwide [1]. Several studies have demonstrated that patients 
with carotid atherosclerotic plaques carry an increased risk of cardiovascular 
events, such as stroke, transient ischaemic attack, myocardial infarction and even 
death [1,2]. Ultrasound has been widely used as a standard tool for inexpensive 
and non-invasive diagnosis of carotid atherosclerosis [3]. To assess atherosclerosis 
(formation of plaques in arterial walls causing narrowing of the lumen), different 
ultrasound techniques have been used such as standard B-mode ultrasound 
(BMUS), color Doppler and contrast enhanced ultrasound (CEUS) [4]. For the 
accurate assessment of the degree of atherosclerosis, delineation of the lumen-
intima contour of the carotid artery is an essential step. 
 So far, carotid lumen segmentation has mostly been done based on standard-
BMUS images, as reported in several studies [5-8]. However, carotid lumen 
segmentation in standard-BMUS images of subjects with atherosclerotic plaques is 
difficult and can be inaccurate due to irregular lumen shapes, noise in the lumen, 
artifacts and echolucent plaques, as seen in Fig. 1a. Color Doppler (Fig. 1b) 
provides information on blood flow in the lumen, which enables the clinician to 
detect flow reduction, flow abnormalities and occlusion in arteries. While there is 
no doubt of its usefulness, it is less suitable for vessel lumen segmentation: the 
border of the color-coded velocity images strongly depends on user-controlled 
settings of Doppler gain, velocity range and setting of the wall filter, as well as the 
local direction of flow. Therefore, color may appear far outside the vessel border or 
may be missing inside the vessel. Especially in regions of disturbed flow (plaques), 
the color border may be misleading. CEUS (Fig. 1c) is a more useful modality for 
visualizing the lumen. CEUS suppresses tissue information and provides the luminal 
shape by detecting ultrasound contrast agent: micrometer-sized gas bubbles which 
flow within the blood stream. CEUS allows a better delineation of carotid lumen 
than standard-BMUS [4, 9,10,11]. Compared to color Doppler, CEUS shows the 
lumen by visualizing the presence of contrast-enhanced blood regardless of flow 
velocity and direction. 

There have been several approaches for detection of the carotid artery contours 
in standard BMUS, including deformable contours (snakes), Hough transform, 
dynamic programming, and classification approaches. The principles, performance, 
advantages and limitations for these approaches have been summarized in recent 
surveys [12-14]. Several studies have reported that their lumen segmentation 
methods have limitations in presence of atherosclerotic plaque [15-17]. 

Carotid artery lumen segmentation in a time series allows one to characterize 
the lumen diameter across the cardiac cycle, and hence to assess arterial wall 
stiffness. Several studies have introduced measures related to the stiffness of the 
arterial wall as a biomarker for cardiovascular disease [18-21]. It has been 
hypothesized that arterial stiffness parameters indicate early vascular changes that 
predict the development of major vascular disease.  Indices of arterial stiffness 
that have been proposed include strain [18, 19, 21], stress [19, 21], elastic 
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modulus or Young’s modulus [18, 19, 21], and distensibility coefficient [19-21]. 
Barth et al. [18] and Van Popele et al. [20]  reported that arterial stiffness is 
strongly associated with atherosclerosis. In another study, men with coronary 
artery disease were shown to have stiffer arteries than healthy men [22]. Arterial 
stiffness has been positively associated with risk factors for vascular disease: age, 
blood pressure, blood cholesterol, and diabetes [23, 24]. Van Popele measured 
carotid wall motion by means of a vessel wall movement detector system [25]. The 
displacement of the arterial wall was obtained by tracking the wall position in a 
selected M-mode line by using the raw ultrasound (RF) signal. The anterior and 
posterior wall positions were marked on the first time instance of the selected M-
mode RF line. Then, the change in phase was calculated between consecutive RF 
signals to measure the displacement. The algorithm is limited as it utilizes only one 
M-mode line for measuring vessel wall motion and it requires manual user 
interactions. An automated method for distensibility measurement in BMUS was 
presented by Teynor et al. [26]. Their method requires interactive manual 
corrections for difficult cases with shadow (echo dropouts) or a high level of noise 
in the BMUS images.  

In this study, we present a novel carotid lumen segmentation and motion 
estimation approach that is suitable for atherosclerotic arteries, less prone to 
artifacts and more automated than approaches that have appeared in the 
literature. The method is fully automatic, provided that the image contains just a 
single branch of the carotid artery. Our method also quantifies carotid lumen 
geometry over time in subjects with atherosclerotic plaque from simultaneously 
acquired BMUS and CEUS images. Integrated analysis of BMUS and CEUS provides 
essential information on the carotid artery lumen contour in patients with 
atherosclerotic plaques (see Fig. 1). Such information cannot be derived from 
BMUS or CEUS separately.  The combined analysis of BMUS and CEUS, however, 
presents two additional challenges: CEUS-specific imaging artifacts and lower 
signal-to-noise ratio (SNR) in BMUS: as low signal power is used to avoid the 
disruption of ultrasound contrast agents in CEUS, the BMUS images obtained in 
simultaneous BMUS and CEUS acquisition have lower SNR compared to a standard 
BMUS image. In order to improve the SNR and suppress noise, we compensate 
motion in the BMUS and CEUS image sequence and average image intensities 
pixelwise over the complete sequence. This leads to a single integrated BMUS and 
CEUS image with improved SNR that we refer to as the ‘epitome’ image, since it is 
the best possible presentation of the patient’s anatomy. Motion compensation is a 
prerequisite step for obtaining epitome images, as carotid images contain 
considerable motion, such as probe movement, patient movement, breathing and 
pulsation. Previous studies on motion estimation in carotid ultrasound mostly 
focused on rigid registration of multiple local regions based on block matching [27-
30]. We propose to use an accurate nonrigid motion estimation (NME) technique 
for sequences of complete BMUS and CEUS images. 

The constructed epitome image is used as input for an automated lumen 
segmentation approach. A particular challenge here is the presence of saturation 
and pseudo-enhancement artifacts [31] in the CEUS image. These artifacts should 
be suppressed as they could mislead the lumen segmentation. We exploit the joint 
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information of the integrated BMUS and CEUS image to classify artifacts, lumen, 
and tissue. Following this classification, we use a robust and efficient graph-based 
technique for carotid lumen segmentation. Finally, we transform the lumen 
contours extracted from the epitome image back to each time frame by using the 
deformation pattern estimated with NME in order to obtain the assessment of 
carotid artery distensibility. 

The accuracy of NME is evaluated by comparing with manually tracked 
landmarks, and with local rigid registration based on speckle tracking (LRST) [30]. 
Moreover, we investigate the influence of several important design parameters on 
the accuracy of the NME. The automated lumen segmentation is evaluated by 
comparing with manual annotations of the lumen. We also evaluate the accuracy 
of automatic distensibility measurement by comparing with manual annotations of 
the carotid wall across time. 

Summarizing the main contribution of our study is twofold. First, we provide 
nonrigid motion compensation for BMUS and CEUS image sequences. Second, 
using the combined BMUS and CEUS motion-compensated data, we automatically 
segment the carotid artery lumen, even in the presence of typical artifacts present 
in both BMUS and CEUS. To the best of our knowledge this is the first study using 
combined BMUS and CEUS to improve the segmentation of the lumen of the 
carotid artery in patients with atherosclerotic plaques. 

 
Figure 1: An example of a carotid artery image acquired with different ultrasound techniques. Standard 
BMUS (a), Color Doppler (arrows show echolucent plaques, blue color shows direction change in the 
flow) (b), Side-by-side CEUS and B-mode images (c-d). CEUS artifacts are indicated (c). Shadow and 
clutter in BMUS are indicated (d). 
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2. Methods 
 This section is divided in three subsections, describing NME, lumen 
segmentation and distensibility calculation, respectively. The method steps and 
their relation are shown in the flowchart in Fig. 2. 

 

Figure 2: Flowchart of the steps of the method. Inputs (green), operations (red) and outputs (blue). 
𝑻(𝒔, 𝑡):  Transformation obtained from BMUS with NME. 𝐼𝐵𝐵𝐵𝐵∗(𝒔, 𝑡), 𝐼𝐶𝐶𝐶𝐶∗(𝒔, 𝑡): Motion compensated 
BMUS and CEUS respectively. 𝐼𝐵̅𝐵𝐵𝐵(𝒔),  𝐼𝐶̅𝐶𝐶𝐶(𝒔): Epitome images. 

 
2.1 Nonrigid Motion Estimation 
 Owing to the acquisition procedure, the CEUS and BMUS images cover the 
same field of view and are intrinsically spatially aligned. Figs. 1c and 1d show an 
example of a typical pair of CEUS and BMUS images. The simultaneous BMUS & 
CEUS imaging leads to two 2D+time (2D+t) image series, 𝐼𝐵𝐵𝐵𝐵(𝒔, 𝑡) and 
𝐼𝐶𝐶𝐶𝐶(𝒔, 𝑡), where 𝒔 is a spatial coordinate (𝑥,𝑦) and 𝑡 is the time frame index with 
𝑡 = 1 … 𝜏 (𝜏 = number of time frames). 

For the nonrigid motion estimation (NME), we adopted the groupwise 
registration method of Metz et al [32] and optimized it for our purpose. The 
method estimates the nonrigid deformation of the carotid artery over time from the 
BMUS image sequence, and subsequently compensates this nonrigid motion in 
both the BMUS and CEUS image sequences. The method is based on the 
minimization of the pixel intensity variance over time [32]. The CEUS image 
sequence violates the constant intensity assumption of the NME method: it exhibits 
high intensity variations among frames due to slow flow-related contrast 
concentration changes. Therefore, we use the BMUS image for motion estimation, 
since it presents only minor intensity variations of anatomical structures over time. 
We denote the motion-compensated image sequences as: 

 
 𝐼𝐵𝐵𝐵𝐵∗(𝒔, 𝑡) = 𝐼𝐵𝐵𝐵𝐵(𝑻(𝒔, 𝑡), 𝑡)  
 
 𝐼𝐶𝐶𝐶𝐶∗(𝒔, 𝑡) = 𝐼𝐶𝐶𝐶𝐶(𝑻(𝒔, 𝑡), 𝑡) 
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where 𝑻(𝒔, 𝑡) is the transformation field obtained in NME. After motion 
compensation, the resulting sequences can be averaged over time: 

 𝐼𝐵̅𝐵𝐵𝐵(𝒔) =  
1
𝜏
�𝐼𝐵𝐵𝐵𝐵∗(𝒔, 𝑡)
𝜏

𝑡=1

  

 
  𝐼𝐶̅𝐶𝐶𝐶(𝒔) =  1

𝜏
∑ 𝐼𝐶𝐶𝐶𝐶∗(𝒔, 𝑡)𝜏
𝑡=1  

 
The average images 𝐼𝐵̅𝐵𝐵𝐵(𝒔) and  𝐼𝐶̅𝐶𝐶𝐶(𝒔) have improved-SNR and serve as 

epitome images. In this way, noise is attenuated and the lumen and plaque 
structures are more clearly depicted, as can be seen in Fig. 3. All further 
processing of the lumen segmentation is performed on these epitome images. The 
relations between the transformations and the images are shown in Fig. 2. 

 

Figure 3: Average BMUS and CEUS images images (150 frame sequence) with (a) and without (b) 
motion compensation. Average images without motion compensation have a blurry appearance, while 
the ‘epitome’ images after motion compensation are sharper. 
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The groupwise registration method produces a nonrigid motion estimate on the 
whole image domain, differently from existing techniques for motion estimation in 
ultrasound [27-29]. The deformations are modeled by a nonrigid 2D+t B-spline 
transformation, ensuring smoothness (continuous differentiability) both in the 
spatial and temporal dimensions. An adaptive stochastic gradient descent optimizer 
[33] is employed to calculate the transformation parameters that minimize a 
dissimilarity measure based on the variance of the intensities at corresponding 
spatial locations. In order to improve registration robustness, a multi-resolution 
strategy is applied: for each resolution, the image is smoothed with a Gaussian 
filter with spread 𝜎. Important parameters of the method are: 1) the spacing 𝛽 of 
the B-spline control points, both spatially (in mm) and temporally (in time frames), 
2) the number of resolutions 𝜌, and 3) the degree of image smoothing 𝜎. In the 
experiments, a range of settings for these parameters will be evaluated. 

 
2.2 Lumen Segmentation 

We perform lumen segmentation of the carotid artery on the epitome images  
𝐼𝐵̅𝐵𝐵𝐵(𝒔)  and  𝐼𝐶̅𝐶𝐶𝐶(𝒔). Our segmentation method consists of five steps: centerline 
estimation, detection of shadowing, detection of artifacts, graph based 
segmentation and refinement of lumen contours (see Fig. 2). 

 
2.2.1 Centerline Estimation 

We detect the centerline of the carotid artery which appears approximately 
horizontal (along the x-direction) in the image. As a preprocessing, we apply a 2D 
Gaussian smoothing filter 𝐺 to  𝐼𝐶̅𝐶𝐶𝐶(𝒔) using a vertical spread 𝜎𝑦 that is relatively 
large with respect to the expected vessel size. This filter has the highest response 
around the centerline of the lumen. The smoothing in horizontal direction, 
controlled by 𝜎𝑥, suppresses the influence of small artifacts near the lumen in the 
CEUS image. After preprocessing, we detect the centerline of the carotid artery in 
the CEUS image by finding a minimum cost path, using dynamic programming in 
the x-direction [30, 34, 39]. We defined the maximum step size in the cost path as 
one pixel. The dynamic programming procedure uses negated gray scale values of 
the blurred CEUS epitome as a cost image 𝑐(𝒔): 

 
 𝑐(𝒔) = −𝐺 ∗ 𝐼𝐶̅𝐶𝐶𝐶(𝒔) + 𝐾, where 𝐾 = max𝒔�𝐺 ∗ 𝐼𝐶̅𝐶𝐶𝐶(𝒔)� .  

 
The added constant K ensures that c(s) > 0 everywhere. 

 
2.2.2 Detection of Shadow ing 

After centerline detection, we check for presence of shadowing, which is caused 
by strong reflection or attenuation, especially from calcifications. Centerline 
detection and subsequent lumen segmentation will be affected by shadowed 
regions due to the low signal in those regions. Therefore, shadowed regions should 
be identified to avoid their influence in obtaining optimal centerline and lumen 
contours. To detect the shadowed region we compute the mean intensity in a 
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vertical kernel of height 𝜅1 around each detected point on the centerline in the 
CEUS epitome image and fit a linear curve to these intensities. The size of this 
kernel must be smaller than the expected typical size of the lumen. The points that 
show an intensity drop of at least 50% in the intensity profile compared to the 
linear fit are considered to indicate shadow regions. When a shadow region is 
detected at a certain x-coordinate, all points in the cost image 𝑐(𝒔) with that x-
coordinate are assigned the same cost value to ensure that this region does no 
longer affect the centerline extraction. Based on this modified cost image, the 
centerline is re-estimated. 

 
2.2.3 Detection of Artifacts 

In order to obtain an accurate lumen segmentation, the pseudo-enhancement 
artifacts and saturation artifacts (see Fig. 1c) in the CEUS image need to be 
detected, as they may mislead the segmentation procedure. The pseudo-
enhancement artifacts in the lower part of the CEUS images are caused by 
nonlinear distortion of the ultrasound signal when it crosses regions with high 
concentration of contrast, such as the carotid lumen. As these distorted ultrasound 
signals will be backscattered from the tissue below the lumen, the tissue 
cancellation will not be perfect in the far wall, and false contrast will appear in the 
plaque or tissue region right below the lumen. These artifacts appear bright both in 
the CEUS and BMUS image, while true contrast corresponds to dark BMUS regions. 

The upper part of the lumen in the CEUS image is not affected by the pseudo-
enhancement artifacts but it may be contaminated with artifacts due to saturation; 
signals near the maximum intensity level are clipped. These artefacts are easier to 
detect as they have distinctive, very high contrast intensity levels (and are also 
bright in BMUS).  To detect these different artifacts in CEUS, we construct a joint 
histogram of the intensities in   𝐼𝐵̅𝐵𝐵𝐵(𝒔)  and  𝐼𝐶̅𝐶𝐶𝐶(𝒔) and define a joint-intensity 
classifier. We model the joint histogram by a mixture of 2D Gaussians, 
corresponding to four classes: 𝜓 𝜖 {𝐵,𝑇, 𝐿,𝐴} where 𝐵 = Background, 𝑇 = Tissue, 𝐿 
= Lumen, 𝐴 = Artifacts. As seen in Figs. 3 and 4a (schematically depicted joint 
histogram), lumen is bright in CEUS but dark in BMUS. Tissue is bright in BMUS but 
dark in CEUS. Background (echolucent tissue) is dark in both BMUS and CEUS. 
Artifacts are bright in CEUS and their corresponding regions in BMUS are bright as 
well. Each class 𝜓 is modeled by a 2D Gaussian in the joint histogram, with 
parameters 𝜃𝜓 = {𝜇𝜓𝑐 ,𝜎𝜓𝑐 , 𝜇𝜓𝑏 ,𝜎𝜓𝑏} where 𝜇𝜓𝑐  and 𝜎𝜓𝑐  are intensity mean and standard 
deviation in CEUS, and 𝜇𝜓𝑏  and 𝜎𝜓𝑏 are intensity mean and standard deviation in 
BMUS. Let 𝛩 denote the collection of all parameters 𝜃𝜓. The initialization of 
parameters 𝜃𝐵 ,𝜃𝑇 and 𝜃𝐴 is based on the typical appearance of intensities in 
𝐼𝐵̅𝐵𝐵𝐵(𝒔)  and  𝐼𝐶̅𝐶𝐶𝐶(𝒔) as discussed above. For the L class, we select the mean and 
standard deviation of the intensities in a narrow band (size 𝜅2) around the 
centerline to initialize 𝜃𝐿. The Gaussian mixture weights are initialized to a constant 
value (1/4). These initial parameters are fed into an expectation-maximization 
algorithm [35, 36] to estimate 𝛩 and find the probability 𝑝(𝑰�(𝒔) | 𝜓(𝒔),𝛩 ) of each 
observed pair of intensities 𝑰�(𝒔) = [𝐼𝐵̅𝐵𝐵𝐵(𝒔), 𝐼𝐶̅𝐶𝐶𝐶(𝒔)] given the pixel belongs to 
the background, tissue, lumen or artifact class. Since the parts of the lumen below 
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and above the centerline contain different type of artifacts, classification is 
performed separately in the upper and lower arterial wall using two different 
initializations for the artifact class. Saturation artifacts have high mean intensity 
and low standard deviation, whereas pseudo-enhancement artifacts have intensity 
similar to contrast intensity in the lumen and high standard deviation. The 
probability map for the image is shown in Fig. 4b with combined results of two 
initializations of artifact class for upper and lower parts of the vessel. 

 

 

Figure 4: a) Schematic depiction of joint histogram of BMUS and CEUS, b) Probability map obtained 
through the expectation-maximization algorithm. RGB image channels represent: 𝑝(𝑰�(𝒔) | 𝜓(𝒔) =
𝐵,𝛩 )  = black, 𝑝(𝑰�(𝒔) | 𝜓(𝒔) = 𝑇,𝛩 )  = green, 𝑝(𝑰�(𝒔)| 𝜓(𝒔) = 𝐿,𝛩 )  = blue, 𝑝(𝑰�(𝒔) | 𝜓(𝒔) = 𝐴,𝛩) = red. 
 
2.2.4 Graph-based Segmentation 

We detect the upper and lower lumen contours with a graph-based minimum 
cost path approach using dynamic programming (DP). The cost image is based on 
the epitome 𝐼𝐶̅𝐶𝐶𝐶(𝒔) and the results from the centerline estimator, the shadow 
detector, and the artefact segmentation. No restrictions are applied for the start- 
and endpoint of the minimum cost path. 

First, we obtain the y-directional gradient of 𝐼𝐶̅𝐶𝐶𝐶(𝒔) by applying a Gaussian 
derivative filter (standard deviation 0.3 mm): ∇𝑦𝐼𝐶̅𝐶𝐶𝐶(𝒔) = ∇𝑦𝐺 ∗ 𝐼𝐶̅𝐶𝐶𝐶(𝒔). The 
basic cost image ∇𝑦𝐼� 𝐶𝐶𝐶𝐶(𝒔) is defined as the negative gradient image, 
∇𝑦𝐼� 𝐶𝐶𝐶𝐶(𝒔) = −∇𝑦𝐼𝐶̅𝐶𝐶𝐶(𝒔), for the upper contour and ∇𝑦𝐼� 𝐶𝐶𝑈𝑈(𝒔) = ∇𝑦𝐼𝐶̅𝐶𝐶𝐶(𝒔) for 
the lower contour. Second, all points in image columns corresponding to shadow 
regions are assigned the same (arbitrary) cost value to neutralize those regions. 
Third, saturation and pseudo-enhancement artifacts in the CEUS are suppressed by 
multiplying ∇𝑦𝐼� 𝐶𝐶𝐶𝐶(𝒔)  with the inverse of the posterior probability of the artifact 
class, 𝑝�𝐴(𝒔): 

 
 𝑝�𝐴(𝒔) = 1 − 𝑝(𝑰�(𝒔)|𝜓(𝒔) = 𝐴,𝛩)  

 
Fourth, we apply a curve smoothness penalty, linearly proportional to the step 

in y-direction between adjacent x-positions. Fifth, we multiply the cost with a 
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factor that is linearly proportional to the distance from the centerline to prevent 
jumps to far layers. The minimum cost path calculation is performed in ‘modified’ 
pixel grid coordinates (𝑢, 𝑣), where 𝑢 is the original 𝑥-index and 𝑣 is the 𝑦-index 
relative to the centerline. The cumulative cost 𝐶 as a function of (𝑢, 𝑣) in the 
dynamic programming framework for detecting the upper and lower lumen 
contours thus becomes as follows: 

𝐶(𝑢, 𝑣) = min
𝑟 𝜖 {−1,0,1}

𝐶(𝑢 − 1, 𝑣 + 𝑟) + ∇𝑦𝐼 ̅�
𝐶𝐶𝐶𝐶(𝑢, 𝑣) ∙ 𝑝�𝐴(𝑢, 𝑣) ∙ �1 +

|𝑟|
𝛾1
� ∙ �1 +

|𝑣|
𝛾2
� 

 
                                        (Equation 1) 

 
The maximum step size of 1 pixel (max |𝑟| = 1) limits the search space. We 

introduced two weighting factors 𝛾1  and 𝛾2 to control the amount of penalization 
for the step size |𝑟| and the distance from the centerline |𝑣|, respectively. 
 

 
Figure 5: Example carotid artery lumen segmentation. a) Visualization of the resampling process, 
showing the orthogonal vectors to the contours as red and blue lines for the lower and upper contour 
respectively. b) Resulting contours estimated with subpixel-precision (one fourth of pixel size, ~ 25μm). 
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2.2.5 Refinement of Lumen Contours 
In the final step of the segmentation algorithm, we resample the image with 

subpixel precision in a narrow band along the upper and lower contours to follow 
curves more precisely and obtain smoother contours. In the refinement process, 
we first follow the local orientation of the contours by fitting a least squares 
regression line to a neighborhood of each point on the contours and find the 
vectors orthogonal to the fitted regression line for each contour point. Next, we 
resample a band of size 𝜅4 along the orthogonal vectors around each contour point 
with subpixel-precision (one fourth of pixel size, ~25μm), using cubic spline 
interpolation. In the resampling process, we chose the length of orthogonal vectors 
 𝜅4 as 1mm inward to the lumen for both of the contours. For the outward 
direction, for the upper contour we chose 0.5mm and for the lower contour 
0.1mm. The reason for using a shorter  𝜅4 in the lower contour outward to lumen 
is to avoid the influence of imperfectly suppressed pseudo-enhancement artifacts.  
Based on the resampled image, the lumen contour is re-estimated using Eq. (1), 
omitting in this case the penalty term for the distance to the centerline. Lastly, the 
refined contours are transformed back to the original coordinate space. An 
example of the segmentation is shown in Fig. 5. 
 
2.3 Carotid Artery Distensibility 

In order to study the carotid geometry over time, the upper and lower lumen 
contour points from the epitome images are transformed to each time frame using 
𝑻(𝒔, 𝑡) obtained previously with NME. This allows to compute the distensibility 
coefficient (DC) of the whole section of the carotid artery wall for each cardiac 
cycle. To measure the radial distensibility, the motion in a direction orthogonal to 
the lumen centerline should be estimated. For the measurements, a segment of 
1 cm length of artery free from plaque along the x-dimension is manually selected 
(see Fig. 6). Plaque regions should be avoided because there exists no proper 
definition of distensibility in plaque regions. We propose two methods to calculate 
the distensibility in this region. In the first method (DC-Line), the distensibility is 
calculated for a single line orthogonal to the lumen, located in the center of the 
1 cm segment. This method resembles the ground truth manual annotation 
approach described in Section 4.3. In the second method (DC-ROI), all lines inside 
the 1 cm region of interest are selected, to potentially obtain a more robust 
measurement by averaging the DC over these lines. The local orientation of the 
centerline is estimated by fitting a least square regression line to a  𝜅3 
neighborhood of each point on the artery centerline. Subsequently, intersection 
points of each orthogonal vector with the upper and lower lumen contour over 
time are detected. The R-peaks of ECG signal are extracted from the ECG 
annotation in the BMUS images. Pulse pressure difference ∆𝑃 is calculated by 
subtracting diastolic pulse pressure from systolic pulse pressure. The systolic 
diameter 𝑆𝑆, diastolic diameter 𝐷𝐷, and distensibility coefficient                     
𝐷𝐷 = �2(𝑆𝑆−𝐷𝐷)

𝐷𝐷
� /∆𝑃 [20] are calculated for each cardiac cycle (and averaged over 

all lines within the 1cm segment in case of the DC-ROI approach). The resulting 
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DC values are averaged over multiple cardiac cycles to obtain a single robust value 
for the distensibility coefficient of the artery. 

 

 
Figure 6: Region of interest (1cm width) for distensibility assessment highlighted in green. The 
perpendicular lines to the centerline are drawn in blue. 
 
3 Data 
3.1 Data Acquisition 

Simultaneous, side-by-side CEUS and BMUS images were acquired at ~20Hz 
frame rate using a Philips iU22 system (Philips Medical Systems, Bothell, USA) with 
an L9-3 linear probe. Simultaneously acquired CEUS and BMUS are saved and 
retrieved as a DICOM file for offline post processing. Systolic and diastolic blood 
pressures were measured for each patient before the ultrasound examination. The 
standard carotid ultrasound examination and the BMUS&CEUS examination of the 
carotid arteries were performed. A standardized image acquisition protocol was 
followed. The protocol was based on the American Society of Echocardiography 
consensus statement [37]. Pulse pressure of each patient was recorded before 
examinations. CEUS was performed using intravenous administration of 0.5mL 
bolus of SonoVue ultrasound contrast agent (Bracco S.p.A., Milan, Italy). For the 
CEUS examination, power modulation imaging and a mechanical index of 0.06-0.08 
were used. For each 0.5mL bolus of SonoVue injection, a 20 seconds image 
sequence was recorded. 
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3.2 Patient Population and Study Protocol  
All subjects were scanned in the Erasmus MC, University Medical Center 

Rotterdam in the scope of the PARISk project. The study protocol was approved by 
the ethical committee at Erasmus MC, and all study participants provided informed 
consent. The subjects were selected randomly, as a subset from the database of 
the PARISk project, and were grouped in datasets I and II. The datasets present 
subjects with different classifications of degree of stenosis [38]. Dataset I consists 
of 11 carotid arteries with mild to moderate stenosis from 9 patients. The images 
of this dataset have an average pixel spacing of 95 ± 24 𝜇𝜇. This dataset was used 
in a previous study [30] and this allowed us to compare our NME results to the 
LRST motion estimation technique presented in that work.  A subset of 9 carotid 
arteries in dataset I was used in a second experiment of NME, and for the 
evaluation of segmentation and distensibility. We refer to this subset as dataset I’. 
Two carotid arteries were excluded from dataset I because they were zoomed 
images and the far walls of the arteries were missing in the field of view. Dataset 
II consists of 10 carotid arteries with moderate to severe stenosis from 8 patients 
and the pixel spacing of the images in this dataset is 102 ± 11 𝜇𝜇. Dataset II was 
used to investigate the generalizability of the segmentation. This dataset was not 
used in any way during development and optimization of the method. 

 
4 Experiments and Validation 

 
4.1 Motion Estimation 
4.1.1 Tracking of a Point in the Plaque 

First, we evaluated the NME method on the 11 carotid artery images in dataset 
I, for points in the plaque region. Validation of the motion estimation accuracy was 
performed by comparing automated to manual tracking. In each image sequence, 
𝜏 = 150 time frames per carotid were tracked by 𝐽 = 3  observers (GK, SO, ZA). A 
point on the plaque 𝒑𝑗(𝑡) was selected by an observer 𝑗 who manually tracked the 
motion in each time frame. The displacements tracked by each observer on each 
frame are denoted by: 𝒅𝑡(𝑡) = 𝒑𝑡(𝑡) − 𝒑𝑡(0). We established as the ground truth 
𝒅∗(𝑡) the average of the displacements for all observers on each time frame: 
𝒅∗(𝑡) = 1

𝐽
∑ 𝒅𝑗(𝑡)𝐽
𝑗=1 . In order to automatically obtain the displacement of 𝒑𝑗(0) 

across the subsequent time frames, we apply a composition of the forward and 
inverse transformation (as explained in [32]): 𝑻�(𝒔, 𝑡) = 𝑻(𝑻−1(𝒔, 0), 𝑡). We denote 
the resulting displacements obtained with this transformation as 𝒒𝑗(𝑡), i.e.: 
𝒒𝑗(𝑡) = 𝑻�(𝒑𝑗(0), 𝑡) − 𝒑𝑗(0). This is done to directly compare the displacement 
pattern between trackings, irrespective of the absolute start position 𝒑𝑗(0), which 
was slightly different across observers. All automated trackings 𝒒𝑗(𝑡) were 
compared against the ground truth (𝒅∗(𝑡)), and we computed the longitudinal 
error 𝑒𝑥

𝑗(𝑡), radial error 𝑒𝑦
𝑗(𝑡), and Euclidean error  𝑒𝐸𝐸𝐸𝐸𝐸𝐸

𝑗 (𝑡) for each time frame:  
 𝑒𝑥
𝑗(𝑡) =   𝑞𝑥

𝑗(𝑡) − 𝑑𝑥∗(𝑡),  𝑒𝑦
𝑗(𝑡) =   𝑞𝑦

𝑗(𝑡) − 𝑑𝑦∗ (𝑡),  
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  𝑒𝐸𝐸𝐸𝐸𝐸𝐸
𝑗 (𝑡) =  �𝑒𝑥

𝑗(𝑡)2 + 𝑒𝑦
𝑗(𝑡)2  

We calculated the root mean square error (RMSE) over time for each carotid 
artery and for each observer 𝑗. The errors were averaged over 𝑗 to obtain a single 
measure per image sequence: 

𝜀𝑥 = 1
𝐽
∑ �1

𝜏
∑ 𝑒𝑥

𝑗(𝑡)2𝜏
1

𝐽
1 , 𝜀𝑦 = 1

𝐽
∑ �1

𝜏
∑ 𝑒𝑦

𝑗(𝑡)2𝜏
1

𝐽
1 , 𝜀𝐸𝐸𝐸𝐸𝐸𝐸 = 1

𝐽
∑ �1

𝜏
∑ 𝑒𝐸𝐸𝐸𝐸𝐸𝐸

𝑗 (𝑡)2𝜏
1

𝐽
1  

To quantify the interobserver variability, we also computed RMSE for each 
observer with respect to the ground truth. 

 The NME method was evaluated with different settings for the B-spline 
control point spacing 𝛽, the number of resolutions 𝜌 (employed in the multi-scale 
approach used in NME), and the degree of image smoothing 𝜎. For 𝛽 we 
investigated a range of 1.25mm to 20mm for the spatial dimension of the grid 
spacing, and a range of 3 to 12 frames for the temporal dimension. For the 
number of resolutions, we tested 𝜌 = 3 and 𝜌 = 5. For the degree of smoothing, 
we evaluated 𝜎 =  0.5, 𝜎 =  1, and 𝜎 =  2 voxels. In total, 42 different 
configurations were tested and the optimal configuration was selected. The best 
configuration was compared with results obtained by each observer and with the 
LRST method proposed in [32], which is a conventional speckle tracking technique 
for obtaining a local motion estimate in ultrasound images. A statistical analysis 
among groups was performed with repeated Anova test using the Octave software 
for Linux. 

 
4.1.2 Tracking of Points in the Arterial Wall 

 In this experiment, we evaluated NME on different locations on the wall of 
the carotid artery. For this purpose, we divided the carotid artery into three 
segments. A point on the wall in each segment was selected and tracked by two 
observers (DC, ZA) in 100 frames for the 9 carotid arteries in dataset I’. In these 
experiments we used the optimal parameters defined in the previous experiment 
and the same evaluation methodology. 

 
4.2 Lumen Segmentation 
 Validation of automatic lumen contour extraction was achieved by comparing to 
manual lumen segmentations of two independent observers (DC, ZA) in the nine 
carotid arteries of dataset I’ and the ten carotid arteries of dataset II. The 
evaluation was performed in the epitome images for both datasets, and in five 
randomly selected time frames 𝑡 𝜖 {11, 18, 37, 74, 135} in the images of dataset I’. 
The average of the manual segmentations of the two observers was considered as 
the ground truth. The differences between automated and manual segmentation 
were expressed as RMSE. The RMSE between two observers was considered as 
interobserver variability. An alternative definition for interobserver variability would 
have been to compute the average RMSE between observer and the ground truth, 
but since the ground truth is based on exactly these two observers, this would give 
a too optimistic estimate of interobserver variability. 
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For the artifact detection step, we initialized the parameters of the classes of 
the Gaussian mixture model based on typical appearance of intensities in BMUS 
and CEUS images of dataset I’ as follows:  𝜃𝐵 = {𝜇𝐵𝑐 ,𝜎𝐵𝑐, 𝜇𝐵𝑏 ,𝜎𝐵𝑏} = {10, 6, 10, 6}} 
(background), 𝜃𝑇 = {10,10,150,30}  (tissue). For the artifact class we used different 
initializations for the upper (𝜃𝐴 = {200,10,200,10}) and lower part (𝜃𝐴 =
{120,20,150,10}). The exact initialization values for each class are not critical as the 
expectation-maximization method uses these values only as a starting point for 
optimization. We used the following values to the narrow bands: 𝜅1 = 2 𝑚𝑚 (for 
shadow detection), 𝜅2 = 1 𝑚𝑚 (for initialization of the lumen class in the Gaussian 
mixture model). 𝜅1 and 𝜅2 were selected as a narrow band around the centerline 
to ensure the selection of pixels inside of the lumen in case of high stenosis. The 
value of 𝜅2 is smaller because it is used for initializing the intensity distribution 
parameters of the lumen class; therefore it is important that only structures that 
belong to the lumen are selected. For the lumen contour refinement step, we 
chose  𝜅3 = 5 𝑚𝑚  which is large enough to follow the typically observed local 
curvature of the initial detected contours. In Equation 1 for the penalty weighting 
factors we chose 𝛾1 = 10 , which means 10% additional cost for a step, and 
𝛾2 = 1000, which means 1% additional cost for each 1𝑚𝑚 (10 pixels) away from 
the centerline.  

The lumen segmentation results were statistically analyzed using independent t-
tests, with SPSS PASW software for Windows (Version 17.0.2, SPSS, Chicago, IL, 
USA). Significance level was set at p<0.05. 

 

 
Figure 7: Selected line (pink) in the BMUS image (a) and the line profile across 150 times frames (b). 
The annotations marked by the observers are represented by green and blue points; the automated 
tracking is displayed in red. 
 
4.3 Carotid Artery Distensibility 

The distensibility measurements for DC-Line and DC-ROI were evaluated on the 
nine carotid arteries in dataset I’ by comparing to manual measurements. For the 
manual DC measurement, we selected a line profile (Fig. 7a) approximately 
orthogonal to the centerline in the BMUS, and extracted it over 150 time frames 
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(~7 seconds) in order to obtain a virtual representation of M-mode ultrasound (see 
Fig. 7b). Two observers traced the displacement of one point on the near and far 
wall of the artery in the virtual M-mode, while also inspecting the positions of the 
traced points on the BMUS images. Based on these annotations, we calculated DC 
for each cardiac cycle of the image sequence, and averaged the results over all 
cardiac cycles. 

 
5. Results 
5.1 Nonrigid Motion Estimation 

The results of the experiment  evaluating the displacement of a point in the 
plaque are shown in Table 1, where the registration errors for NME vs. ground 
truth, the inter-observer variabilities (observers vs. ground truth), and the errors of 
the LRST method are reported. Figure 8 shows the results for the entire range of 
registration parameters used to optimize NME. The lowest registration error was 
obtained with 𝛽 = 2.5 𝑚𝑚 × 2.5 𝑚𝑚 × 3𝑓𝑓𝑓𝑓𝑓𝑓, 𝜎 = 0.5, and 𝜌 = 5. These 
optimum parameter settings were used for the experiment evaluating the 
displacements of the three points in the carotid wall, the results of which are 
shown in Table 2. 

The statistical significance was verified with a repeated Anova test considering 
the results obtained with NME, LRST and the observers annotations. No statistical 
significance was found among groups (p>0.05). 

 
Table 1: Mean ± std. dev. of motion estimation accuracy (𝜀𝑥, 𝜀𝑦 and 𝜀𝐶𝐸𝑐𝐸𝐸𝐸) for NME, the three 
observers (Obs.) and the LRST method, evaluated in dataset I using a single point in plaque tracked 
over 150 time frames (all units are in µ𝑚 ). 
 

  NME Obs. 1 Obs.2 Obs. 3 LRST 

  𝜀𝑥  99±74 74±21 93±82 64±70 87±32 

 𝜀𝑦 47±18 38±13 39±2 37±7 48±11 

 𝜀𝐶𝐸𝑐𝐸𝐸𝐸 112±73 86±27 102±77 76±70 102±29 

 
Table 2: Mean ± std. dev. of motion estimation accuracy (𝜀𝑥, 𝜀𝑦 and 𝜀𝐶𝐸𝑐𝐸𝐸𝐸) for NME and two observers 
(Obs.), evaluated in dataset I’ for three points selected on different sections of the carotid arteries over 
100 time frames (all units are in µ𝑚). 
 

  NME Obs. 1 vs. Obs. 2 

 𝜀𝑥 217±112 270±64 

 𝜀𝑦 277±94 99±19 

𝜀𝐶𝐸𝑐𝐸𝐸𝐸 381±152 290±58 
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Figure 8: Parameter evaluation for motion estimation. For different number of resolutions (𝜌 = 3 and 
𝜌 = 5), degrees of smoothing 𝜎, and spacings of the B-spline control points (𝛽), the NME error  𝜀𝐶𝐸𝑐𝐸𝐸𝐸 is 
shown. The optimum configuration is indicated by the black box. 

 

 
Figure 9: Detection of lumen contours for the image shown in Fig. 1a, containing speckle noise, 
reverberation artifacts and echolucent plaque in BMUS. 

 
5.2 Lumen Segmentation 
 Figure 9 shows the carotid artery lumen segmentation results of Fig. 1.  Table 3 
shows the RMSE between manual segmentations of the two observers, and 
between automated segmentation and the ground truth in datasets I’ and II, both 
for the epitome images and the randomly selected time-frames. In dataset I’, the 
average RMSE for both upper and lower contours was 191±43μm for the epitome 
images and 234±36μm for the five randomly selected time-frames respectively. In 
dataset II, the average RMSE was 351±176μm for the epitome images.  

We performed independent t-tests to analyze the differences between the 
results shown in Table III. For epitome images of dataset I', there is only 
statistically significant difference between the upper lumen contours and lower 
lumen contours for interobserver variability (IO) and the error of automated 
segmentation (AG) (p<0.05). For five time-frames of dataset I', there is only 
significant difference between the AG of the upper lumen contours and the AG of 
the lower lumen contours (p<0.05). In the comparisons of the errors of epitome 
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images and five time frames of Dataset I’, there is only significant difference for IO 
and AG of the upper lumen contour (p < 0.05). In the comparison of the errors of 
dataset I and dataset II, there is statistically significant difference for the AG of the 
upper lumen contour (p < 0.05). The other comparisons in each of datasets and 
between datasets are not significant (p>0.05). 
  
Table 3: Mean ± std. dev. RMSE for upper and lower contours in datasets I’ and II. IO = inter-observer 
variability. AG = Automated vs. ground truth (all units are in µ𝑚). 
 

 
Upper Lumen Contour Lower Lumen Contour 

IO AG IO AG 
RMSE Dataset I’     
     Epitome images 110 ± 50 120 ± 40 220 ± 140 260 ± 70 
     Five time-frames 190 ± 80 170 ± 60 270 ± 70 290 ± 30 
RMSE Dataset II 
     Epitome images 226 ± 196 294 ± 100 321 ± 185 408 ± 252 

 
5.3 Distensibility Measurements 

Figure 10 shows the carotid artery distensibility measurements based on 
manual and automated measurements, for dataset I’. In general, the automated 
distensibility results are conformable to the manual distensibility results. 
Furthermore, our distensibility coefficient results for 9 carotid arteries (13.1±4.4 
[10-3/kPa]) are in the same order as the results reported in the literature (10.5±4.4 
[10-3/kPa]) [20]. Whereas DC-Line tends to underestimate the distensibility, 
compared with the manual measurement, DC-ROI tends to overestimate.  

 

Figure 10: Comparison of carotid artery distensibility based on manual and automated measurements 
(DC-Line and DC-ROI) 

6. Discussion 
We presented a lumen segmentation method which uses the combined 

information of BMUS and CEUS. First, motion compensation was applied to 
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construct epitome images, which are used for segmentation. Subsequently, the 
segmentation and the nonrigid motion estimate are employed to calculate the 
arterial distensibility. Carotid artery distensibility is an example application of our 
proposed method. The method provides reliable segmentation of carotid lumen in 
subjects with atherosclerotic plaques, which can also be a basis for further 
processing such as segmentation of plaque, assessment of plaque perfusion, and 
assessment of plaque vulnerability. Since the method requires contrast agent to be 
injected, we expect that it will be more likely used in the management of early 
stage disease with visible plaques than in large-scale screening of at risk 
populations. 

The NME method provides results comparable with LRST, which tracks motion 
locally, whereas NME performs a nonrigid motion compensation of the entire 
image. The selection of the design parameters of the NME was performed by 
evaluating the motion of a point that is clearly visible across the whole sequence, 
situated within the atherosclerotic plaque. In this experiment, the RMSE between 
NME and the ground truth was around one pixel. Results acquired with NME are 
comparable with those obtained by observers and with LRST. However, tracking 
points situated elsewhere in the arterial wall led to larger errors. Both the 
interobserver variability and the NME vs. ground truth were around 3 pixels. These 
errors seem mainly due to the lack of clearly visible structures in the arterial wall, 
complicating the motion estimation, both manually and automatically, especially in 
the x-direction. 

Our method segments accurately the lumen in images that are contaminated 
with noise in the lumen, artifacts (e.g. clutter or reverberation), and attenuation in 
the BMUS part and nonlinear propagation artifacts in the CEUS part. As shown in 
Tab. III, the errors between automated and ground truth segmentations of dataset 
I and dataset II are in the same  order as the error between two observers 
(p>0.05). This means our method is as good as manual delineation of the lumen 
contours for dataset I’. The error in the lower lumen contour is higher than the 
error in the upper contour for epitome images of dataset I’ (p<0.05). A possible 
cause for this is the (remaining) influence of the pseudo-enhancement in the lower 
contour, which makes segmentation more difficult. Therefore, the interobserver 
variability for the lower contour is also higher than the variability for the upper 
contour in dataset I’. As seen  from Tab. III, the errors between automated and 
ground truth segmentations in dataset II are in the same order as the error  
between two observers (p>0.05). The errors in the dataset II are in the same 
order as the errors in the dataset I’ except for the error of automated 
segmentation for upper lumen contour. Compared to dataset I’, the errors in the 
lower and upper lumen contours are in the same order in the dataset II. This 
means that the presence of severe stenosis and heavy shadowing due to 
calcifications in dataset II make automated segmentation difficult in both upper 
and lower lumen contours. Comparing the error of automated segmentation to 
each observer’s variability with respect to ground truth is not really fair, since our 
ground truth is obviously heavily biased towards the two manual observers. As 
stated before, it has been reported that the lumen segmentation methods using 
only BMUS have limitations in presence of atherosclerotic plaque [15-17]. The 
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epitome BMUS and CEUS images obtained through NME allow the DP to better 
identify the lumen and suppress the noise in atherosclerotic carotids. This provides 
a clearer separation of the lumen-intima interface, leading to accurate lumen 
segmentation. To best of our knowledge, our work is the first to use the 
combination of BMUS and CEUS to segment the lumen, which deals with all the 
difficulties that have been mentioned in the literature so far for atherosclerotic 
carotid arteries.  

The artefact detection step based on the joint histogram analysis requires a 
relatively large set of user-defined parameters (𝛩). Nevertheless, the exact values 
are not crucial, since they are used only as initialization parameter for an iterative 
expectation-maximization approach that further optimizes these joint histogram 
parameters. The remaining parameters of the lumen segmentation method were 
defined based on geometrical considerations, taking into account the typical 
anatomy of the carotid artery, and based on initial trial-and-error experiments on 
dataset I. The experimental results for dataset II confirm that the method was not 
“over-tuned” on dataset I.   

Our proposed method is also able to measure the carotid artery distensibility 
coefficient DC. Two methods were investigated, DC-line and DC-ROI. In Fig. 9, it 
was shown that the DC-ROI method overestimated the DC in several carotid 
arteries, especially case 7 and 9. This is due to the difficulty in selecting a ROI that 
is fully free from plaque around the selected line. Having a partial inclusion of 
plaque in the ROI will influence the distensibility results as the stiffness of the wall 
is not well-defined in plaque regions. Distensibility is used as a measure of local 
vessel stiffness by calculating circumferential stretching, assuming a circular cross 
section and a fixed radius. This is by definition not the case in a stenosis, and the 
resulting number cannot be compared to a normal region next to it. The DC-Line 
method yielded results more similar to the inter-observer variability. The observers’ 
distensibility annotations were performed on the virtual M-Mode, which represents 
a single intensity profile across time. The observers tend to agree more on tracking 
the brightest layer across the time frames in this visualization than in the 2D+t 
visualization, which was employed for the manual annotations in the other 
experiments. It is important to notice that it is not possible to track a point 
displacement in all directions on the virtual M-Mode. 

 A distinct advantage of our method is that the operations are performed fully 
automatic for the whole artery; we just selected a ROI to perform the distensibility 
evaluation. Temporal evaluation of carotid artery might be useful for other 
applications such as central pressure estimation. However this is beyond the scope 
of this study. As a limitation, our data acquisition was not optimized for the 
purpose of assessment of arterial distensibility, but optimized for plaque perfusion 
assessment. This may explain some of the erroneous distensibility results for 
individual subjects. However, we showed that our distensibility results are in the 
same order as presented in the literature. 
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Our method is fully automatic for a single carotid branch. We only focused on 
one branch and excluded carotid arteries with bifurcation and cases with jugular 
vein presence. As a future work, we would like to include automatic vessel detec-
tion in presence of jugular vein and carotid arteries with bifurcation. We have no 
doubt that the method can work for bifurcated vessels, only the initialization part 
needs additional attention. Also, we would like to add media-adventitia layer detec-
tion, including plaque segmentation. 

 
7 Conclusions 

We have performed an accurate lumen segmentation of the carotid artery 
based on combined BMUS and CEUS images. Our segmentation approach enables 
the user to detect the lumen-intima border of the artery which can hardly be 
detected in standard BMUS. The extraction of the motion pattern from the image 
sequence leads to epitome images that facilitate the lumen segmentation, and 
furthermore, the assessment of the arterial distensibility. The method is 
automated, an extensive evaluation was performed, and the results are accurate. 
Therefore, our method could become a valuable tool for the analysis of 
atherosclerotic carotid arteries. 
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Chapter 8 
 

Fully Automated Carotid Plaque Segmentation in Combined Contrast 
Enhanced and B-mode Ultrasound 

 

Carotid plaque segmentation in B-mode Ultrasound (BMUS) and Contrast-
Enhanced Ultrasound (CEUS) is crucial to assess plaque morphology and 
composition, which are linked to plaque vulnerability. Segmentation in BMUS is 
challenging due to noise, artifacts, and echolucent plaques. CEUS allows a better 
delineation of the lumen but contains artifacts and lacks tissue information. We 
present a method which exploits the combined information from simultaneously 
acquired BMUS&CEUS images. Our method consists of nonrigid motion estimation, 
vessel detection, lumen-intima segmentation, and media-adventitia segmentation. 
The evaluation was performed in training (n=20 carotids) and test (n=28) datasets 
by comparing to manually obtained ground-truth. The average root-mean-square 
errors in the training and test datasets were comparable for media-adventitia 
(411±224µm and 393±239µm) as well as for lumen-intima (362±192µm and 
388±200µm), and were comparable to inter-observer variability. To the best of our 
knowledge, this is the first method to perform fully automatic carotid plaque 
segmentation using combined BMUS&CEUS. 
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1) Introduction 

Cerebrovascular disease ranks as the third world leading cause of death[1]. The 
carotid arteries are two vessels located at both sides of the neck. They are 
responsible for providing blood to the brain and muscles of the face. Each carotid 
starts as a common carotid artery (CCA) which forks into two branches: internal 
carotid artery (ICA) and external carotid artery (ECA). The incidence of ischemic 
strokes is highly associated with the rupture of atherosclerotic plaques in the 
carotid artery [2]. Rupture can cause severe vessel obstruction due to distal 
propagation of a thrombus[3]. The formation of an atherosclerotic plaque occurs 
due to atherosclerosis, which is a process of inflammation in the arterial wall.  For 
assessing the risk of rupture, current clinical practice is heavily relying on the 
degree of stenosis. However, there is an increasing awareness that not the size of 
the plaque, but its composition is related to risk of rupture. For example, intra-
plaque neovascularization (IPN) has been linked to plaque vulnerability in several 
histopathological studies [4-6]. Ultrasound has been widely used as a standard tool 
for inexpensive and non-invasive diagnosis of carotid plaque morphology and 
composition. Different ultrasound techniques have been used such as standard B-
mode ultrasound (BMUS), color Doppler and contrast enhanced ultrasound (CEUS) 
[7]. For the accurate assessment of the degree of stenosis and plaque 
composition, objective and reproducible segmentation of carotid plaques from 
ultrasound images is a crucial step. 

So far, carotid plaque segmentation has mainly been performed on standard 
BMUS images [8-10]. However, in standard BMUS images this is difficult and can 
be inaccurate due to noise in the lumen, artifacts, lumen irregularity and 
echolucent plaques. Color Doppler provides an approximate view of blood flow in 
the lumen, but its accuracy is dependent on user-controlled settings (e.g. Doppler 
gain, wall filter, and velocity range) and local direction of flow. This may 
overestimate or underestimate the lumen, and thus color Doppler is not a suitable 
imaging technique for plaque segmentation. CEUS allows a better delineation of 
the carotid lumen than standard BMUS [7, 11, 12]. CEUS provides visualization of 
the vessel lumen regardless of flow velocity and direction by the use of ultrasound 
contrast agents. However, CEUS contains specific artifacts and contains no tissue 
information [13] which make the plaque segmentation difficult. 

Some studies have addressed carotid plaque segmentation in longitudinal 
vessel cross sections visualized with standard BMUS [8-10]. Loizou et al. [8] 
presented a method based on gray scale normalization, speckle reduction filtering, 
and snake segmentation. The method compares the accuracy of four snake 
techniques on 80 patients. The method is automatic and uses color Doppler images 
to avoid the difficulties in echolucent plaque detection in BMUS and for extracting 
the initial snake contour.  Several limitations of the study were reported: 1) 
Overlapping of color flow with wall or plaque tissue, 2) lack of information for low 
velocity regions, 3) convergence of snake to false local minima, and 4) exclusion of 
echolucent and calcified plaques. Loizou et al. [9] presented another plaque 
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segmentation method based on snake segmentation. The plaque is segmented in 
different time frames, according to a manual initialization in the first time frame. 
Destrempes et al. [10]  presented a plaque segmentation method which models 
the intensities of vessel lumen, plaque and adventitial wall with a mixture of three 
Nakagami distributions. The mixture parameters were first estimated with an 
Expectation-Maximization algorithm, and this yielded the likelihood of a Bayesian 
segmentation model. They also obtained the motion fields in the image sequence 
using an optical flow technique and used it as a prior of the Bayesian model which 
includes a local geometrical smoothness constraint. The method was tested on 93 
sequences of 33 patients (in total 8988 images). The method is semi-automatic 
since it requires manual segmentation of plaque in the first frame.  

Due to the noise, artifacts, and echolucent plaques, the fully automatic 
segmentation of plaques in BMUS images remains a challenge. Two specific types 
of plaques (I and V according to the classification of Nicolaides et al. [14]) are 
particularly challenging. Type I plaques are uniformly echolucent, making it very 
difficult to differentiate their intensity from the lumen. Type V plaques present with 
calcified caps that cause shadows.  

CEUS allows delineation of the vessel lumen, but it also enables the detection 
of IPN.  The ultrasound contrast agent enters the plaque neovasculature and is 
seen as intermittently appearing bright spots. For assessment of IPN from CEUS 
images, a first step is the delineation of the plaque region of interest (ROI). In 
several studies, manual delineation has been used, which is subjective and tedious 
[15-18]. As tissue information is absent in CEUS images, automatic plaque 
segmentation is extremely difficult. Some studies have addressed plaque 
segmentation in CEUS images [19-21]. Hoogi et al. [19] segments the lumen with 
an active contour method and fits a parabola to the arterial wall, enabling the 
plaque segmentation in a single frame. A limitation of the method is the fact that 
media-adventitia is not segmented but estimated by a parabola. The method of 
Molinari et al. [20] performs automatic segmentation of the plaque and 
characterization of its tissue in BMUS enhanced with ultrasound contrast agent. 
The plaque is segmented by a k-means classification algorithm and subsequent 
application of a deformable model. They reported that using contrast enhanced 
BMUS overcomes the difficulties in segmenting echolucent plaques in standard 
BMUS. However, the method was evaluated only on 5 echolucent plaques. Zhang 
et al. [21] proposed a method in CEUS images using spatio-temporal analysis and 
snakes. The method uses the spatial correlation of time intensity curves to detect 
initial contours of plaques, and then deforms them to refined contours with a 
gradient vector flow snake. The method requires a user defined ROI around the 
plaque in the CEUS image to simplify the segmentation process. In another study, 
Zhang et al. [22] presented interactive plaque segmentation in CEUS. A mean 
image with improved signal-to-noise ratio (SNR) is obtained by time averaging of 
the image sequence, and interactive plaque segmentation is performed in the 
temporal mean image. The user needs to indicate points on the plaque border and 
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B-spline interpolation of the discrete points is used to get a smooth closed curve. 
No motion compensation is performed and the segmentation is fully manual. 

Several algorithms have been described that segment intima-media thickness 
(IMT) in asymptomatic carotids in BMUS. Since they do not consider the presence 
of atherosclerotic plaques in the carotids, they are not applicable to plaque 
segmentation. Liang et al. [23] presented a method to detect arterial boundaries in 
a user-selected ROI through multiscale dynamic programming (DP). The cost 
function is constructed from a weighted sum of features and geometrical 
characteristics extracted from a manually segmented training set. The method 
does not segment IMT in the presence of plaque. The method of Cheng and Jiang 
[24] uses a Dual Dynamic Programming (DDP) approach to detect the intima and 
adventitia layers of the common carotid wall. The method is semi-automatic and 
requires the manual selection of a ROI containing the layers. Destrempes et al. 
[25] presented a method which segments the IMT through Expectation 
Maximization (EM) in a manually selected ROI. The EM is initialized using three 
Nakagami distributions to represent the intima-media layers, the lumen and the 
adventitia. The method was evaluated on healthy common carotids. The work of 
Teynor [26] uses the DDP method of [27] in conjunction with manual user 
interactions to track the systolic and diastolic IMT of asymptomatic carotids in a 
manually defined ROI. Zhou et al. [27] presented a method that merges different 
techniques to segment the intima-media layer and presents a novel DP approach, 
the dual line detection (DLD). An edge map is created from the output of two edge 
detectors in different scales. The DLD is applied on local segments of this edge 
map. In the end, the calculated contours are employed as an input for a snake 
segmentation model. 

Some studies have also investigated automatic carotid vessel detection in 
BMUS, which could be used as a first step to automate plaque segmentation. The 
work of Molinari et al. [28] tracks the adventitia layer by using geometric feature 
extraction, line fitting, and line classification of the CCA. The method is sensitive to 
inhomogeneities in the lumen intensities. The work of Rocha et al. [29] employs 
DP to automatically extract the lumen axis of the CCA. The proposed methods are 
limited to the common carotid artery and thus multibranch carotid artery detection 
still remains a challenge. 

Previous studies either worked on only BMUS or CEUS, and therefore they were 
prone to difficulties associated with these imaging modalities. This limits their 
performance. BMUS and CEUS present complementary information. In this study, 
we exploit the combined information from simultaneously acquired BMUS&CEUS 
images to overcome the difficulties of plaque segmentation in previous studies. An 
example of side-by-side simultaneously acquired BMUS and CEUS image and a 
schematic depiction of arterial wall layers are shown in Figure 1.  The advantage of 
this combination is that CEUS shows a better delineation of the lumen, where 
BMUS provides the visualization of tissues. Since CEUS does not contain any 
information about the tissues, the combination with BMUS is necessary to 
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accurately segment the plaque. We proposed a novel and fully automatic carotid 
plaque segmentation method which overcomes the difficulties of the separate use 
of BMUS and CEUS.  

 
Figure 1: Simultaneously acquired BMUS&CEUS image with typical artifacts and schematic depiction of 
arterial wall layers 

2) Materials and Methods 

 In our study, we use simultaneously acquired side-by-side BMUS and CEUS 
image sequences. The simultaneous BMUS & CEUS imaging leads to two 2D+time 
(2D+t) image series, 𝐼𝐵𝐵𝐵𝐵(𝒔, 𝑡) and 𝐼𝐶𝐶𝐵𝐵(𝒔, 𝑡), where 𝒔 is a spatial coordinate 
(𝑥,𝑦) and 𝑡 is the time frame index with 𝑡 = 1 … 𝜏 (𝜏 = number of time frames). 
Our proposed segmentation method for carotid plaques consists of three main 
steps: nonrigid motion estimation and compensation, automated vessel detection, 
and plaque segmentation. A flowchart of the method is shown in Figure 2. 

 

Figure 2: Flowchart of the steps of the method. Inputs (green), operations (red) and outputs (blue). 
𝑻(𝒔, 𝑡): Transformation obtained from BMUS with nonrigid motion estimation (NME). 𝐼𝐵𝐵𝐵𝐵∗(𝒔, 𝑡),
𝐼𝐶𝐶𝐶𝐶∗(𝒔, 𝑡): Motion compensated BMUS and CEUS respectively. 𝐼𝐵̅𝐵𝐵𝐵(𝒔),  𝐼𝐶̅𝐶𝐶𝐶(𝒔): Epitome images. 𝒔: 
Spatial position (𝑥,𝑦) within the image. 𝑡: Time frame index. MA: Media-Adventitia; LI: Lumen-Intima. 
AW: Adventitia Wall. 
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2.1) Nonrigid motion estimation and compensation 

In a previous work [30], we proposed a nonrigid motion compensation 
method for simultaneously acquired BMUS&CEUS image sequences. As the first 
step of our plaque segmentation method we obtain single BMUS and CEUS 
‘epitome’ images (𝐼𝐵̅𝐵𝐵𝐵(𝒔),  𝐼𝐶̅𝐶𝐵𝐵(𝒔)) with improved SNR by averaging image 
intensities of each pixel over time in the motion compensated BMUS&CEUS image 
sequences (𝐼𝐵𝐵𝐵𝐵∗(𝒔, 𝑡), 𝐼𝐶𝐶𝐵𝐵∗(𝒔, 𝑡)). In the proposed motion compensation 
method, we estimate the nonrigid deformation (𝑻(𝒔, 𝑡)) of the carotid over time 
from the BMUS image sequence and subsequently compensate the motion in both 
the BMUS and CEUS image sequences. The method performs a groupwise 
registration of the entire 2D+t dataset. It produces a nonrigid motion estimate on 
the complete image, differently from existing local motion estimation techniques in 
ultrasound [31-34]. The deformations are modeled by a nonrigid 2D+t B-spline 
transformation, ensuring smoothness both in the spatial and temporal dimensions. 
An adaptive stochastic gradient descent optimizer [35] is employed to calculate the 
transformation parameters that minimize a dissimilarity measure based on the 
variance of the intensities at corresponding spatial locations. The nonrigid motion 
compensation method is described and evaluated in detail in [30]. All further 
processing is performed on the epitome images 𝐼𝐵̅𝐵𝐵𝐵(𝒔) and 𝐼𝐶̅𝐶𝐵𝐵(𝒔). 

2.2) Automated vessel detection 

Prior to plaque segmentation, we perform automated detection of vessels 
in the BMUS and CEUS epitome images. CEUS images provide only perfusion 
information of vessels, which avoids the confusion of vessel-like anatomical 
structures in the BMUS images. However, CEUS presents artifacts which might 
cause false detection. We assume that there is at least one vessel in the image 
plane as images are acquired for the carotid examination. We further assume the 
proximal part of the carotid (CCA) is on the right side of the image, according to 
the standardized scanning protocol. The bifurcation may or may not be within the 
field of view, and the jugular vein may or may not be visible. Figure 3 illustrates 
the possible scenarios. To identify the arteries of interest (CCA, ICA, ECA), we 
propose a four-stage algorithm, consisting of: a) Rough lumen identification b) 
Morphological operations c) Vessel profile scanning d) Heuristic classification of 
vessel candidates. 

a) Rough lumen identification:  We apply an intensity based classification in the 
BMUS and CEUS epitome images to identify true lumen and circumvent 
artifacts as described in detail in our previous study [36]. Based on typical 
intensity distribution of classes (background, tissue, lumen and artifacts) in the 
joint histogram of BMUS and CEUS epitomes, we initialize these classes and 
feed them into an Expectation-Maximization (EM) algorithm.  This results in a 
fuzzy segmentation, indicating for each pixel the probability that it is located in 
a lumen. 
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b) Morphological processing:  In this step, morphological opening using a disk-

shaped structuring element with radius 1 mm is applied to remove noise or 
small objects such as remaining artifacts in the probabilistic lumen 
segmentation obtained in the previous step.  We assume that, after this 
aggressive morphological opening, any isolated artifacts have been eliminated 
from the probabilistic lumen segmentation. Next, we convert this probabilistic 
segmentation to a binary image by using Otsu’s global image threshold. 
Subsequently, we extract the edges from the binary image using a Canny edge 
detector.  

c) Vessel profile scanning: In this step, we vertically scan the edge map at each x 
position (i.e. column), from top to bottom, and record each pair of edge 
points. Assuming that these pairs of edge points represent the boundaries of a 
vessel, we calculate the center points and connect them to each other from 
column to column (left to right) based on the closest Euclidean distance. To 
compensate for missed regions due to acoustic shadowing or out-of-plane 
artifacts, we use linear interpolation between detected center points for empty 
regions. 

d) Heuristic classification of vessel candidates: We classify the detected 
candidates in a heuristic manner. In the most extreme case, a maximum of 3 
vessels (jugular, internal and external carotid artery as seen in Fig. 3d) can be 
seen in the field of view of 3 or 4 cm depth in the standard carotid B-mode 
ultrasound. The possible combinations of detected vessels are listed below: 

1) If there is only one vessel detected (see Fig. 3a), it is considered to be the 
carotid artery. 

2) If two vessels are detected, this may be a jugular vein and a carotid artery 
(see Fig. 3b) or a bifurcated artery (see Fig. 3c). To discriminate between 
these two cases, we analyze the detected center point sets for the two vessels. 
If they do not have a “common center points region”, i.e., a part where the 
centerlines merge, or if this region is smaller than 5 mm length, we consider 
these two vessels are separate vessels (jugular and carotid). In this case, the 
top-most one is the jugular vein and the bottom one is the carotid artery. If 
the common center points region (see Fig. 3c) is at least 5 mm length, we 
consider it as a carotid bifurcation. In this case, the x-position where the 
centerline undergoes the largest vertical shift indicates the bifurcation point. 
The upper branch is the ICA. 

3) If three vessels are detected (see Fig. 3d), we consider the top-most as the 
jugular vein and both others as a bifurcated artery which consists of internal 
and external carotid branches. 

Having identified the arteries of interest, based on the procedure above, we 
proceed with vessel wall segmentation. In the case of a single branch carotid 
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artery detection (see Fig. 3a and 3b), we segment the lumen-intima (LI) and 
media-adventitia (MA) interfaces of the near wall (upper wall) and far wall (lower 
wall) of the artery as described in the following sections. In the case of a 
bifurcated carotid artery detection (see Fig 3c and 3d), we segment the LI and MA 
interfaces of the near wall, the far wall, and the bifurcation region (see Fig. 3c) of 
the artery.  

 

Figure 3: Depiction of possible scenarios of the vessel geometry visible in the carotid ultrasound images. 
Common carotid artery (CCA) only (a); Jugular vein (JV) and CCA (b); Bifurcated carotid artery (c); JV 
and bifurcated carotid artery (d)   

2.3) P laque segmentation 

To detect the carotid plaques, we sequentially segment LI and MA 
interfaces of the upper and lower carotid walls and apply the Mannheim consensus 
[37] for delimitation of the plaque. The Mannheim consensus established the 
metrics to identify the plaque: "Plaque is defined as a focal structure that 
encroaches into the arterial lumen by at least 0.5 mm or 50% of the surrounding 
IMT value or demonstrates a thickness > 1.5 mm as measured from the media-
adventitia interface to the intima-lumen interface". In the following sections, we 
briefly describe LI interface segmentation adopted from our previous work [36] 
and MA interface segmentation using multidimensional dynamic programming 
(MDP) for parallel curves. The MA interface segmentation is the main focus of this 
study. 
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The LI and MA interfaces obtained in the epitome images can be warped 
back to each time frame using the transformation 𝑻(𝒔, 𝑡) resulting from the 
nonrigid motion estimation described in section 2.1. This allows following plaques 
over time and possible applications such as arterial distensibility, IPN 
quantification, and plaque characterization. 

2.3.1) Lumen-intima interface segmentation 

We perform LI interface segmentation of the carotid artery on the epitome 
images 𝐼𝐵̅𝐵𝐵𝐵(𝒔)  and  𝐼𝐶̅𝐶𝐵𝐵(𝒔). Our LI segmentation method which is explained in 
detail in [36] consists of five steps: centerline estimation, detection of shadowing, 
detection of artifacts, graph based segmentation and refinement of lumen 
contours. For segmenting of a single-branch carotid artery we perform the 
following steps.  

First, we estimate the centerline of the carotid artery by applying a 2D 
Gaussian smoothing filter to the CEUS epitome image and finding a minimum cost 
path, using dynamic programming in the x-direction [34, 38]. Second, we detect 
the shadow regions by fitting a linear curve to the mean intensity profile of a band 
around the centerline and neutralize these regions by assigning the same cost 
value. We then redetect the centerline. Third, we detect the CEUS-specific pseudo-
enhancement artifacts [13] and saturation artifacts [18], by using a joint  intensity 
classifier for BMUS&CEUS epitomes and suppress them in the CEUS epitome. 
Fourth, we detect the upper and lower LI interfaces in the CEUS epitome using 
dynamic programming. Fifth, we refine the upper and lower LI interfaces by 
resampling the neighborhood of the interfaces with subpixel precision and applying 
dynamic programming. 

In the case of a carotid bifurcation, we detect two separate centerlines for 
ICA and ECA. We use the bifurcation point that was obtained in the vessel 
detection step (section 2.2). Left of that point, we mask the quadrant to the lower 
left side of the bifurcation point and detect the centerline for the upper branch 
(ICA) plus the common carotid as explained above for a single-branch artery. Then 
we mask the upper left quadrant and detect the second centerline (ECA+CCA). 
Subsequently, we detect the shadow regions and artifacts as explained above for a 
single-branch carotid artery. Lastly, we detect the upper LI interface of the 
bifurcated artery from the ICA+CCA centerline and the lower LI interface from the 
ECA+CCA centerline. For the LI interfaces of the bifurcation region, we detect the 
upper LI interface in the region between ICA centerline and bifurcation line, and 
the lower LI interface in the region between bifurcation line and ECA centerline 
(see Fig. 3c).  

2.3.2) Media-adventitia interface segmentation 

 As tissue information is suppressed in CEUS images, it is not possible to 
segment the media-adventitia (MA) interface from CEUS images. We therefore 
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segment the MA interface from the simultaneously acquired BMUS epitome image, 
using multidimensional dynamic programming (MDP) for detection of parallel 
curves [24, 27]. The layers of the arterial wall in a BMUS image are shown in Fig. 
1. As seen in Fig. 1, the MA interface is the transition from the media layer to the 
adventitia wall, characterized by a strong outward (from lumen) intensity gradient. 
The adventitia wall is seen in the BMUS image as the brightest part of the vessel 
wall. We define the centerline of this structure as the adventitia wall (AW) position. 
The MA interface runs in parallel with the AW and they are assumed to possess the 
following characteristics: 

a) Intra-curve smoothness: Both the MA interface and AW should be a 
smooth curve.  

b) Inter-curve smoothness: the MA interface and AW should be nearly parallel 
with a specific distance. 

c) Intima-media (IM) distance: The distance between MA and LI interface is 
between 0.3mm and 1.5mm [37, 39] in a vessel wall free from plaques 
and will increase in case of plaques. 
 

2.3.2.1) Multidimensional dynamic programming for parallel curves 

The objective of MDP for parallel curves is finding two curves that 
minimize a certain cost function. Let 𝐼𝐵̅𝐵𝐵𝐵(𝒔) be of size 𝑋 × 𝑌. The MA interface 
and the adventitia wall (AW) run from left to right (in the x-dimension) and are 
described by two coordinates 𝑦𝐵𝐴 and 𝑦𝐴𝑊 at each x-position, with 1 ≤ 𝑦1, 𝑦2 ≤ Y. 
We find the optimal interfaces by minimizing a dedicated cost function composed 
of appearance and geometry related terms. The appearance terms stimulate that 
the MA curve traverses high outward gradient locations and that the AW curve 
passes through bright regions. The geometry terms favour solutions that satisfy 
the three above mentioned characteristics.  

The appearance cost of the MA interface (𝐶𝐵𝐴) is calculated by applying a 
Gaussian derivative filter with standard deviation of 0.3 mm, which gives the y-
directional gradient of the BMUS epitome image ∇𝑦𝐼� 𝐵𝐵𝐵𝐵(𝒔) =  ± ∇𝑦𝐺 ∗ 𝐼𝐵̅𝐵𝐵𝐵(𝒔), 
where the sign is chosen such that gradients pointing outward from the lumen 
centerline are positive. The cost of the MA interface passing through coordinate s 
is then defined as  𝐶𝐵𝐴(𝒔) = 1 − ∇𝑦𝐼� 𝐵𝐵𝐵𝐵(𝒔)/ max𝒔 ∇𝑦𝐼� 𝐵𝐵𝐵𝐵(𝒔). The cost 
representing the AW wall is defined as 𝐶𝐴𝑊 = 1 − 𝐼𝐵̅𝐵𝐵𝐵(𝒔)/ max𝒔 𝐼𝐵̅𝐵𝐵𝐵(𝒔). For both 
𝐶𝐵𝐴 and 𝐶𝐴𝑊, 0 is the optimal cost. The combined appearance cost is calculated by 
taking the average: 𝐶(𝑥,𝑦1 ,𝑦2) =  �𝐶𝐵𝐴(𝑥,𝑦1) + 𝐶𝐴𝑊(𝑥,𝑦2)� 2⁄ .  

MDP is defined by minimizing a cumulative cost function (𝐶̂), which 
combines the appearance costs with several geometry-related terms: 
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𝐶̂(𝑥,𝑦1,𝑦2) = min
 𝛿1,𝛿2 𝜖 {−1,0,1}

[ 𝐶̂(𝑥 − 1, 𝑦1 − 𝛿1,𝑦2 − 𝛿2) 

+ 𝐶(𝑥,𝑦1,𝑦2) ∙ (1 + 𝛼1)𝛿1 ∙ (1 + 𝛼1)𝛿2 

∙ (1 + 𝛼2 ∙ |(𝑦1 − 𝑦2) − (𝛿1 − 𝛿2)|) 

+ 𝛼3 ∙ 𝑃�𝑥,𝑦1 − 𝑦𝐿𝐼(𝑥)� ] 

(𝐸𝑞. 1) 

subject to  𝑑𝑚𝑖𝑛 ≤ (𝑦2 − 𝑦1) ∙ 𝑅 ≤ 𝑑𝑚𝑎𝑥 and  2 ≤ 𝑥 ≤ 𝑁 

where 𝛿1 and 𝛿2 are the step sizes (in pixel units) in 𝑦1 and 𝑦2 directions, 𝛼1 and 
𝛼2 are weights for intra-curve smoothness and inter-curve smoothness 
respectively, 𝑃 is an IMT penalty term, 𝑦𝐿𝐼(𝑥) is the lumen-intima position, 𝛼3 is a 
weighting factor for the IMT penalty term, 𝑑𝑚𝑖𝑛 and  𝑑𝑚𝑎𝑥 are the minimal and 
maximal distance (in mm) between MA interface and AW, R is pixel spacing in mm. 
The MDP procedure for detection of parallel curves subject to the constraint 
𝑑𝑚𝑖𝑛 ≤ (𝑦2 − 𝑦1) ∙ 𝑅 ≤ 𝑑𝑚𝑎𝑥  is illustrated in Fig. 4. 

 

Figure 4: An illustration of multidimensional dynamic programming for a given image of size  𝑋 × 𝑌 to 
detect parallel curves subject to the constraint 𝑑𝑚𝑖𝑛 ≤ (𝑦2 − 𝑦1) ∙ 𝑅 ≤ 𝑑𝑚𝑎𝑥 (gray region). 𝑦2 and 𝑦2 
represent the positions of the two curves, as function of the x-coordinate. The 3 × 3 dots indicate the 
search space 𝛿1,𝛿2 𝜖 {−1,0,1}.   

The minimum and maximum allowed distance (𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥) between 
MA interface and AW are considered to be 0.3 mm and 1.5 mm, respectively, 
based on adventitial wall thickness measurements reported in previous studies [39, 
40]. The IMT penalty term 𝑃�𝑥,𝑦1 − 𝑦𝐿𝐼(𝑥)� encodes prior information on the 
expected distance between MA and LI, 𝑦1 − 𝑦𝐿𝐼(𝑥), taking into account the possible 
presence of plaque at position x. The IMT penalty function is defined as a 
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combination of two sigmoid functions and an uncertainty region as seen in Eq. 2 
and Figure 5.  

 

Figure 5: An example of an IMT penalty term P for healthy section of artery 
(𝛽1=0.3mm, 𝛽2=1.5mm, 𝛽3=5mm). 

𝑃(𝑥,𝑑) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 1 − tanh �

𝑐 ∙ 𝑑
𝛽1

�                              𝑑 𝜖 [0,𝛽1]

                0                                                 𝑑 𝜖 (𝛽1,𝛽2)      

1 − tanh�
𝑐 ∙ (𝛽3(𝑥) − 𝑑)
𝛽3(𝑥) − 𝛽2(𝑥)

�           𝑑 𝜖 [𝛽2,𝛽3]

             1                                                 𝑑 𝜖 (𝛽3, +∞]

 

(Eq.2) 

where 𝛽1 = 0.3 𝑚𝑚 (minimum expected IMT); 𝛽2(𝑥) is maximum expected IMT at 
position x;  

𝛽3(𝑥) = 𝛽2(𝑥) + 3.5 𝑚𝑚; 𝑐 = 𝑒1 (constant which supplies 𝑡𝑎𝑛ℎ(𝑐) ~ =  1); and: 

 

𝛽2(𝑥) = 1.5 𝑚𝑚 + 𝑝(𝑥) ∙ (𝐷𝑚𝑎𝑥 − 𝐷(𝑥)) ∙ 𝛾 

(Eq. 3) 

where  𝑝(𝑥)  𝜖 {0,1} indicates the presence of plaque at position x, 𝐷𝑚𝑎𝑥 is a 
representative lumen diameter (80th  percentile of all lumen diameters along the 
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artery), 𝐷(𝑥) is the local lumen diameter at position x (clipped to 𝐷𝑚𝑎𝑥), and 
𝛾 = 1.5 is a factor for outward growing of plaques. 

The constant 𝛽1 = 0.3 𝑚𝑚 was chosen based on minimum IMT values 
presented in the literature [39, 40]. The point 𝛽2 determines the length of the 
zero-penalty region, which represents the range of IMT values over which we 
assume no prior knowledge. Minimum 𝛽2 was chosen 1.5 𝑚𝑚 as the maximum 
expected IMT for a healthy carotid based on presented values in the literature [37, 
39, 40]. The point 𝛽2 is shifted based on local features indicating the presence of 
plaque, 𝑝(𝑥), as shown in Eq. 3. As features, we consider the shape of the LI 
interface and the degree of lumen stenosis. We propose two configurations of the 
method to estimate 𝑝(𝑥), which both are evaluated in the experiments. 
Configuration 1 uses only the shape of the LI interface. Configuration 2 uses both 
the shape of the LI interface and the stenosis degree. These configurations will be 
explained in detail in the next subsections. In case 𝑝(𝑥)=1, point 𝛽2  is shifted by 
an amount based on the estimated degree of stenosis (𝐷𝑚𝑎𝑥 − 𝐷(𝑥)), multiplied by 
a factor 𝛾 = 1.5 to accommodate a 50% outward growth of the plaque. After 
𝛽2 mm, we apply an exponentially increasing penalty reaching its maximum at 𝛽3, 
reflecting the prior knowledge that IMT values this high are less likely.    

The reason for choosing 𝛽3  as 3.5mm further than 𝛽2 was to provide a 
safety margin to avoid any hard penalty in case of misidentification. The reason for 
choosing 𝐷𝑚𝑎𝑥   as the 80th  percentile of the lumen diameter distribution was to 
avoid misidentification of presence of plaque for vessels which do not have uniform 
lumen diameter distribution along the vessel (e.g. the ones which have the carotid 
bulb and one branch of bifurcation in the image plane). We chose the value of 𝛾 
based on the maximum plaque development outward from the lumen (50%) 
observed in our data. 

 

2.3.2.2) Configuration 1 

For a healthy carotid artery, the LI interface is expected to be sufficiently 
smooth to be represented reasonably well by a third-order polynomial fit. Plaque 
regions on the other hand are represented by an “inward bump” of the LI 
interface. To detect these bumps, we fit a third-order polynomial curve to the LI 
interface. After the first fit, we discard the contour points at the lumen side of the 
fit and fit another third-order polynomial curve to the remaining points. This is 
repeated three times to converge to an estimate of what the ‘healthy’ LI interface 
would look like. Based on the Mannheim consensus [37] for plaque, if the distance  
between the fit and the actual LI interface is larger than 0.5mm for an image 
column x, that position is considered as a possible plaque region (𝑝(𝑥) = 1). The 
remaining positions are considered as healthy sections of the artery (𝑝(𝑥) = 0). 
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2.3.2.3) Configuration 2  

In this configuration, we include lumen stenosis as a second feature to 
detect the presence of plaques, next to the detection of inward bumps as in 
Configuration 1. Regions with lumen diameter 𝐷(𝑥) < (𝐷𝑚𝑎𝑥  − 0.5 𝑚𝑚) are 
considered as a sign of presence of plaque, again based on the Mannheim 
consensus [37]. The plaque indicator variable 𝑝(𝑥) is computed by a logical OR 
operation on the assessments based on inward bump detection and lumen stenosis 
estimation. 

3 Data and Experiments 

3.1 Data acquisition 

Simultaneous, side-by-side CEUS and BMUS images were acquired at ~20Hz frame 
rate using a Philips iU22 system (Philips Medical Systems, Bothell, USA) with an L9-
3 linear probe. The standard carotid ultrasound examination and the BMUS&CEUS 
examination of the carotid arteries were performed. A standardized image 
acquisition protocol was followed based on the American Society of 
Echocardiography consensus statement [41]. CEUS clips were recorded with the 
dual display mode for simultaneous B-mode ultrasound and CEUS. CEUS was 
performed using intravenous administration of 0.5mL bolus of SonoVue ultrasound 
contrast agent (Bracco S.p.A., Milan, Italy). For the CEUS examination, power 
modulation imaging and a mechanical index of 0.06-0.08 were used. For each 
0.5mL of SonoVue bolus injection, we recorded a 20 seconds image sequence. 
Both carotid arteries were examined, focusing on the presence of plaques. If 
plaques were present, the largest plaque area was identified visually in the 
longitudinal axis of the carotid artery and recorded. 
 

3.2 Patient population and study protocol 

 The study population consisted of 23 symptomatic patients with carotid 
atherosclerotic disease who had had a stroke, transient ischemic attack or ischemic 
ocular event and 7 asymptomatic patients. Symptomatic patients had moderate to 
severe carotid stenosis (≥70%). A total of 46 carotid arteries in 23 symptomatic 
patients and a total of 9 carotid arteries in 7 asymptomatic patients were included 
in the study. We included in total 55 carotid arteries in our study. Seven carotid 
arteries were excluded due to poor image quality or acoustic shadowing over > 
50% of image width. Image quality for the whole dataset was assessed in advance 
with consensus of two observers. We used 20 carotid arteries as a training set to 
tune our parameters. The remaining 28 carotid arteries were included as a test set 
to evaluate performance of our segmentation method. Since the study was aimed 
at the CCA, we had a total of only 7 bifurcated arteries (3 in training dataset, 4 in 
test dataset) in the entire dataset. The study protocol was approved by the ethical 
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committee at Erasmus MC, University Medical Center, and all study participants 
provided informed consent. 
 
3.3) Evaluation  

The performance of automated vessel detection (Section 2.2) was evaluated on 
the training and test dataset by comparing with the consensus visual score of two 
observers (D, Z).  

Validation of LI and MA interfaces was achieved by comparing the automated 
segmentation result with a manual reference standard. The reference standard 
(ground truth) was obtained as the average of manual annotations of two 
independent observers (D, Z). Root mean square error (RMSE) was calculated 
between the automated results and the ground truth in training and test dataset 
including and excluding shadow regions. First, we evaluated the weights of intra-
curve smoothness (𝛼1) and inter-curve smoothness (𝛼2) for a range of values 
(𝛼1,𝛼2 𝜖 {0, 0.05, 0.1, 0.15, 0.2, 0.25}) on the training set by comparing to ground 
truth. The optimum values of 𝛼1 and 𝛼2 were obtained separately for upper and 
lower contours. Next, the weighting factor for the IMT penalty term was evaluated 
for a range of values 𝛼3 𝜖 {0.25, 0.5, 1, 2, 4}. These evaluations were done both for 
Configuration 1 and 2. After that, the method with optimum values of 𝛼1, 𝛼2 and 
𝛼3 and optimum configuration was evaluated on the test set. In all experiments, 
cases which had RMSE >1mm were considered as failures and excluded when 
computing the mean RMSE over subjects. 

The area between the automatically detected LI and MA interfaces, the 
automated intima-media (IM) area 𝐴, was compared to the ground truth IM area 𝐺 
in the training and test datasets. A Dice Index (𝐷𝐼 = 2 ∗ (𝐴 ∩ 𝐺)/(|𝐴| + |𝐺|)) was 
calculated to measure the overlap between A and G. 

The results were statistically analyzed using SPSS PASW software for Windows 
(Version 17.0.2, SPSS, Chicago, IL, USA). To test the association between 
automated segmentation results and manual reference standard, Pearson 
correlation (r) was used. 

 
4) Results 

The success rate of automated vessel detection was 96% (46 cases out of 48) 
compared to the consensus score of two observers. The automated detection 
failed in two cases where the jugular vein was only partially present above the 
carotid artery. 

Table 1 shows the results of the evaluation of intra-curve (𝛼1) and inter-curve 
(𝛼2) smoothness in the training dataset, both for Configuration 1 and 2. The best 
settings for 𝛼1 and 𝛼2 were highlighted with bold red border lines for each 
configuration. As seen in Table 1, the intra-curve smoothness has more influence 
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on the results than the inter-curve smoothness and the average RMSE is optimal 
without inter-curve smoothness for the lower wall. Table 2 shows the results for 
evaluation of the weighting factor 𝛼3 for the IMT penalty term. On average, 𝛼3 = 1 
is the best setting for the IMT penalty term. No substantial  difference between 
Configuration 1 and 2 is observed. 

In the training dataset, there was one failure (RMSE > 1mm) for the lower MA 
interface of an artery, and no failures for the LI interface. In the test dataset, there 
were four lower and three upper MA interface failures for Configuration 1, three 
upper and three lower MA interface failures for configuration 2, and one failure for 
LI interface. The best settings of  𝛼1 and 𝛼2  shown in Table 1 for each 
configuration, and 𝛼3 = 1  were used for the RMSE calculations of MA interface in 
Table 3 and 5. The average RMSE between automated segmentation results and 
the ground truth, and inter-observer variability are shown in Table 3 for the MA 
interface of upper and lower contours in the training dataset and test dataset. As it 
is hard to obtain the ground truth for shadowed regions, Table 3 also shows the 
results when excluding shadowed regions. The average RMSE between automated 
segmentation and the ground truth over subjects in the training and test datasets 
for MA interface were 411±224 µm and 393±239 µm, respectively. The average 
RMSE between automated segmentation and the ground truth over subjects in the 
training and test datasets for LI interface were 362±192 µm and 388±200 µm, 
respectively. Table 4 shows the average RMSE between automated results and the 
ground truth for the LI interface in the training and test dataset. In general, 
average RMSE between automated MA and LI interface segmentation and manual 
ground truth is almost double of inter-observer variability apart from the results for 
the upper LI interface (see Table 3 and 4). Table 5 shows the results for the MA 
interface using Configuration 1 with the best settings and LI interface of bifurcation 
region. The RMSE of segmentation results of LI and MA interface for the lower wall 
of the bifurcation region, including shadow regions, are almost three times larger 
than the inter-observer variability.  

Figure 6 shows the comparison of the automated IM area with ground truth IM 
area in the training and test datasets. In the training dataset, automated IM area 
was found to be significantly correlated to manual ground truth IM area for upper 
(r=0.92, p<0.01) and lower (r=0.74, p<0.01) wall.  In the test dataset, automated 
IM area was found to be significantly correlated to manual ground truth for upper 
(r=0.73, p<0.01) and lower (r=0.71, p<0.01) wall. For IM area overlap between 
automated and ground truth, average Dice index (𝐷𝐼) was 68% for upper wall and 
70% for lower wall in the training dataset, and was 71% for upper wall and 68% 
for lower wall in the test dataset.  

An example of MA and LI segmentation is shown in Figure 7 for a single-branch 
artery and in Figure 8 for a bifurcated artery. 
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Table 1: The average root-mean-square-error for media-adventitia interface segmentation for a range 

of intra-curve (α1) smoothness and inter-curve (α2) smoothness 

RMSE (µm) 
Configuration1 

  

Configuration2 
Inter-curve smoothness (α2) Inter-curve smoothness (α2) 

0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25 

U
pp

er
 

In
tr

a-
cu

rv
e 

sm
oo

th
ne

ss
 (

α 1
) 0 583 502 505 502 502 500 737 734 737 729 733 731 

0.05 435 446 435 439 437 440 655 640 649 623 621 622 
0.1 482 480 486 478 479 465 549 487 485 488 462 452 
0.15 520 522 521 508 483 480 504 502 499 467 471 474 
0.2 554 550 541 538 513 515 534 530 517 499 496 499 
0.25 566 576 577 575 555 554 549 563 558 535 531 532 

  

Lo
w

er
 

In
tr

a-
cu

rv
e 

sm
oo

th
ne

ss
 (

α 1
) 0 542 537 538 541 540 539 

  

546 542 544 549 546 544 
0.05 457 453 447 451 448 450 457 452 446 451 447 449 
0.1 460 455 458 458 458 458 456 454 456 456 456 456 
0.15 388 393 395 395 413 414 390 395 397 397 416 417 
0.2 395 395 401 399 400 402 398 399 400 402 404 405 
0.25 404 411 416 418 421 423 407 415 421 421 424 427 

 
Table 2: Average RMSE between automated segmentation and ground truth for given factors (𝛼3) of 

the IMT penalty curve, using cost function of configuration1 

Automated vs. Ground Truth 
RMSE 
(µm) 

 weighting factor (α3) 

0.25 0.5 1 2 4 
Upper 627 604 435 446 473 
Lower 440 385 388 392 450 

Mean 534 495 411 419 462 

 
Table 3: Average RMSE between automated segmentation (A) and ground truth (G) for MA interface in 

the training and test datasets. IO: Interobserver variability. Z: Observer 1; D: Observer 2 

 

 

 

 

 
Table 4: Average RMSE between automated segmentation (A) and ground truth (G) for LI interface in 

the training and test datasets. IO: Interobserver variability. Z: Observer 1; D: Observer 2 

LI Interface RMSE include shadow exclude shadow 
(µm) Upper Lower Upper Lower 

Training 
Dataset 

A vs. G 338±187 386±197 280±126 338±187 
Z vs. D 275±114 239±115 249±105 338±188 

Test 
Dataset 

A vs. G 327±182 449±218 298±155 469±255 
Z vs. D 250±187 266±119 239±179 247±97 

MA 
Interface 

Config. RMSE include shadow exclude shadow  

  (µm) Upper Lower Upper Lower 

Training 
Dataset 

1 A vs. G 435±174 388±274 372±116 354±259 
2 A vs. G 452±145 390±276 399±91 356±262 
IO Z vs. D 242±123 253±192 219±112 174±27 

Test 
Dataset 

1 A vs. G 396±202 390±276 371±181 427±189 
2 A vs. G 446±215 430±192 429±215 427±190 
IO Z vs. D 210±105 258±163 204±103 242±154 
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Table 5: Average RMSE between automated segmentation (A) and ground truth (G) for MA and LI 
interface of bifurcation region. Z: Observer 1; D: Observer 2 

Bifurcated Arteries (n=7) 

 

RMSE include shadow exclude shadow 
(µm) Upper Lower Upper Lower 

MA 
A vs. G 386±208 606±233 378±211 437±162 
Z vs. D 250±164 233±129 227±148 211±109 

LI 
A vs. G 369±315 613±385 337±331 338±79 
Z vs. D 445±342 187±106 256±160 149±73 

 

Figure 6: Comparison of automated intima-media area with ground-truth intima media area (blue 
circles) for training dataset (a) and test dataset (b). Intima-media area for each observer is shown as 

red (D) and green (Z) asterisk. 

 

Figure 7: An example of automated MA (red line) and LI (green line) interface segmentations in the 
BMUS (left) and CEUS (right) epitomes. Manual segmentations of MA interface by two observers are 
shown in blue (D) and yellow (Z). The left and right borders of plaques are shown with light blue 
vertical lines based on Mannheim consensus (IMT>1.5mm).  
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Figure 8: An example of automated MA (red line) and LI (green line) interfaces segmentation for a 
bifurcated artery in BMUS (left) and CEUS (right) epitomes. Light blue vertical lines indicate the left and 
right border of plaque based on Mannheim consensus (IMT>1.5mm).  

5) Discussion 

We presented a carotid plaque segmentation method in simultaneously 
acquired BMUS and CEUS image sequences. The method is fully automatic and 
robust to noise, artifacts and echolucent plaques. In the literature, segmentation of 
arterial layers in carotid arteries without plaques in BMUS is well established. 
However, the accurate segmentation of arterial layers in carotid arteries with 
plaques presents many additional challenges. Therefore, IMT segmentation 
techniques are not applicable to carotid arteries with plaques.  In the case of 
echolucent plaques, which present the same intensity values as the lumen, it is 
impossible to make a clear delineation. These limitations were discussed in the 
work of Loizou et al. [8]. 

The combination of BMUS and CEUS allows the detection of artifacts and the 
segmentation of echolucent plaques. CEUS provides a clear definition of the 
arterial lumen. Despite the advantages brought by the combination of these 
modalities, the BMUS in simultaneous BMUS and CEUS possesses lower SNR 
compared to standard BMUS. This occurs due to the fact that a lower transmit 
signal power is used to avoid the disruption of the contrast agents in CEUS. To 
handle this issue, we employ nonrigid motion estimation and compensation to 
obtain an epitome image with improved SNR. As stated before, the methods of 
Hoogi et al. [19] and Zhang et.al. [21, 22] estimated adventitia wall position in 
CEUS based on the estimated original lumen position and thus outward growing of 
plaques with respect to the lumen was ignored. This might lead to over- or under-
estimation of plaque region and affect further IPN assessment. In our method, we 
overcome this difficulty by segmenting the media-adventitia interface from the 
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BMUS image. Another advantage of our method compared to other studies [9, 10, 
22] is that it does not require any user interaction. Furthermore, our method 
allows automatic multiple branch carotid detection while previous studies [25, 28, 
29] are limited to one branch (CCA) detection.  

Our automatic vessel detection only failed in two cases out of 48, due to 
shadowing and partial appearance of the jugular vein on top of the carotid artery. 
These two vessels were detected as a bifurcated artery, since the geometry was 
very close to that.  As seen in Table 1, 3, and 4, the results for Configuration 1 and 
2 are quite similar in both our training and test dataset. That means that including 
the lumen stenosis to define presence of plaque (configuration 2) does not give a 
noticeable improvement. As seen in Table 1, inter-curve smoothness does not have 
as much influence on the results as intra-curve smoothness. For evaluation of the 
weighting of the IMT penalty term, the weight 𝛼3 = 1 is shown to be optimal in the 
center of the given range of 𝛼3 values as seen in Table 2. The average RMSE 
increases with increase or decrease of the value of 𝛼3. The errors for MA interface 
detection in the training and test datasets are in the same order, about 400µm (~ 
4 pixels), and they are almost the double of the inter-observer variability (see 
Table 3). This might be partly explained by a systematic error between automated 
and manual segmentation as seen in Fig. 7. The automated method and manual 
observers seem to pick slightly different layers. The exclusion of shadow regions 
does not improve the results. The errors for the LI interface in the training and test 
datasets are in the same order and similar to the inter-observer variability after 
exclusion of shadow regions (see Table 4). As seen in Table 5, the segmentation 
results of MA and LI after exclusion of shadow regions in the bifurcation region are 
comparable with the segmentation results of MA and LI for the near and far wall of 
the CCA in Table 3 and 4. The average RMSE of MA and LI for the lower wall (far 
wall), including shadow regions, are almost 3 times higher than the interobserver 
variability. This is because of the shadow regions especially in the beginning and 
the end of bifurcation regions which introduce larger errors as there is no wall 
information in those regions.  

As seen in Figure 6a and 6b, comparison of automated IM area with manual 
ground truth IM area is scattered around the identity line ( 𝑦 = 𝑥) for the training 
and test datasets apart from a few outliers in the test dataset. We found significant 
correlation between automated IM area and manual ground truth IM area 
(p<0.01). We found the DI for area overlap similar to the study of Loizou et al. [8] 
for 4 snake methods (𝐷𝐼 𝜖 {67.6%, 67.7%, 69.3%, 66.6%}) and the study of 
Destrempes et al. [10] (𝐷𝐼 =  74.6%). Compared to plaque segmentation in CEUS, 
the accuracy of our method is in the same order as the method of Zhang et al. 
[21] that presented a mean distance error of 0.40±0.08 mm for the plaque 
segmentation in CEUS. Our method was evaluated in the training and test datasets 
separately. In all the datasets the accuracy is almost in the same order, testifying 
the method’s generalizability. One should keep in mind that the used image data 
and ground truth in these studies can be very different, so a detailed comparison 
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of results is not possible. Since our method is fully automated and reaches very 
similar results to earlier methods, we consider our method successful and accurate. 

As a limitation, the BMUS image obtained in simultaneous BMUS&CEUS has low 
SNR as lower signal power is used to avoid the disruption of the contrast agents in 
CEUS. To improve the SNR, we obtained the BMUS epitome image by performing 
temporal averaging. However, this might not be enough for some image 
sequences due to extensive noise and lack of tissue signal. Improvement on the 
BMUS image quality in simultaneous acquisition would enhance the performance of 
our method. For example, using plane wave ultrasound imaging instead of 
conventional linear line scan could provide an improved SNR BMUS. 

6) Conclusion 

In conclusion, our method performs accurate and fully automatic plaque 
segmentation with multibranch vessel detection. Using simultaneous BMUS&CEUS 
provides clear advantages in segmentation of carotid plaques rather than the sole 
use of BMUS or CEUS. The use of the combined imaging modalities allows the 
suppression of noise, detection and suppression of artifacts, wall information for 
plaque segmentation in CEUS images, and detection of echolucent plaques in 
BMUS images. This plaque segmentation method is a crucial step for objective and 
automatic assessment of plaque composition such as IPN quantification. As far as 
we know, this is the first study exploiting combined information from BMUS&CEUS 
to automatically segment carotid plaques. 
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Chapter 9 
 

Assessment of Subclinical Atherosclerosis and Intraplaque 
Neovascularization using Quantitative Contrast-Enhanced Ultrasound in 

Patients with Familial Hypercholesterolemia 
 
 
 
Objective Patients with heterozygous familial hypercholesterolemia (FH) are at 
severely increased risk of developing atherosclerosis at relatively young age. The 
aim of this study was to assess the prevalence of subclinical atherosclerosis and 
intraplaque neovascularization (IPN) in patients with FH, using contrast-enhanced 
ultrasound (CEUS) of the carotid arteries. 
Methods The study population consisted of 69 consecutive asymptomatic patients 
with FH (48% women, mean age 55 ± 8 years). All patients underwent carotid 
ultrasound to evaluate the presence and severity of carotid atherosclerosis, and 
CEUS to assess IPN. IPN was assessed in near wall plaques using a semi-
quantitative grading scale and semi-automated quantification software.  
Results Carotid plaque was present in 62 patients (90%). A total of 49 patients 
had plaques that were eligible for the assessment of IPN: 7 patients (14%) had no 
IPN, 39 (80%) had mild to moderate IPN and 3 (6%) had severe IPN. Semi-
automated quantification software showed no statistical significant difference in 
the amount of IPN between patients >50 years and patients ≤50 years and 
between patients with a defective low-density lipoprotein receptor (LDLR) mutation 
and patients with a negative LDLR mutation. Plaques with irregular or ulcerated 
surface had significantly more IPN than plaques with a smooth surface (p<0.05). 
Conclusion Carotid ultrasound demonstrated atherosclerotic plaque in 90% of 
asymptomatic patients with FH without known atherosclerosis. IPN assessed with 
CEUS, was present in 86% of these patients. Irregular and ulcerated plaques 
exhibited significantly more IPN than plaques with a smooth surface. 
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INTRODUCTION 

Heterozygous familial hypercholesterolemia (FH) is the most prevalent 
autosomal dominant inherited disorder of the lipoprotein metabolism, resulting in 
increased LDL cholesterol levels. Patients with FH are at severely increased risk of 
developing atherosclerosis at relatively young age. The introduction of statin 
treatment has partly reduced the risk of myocardial infarction and stroke in 
patients with FH [1–4]. Still, patients with FH receiving long term statin treatment 
may have a substantial amount of subclinical atherosclerosis [5]. There is a large 
variation in the extent and severity of atherosclerotic disease, and therefore 
presymptomatic evaluation of atherosclerosis may be especially useful in patients 
with FH. 

Carotid ultrasound is a widely available, low-cost and free from ionizing 
radiation imaging modality for the evaluation of (subclinical) atherosclerosis. 
Previous studies have demonstrated that ultrasound assessment of carotid intima-
media thickness and plaque provides valuable information for monitoring the 
response to treatment and for risk-stratification in patients with FH [6,7]. Contrast-
enhanced ultrasound (CEUS) is an advanced form of ultrasound imaging using a 
microbubble contrast agent to provide improved detection of plaques and can be 
used to visualize intraplaque neovascularization (IPN) [8–10]. Recent data indicate 
that IPN is a marker of plaque instability. A recent pathology study of unstable 
carotid lesions demonstrated that IPN and intraplaque haemorrhage are predictors 
of rupture of atherosclerotic plaques [11]. This confirms the suggestion that these 
histological characteristics are considered to be components of the vulnerable 
atherosclerotic plaque [12]. Information on IPN in patients with FH is at present 
not available, but may be relevant for a better understanding of the 
pathophysiology of atherosclerosis, development of new treatment approaches, 
and risk stratification. The aim of this study was therefore to assess the prevalence 
of subclinical atherosclerosis and IPN in a consecutive group of patients with FH. 
Carotid ultrasound was used to evaluate the presence and severity of carotid 
atherosclerosis, and CEUS was used to assess IPN. 
 
METHODS 
Patient population and study protocol  

The study population consisted of 69 asymptomatic patients with heterozygous 
FH. Inclusion criteria were: heterozygous FH, and age ≥18 years. Exclusion criteria 
were: known atherosclerosis, contra-indications for the use of ultrasound contrast 
agent, such as unstable angina, acute cardiac failure, acute endocarditis, known 
right-to-left shunts and known allergy to microbubble contrast agents. FH was 
diagnosed according to the criteria of van Aalst-Cohen [13], which can be 
summarized as either the presence of a documented LDL-receptor mutation, or an 
LDL-cholesterol level above the 95th percentile for gender and age in combination 
with the presence of typical tendon xanthomas in the patient or in a first degree 
relative, or an LDL-cholesterol level above the 95th percentile for gender and age 
in a first degree relative or proven coronary artery disease in the patient or in a 
first degree relative under the age of 60. Genetic screening for the presence of 
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mutations in the low-density lipoprotein receptor (LDLR) gene, apolipoprotein B 
(APOB) gene and proprotein convertase subtilisin/kexin gene was routinely 
performed for all patients. Carotid ultrasound and CEUS were performed to 
investigate the prevalence of subclinical atherosclerosis and the density of IPN. 
The study protocol was approved by the local ethical committee and all patients 
provided informed consent. A single carotid ultrasound and CEUS examination 
takes approximately 30 minutes. 

 
Figure 1: Example of side-by-side contrast enhanced ultrasound (CEUS) examination. * = common 
carotid artery, † = carotid bulb. Panel A: CEUS clip of the left carotid artery shortly after contrast 
injection. Panel B: corresponding B-mode clip of the left carotid artery recorded simultaneously with the 
CEUS clip. Panel C: A CEUS clip of the same carotid artery recorded a few seconds following contrast 
administration. The arrows indicate contrast-enhancement in a small atherosclerotic plaque in the 
carotid bulb. Panel D: corresponding B-mode clip of the left carotid artery recorded simultaneously with 
the CEUS clip. 
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Figure 2: Semi-automated quantification of IPN in patients with FH. The examples shown are from 3 
different patients with FH. Side-by-side contrast-enhanced ultrasound clips were used to quantify the 
amount of contrast enhancement in the atherosclerotic plaques. Yellow regions of interest: 
atherosclerotic plaque. Red regions of interest: lumen, used to adjust for lumen intensity. Blue regions 
of interest: background, used to adjust for background intensity. Supplemental files A-C contain movie 
files of these examples. 
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Carotid ultrasound acquisition  

Carotid ultrasound including color Doppler, and CEUS were performed with a 
Philips iU-22 ultrasound system (Philips Medical Systems, Bothell, USA), equipped 
with a L9-3 transducer. For standard carotid ultrasound a frequency of 7 MHz was 
used. Image acquisition was performed using a scanning protocol according to the 
American Society of Echocardiography consensus [14]. In short, both left and right 
carotid arteries were examined with the patient in a supine position with the head 
turned at a 45° angle to the contralateral side. The left and the right common 
carotid artery (CCA), carotid bifurcation (BIF), internal carotid artery (ICA), 
external carotid artery (ECA), and vertebral arteries were imaged with B-mode 
ultrasound, color Doppler and pulse-wave Doppler. All anatomical sites were 
examined from different angles of view. Gain and imaging depth were adjusted per 
patient to obtain optimal ultrasound images. Each side was extensively evaluated 
for the presence of plaques. 

CEUS was performed using intravenous administration of SonoVue™ contrast 
agent (Bracco S.p.A., Milan, Italy). For CEUS a frequency of 3.5 MHz was used. 
The contrast mode of the ultrasound system, using amplitude modulation, a 
minimum frame-rate of 13/second and a mechanical index of 0.06, was used to 
optimize the CEUS examination. CEUS clips were recorded with a dual display 
mode for simultaneous B-mode ultrasound and CEUS view. The ultrasound 
contrast agent was injected in boluses of 0.5 ml. Each contrast agent bolus was 
followed by a saline flush using 2.0 ml NaCl 0.9% solution. Bolus injections were 
repeated when necessary to a maximum dose of 9.6 ml, depending on the number 
of CEUS cineclips that were required for complete imaging of the carotid arteries. 
Both carotid arteries were examined, focusing on the presence of plaques. If 
plaques were present, the plaque was visualized in the longitudinal axis of the 
carotid artery. The longitudinal image plane with visually the largest plaque area 
was used to record cineclips. Still frames and cineclips with a maximum of 20 
seconds were digitally stored.  
 
Carotid ultrasound analysis  

Carotid ultrasound studies were reviewed offline. Carotid plaque screening was 
performed using the standard carotid ultrasound images, color Doppler, and CEUS. 
Atherosclerotic plaque was defined as a focal structure encroaching into the lumen 
by at least 0.5 mm or 50% of the surrounding carotid intima-media thickness, or 
demonstrates a thickness >1.5 mm as measured from the media-adventitia 
interface to the intima-lumen interface [15]. The presence of plaque and maximum 
plaque thickness was recorded for each carotid segment. All analyses were 
performed at the near wall of the carotid artery. For intima-media thickness 
measurements this will give less reproducible results [16] but since the plaque 
thickness as defined above is at minimum the double of the resolution of the 
ultrasound this will not be the case for the current plaque measurements. 
Maximum plaque thickness was measured perpendicular to the longitudinal axis of 
the carotid artery. The carotid segments were defined as CCA, BIF, ICA and ECA. 
Additionally for each segment with signs of atherosclerosis the presence of 
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calcification, wall irregularities and/or ulceration were recorded. Plaque ulceration 
was defined as a disruption in the plaque-lumen border ≥1×1mm. 

IPN was assessed using CEUS clips. To minimize the contribution of pseudo-
enhancement to the assessment of IPN, only near wall plaques were used. Clips 
without atherosclerotic plaques or with plaques that could have been affected by 
pseudo-enhancement were not eligible for the assessment of IPN. Pseudo-
enhancement is an artifact that is mainly seen in the far-wall of the carotid artery 
and mimicks contrast-enhancement which may lead to overestimation of IPN 
[17,18]. In general that means that plaques below contrast pools (e.g. the carotid 
lumen or jugular lumen) were excluded from assessment of IPN. The amount of 
IPN was assessed using a semi-quantitative grading scale and semi-automated 
quantification software. For each carotid artery with ≥1 atherosclerotic plaque on 
the near wall of the carotid artery, the clip with visually the highest amount of 
contrast enhancement was selected for analysis (Figure 1). In patients with 
bilateral plaques, the thicker plaque was selected for patient based analysis. Visual 
assessment of IPN was performed using a 3 point grading scale as 0= no IPN, 1= 
mild to moderate IPN and 2= severe IPN. Semi-automated quantification of IPN 
was performed using dedicated software (Figure 2 and supplemental files A & B). 
The software was based on a simple and user-friendly user interface created using 
MevisLab (MeVis Medical Solutions AG and Fraunhofer MEVIS, Bremen, Germany). 
DICOM files of side-by-side B-Mode and contrast mode ultrasound clips were 
imported in the software to assess different plaque perfusion features after 
selection of the time-frame. Several plaque perfusion features were calculated 
after motion compensation of regions of interest. The calculations were based on 
maximum intensity projection images and time intensity curves. Features that were 
calculated included IPN surface area in mm2 (IPN-SA), IPN surface area ratio in % 
(IPN-SA ratio), mean percentage of the plaque filled with contrast over time 
(MPCP), the plaque mean intensity (PMI), and plaque area. Details of the 
quantification features have been described previously [19].  

 
Statistical analysis  

Statistical analysis was performed using SPSS 20.0 for Windows (SPSS, 
Chicago, USA). Continuous variables are presented as mean (SD) or median [Inter-
quartile range]. Categorical variables are expressed as number (percentage). 
Mann-Whitney U test was performed to compare the output of the semi-automated 
software in selected patient groups. Spearman’s rank correlation coefficients were 
calculated to test for correlations between IPN features and continuous variables. 
A p value <0.05 was considered to indicate a statistically significant difference. 
 
RESULTS 
Patient characteristics 

The clinical characteristics of the study population are summarized in Table 1. 
Sixty-six patients (96%) received statin treatment for a mean duration of 11 ± 8 
years. Due to side effects of the statin medication, 28 patients (41%) did not 
receive a maximum dose or no statin at all. In 63 patients (91%) results of the 
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genetic screening for the presence of mutations in the LDLR gene were available. A 
total of 27 patients (39%) had LDLR-negative mutations. A total of 19 patients 
(28%) had LDLR-defective or APOB mutations which in general lead to a milder 
phenotype (Table 2). The remaining 17 patients (25%) had unidentified mutations. 
 
Table 1: Patient characteristics (n=69) 

   Male gender 36 (52%) 

   Age, years 55 ± 8 

   Current or former smoker 30 (43%) 

   Hypertension 11 (16%) 

   Diabetes mellitus 2 (3%) 

   Body mass index (kg/m2) 26 ± 4 

   Identified genetic mutation causing FH 46 (67%) 

   Tendon xanthomas 18 (26%) 

   Arcus cornealis 19 (28%) 

   Highest total cholesterol without therapy, mmol/L 8.6± 2.1 

   Current total cholesterol, mmol/L  5.6 ± 1.9 

   LDL, mmol/L 3.7 ± 1.7 

   HDL, mmol/L 1.5 ± 0.4 

   Triglycerides, mmol/L 1.3 ± 0.7 

   Statin use 66 (96%) 

   Ezetimibe use 38 (57%) 

   Age of first statin use, years 44 ± 10 

   Duration of statin use, years 11 ± 8 
Data are presented as number of patients (percentage) or as mean ± standard deviation. 
 
Carotid ultrasound results 

Using the standard ultrasound clips, carotid plaque was detected in 157 of 552 
carotid segments (28%). The mean plaque thickness was 2.4 ± 0.8mm. A total of 
96 carotid segments (61%) with plaque exhibited signs of calcification. An irregular 
plaque surface was present in 46 carotid segments with plaque (29%). Fourteen of 
the carotid segments with atherosclerotic plaques (9%) had an ulcerated plaque 
surface. In 89 carotid arteries (64%) ≥1 atherosclerotic plaque was detected.  
 
CEUS results 

A total of 68 carotid arteries (49%) were eligible for the assessment of IPN. The 
remaining 70 carotid arteries (51%) had plaques that were affected by the 
pseudo-enhancement artifact (n=19, 14%) or had no atherosclerotic plaque 
(n=51, 37%). Visual assessment showed no IPN in 7 carotid arteries (10%), mild 
to moderate IPN in 58 carotid arteries (85%) and severe IPN in 3 carotid arteries 
(4%).The output of the semi-automated IPN quantification software is summarized 
in Table 2. The median number of frames used for IPN quantification was 255 
(IQR=148). The selected time-frames had a median duration of 11 seconds 
(IQR=7). Plaques with an irregular or ulcerated surface (n=18, 27%) had a 



158 | Assessment of subclinical atherosclerosis and intraplaque neovascularization 
 
significantly higher visual IPN score (p<0.05) and had significantly more IPN as 
assessed by semi-automated quantitative software (p<0.05) (Figure 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: IPN in plaques with a smooth surface compared to plaques with an irregular/ulcerated 
surface. Semi-automated quantification software calculated the surface area enhanced during CEUS 
examinations. Plaques with an irregular or ulcerated surface had significantly more IPN than plaques 
with a smooth surface (p<0.05). 
 
Table 2: Quantitative assessment of intraplaque neovascularization (n=68 carotid arteries) 

IPN-SA = Intraplaque neovascularization surface area, IQR = Inter quartile range, MPCP = Percentage 
of the plaque filled with contrast over time, PMI = Plaque mean intensity. 
 
Patient-based carotid ultrasound and CEUS results 

A total of 62 patients (90%) exhibited carotid atherosclerotic plaque. In these 
patients the median number of carotid segments involved was 2 (IQR: 1-4). In 49 
patients (71%) the plaques were eligible for the assessment of IPN. Of these, a 
total of 19 patients (39%) had bilateral plaques, 30 patients (61%) had unilateral 
plaques. Visual assessment showed no IPN in 7 patients (14%), mild to moderate 
IPN in 39 patients (80%) and severe IPN in 3 patients (6%).The quantitative 
evaluation of IPN is summarized in Table 3. No statistically significant differences in 

IPN features  
 Median IQR Range 
IPN -SA (mm2) 1.9 2.1 11.1 
IPN -SA ratio (%) 48 55 98 
MPCP (%) 26 40 97 
PMI  3.0 4.9 20.0 
Plaque area (mm2) 4.0 3.9 29.1 
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the amount of IPN were detected between patients aged ≤50 years and patients 
aged >50 years (p=0.072). In addition, correlations between IPN features and 
patients age were not statistically significant (p>0.14). Comparison of the amount 
of IPN between patients with and without LDLR rest function (i.e. the residual 
capacity of the genetically mutated LDLR to bind LDL) showed no statistically 
significant difference between the groups. The current total cholesterol levels and 
the highest total cholesterol level without medical therapy showed no statistically 
significant correlations with the IPN features (p>0.5) 
 
Table 3 : Quantitative assessment of intraplaque neovascularization (n=49 patients) 

IPN-SA = Intraplaque neovascularization surface area, IQR = Inter quartile range, MPCP = Percentage 
of the plaque filled with contrast over time, PMI = Plaque mean intensity. 
 
DISCUSSION 

In the present study the prevalence of subclinical atherosclerosis and IPN was 
assessed using standard ultrasound and CEUS in a consecutive group of patients 
with FH. All patients were asymptomatic and had no known atherosclerosis. 
Carotid plaque was present in 90% of these patients despite the entire study 
population receiving long-term statin treatment. The majority of the patients 
(86%) had ≥1 plaques with IPN. Semi-automated quantification software was used 
to precisely assess the amount of contrast-enhancement in the plaques. 
Atherosclerotic plaques with an irregular or ulcerated surface had significantly 
more IPN than plaques with a smooth surface (p<0.05). 

Limited data is available on the prevalence of carotid atherosclerosis in 
asymptomatic patients with FH and information on IPN in these patients is 
currently lacking. It has become clear that IPN is a marker of the instable or 
vulnerable atherosclerotic plaque [11,20]. The intraplaque neovessels are probably 
formed to meet the increased metabolic demands of the developing atherosclerotic 
plaque. However, due to their poor structural integrity the intraplaque neovessels 
may serve a pathologic role [21]. These microvessels are immature thin-walled 
vessels that may leak lipids, glucose and red blood cells which attracts 
macrophages and may lead to progression into a more advanced plaque type [22]. 
Plaques with a high IPN density are consequently at an increased risk of 
intraplaque hemorrhage and plaque rupture which may lead to cerebrovascular 
events [23]. Information on IPN may be particularly relevant in patients with FH, 
for a better understanding of the pathophysiology and progression of 
atherosclerosis, development of new treatment approaches, and risk stratification. 

Previous studies have reported on the prevalence of plaque and IPN in patients 
without FH. Staub et al. [24] used CEUS to study the prevalence of IPN in 159 
patients (61% men, age 64 ± 11 years) who underwent carotid ultrasound for a 

IPN features  
 Median IQR Range 
IPN -SA (mm2) 2.0 2.3 11.1 
IPN -SA ratio (%) 45 57 98 
MPCP (%) 22 41 97 
PMI  2.6 5.0 20.0 
Plaque area (mm2) 4.3 4.1 29.2 
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clinical indication. Established cardiovascular disease was documented in 61% of 
the patients. Standard ultrasound and CEUS demonstrated ≥1 plaques in 111 
(76%) patients; the maximum plaque thickness was 2.8 ± 0.8 mm. CEUS 
demonstrated IPN in 54% of the patients. Patients with IPN more frequently had a 
history of cardiovascular disease as compared to patients without IPN [24]. Xiong 
et al. [25] studied IPN with CEUS in 104 patients (80% men, age 64 ± 9 years) 
who underwent carotid ultrasound for a clinical indication and had ≥1 plaque 
thicker than 2.0 mm. A relatively large proportion (34%) of the patients were 
symptomatic (i.e. had a previous transient ischemic attack and/or stroke). Per 
inclusion criterion, all patients had a carotid plaque. IPN was present in 80% of the 
symptomatic patients, and in 30% of the asymptomatic patients. The authors 
concluded that symptomatic patients had more intense contrast enhancement in 
the plaque than asymptomatic patients suggesting that CEUS may be used for 
plaque risk stratification [25].  

In comparison to these 2 previous studies, the present study included 
asymptomatic patients with heterozygous FH, without known atherosclerosis. The 
patients had no clinical indication for carotid ultrasound, and were asked to 
participate in this research project. The current study included a higher proportion 
of women (48%) than in the previous studies [24,25]. Additionally, the mean age 
of our patients was substantially lower (55 ± 8 years), and nearly all patients 
received statin therapy (96%). Despite this, the mean plaque thickness was 
comparable with the previously reported findings. The patients with FH more 
frequently exhibited IPN as compared with the 2 previous reports. This finding 
suggests that patients with FH exhibit more vascularized atheroslerotic plaques, 
which may be of the vulnerable plaque type. This is supported by the fact that 
irregular and ulcerated plaques exhibited more IPN. In this study dedicated 
quantification software was used to accurately assess the amount of IPN. 
Previously, Xiong et al. [25] used a semi-automated quantitative scoring system for 
IPN, but that method lacked a motion compensation tool to adjust for pulsatility of 
the carotid artery and motion due to breathing of the patient [25]. The semi-
automated quantification software used in this study was equiped with motion 
compensation tools and provided multiple features on contrast-enhancement of the 
atherosclerotic plaques. This allows a more accurate evaluation of IPN, and may be 
used to monitor changes in IPN density over time or following treatment. 

The current findings are in accordance with clinical observations that patients 
with FH are at severely increased risk of developing symptomatic atherosclerosis at 
relatively young age. Statin treatment significantly reduces morbidity and mortality 
in these patients. The benificial effect of statin therapy is perhaps not only caused 
by the inhibition of cholesterol synthesis in the liver, but may also have a 
stabilizing effect on atherosclerotic plaques. In animal models of atherosclerosis, 
statin treatment has been shown to inhibit IPN [26]: 14 pigs were randomized to a 
normal diet (n=5), a high cholesterol (HC) diet (n= 5) or a HC diet with 
simvastatin (n=4). After 12 weeks, the animals were sacrificed and micro-CT 
demonstrated an increased density of vasa vasorum in coronary specimens of 
animals on a HC diet whereas animals on a HC diet and statin therapy had a lower 
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density of vasa-vasorum. A recent study in 28 patients (82% male, mean age 55 ± 
6 years) with coronary and/or carotid atherosclerosis has reported a similar effect 
of statin treatment [27]. Dynamic contrast-enhanced magnetic resonance imaging 
of the carotid arteries demonstrated a significant reduction of adventitial vasa 
vasorum signal after one year of statin treatment. Efforts to develop novel 
treatment strategies to reduce progression of atherosclerosis and inhibit IPN may 
have substantial clinical benefits. 

This study has limitations. First, the study population was relatively small. 
Further studies are needed to confirm the findings in larger populations. Second, 
no age and gender matched control subjects were available to compare the 
amount of IPN between patients with FH and patients without FH. Future studies 
should aim to investigate whether there are difference in the amount of IPN in 
patients with FH and patients without FH. Third, in the comparison between age 
groups, the cut-off value of 50 year was chosen arbitrary without scientific 
arguments. A different cut-off value to divide the patients in age groups could 
possibly lead to different results. Fourth, prospective follow-up studies are needed 
to evaluate the prognostic implications of carotid plaque and carotid IPN in patients 
with FH. Finally, this study did not investigate the prevalence and density of 
adventitial microvascularization. Future studies should aim to investigate this topic 
in patients with FH. 
 
CONCLUSION 

Carotid ultrasound demonstrated atherosclerotic plaque in 90% of 
asymptomatic patients with FH without known atherosclerosis. IPN assessed with 
CEUS, was present in 86% of these patients. Irregular and ulcerated plaques 
exhibited significantly more IPN than plaques with a smooth surface. 
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10. Discussion and Conclusion 

10.1 Challenges 

Several histo-pathological studies have presented intraplaque 
neovascularization (IPN) as an important biomarker for progressive atherosclerotic 
disease and plaque vulnerability [1, 2]. As IPN can be detected by contrast 
enhanced ultrasound (CEUS), quantitative imaging biomarkers based on CEUS may 
allow early prediction of plaque at risk of rupture and thus prevention of future 
cardiovascular events such as stroke. So far, subjective and tedious visual IPN 
scoring on CEUS clips has been used to assess IPN, as quantification tools for IPN 
are scarce.  

Currently available commercial tools for contrast quantification, e.g. QLAB ROI 
quantification tool (Philips Medical Systems, Bothell, USA) and VueBox (Bracco 
Suisse SA, Geneva, Switzerland), are not suitable for quantitative analysis of IPN. 
These commercial quantification tools have been developed mainly for time 
intensity curve analysis (TIC) of large organs such as heart, liver and prostate, not 
for plaques.  Some IPN quantification approaches [3-6] have been reported but 
they suffer from a number of limitations. In some studies [3, 4], plaque 
enhancement was analyzed by use of a TIC. However, it may be questioned 
whether common TIC analysis as applied in large well-perfused organs is 
applicable to quantification of microvessels in plaques. Plaques are very small and 
intermittently perfused. Therefore, the perfusion characteristics of plaques are 
quite different from those of large organs. For these reasons, it is hard to obtain 
bolus kinetic parameters from TIC for plaque. Furthermore, the previously reported 
IPN methods used no or imperfect motion compensation. Plaques are also moving 
substantially due to pulsation, breathing, or patient motion. In addition, plaques 
are directly adjacent to the lumen and saturation artifacts can be present close by. 
Therefore, an accurate motion compensation of the plaque is essential for reliable 
IPN quantification. Especially, it is vital for TIC analysis to prevent contamination of 
the plaque region of interest (ROI) by contrast from the lumen and artifacts. As 
another limitation, the ROI for plaques needs to be delineated manually in all 
reported IPN methods and commercial tools. However, this is a tedious work for a 
physician and will cause subjectivity in IPN analysis. 

 
Many previous studies performed TIC analysis on carotid plaques located on 

the far wall. However, it is not possible to reliably analyze atherosclerotic plaques 
that are located on the far wall because of the so-called pseudo-enhancement 
artifact [7, 8]. The contrast enhancement in the far wall plaques will show a similar 
pattern as the lumen and perfusion will be erroneously detected or overestimated 
due to this artifact. 
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10.2 Summary 
 

In this thesis work, we avoided the known limitations of IPN quantification 
methods reported in previous studies. We developed specialized IPN analysis tools 
for carotid CEUS image sequences: motion compensation tools tailored for plaques 
(Chapter 2 and 7), detection and tracking of individual contrast spots within a 
plaque ROI to detect microvasculature paths (Chapter 3), motion compensated 
TIC perfusion analysis, time integrated parametric images of plaque perfusion such 
as maximum intensity projection (MIP) (Chapter 4),  segmentation of individual 
contrast spots based on statistical models of intensity distributions (Chapter 5), 
and their time integration to quantify the area of neovascularization. From these 
perfusion and structure analyses, several quantification parameters were derived to 
estimate the degree of IPN of carotid plaques. The proposed IPN analyses were 
tested on several patient datasets. The derived parameters were compared to 
visual scores of IPN. The purpose of this study was to find the parameters which 
match significantly to the visual consensus scores, to replace subjective visual 
scoring and provide an objective quantitative IPN assessment in CEUS. 
Furthermore, we developed a customized software package called Carotid 
Intraplaque Neovascularization Software (CINQS) intended for clinical researchers, 
which includes all developed IPN quantification tools (Chapter 6). We also 
developed a novel carotid lumen and plaque segmentation method in combined B-
mode ultrasound (BMUS) and CEUS images to fully automate IPN quantification 
(Chapter 7-8). In Chapter 9, we describe a clinical study, assessment of IPN in 
patients with familial hypercholesterolemia, using the CINQS (Chapter 6) and 
quantification tools described in Chapters 3-5. 

 
10.3  Discussion of Contribution 

10.3.1 Motion compensation (Rigid+Nonrigid)  

Carotid images exhibit considerable motion such as breathing, pulsation, probe or 
patient motion. For accurate quantification of IPN, motion compensation is a 
prerequisite step. In this thesis work, we developed rigid and nonrigid motion 
compensation methods tailored for carotid plaques. In Chapter 2, we introduced 
a rigid registration of a local region based on block matching [9] to follow the 
plaque ROI. However, this technique is sensitive to sudden disturbances and has 
the tendency to lose tracking when there are artifacts, out-of-plane motion, 
reduced or noisy correlation values. To improve the performance of block matching 
techniques and avoid sudden disturbances, we combined this technique with 
multidimensional dynamic programming (MDP) in Chapter 2 [10]. MDP and block 
matching results were evaluated in-vitro by a phantom and in-vivo by comparing to 
manual tracking of three experts for multibeat image sequences of 11 plaques. The 
MDP results showed that the method is sufficiently accurate and successful for in-
vivo application. MDP combined with block matching decreased the failure rate of 
tracking plaques by a factor of 4 compared to block matching. Yet, our rigid 
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technique only compensates for translational movements but not for rotation and 
deformation, and also gives only a local motion estimate. To estimate and 
compensate the complex motion in the complete BMUS and CEUS images, we 
proposed a nonrigid motion estimation method in Chapter 7 [11]. This method 
generates a detailed nonrigid deformation field for the complete BMUS and CEUS 
images. This not only enables us to track the plaques but also to improve image 
quality by time averaging of the registered image sequences. This provides 
“epitome” images of improved quality that provides the basis for automated 
segmentation. The nonrigid motion compensation was validated by comparing 
displacements with manual annotations of two independent observers in 11 carotid 
arteries. The nonrigid motion compensation results are comparable with 
interobserver variability and local results of MDP.  Motion compensation is used as 
a preprocessing step for all developed IPN quantification methods. 
 
10.3.2 New IPN quantification methods 

We developed several specialized IPN quantification methods for carotid 
plaques in this thesis work. In Chapter 4  [12], we first investigated plaque 
perfusion with classical TIC analysis, and derived parameters from motion 
compensated TIC of plaques. Furthermore, we identified the perfused regions 
within the plaque by time integrated parametric images such as MIP. The results of 
TIC and MIP were verified with a synthetic image sequence with a known motion 
pattern and known intensities. From the MIP image, we obtained absolute and 
relative IPN area by applying an intensity threshold. However, if there are artifacts 
within the plaque ROI, the MIP image will include them as well. This will cause 
overestimation of IPN area. To avoid this, we analyzed the structure of the 
microvasculature network and applied statistical contrast spot segmentation 
methods. In Chapter 3 [13], we obtained microvascular network paths by 
detection and tracking of individual contrast spots. We also discriminated between 
stationary and moving objects based on their displacement over time. However, 
microvessels that cross the imaging plane almost perpendicularly might be 
considered as stationary objects or artifacts and this would lead to underestimation 
of IPN. The results of this method were validated with manual tracking and visual 
classification of contrast spots and the success rate of the method for classification 
of artifacts and vessels was 75%. We developed a statistical contrast spot 
segmentation method (Chapter 5) [14] that classifies intensities within the plaque 
ROI into 4 classes: background, intermediate, contrast spot and artifact class. 
Classifying intensities in each time frame and applying spatiotemporal analysis 
handles several issues raised by other methods and allows accurate quantification 
of IPN. This method was shown to be more robust to artifacts. The results of this 
method were validated with manual segmentation of contrast spots in 10 plaques 
and an average Dice similarity index of 0.73 was obtained. 

10.3.3 Fully automated carotid lumen and plaque segmentation 
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Carotid plaque segmentation in B-mode Ultrasound (BMUS) and CEUS is crucial 
to assess plaque morphology and composition, which are linked to plaque 
vulnerability. Segmentation in BMUS is challenging due to noise, artifacts, and 
echolucent plaques. CEUS allows a better delineation of the lumen but contains 
artifacts and lacks tissue information. We developed a method which exploits the 
combined information from simultaneously acquired BMUS&CEUS images to 
overcome the difficulties of the separate use of BMUS and CEUS.  First, we obtain 
the epitome images by taking the average of registered BMUS and CEUS images 
over time to improve the signal-to-noise ratio (SNR) (Chapter 7). Second, we 
segment the lumen-intima (LI) interface (inner layer of plaques) from the CEUS 
epitome, using the joint intensity histogram of BMUS and CEUS epitomes and 
graph based segmentation (Chapter 7). Third, we segment the media-adventitia 
(MA) interface from the BMUS epitome by using multidimensional dynamic 
programming for parallel curves (Chapter 8). The results of the automated lumen 
(n=19 carotids) and plaque segmentations (n=48) were compared to manual 
segmentations of two independent observers in the epitome images. The 
differences between automated segmentation results and manual ground truth 
were comparable with interobserver variability of manual ground truth. Our 
method also allows studying the geometry of the artery over time by transforming 
the detected LI and MA interfaces from the epitome images to each time frame, 
since we obtained the deformation field of each time frame by nonrigid motion 
estimation. Furthermore, our segmentation method allows several applications 
such as fully automated IPN quantification, arterial distensibility, and plaque 
characterization. To the best of our knowledge, this is the first method segmenting 
carotid lumen and plaques in combined BMUS and CEUS images.  

10.3.4 Dedicated software package for carotid plaque neovascularization 

As explained above, currently available commercial tools for contrast 
quantification are not suitable for quantitative analysis of carotid IPN due to 
substantial motion of the carotid artery, artifacts, and intermittent perfusion of 
plaques. TICs of atherosclerotic plaques are characterized by a number of short 
peaks corresponding to the passage of single (or clusters of) contrast bubbles and 
do not resemble the typical massive bolus passage or flash/replenishment curves 
seen in the lumen of an artery or in the perfusion pattern of large organs or 
tumors. Therefore, we developed a dedicated software package that includes all 
the developed carotid IPN quantification tools, called Carotid Intraplaque 
Neovascularization Quantification Software (CINQS) (Chapter 6) [15]. Numerical 
and graphical outputs of CINQS were tested on synthetic image sequences with 
known gray values for each pixel and validated against the pre-calculated 
numerical results for these sequences. CINQS is designed as a special-purpose 
platform for IPN quantification tools for carotid plaques. CINQS replaces 
subjective, qualitative and tedious visual IPN assessment with reproducible 
quantitative IPN parameters. It allows selection of suitable parameters for 
measuring the degree of IPN by enabling comparison of existing and new IPN 
parameters with a reference (e.g. visual IPN scoring or histology). CINQS was 
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developed in a modular and extensible way and provides a user-friendly tool for 
analyzing carotid IPN in CEUS. CINQS could also be used to check changes in 
neovascularization over time, and to check the outcome of novel therapies on 
neovascularization. To the best of our knowledge, this is the first software package 
dedicated to carotid IPN quantification. 

In Chapter 9, a clinical study, assessment of IPN in patients with familial 
hypercholesterolemia (FH), using the CINQS is presented. CINQS is used to 
precisely assess the amount of contrast enhancement in atherosclerotic plaques. It 
was shown that plaques with an irregular or ulcerated surface had significantly 
more IPN than plaques with a smooth surface. 

 
10.4  Limitations of Current Study 

10.4.1 2D imaging and out-of-plane motion 

The main limitation of this study is formed by the use of 2D imaging. In all 
studies, we used single longitudinal cross sections of the carotid artery. This limits 
the detection of IPN to this cross section. Slice thickness of the Philips linear array 
L9-3 probe used in this study is about 2 mm. This indicates that detection of IPN is 
limited to a narrow volume slice plane. Only microvessels in the plane or crossing 
the plane are detected. This makes it hard to quantify true IPN degree; the 
detected IPN degree is assumed to be proportional to the true IPN degree of the 
whole plaque, but from histological studies it is known that distribution of 
microvessels in plaques is highly inhomogeneous [1].  

Out-of-plane motion caused by 2D imaging is another limitation of this study. 
Out-of plane motion will interfere with the tracking of microbubbles and image 
registration. It is not possible to compensate out-of-plane motion, as the in-plane 
information is lost. Therefore, out-of-plane motion should be small with respect to 
the slice thickness to assure reliable compensation of in-plane motion and accurate 
IPN quantification. 

 
10.4.2 Pseudo-enhancement artifacts (far wall plaques) 

In this study, we only analyzed far-wall plaques. Several studies have analyzed 
far wall plaques to assess IPN [3, 4, 6]. However, it is not reliable to analyze far 
wall plaques due to the pseudo-enhancement artifact [7, 8]. Current multi-pulse 
contrast detection techniques rely on linear propagation of the transmitted 
ultrasound signal. However, an acoustic wave will be distorted when it crosses 
highly concentrated contrast regions (e.g. lumen) and thus scattering from tissue 
will not be perfectly canceled behind these regions. In the contrast image, a 
response will appear that is similar to the contrast response in the lumen. This is 
often misinterpreted as neovasculature [3, 4, 6] . There may be no actual 
perfusion present, or it may be overestimated. In any case, no reliable 
quantification is possible in the far wall. We therefore did not analyze far wall 
plaques in our study. This limitation of CEUS might be overcome by development 
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of new pulse sequences [16]. If the artifact can be prevented, the analyses 
described in this thesis can be applied to far wall plaques as well.   

 
 
10.4.3 Low perfusion of plaque neovascularization 

The detection of neovessels in plaque by CEUS is strongly dependent on the 
actual number of microbubbles that can be expected in these tiny vessels. We will 
supply a very rough calculation of the chance of the appearance of such bubbles. 
CEUS was performed after intravenous administration of a 0.5𝑚𝐿 bolus of SonoVue 
ultrasound contrast agent (Bracco, Milan, Italy). The bubble concentration for 
SonoVue is up to 0.5 𝑥 109 𝑏𝑢𝑏𝑏𝑙𝑒𝑠/𝑚𝐿 [17]. The bolus passes the lungs and the 
left ventricle and is assumed to be passing into the main arteries in about 10 
heartbeats. This means the whole bolus is diluted in about 1L of blood, and the 
arterial concentration would be maximally 250 bubbles/𝜇𝐿 (assuming all bubbles 
survive). A microvessel with a diameter of 100𝜇𝑚 and a length of 2𝑚𝑚 would hold 
about 5 bubbles in this optimal scenario. If the blood velocity of such a vessel is 
1mm/s, about 25 bubbles would pass during a 10-second ultrasound recording. 
This shows that for microvessels with diameters < 100𝜇𝑚 the chance of detecting 
bubbles is actually small and it can be questioned which part of the 
microvasculature will be detected with CEUS. Further studies are needed to 
investigate dose dependent perfusion of IPN, since this is a principal limitation of 
CEUS perfusion imaging of plaques. 

Increasing the bubble concentration is only possible to a certain limit. CEUS 
examination was performed for multiple sites of right and left carotid arteries. The 
used cumulative dose per patient was kept below 10𝑚𝐿 in our study. Using single 
bolus injections with a higher concentration might increase the chance of IPN 
perfusion but this will also reduce the number of examination sites or multiple 
recording of the same site. 

 
10.4.4 Histological validation 

In our studies, we compared automated IPN scores to visual IPN scores in 
CEUS. This is a valid comparison, since we are aiming at replacing the subjective 
visual scoring. However, we still need to validate whether our automated 
parameters reflect the true number of microvessels or the perfusion of the 
plaques. For this, histological assessment of plaques would be the ground truth. To 
confirm our present findings, we performed a limited histological study. A total of 
27 specimens of carotid artery plaques were available after atherectomy and 
included for histological assessment for the presence of IPN. An IPN hot-spot 
analysis was performed on histological cross sections of each plaque by two 
independent observers. The microvessels are generally concentrated in certain 
regions of the plaque (hot spots), and the number of microvessels was counted in 
these spots to quantify the degree of IPN. This process was explained in detail in 
the thesis work of Van den Oord [23]. Unfortunately, we did not find any 
substantial correlation with our quantitative CEUS imaging parameters. However, 
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there are good reasons why an existing correspondence would not result in a 
correlation in our study setup. There are limitations both in quantitative CEUS 
analysis (as explained above) as well as in the histological IPN estimations. In 
CEUS, we only analyzed the near wall part of plaques in a longitudinal cross 
section. In the histological assessment, the vessels were counted only in three hot 
spots on the transversal cross sections of the plaque specimen. This indicates that 
the site of the imaging plane might not cut a hot spot at all (see Figure 1). An IPN 
density assessment in the whole histological specimen would provide a more 
representative measure of IPN degree. However, such an analysis requires much 
more work than the hot spot analysis and was practically infeasible.  
 

 
Figure 1: Relation between histological and CEUS assessment of IPN a) Schematic depiction of a cross-
section of histological atherosclerotic plaque specimen (gray) in relation to the ultrasound BMUS/CEUS 
imaging plane (green).  Red circles represent IPN hot spots. b) An example slice of histological plaque 
specimen with CD34 staining shows IPN. c) An example of simultaneously acquired BMUS and CEUS 
image. 
  
Predictive value of parameters 

The ultimate goal of our study and of the PARISk CTMM project is to 
provide imaging biomarkers that can be used for early prediction of plaque 
vulnerability. We have shown that our quantitative parameters can replace visual 
IPN scoring of CEUS imaging in an objective and reproducible manner. However, to 
determine their predictive value for cerebrovascular events, the derived 
quantitative parameters should be evaluated in a long-term patient follow-up study 
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to verify that they are predictive for cerebrovascular events and outperform visual 
IPN scoring. 
 
10.5  Future perspectives 

10.5.1 Molecular imaging with targeted contrast agents 

Molecular imaging approaches aim at detecting biological processes such as 
endothelial activation, macrophage infiltration and angiogenesis. Developments in 
targeted contrast agents present a future for molecular CEUS imaging of IPN. 
Targeted contrast agents have been used in several animal studies to identify 
cellular receptors linked to angiogenesis in tumors and atherosclerotic plaques, e.g. 
vascular endothelial growth factor receptor 2 (VEGFR2) [18-20].  BR55 (a VEGFR2-
targeted microbubble, Bracco Suisse, Geneva, Switzerland) is the first targeted 
ultrasound contrast agent used in clinical trials. The first human study has been 
performed for the ability of BR55 to identify prostate cancers on the basis of their 
increased VEGFR2 expression (ref: ClinicalTrials.gov identifier: NCT01253213). 
Molecular CEUS imaging of IPN may allow early diagnosis and treatment of 
atherosclerosis. The IPN quantification tools developed in this thesis are also 
suitable for targeted contrast ultrasound imaging.  They may just need to be 
optimized for this purpose. Our microvascular structure analysis (Chapter 3) tool 
was optimized for a targeted contrast study [21] to distinguish bound contrast 
agents from free-floating bubbles.  
 
10.5.2 3D +time CEUS imaging 

As 2D CEUS imaging is limited to a narrow volume slice, volumetric information 
will improve the accuracy of IPN detection. Extension of carotid contrast 2D CEUS 
imaging to 3D + time CEUS imaging will allow reconstruction of the complete 
microvasculature network. This will give a more reliable and accurate estimate of 
IPN degree of the whole plaque. Out of plane motion will no longer be an issue 
and comparison to histology will become more feasible. Our rigid and nonrigid 
motion compensation and IPN quantification tools could be readily adapted for 3D 
CEUS imaging.    

10.5.3 Ultrafast plane wave imaging 

Unlike standard B-mode imaging that generates one image line per 
transmission, ultrafast plane wave imaging can generate one complete image per 
plane wave transmission. It can achieve a frame rate of 10.000 frames per second, 
while standard B-mode ultrasound allows 25-50 frames per second. However, each 
plane wave generates a low quality image compared to a standard B-mode image. 
To improve the quality of plane wave imaging, coherent plane wave compounding 
is used by transmitting plane waves under different angles and summing the 
results. This allows a similar image quality as standard B-mode but at a much 
higher frame rate (~1kHz). Ultrafast plane wave imaging can be used for contrast 



174 | Discussion and Conclusion 
 
detection as well. It could give similar image quality as standard CEUS at a much 
higher frame rate with coherent plane wave compounding, while reducing the peak 
acoustic pressure and bubble disruption. Ultrafast plane wave imaging could also 
improve the low-SNR BMUS images that we obtain in the standard side-by-side, 
simultaneous, BMUS and CEUS acquisition. Improved-SNR BMUS and CEUS images 
could also improve the plaque segmentation performance.  Furthermore, plane 
wave imaging can be used to assess minute deformations of the carotid artery and 
plaque tissue [22] and thus offers interesting elastographic possibilities: it could 
assess the tissue elastic properties of the carotid artery  and plaque. 

 

Conclusion 

In this thesis work, we developed several image analysis tools and a dedicated 
software package, CINQS, for CEUS carotid imaging. Our quantitative imaging 
parameters, which provide objective and reproducible results, might replace 
subjective and tedious visual IPN scoring. CINQS enables systematic testing and 
comparing of different IPN analysis tools, and selecting the best parameters for 
measuring the degree of IPN. This represents an important step towards prediction 
of plaque vulnerability. Future studies are needed to confirm that our quantitative 
parameters outperform visual IPN scoring in the prediction of cerebrovascular 
events or the presence of IPN in histology. 
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Summary 
 

Intraplaque neovascularization (IPN) has been presented as an important 
biomarker for progressive atherosclerotic disease and plaque vulnerability in 
several pathological studies. Therefore, quantification of IPN may allow early 
prediction of plaque at risk of rupture and thus prevention of future cardiovascular 
events such as stroke. Contrast enhanced ultrasound (CEUS) enables us to detect 
and visualize IPN by use of ultrasound contrast agents. So, the degree of IPN can 
potentially be measured by quantitative imaging biomarkers derived from CEUS. 
Since quantification tools for IPN are scarce, so far mainly visual IPN scoring on 
CEUS clips has been used to assess IPN, which is subjective and tedious.  

 
Currently available commercial tools for contrast quantification, e.g. QLAB 

region of interest (ROI) quantification tool (Philips Medical Systems, Bothell, USA) 
and VueBox (Bracco Suisse SA, Geneva, Switzerland), are not suitable for 
quantitative analysis of IPN. These commercial quantification tools have been 
developed mainly for time intensity curve analysis (TIC) of large organs such as 
heart, liver and prostate, not for plaques. Plaques are very small and intermittently 
perfused. Therefore, the perfusion characteristics of plaques are quite different 
from those of large organs and TIC analysis as applied in large well-perfused 
organs is not applicable. Some IPN quantification approaches have been reported 
but they suffer from a number of limitations such as imaging artifacts and no or 
imperfect motion compensation. In this thesis work, we avoided the known 
limitations of IPN quantification methods reported in previous studies and 
developed and evaluated specialized IPN analysis tools for carotid CEUS image 
sequences.  

 
Chapter 1 gives an overview of diagnostic ultrasonography, contrast 

enhanced ultrasound, contrast detection techniques, and ultrasound image 
analysis. The scope and outline of the thesis are also described in more detail. 

 
Carotid images exhibit considerable motion such as breathing, pulsation, probe 

or patient motion. For accurate quantification of IPN, motion compensation is a 
prerequisite step. In Chapter 2, we present a motion compensation tool tailored 
for plaques. A rigid motion compensation of a local region based on block matching 
combined with multidimensional dynamic programming is introduced to follow the 
plaque ROI over time. It is shown that the method is sufficiently accurate and 
successful for in-vivo application. However, our rigid technique only compensates 
for translational movements but not for rotation and deformation, and also gives 
only a local motion estimate. 

 
In Chapter 3, we present an IPN quantification method which detects and 

tracks individual contrast spots to reconstruct microvascular network paths. This 
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method allows distinguishing between stationary and moving objects based on 
their displacement over time. However, microvessels that cross the imaging plane 
almost perpendicularly might be considered as stationary objects or artifacts and 
this would lead to underestimation of IPN. 

 
In Chapter 4, we investigate plaque perfusion with motion compensated TIC 

analysis and time integrated parametric images such as maximum intensity 
projection (MIP). Also, several quantitative parameters, derived from TIC and MIP, 
are studied to replace qualitative visual IPN scores. However, if there are artifacts 
within the plaque ROI, the MIP image will include them as well. This will cause 
overestimation of IPN area. To prevent this, we analyze the structure of the 
microvasculature network in Chapter 3 and apply statistical contrast spot 
segmentation methods in Chapter 5. 

 
We introduce a statistical contrast spot segmentation method in Chapter 5. 

This method classifies intensities within the plaque ROI into 4 classes: background, 
intermediate, contrast spot and artifact class. Classifying intensities in each time 
frame and applying spatiotemporal analysis handles several issues raised by other 
methods and allows accurate quantification of IPN. It is shown that the method is 
more robust to artifacts in chapter 6.  

 
In Chapter 6, we present a dedicated software package that includes all the 

developed carotid IPN quantification tools, called Carotid Intraplaque 
Neovascularization Quantification Software (CINQS). CINQS is designed as a 
special-purpose platform for IPN quantification tools for carotid plaques. CINQS 
was developed in a modular and extensible way and provides a user-friendly tool 
for analyzing carotid IPN in CEUS. CINQS could also be used to check changes in 
neovascularization over time, and to check the outcome of novel therapies on 
neovascularization. To the best of our knowledge, this is the first software package 
dedicated to carotid IPN quantification. 

 
In Chapter 7, we present a nonrigid motion estimation method to estimate 

and compensate the complex motion in the complete B-mode ultrasound (BMUS) 
and CEUS images. This method exploits the combined information from 
simultaneously acquired BMUS&CEUS images to overcome the difficulties of the 
separate use of BMUS and CEUS.  The method generates a detailed nonrigid 
deformation field for the complete BMUS and CEUS images. This not only allows us 
to track the plaques but also to improve image quality by time averaging of the 
registered image sequences. This provides “epitome” images of improved quality 
that we employ for an accurate segmentation of the lumen-intima (LI) interface in 
subjects with atherosclerotic arteries, using the joint intensity histogram of BMUS 
and CEUS epitomes and graph based segmentation.  

 
Carotid plaque segmentation in BMUS and CEUS images is crucial to assess 

plaque morphology and composition, which are linked to plaque vulnerability. In 
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Chapter 8, we present a novel and fully automatic plaque segmentation technique 
in simultaneously acquired BMUS and CEUS images. The LI interface is segmented 
as described in Chapter 7. The media-adventitia (MA) interface from the BMUS 
epitome is segmented by using multidimensional dynamic programming for parallel 
curves. Our plaque segmentation method allows several applications such as fully 
automated IPN quantification, arterial distensibility, and plaque characterization. To 
the best of our knowledge, this is the first method segmenting carotid plaques in 
combined BMUS and CEUS images. 

 
In Chapter 9, we describe a clinical study, assessment of IPN in patients with 

familial hypercholesterolemia, using the software described in Chapter 6 and 
quantification tools described in Chapters 3-5. It was shown that irregular and 
ulcerated plaques exhibited significantly more IPN than plaques with a smooth 
surface.  

In Chapter 10, we discuss the merits of the developed IPN analysis tools and 
provide the future perspectives and conclusions of this thesis work. 
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Samenvatting 
 

Intra-plaque neovascularisatie (IPN) wordt in verschillende pathologische 
studies genoemd als een belangrijke biomarker voor progressieve atherosclerose 
en kwetsbaarheid van plaques. Daarom kan kwantificering van IPN een vroege 
voorspelling van het risico van scheuring van de plaque in de halsslagaders 
(carotiden) mogelijk maken, en daarmee de preventie van toekomstige 
cardiovasculaire gebeurtenissen zoals een beroerte. Contrastechografie (CEUS) 
stelt ons in staat om IPN te detecteren en te visualiseren door middel van het 
gebruik van echografische contrastmiddelen. De mate van IPN kan daarom 
potentieel worden gemeten met behulp van kwantitatieve imaging biomarkers 
afgeleid van CEUS. Omdat kwantificeringshulpmiddelen voor IPN schaars zijn, is tot 
nu toe vooral visuele IPN scoring op CEUS clips gebruikt, hetgeen subjectief en 
lastig te beoordelen is.  

Momenteel beschikbare commerciële tools voor  kwantificering van 
contrast, zoals QLAB Region of Interest (ROI) (Philips Medical Systems, Bothell, 
USA) en VueBox (Bracco Suisse SA, Genève, Zwitserland), zijn niet geschikt voor 
kwantitatieve analyse van IPN. Deze commerciële kwantificeringshulpmiddelen zijn 
voornamelijk ontwikkeld voor analyse van tijd-intensiteitscurves (TIC) van grote 
organen zoals hart, lever en prostaat, en niet van plaques. Plaques zijn zeer klein 
en intermitterend doorbloed. Daarom zijn de perfusiekenmerken van plaques nogal 
verschillend van die van grote organen en TIC-analyse zoals toegepast in grote, 
goed doorbloede organen is niet toepasbaar. Een aantal IPN 
kwantificeringsbenaderingen is beschreven, maar deze vertonen serieuze  
beperkingen zoals gevoeligheid voor beeldvormingsartefacten en geen of 
onvolmaakte bewegingscompensatie. In dit proefschrift hebben wij de bekende 
beperkingen van IPN kwantificeringsmethoden zoals gemeld in eerdere studies 
aangepakt en gespecialiseerde IPN analysetools voor CEUS beeldseries van de 
carotis ontwikkeld en geëvalueerd.  

Hoofdstuk 1 geeft een overzicht van diagnostische echografie, contrast-
echografie, contrast-detectietechnieken, en beeldverwerking  voor 
ultrageluidsbeelden. De reikwijdte en opzet van het proefschrift worden in meer 
detail beschreven.  

ultrageluidsopnamen van de carotis vertonen aanzienlijke 
bewegingartefacten ten gevolge van ademhaling, hartslag, beweging van de 
transducer of beweging van de patiënt. Voor een nauwkeurige kwantificering van 
IPN is bewegingscompensatie een vereiste stap. In hoofdstuk 2 presenteren we 
een bewegingscompensatiemethodiek speciaal voor plaques. Om de plaque ROI in 
de tijd te volgen gebruiken we een rigide bewegingscompensatie  op basis van 
block matching gecombineerd met multidimensional dynamic programming. We 
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tonen aan dat deze werkwijze voldoende nauwkeurig en succesvol is voor in vivo 
toepassing. Echter, onze rigide techniek compenseert alleen voor 
translatiebewegingen maar niet voor rotatie en vervorming, en geeft ook slechts 
een lokale bewegingsschatting.  

In hoofdstuk 3 presenteren we een IPN-kwantificatiemethode die 
individuele contrastpunten detecteert en volgt om microvasculaire netwerken te 
reconstrueren. Deze methode maakt onderscheid tussen stilstaande en bewegende 
objecten op basis van hun verplaatsing in de tijd. Het is echter mogelijk dat de 
bloedvaatjes die het beeldvlak bijna loodrecht kruisen beschouwd worden als 
stilstaande objecten of artefacten, hetgeen zou leiden tot een onderschatting van 
IPN.  

In hoofdstuk 4 onderzoeken we plaque perfusie met 
bewegingsgecompenseerde TIC analyse en parametrische beelden verkregen door 
integratie over de tijd zoals maximale intensiteitsprojectie (MIP). Ook verschillende 
kwantitatieve parameters, afgeleid van TIC en MIP, worden bestudeerd om 
kwalitatieve visuele IPN scores te vervangen. Echter, als er artefacten binnen de 
plaque ROI voorkomen zal de MIP deze omvatten. Dit zal overschatting van het 
IPN oppervlak veroorzaken. Om dit te voorkomen, analyseren we de structuur van 
het microvasculatuurnetwerk zoals beschreven in hoofdstuk 3 en gebruiken we de 
statistische contrastsegmentatie methoden van hoofdstuk 5.  

We introduceren een statistische contrastsegmentatiemethode in 
hoofdstuk 5. Deze methode classificeert intensiteiten binnen de plaque ROI in 4 
klassen: contrast, achtergrond, tussenliggende klasse en artefact klasse. Het 
classificeren van intensiteiten over de gehele tijdreeks en het toepassen van een 
spatiotemporele analyse verhelpt de beperkingen van andere methoden en maakt 
nauwkeurige kwantificering van IPN mogelijk. We tonen in hoofdstuk 6 aan  dat 
deze methode robuuster omgaat met artefacten.  

In Hoofdstuk 6 presenteren we een speciaal software-pakket dat alle 
ontwikkelde carotis IPN kwantificeringstools omvat, genaamd Carotis Intra-plaque 
Neovascularisatie Quantification Software (CINQS). CINQS is ontworpen als een 
special-purpose platform voor IPN kwantificeringshulpmiddelen voor plaques. 
CINQS werd ontwikkeld als een modulaire, uitbreidbare en gebruiksvriendelijke 
tool voor het analyseren van de halsslagader IPN in CEUS. CINQS kan ook worden 
gebruikt om veranderingen in neovascularisatie over de tijd te volgen en het effect 
van nieuwe therapieën op neovascularisatie te beoordelen. Voor zover ons bekend 
is dit de eerste software-pakket speciaal voor  IPN kwantificatie in de carotis.  

In hoofdstuk 7 presenteren we een nonrigid motion estimation methode 
om de complexe beweging in de volledige B-mode echografie (BMUS) en CEUS 
beeldreeksen te bepalen en te compenseren. Deze methode maakt gebruik van de 
gecombineerde informatie van gelijktijdig opgenomen BMUS & CEUS beeldreeksen 
om de beperkingen van het afzonderlijk gebruik van BMUS en CEUS te 
overwinnen. De methode genereert een gedetailleerd nonrigid vervormingsveld 
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voor de volledige BMUS en CEUS beeldreeksen. Hierdoor kunnen we niet alleen de 
beweging van de plaques volgen, maar ook de beeldkwaliteit verbeteren door een 
tijdmiddeling van de geregistreerde beeldreeksen. Dit zorgt voor "epitoom" 
beelden van betere kwaliteit die we gebruiken voor een nauwkeurige segmentatie 
van de lumen-intima-overgang (LI) bij patiënten met atherosclerotische slagaders, 
met behulp van het  gecombineerde intensiteitshistogram van BMUS en CEUS 
epitomes en een graaf-gebaseerde segmentatie.  

Carotis plaquesegmentatie in BMUS en CEUS beelden is cruciaal voor het 
beoordelen van plaque morfologie en samenstelling, die een indicatie vormen voor 
de kwetsbaarheid van plaque. In hoofdstuk 8 presenteren we een nieuwe en 
volledig automatische plaquesegmentatietechniek voor gelijktijdig opgenomen 
BMUS en CEUS beeldreeksen. De LI-overgang wordt gesegmenteerd zoals 
beschreven in hoofdstuk 7. De media-adventitia (MA)-overgang van de BMUS 
epitoom wordt gesegmenteerd met behulp van multidimensional dynamic 
programming voor parallelle curves. Onze plaque segmentatiemethode is geschikt 
voor verschillende toepassingen zoals volautomatische IPN kwantificering, arteriële 
distensibiliteit, en plaque karakterisering. Voor zover ons bekend is dit de eerste 
methode voor het segmenteren van plaques in gecombineerde BMUS en CEUS 
afbeeldingen.  

In hoofdstuk 9 beschrijven we een klinische studie, de beoordeling van 
IPN bij patiënten met familiaire hypercholesterolemie, met behulp van de software 
beschreven in hoofdstuk 6 en de kwantificerings gereedschappen beschreven in de 
hoofdstukken 3-5 . We hebben aangetoond dat onregelmatige en 
opengebrokenplaques  significant meer IPN vertoonden dan plaques met een glad 
oppervlak.  

In hoofdstuk 10 bespreken we de verdiensten van de ontwikkelde IPN 
analyse-instrumenten en de toekomstperspectieven en conclusies van dit 
proefschrift. 
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