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Chapter 1 
 

General Introduction and Aim of the Thesis 
 

 

Hepatocellular carcinoma (HCC): pathogenesis and current treatment 

Liver cancer is one of most devastating malignancies. Hepatocellular carcinoma (HCC) 

accounts for >90% of primary liver malignancies and is the third leading cause of cancer-

related deaths worldwide. Major risk factors for hepatocellular carcinoma include infection 

with hepatitis B (HBV) or C (HCV) virus, alcoholic liver disease, and probably nonalcoholic 

fatty liver disease1. Especially chronic infection with HBV or HCV is a main risk factor for HCC, 

the recurrent viral infection characteristic for these diseases causes the body’s immune 

system to attack liver cells is associated by repetitive damage of the genomic material, which 

leads to mistakes during its repair and in turn provoke carcinogenesis2. For patients with 

early-stage hepatocellular carcinoma, they may undergo resection for curative treatment 

and for patients who are not candidates for resection, liver transplantation should be 

offered with specific criteria3. In the case of unresectable limited disease, systemic 

treatment may be preceded and aided by locoregional therapies such as ablation (ie, 

radiofrequency, cryoablation, percutaneous alcohol injection, or microwave), transarterial 

chemoembolization, radioembolization, or stereotactic body radiotherapy and external-body 

radiotherapy. Systemic treatments are recommended for unresectable and advanced 

metastatic disease in patients with a Child-Pugh score of A or B (moderate operative risk).   

 For the majority of advanced HCC cases, curative treatments are not possible and the 

prognosis is dismal because of underlying cirrhosis as well as poor tumor response to 

standard chemotherapy4. For patients with advanced disease, representing the majority of 

patients at diagnosis, the only tumor-directed palliative option is sorafenib (Nexavar), an oral 

multi-kinase inhibitor, which increases patient survival with approximately 3 months5. 

Evidently, new therapeutic options are urgently needed for advanced or metastatic HCC.  In 

this thesis I aim to explore the possibility of targeting of the intra-tumoral stromal 

compartment 
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as well as modulation of the cross-talk between the stromal compartment and the tumor 

cell through SMAD proteins as novel avenues for the potential treatment in this disease. 

 

A specific tumor microenvironment characterizes the pathogenesis of liver cancer 

The behavior of cancer cells is not only driven by genetic alterations in the cancer cells alone 

but also by tumor microenvironment,  drives the surrounding milieu that the tumor cells 

often require for survival, growth, proliferation, and metastasis6. The tumor 

microenvironment is a complex product of an evolving crosstalk between different cell 

types, including the cancer cells themselves. Typically , in epithelial tumors the cancer bulk 

includes both invasive carcinoma and prominent stromal elements. These stromal elements 

consist of the extracellular matrix (ECM) as well as fibroblasts of various phenotypes, and a 

scaffold composed of immune and inflammatory cells, blood and lymph vessels, and nerves6.  

Remodeling of the liver microenvironment is a hallmark in the pathogenesis of liver 

cancer7. In cancer, the microenvironment which is also referred to as stroma, undergoes 

drastic changes, including the recruitment and the activation of stromal cells and the 

remodeling of the ECM. Co-evolution of tumor cells with their microenvironment during 

tumorigenesis suggests that tumor-stroma crosstalk may likely influence the phenotype of 

tumor cells and may provide a selective pressure for tumor initiation, progression and 

metastasis8. In addition, the liver provides a distinct immunological environment and the 

ultimate effects of this environment on cancer progression may differ in the liver as 

compared to other organs9. Nevertheless, clinical targeting of the tumor stroma or the cross-

talk between the tumor cell environment and the cancer cell themselves have no place yet 

in clinical practice with regard to liver cancer, also because of lack of fundamental 

knowledge of the mechanisms involved. In chapter 2 of this thesis I shall aim to provide a 

comprehensive overview of the information available to date and argue that the absence of 

specific information as to the action of the stroma in liver cancer warrants a moratorium on 

clinical trials directed at stroma-tumor cell interaction until further data becomes available. 

 

Mesenchymal stromal cells as a pivotal part of tumor stroma 

Mesenchymal stem/stromal cells (MSCs) were initially identified as a heterogeneous 

population of stromal cells in the bone marrow (BM) that supports hematopoietic stem 
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cells10. Further studies demonstrated that MSCs possess multilineage differentiation 

potential, can exert anti-inflammatory function, immunomodulatory properties and can 

influence other cells through the production of paracrine factors11. MSCs attract attention as 

a possible cell-based therapy, especially in immune-related diseases and over 300 trials have 

been registered (January, 2014, clinicaltrials.gov). The role of MSCs in pathogenesis has been 

less well studied. Recent evidence has come forward in various pre-clinical models that 

MSCs can migrate into certain types of tumors and even using MSC as anti-cancer drug/gene 

delivery has been proposed12,13. The role of MSCs in cancer development, however, remains 

unclear. Several studies indicated that MSCs restrain cancer growth and exert a benign 

influence on disease course14-16; whereas other studies have shown that MSCs are able to 

promote tumor progression and metastasis in experimental cancer models17-20. Thus, it 

remains largely elusive whether MSCs have a beneficial or detrimental role in the cancerous 

process21 and experimentation with MSCs directly obtained from human cancer is deemed 

necessary to obtain answers here. Such experimentation will be directly provided in chapters 

3 and 4, where I shall show that the main action of MSCs is pro-carcinogenic, again argueing 

against the use of MSCs as therapeutic vehicles in liver cancer clinical trials.  

 

SMAD signaling in the tumor microenvironment  

The unique etiology as well as the distinct environment that the liver holds may govern a 

differential signaling network compared to other cancers. SMAD signaling is an important 

process operative in the tumor microenvironment. SMAD proteins are recognized as central 

mediators of Transforming Growth Factor Beta (TGFB) and/or Bone Morphogenetic Protein 

(BMP) signaling pathways, which regulate a plethora of physiological processes including cell 

growth and differentiation.22 These two pathways signal through the family of SMAD 

proteins to exert their effects. In mammals, there are 8 SMADs that are subdivided into 3 

distinct classes: receptor-regulated SMADs (R-SMADs) comprising SMAD2 and SMAD3 

(transduce TGFB signaling) and SMAD1, SMAD5, and SMAD8 (transduce BMP signaling); a 

common SMAD called SMAD4; and 2 inhibitory SMADs, namely, SMAD6 and SMAD7.23 

SMAD proteins are highly conserved within their family and across species, with SMAD4 

representing a somewhat divergent subtype which still retains about 40% identity with other 

family members.24  
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Accordingly, deregulation of TGFB/BMP pathways almost invariably leads to 

developmental defects and/or diseases, in particular cancer.25 TGFB/SMAD signaling might 

also play a role in epigenetic silencing of critical ephitelial mesenchymal transition (EMT) 

genes.26 EMT is a key event in tumor invasion process in the tumor microenvironment. The 

other pathway which also link to SMAD4 is the BMP pathway. BMPs are now considered to 

constitute a spectrum of pivotal biological functions in various types of cells27. Deregulation 

of BMP/SMAD pathway is often associated with developmental defects and/or diseases, in 

particular cancer25. Overexpression of BMP inhibitors was decribed in HCV associated HCC 

tumors28. Given the potential importance of the biological and clinical implications 

associated with SMAD signalling in general and its role in stroma-cancer cell interaction in 

particular, further investigation the role of SMAD signaling in liver cancer is neccessary. 

Experimentation addressing this issue is provided in chapters 5 and 6. 

 

Therapy and the mesenchymal stromal compartment: do we make the right clinical 

choices? 

Possibly the most important interaction between the tumor stroma and the cancer cell 

compartment consists of the immune-evasive landscaping provided by these cells. Recent 

work performed in our laboratory by Perdozo et al.29 has shown that the tumor stroma in 

liver cancer appears highly capable of recruiting and regulatory T cells and 

immunosuppressive cell types and that these cells functionally impede tumor-specific 

immune responses of cytotoxic T cells and possibly also natural killer cells. Apart from 

suggesting novel regulatory T cell-directed therapies, like anti-PD1 or ipilimumab, these data 

raise important questions with respect to current clinical practice. Orthotopic liver 

transplantation is in many cases an integral and essential component of disease and requires 

immunosuppressing, which in turn possibly hampers subsequent immunological responses 

towards resident cancer cells. Especially in the context of liver cancer, characterized by an 

immunosuppressive stromal micro-environment this might be a problem. In chapter 7 I show 

that this is indeed the case as the choice of the immunosuppressive regimen employed after 

orthotopic liver transplantation in HCC has a large influence on outcome. Furthermore I 

identify immunosuppressive regimes associated with improved survival in these patients. 

These studies show that even simple therapeutic adjustments that take into account the 



Chapter 1. General Introduction and Aim of the Thesis P.Y. Hernanda 

 

11 
 

cross-talk of liver cancer with its surrounding cells can have an important effect on disease 

course. Chapter 8, which provides a general discussion on the work presented in this thesis 

explores this angle further and positions the studies provided in this work within the corpus 

of contempary biomedical literature.  

 

Summary of aims and goals of this thesis 

This thesis aims to functionally and molecularly dissect the mechanisms and interactions 

between tumor cells and its surrounding tumor stroma in liver cancer. I shall try to establish 

how these interactions result in an altered tumor microenvironment in liver cancer and 

provide a compelling against the use of MSCs as a therapeutic vehicle in the treatment of 

liver cancer. The definition of SMAD-mediated signaling as an important pro-carcinogenic 

component of the reciprocal between cancer and its milieu should allow the development of 

new therapies here, but I shall also show that even small changes in the pharmacological 

treatment of patients can have substantial effects on the outcome. Thus my thesis will show 

that targeting the tumor microenvironment is highly promising in liver cancer but 

simultaneously will demonstrate that substantial new studies are now neccessary to 

comprehensively characterize the biology of liver cancer as these might result in substantial 

patient benefit. 
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Abstract 

Remodeling of tumor microenvironment is a hallmark in the pathogenesis of liver cancer. 

Being a pivotal part of tumor stroma, multipotent mesenchymal stromal cells (MSCs), also 

known as mesenchymal stem cells (MSCs), are recruited and enriched in liver tumors. Owing 

to their tumor tropism, MSCs are now emerging as vehicles for anticancer drug/gene 

delivery against liver cancer. However, the exact impact of MSCs on liver cancer remains 

elusive, as a variety of effects of these cells have been reported included a plethora of 

tumor-promoting effects and anti-oncogenic properties. This review aims to dissect the 

mechanistic insight regarding this observed discrepancy in different experimental settings of 

liver cancer. Furthermore, we call for caution using MSCs to treat liver cancer or even 

premalignant liver diseases, before conclusive evidence for safety and efficacy having been 

obtained.  

  

Keywords: multipotent mesenchymal stromal cells, liver cancer, dual role 
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1. Introduction 

Liver malignancies including hepatocellular carcinoma (HCC), cholangiocarcinoma and 

hepatoblastoma are jointly the fifth most prevalent form of cancer and globally the third 

leading cause of cancer-related death, immediately after mortality due to lung and colon 

cancer [1]. In addition, the liver is a favorite site for metastasis of other cancers, in particular 

colorectal cancer (CRC), esophageal cancer and pancreatic cancer. The liver 

microenvironment is favorable for growth and invasion of cancer cells, with increased 

extracellular matrix remodeling being considered a hallmark of malignant liver disease [2]. 

Although many of the details are still sketchy, it is now generally assumed that within this 

microenvironment, reciprocal tumor-stroma crosstalk influences the phenotype of tumor 

cells, progression and metastasis [3]. Being a pivotal part of the tumor stroma, multipotent 

mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells (MSCs), were 

found to be present and play important roles in various types of cancers [4] and recently 

more insight into their role in liver malignancies has been revealed.  

MSCs were initially identified to reside within the stromal compartment of bone 

marrow (BM) and characteristically have multi-lineage differentiation potential [5]. In 

addition to BM, MSCs now have been identified in various postnatal organs, where they 

often occupy a perivascular niche [6, 7]. A recent study demonstrated that the adult human 

liver harbors resident MSCs that are phenotypically and functionally similar to BM MSCs [8]. 

Intriguingly, the evidence suggesting that MSCs are involved in both primary [9] and 

secondary liver cancer is gaining momentum [10]. Nevertheless, despite the extensive 

investigations being done, the exact impact of MSCs on liver cancer remains elusive. 

Highlights : 

• MSCs are recruited and enriched in liver tumors 

• MSCs can exert tumor-promoting or tumor-suppressive effect in liver cancer 

• Tumor microenvironment could in turn affect the ultimate function of MSCs 

• We call for caution of using MSCs to treat patients with liver cancer or premalignant 

liver diseases 
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Frustratingly, whereas various studies report tumor promoting effects of MSCs, others 

provide evidence for anti-oncogenic role of these cells. The specific accumulation of these 

cells in the tumor environment is not in doubt and thus owing to this tumor tropism, MSCs 

are now emerging as vehicles for anticancer drug/gene delivery [11] and clinical trials are 

being proposed. This review aims to dissect the mechanistic insight regarding this observed 

discrepancy in different experimental settings of liver cancer as to provide possible guidance 

to the appropriateness of clinical trials. Given the complexity of MSC action, we call for 

caution on such trials in humans with respect to therapeutic applications of these cells in 

liver malignancy until better evidence for safety and efficacy has been obtained. 

 

1. What is the source of the MSC compartment in liver cancer? 

 

a. Identification of MSCs in various organs/tissues 

Mesenchymal stem cells (MSCs) were initially identified by placing whole bone marrow cells 

in plastic culture dishes and the subsequent expansion of a rare population of plastic-

adherent cells [12]. However, the recognized biologic properties of the unfractionated 

population of cells do not seem to exactly meet the general criteria for stem cell properties. 

Therefore, these cells are also termed as multipotent mesenchymal stromal cells (MSCs) 

[13]. The characterization and definition of MSCs still relies solely on in vitro culture-

expanded cell populations and consequently, both the spatial distribution and properties of 

native MSCs within their organ/tissue in vivo are much less known [14]. The identification of 

MSCs in various other organs/tissues (e.g. adipose, kidney, umbilical cord, brain, liver, lung, 

bone marrow, etc) [6, 15, 16], which have the common MSC features but also carry unique 

properties depending on their sources, has raised a lively debate regarding the origin of 

MSCs. Similarly, a resident population of MSCs has also been identified within the human 

adult liver that are phenotypically and functionally similar to BM MSCs but express a unique 

gene signature [8]. The question whether these MSCs are BM-derived hepatotropic cells 

with MSC-like properties that have subsequently acquired location-specific gene expression, 

or whether they resided locally throughout their developmental stages remains unanswered.  
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b. Migratory capacity of MSCs  

In general, MSCs are proficient with respect to migratory capacity and nomadic in nature. 

They tend to be recruited by injured tissue where they are thought to contribute to tissue 

repair and wound healing [17]. As tumors are often considered to have many characteristics 

of “injured tissue”, it is probably not surprising to find MSCs in the tumor. Recent evidence 

has come forward in various pre-clinical models that MSCs can migrate into certain types of 

tumors and this is one of the rationales put forward for using MSCs as vehicles for anti-

cancer drug/gene delivery [18, 19]. This tumor-tropic migratory property of MSCs is 

attributed to two main determinants: their intrinsic properties and stimuli produced by the 

tumor [20]. Human MSCs express chemokine receptors CCR1, CCR2, CCR4, CCR6, CCR7, 

CCR8, CCR9, CCR10, XCR, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6 and CX3CR [17]. 

Production of their respective ligands is shared characteristic of inflamed tissue and 

malignant transformed tissue and thus these receptors are likely involved in the specific 

accumulation of MSCs in both processes. Accordingly, the cognate ligands of these receptors 

are efficient chemotactic stimuli for MSCs. Additional receptors implicated in MSCs 

migration is Toll-like receptors (TLR). TLR1–6 have been identified on primary human MSCs 

and have been reported that TLR stimulation enhanced the migratory function of MSCs [21]. 

MSCs are relatively resistant to ischemia because in the absence of oxygen. MSCs can survive 

by anaerobic adenosine triphosphate production [22], which should give these cells a 

competitive advantage in tumor microenvironment. Intravenous infusion of MSCs has 

indeed been shown to result in specific accumulation of these cells in liver cancer-derived 

structures, indicating that liver tumors are able to recruit them at high efficiency [23]. 

Consistently, HCC has been shown to produce relatively high amount of bona-fide MSC 

chemo-attractants, including hepatocyte growth factor (HGF), SDF-1, basic fibroblast growth 

factor (bFGF), vascular endothelial growth factor A (VEGF-A) and vascular cell adhesion 

molecule 1 (VCAM-1) [23-25]. Thus, these data suggest that ex vivo expanded MSCs will 

likely display at least some specificity with regard to MSC accumulation in liver neoplasms.  
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c. Dualistic origin of MSCs in liver cancer? 

The enrichment of MSCs in the tumor environment were reported for both human primary 

liver cancer [9] and liver metastases from colorectal cancer [10]. An intriguing question is to 

what extent the MSC compartment observed in liver tumor is derived from local sources 

(liver MSCs) or from the circulation in turn supplied by the BM (BM MSCs). In response to 

injury or infection, MSCs can be released from BM into the blood circulation and migrate 

towards the injured sites to promote tissue regeneration [26]. High frequencies of MSCs 

were found in liver tumor with extensive inflammation suggesting the recruitment of MSCs 

in response to infection/inflammation [9]. Moreover, high circulating levels of BM originated 

cells, such as endothelial progenitor cells, have been observed in HCC patients, which might 

subsequently home into the tumor and promote tumor growth [27]. We thus propose a 

dualistic origin of the MSC compartment in liver cancer, with MSCs constantly being 

recruited locally and from the circulation (Figure 1). Future studies using somatic genomic 

signatures may provide a definite answer. 

 

Figure 1. A proposed model for MSCs 
recruitment into liver tumor. MSCs 
were shown to express chemokine 
receptors CX3XR, CCR1-2, CCR4-10, C-
XCR1-6 and TLRs. HCC tumors can 
release various cytokines, chemokines 
and growth factors, including HGF, 
bFGF, SDF-1, VCAM-1 and VEGF-A, 
which have been described as 
chemoattractants for MSCs. We 
propose that both liver or circulating 
MSCs (released from BM or other 
organ/tissue) are possibly recruited 
into liver tumor and MSCs may be 
constantly recruited in the stages 
from chronic viral hepatitis to liver 
cancer development. 
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2. Dual roles of MSCs in liver cancer 

 The intrahepatic microenviroment is substantially different from other organs, and this may 

affect cancer development [28]. MSCs constitute an important component within the 

microenvironment of both the normal liver as well liver tumors and they appear to have 

pleiotropic functionality. This is reflected in the results obtained in experimental liver tumor 

models. Depending on the exact experimental conditions, MSCs can exert a tumor-

promoting or a tumor-limiting effects (Table 1) [9, 29-42]. Various hypotheses have been 

postulated to explain the dualistic behavior of MSCs in cancer. One school of thought 

attributes to an important role for TLRs and subsequent immuno-polarization of MSCs [43]. 

MSCs express several TLRs and their capabilities to migrate, invade, and secrete immune 

modulating factors are tightly regulated by specific TLR-agonist engagement. TLR4-primed 

MSCs are polarized into a pro-inflammatory MSC1 phenotype; whereas TLR3-primed MSCs 

are polarized into the classical immunosuppressive MSC2 phenotype [43]. In cancer models, 

MSC1-based treatment of established tumors in an immune competent model attenuates 

tumor growth and metastasis but MSC2-treated animals would display increased tumor 
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growth and metastasis [44]. The second hypothesis postulates a developmental phase-

dependent MSC functionality [4, 45]. MSCs appear to promote tumor growth when co-

injected with tumor cells, but inhibit tumor progression when administered into established 

tumors [4]. Thus, the presence of MSCs during the early phase of tumorigenesis may 

contribute to angiogenesis that is required for tumor initiation. Indeed, an increase in vessel 

density was observed when MSCs were co-injected with HCC or other tumor cell lines [30, 

46]. Of note, tumor cells and the tumor microenvironment will in turn affect the ultimate 

function of these recruited MSCs. As both hypotheses are not mutually exclusive likely both 

are concomitantly true, making prediction as to the effects of MSCs on the cancerous 

process extremely difficult. 

 

3. Mechanisms of MSC-dependent tumor suppression in liver cancer 

A variety of processes possibly implicated in MSC-dependent tumor suppression have been 

identified. Wnt signaling is aberrantly activated in a subset of HCC tumors. In chemically 

induced murine HCC tumors the administration of MSCs has been demonstrated to have 

tumor suppressive effects associated with Wnt signaling target genes being down regulated, 

especially those related to anti-apoptosis, mitogenesis, cell proliferation and cell cycle 

regulation [35]. A mechanistic explanation is found by the active secretion of Wnt inhibitors, 

such as dickkopf-1, by MSCs [37, 40] and is supported by the MSC-dependent inhibition of 

NF-kB signaling in cancer cells [38]. In addition, TLR signals can stimulate down-stream 

effectors that may interfere LPS-TLR4 pathway and inhibit NF-kB activation during liver 

fibrosis [47].  

Additionally, microvesicles released by MSCs have been shown to inhibit cell cycling and 

induce apoptosis or necrosis of different HCC cell lines in vitro and to inhibit growth of 

established tumors in vivo [39, 48], providing a further anti-oncogenic MSC effector 

pathway. Conversely, MSCs pulsed with tumor-derived microvesicles exert an enhanced 

antitumor activity against HCC [41]. Although it is still unclear which factors are the direct 

effectors, the secretome of MSCs appears to play an important role in their tumor 

suppressing function.  
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4. Tumor promoting effects of MSCs in liver cancer 

The reported context-dependent tumor promoting roles of MSCs have been attributed to 

their abilities of supporting angiogenesis, promoting tumor growth and metastasis, and 

modulating immune response (detailed disused in the following section) via paracrine or 

direct mechanisms [4]. Support of tumor angiogenesis by MSCs could be via their direct 

differentiation into pericytes or perhaps endothelial cells [49], or indirectly by secreting pro-

angiogenic factors and inhibition of apoptosis in vascular smooth muscle cells and 

endothelial cells [50]. The process of angiogenesis involves a large number of proteases. For 

instance, a protease named SERPINE1, which is abundantly secreted by MSCs, has been 

shown to regulate proliferation, migration, and apoptosis of vascular smooth muscle cells 

and endothelial cells [48, 51]. In mouse model, transplantation of BM MSCs promoted 

growth of microvascular in HCC tumor [30].  

In addition, direct effects of MSCs on the tumor cells may contribute to HCC 

pathogenesis. MSCs have been shown to accelerate HCC metastasis, due to the induction of 

such epithelial-mesenchymal transition (EMT) [31], an effect which is even further enhanced 

by an inflammatory milieu (which characterizes many liver cancers). During EMT epithelial 

(cancer) cells lose cell polarity and cell-cell adhesion, and gain migratory and invasive 

properties. Supporting the existence of such effect is the observation of increased 

expression of cancer associated fibroblast (CAF) and EMT markers in a co-culture model of 

hepatoma cells and MSCs [32]. In HCC patients, MSC-dependent EMT induction is associated 

with a shorter tumor free survival and a worse overall survival [31], demonstrating the 

clinical relevance of this effect.  

Secreted factors from patient HCC tumor-derived MSCs have been shown to promote 

tumor growth in xenograft mouse model associated with up-regulation of cell growth and 

proliferation-related processes and down-regulation of cell death-related pathways in HCC 

cells [9]. MMPs proteases as well as various others factors secreted by MSCs, are capable of 

remodeling extracellular matrix and facilitate tumor progression [9, 29]. Glycoproteins, such 

as osteonectin that is important in remodeling extracellular matrix, are highly expressed in 

the stromal myofibroblast of HCC patients and have been reported to promote HCC 

progression [52]. 

http://en.wikipedia.org/wiki/Epithelial_cells
http://en.wikipedia.org/wiki/Epithelial_cells
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5. Potential immunomodulation by MSCs in liver cancer 

a. Immune microenvironment in liver tumors 

Immune surveillance plays key roles in protecting against cancer. The liver constitutes a 

relatively immunoprivileged microenvironment, and thus cancer cells may take advantage of 

the immunoregulatory mechanisms that are established in the liver [53]. Furthermore, HCC 

can use multiple mechanisms to evade host antitumor immunity, leading to disease progress 

Figure 2. Proposed mechanisms for the tumor-suppressive and tumor-promoting effects of MSCs. The 
properties of MSCs and the particular tumor microenvironment may resulted in dual roles of MSCs that 
can suppress or promote tumor progression. The tumor-suppressive mechanisms are mainly due to 
secreted factors and downregulation of Wnt and NF-kB pathway. The tumor-promoting mechanisms are 
mainly attributed to both secreted factors and direct effects via 1) supporting tumor vasculature 2) EMT 
transition and 3) ECM remodeling. The immunosuppressive effect of MSCs (inhibit NK cells, macrophages, 
dendritic cells, T cells and support regeneration of Tregs) conceivably lead to tumor-promoting effect. 
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even in the presence of tumor-specific immune responses [54]. In liver tumor, the 

composition as well as the function of immune cells have been dramatically altered [53, 55]. 

In general, the frequency and functionality of anti-tumor immune cells are decreased [53, 

55]. In contrast, variety of immunosuppressive cells with high activity are accumulated in the 

tumor, which can impede immunosurveillance and facilitate tumor growth [56]. Although 

MSCs have never officially joined the immune cell club, they are well-recognized for their 

potent immunomodulatory capacity.  

 

b. Immunomodulation by MSCs  

MSCs can modulate the function of several cell types of the immune system including those 

from innate immunity including natural killer (NK) cells [57] and macrophages [58]. MSCs are 

also capable of modulating the differentiation, activation and function of dendritic cells 

(DCs) [59], the most efficient antigen presenting cells. The key function of dendritic cells 

(DCs) is translating innate to adaptive immunity and these cells are thought to have 

important link with HCC progression [60]. T cells are the main components of adaptive 

immune system and are crucial in controlling malignant disease, mediating both cytotoxicity 

of cancer cell themselves and release of anti-oncogenic cytokines [61, 62]. MSCs can 

effectively inhibit T cell function through multiple pathways [63, 64]. 

Regulatory T cells (Tregs) are a specialized subset of T cells which suppress activation of 

the immune system to maintain homeostasis and tolerance to self-antigens. In patient HCC 

tumor, increased frequencies of highly activated Tregs are infiltrating the tumor milieu and 

they are mainly localized in the stroma compartment of the tumors [55]. Furthermore, the 

frequency of Tregs in HCC has been associated with poor prognosis [65-67]. In contrast to 

suppress cytotoxic T cells, MSCs can induce the generation and expansion of Tregs [68]. 

Additionally, MSCs have been reported to induce the production of IL-10 by plamacytoid 

dendritic cells (pDCs), which in turn triggered the generation of Tregs [63]. However, 

potential interactions between these immune cells with MSCs or tumor stroma in general, 

have been poorly studied in the context of liver cancer, which certainly deserve more 

attention for further research. 
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6. Therapeutic application of MSCs in liver cancer: call for caution 

 

a. Potential therapeutic application  

Evidence from various preclinical models showing that MSCs can migrate into certain types 

of tumors has inspired the use of MSCs as vehicle for anticancer drug/gene delivery [11]. 

This notion was further supported by the fact that several studies have demonstrated 

potential anti-cancer effects of MSCs [31, 35, 45, 69]. In experimental HCC models, 

genetically modified MSCs have been used to deliver anti-cancer gene and inhibition of HCC 

cell proliferation was demonstrated in vitro and in vivo [70, 71]. Another approach is to 

deliver oncolytic viruses (e.g. measles virus) by MSCs into the tumor, in order to avoid pre-

existing immunity against the virus [72]. These observation encourage clinical investigators 

to design trials for treating HCC, which remains an unusually deadly disease, using MSCs as a 

vector. 

MSCs have been extensively investigated in clinical trials to treat various diseases [73, 

74]. For treating cancer, trials have also been initiated to treat ovarian cancer 

(NCT02068794), head and neck cancer (NCT02079324) and prostate cancer (NCT01983709). 

Although MSCs have not been used for treating liver cancer yet (to our knowledge), over 30 

trials have been registered at ClinicalTrials.gov for treating various liver diseases (Table 2).  

 

b. Reasons for caution   

Harnessing the hepatic differentiation potential and anti-inflammatory function of MSCs, 

most of the current clinical studies aim to treat liver cirrhosis, a premalignant state [75, 76]. 

Given the immunomodulatory properties of these cells, MSCs are also used for 

immunomodulation therapy of patients after liver transplantation [77]. Such studies almost 

unavoidably involve patients who are positive for hepatitis B or C virus infection. These 

infections are, however, important drivers of cirrhosis and HCC [78]. In addition, HCC is an 

important indication for liver transplantation and liver transplant patients also have 

increased incidence of developing de novo cancer [79]. 

Another concern is that the cellular fate and distribution of transplanted MSCs in vivo 

remain unclear. MSCs subcutaneously engrafted into immunodeficient mice were detectable 
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up to 25 days [8]. In patients with liver cirrhosis, intravenously infused MSCs accumulated in 

the liver and spleen, which were detectable up to 10 days [80]. Magnetic resonance imaging 

(MRI) and radioactive labeling are commonly used for tracking infused stem cells [81]. These 

technics however suffer from low sensitivity [82], and therefore are not able to precisely 
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trace cell distribution and survival. Further, the functionalities of infused MSCs, including 

differentiation status and cytokines production, are not able to be defined in vivo. 

Because of unclear clinical benefits in liver disease patients [75, 76, 80], uncertainty 

of infused MSCs in vivo and the potential tumor-prompting effects of MSCs as demonstrated 

in various experimental liver cancer models as well as potential malignant transformation 

may occur during ex vivo expansion of MSCs [83], we thus call for caution of using MSCs to 

treat liver cancer or even premalignant liver diseases. 

 
Summary  

 
The tumor tropism property of MSCs has been demonstrated both in experimental liver 

cancer models and in patients. However, as discussed above, MSCs may not only be tumor 

tropic but also tumor trophic. Both tumor-promoting and tumor-suppressive roles of MSCs 

have been described depending on the particular liver cancer models and methodologies 

used (Figure 2). Because of their tumor tropism, the use of MSCs as vehicles for anticancer 

drug/gene delivery has reached clinical investigation. However, we call for caution in using 

MSCs to treat liver cancer or even premalignant liver diseases. Given their potent 

immunosuppressive and tumor promoting properties, MSCs may in fact represent a target 

for anti-cancer therapy. 
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ABSTRACT 

 

Although the infiltration of mesenchymal stem/stromal cells (MSCs) into different tumors is 

widely recognized in animal models, the question whether these MSCs have a positive or 

negative effect on disease progression remains unanswered. The aim of this study is to 

investigate whether human hepatocellular carcinoma (HCC) harbors MSCs and whether 

these MSCs affect tumor growth. We observed that cells capable of differentiation into both 

adipocyte and osteocyte lineages and expressing MSCs markers can be cultured from 

surgically resected HCC tissues. In situ staining of human HCC tissues with a STRO-1-antibody 

showed that the tumor and tumor-stromal region are significantly enriched with candidate 

MSCs as compared to adjacent tissue (n=12, P<0.01). In mice, co-engraftment of a human 

HCC cell line (Huh7) with MSCs resulted in substantially larger tumors as compared to paired 

engraftment of Huh7 alone (n=8, P<0.01). Consistently, co-culturing Huh7 with irradiated 

MSCs significantly increased the number and the size of formed colonies. This enhancement 

of Huh7 colony formation was also observed by treatment of MSCs conditioned medium 

(MSC-CM), suggesting that secreted trophic factors are contributing to the growth 

promoting effects. Genome-wide gene expression array and pathway analysis confirmed the 

up-regulation of cell growth and proliferation-related processes and down-regulation of cell 

death-related pathways by treatment of MSC-CM in Huh7 cells. In conclusion, these results 

show that MSCs are enriched in human HCC tumor compartment and could exert trophic 

effects on tumor cells. Thus, targeting of HCC tumor MSCs may represent a new avenue for 

therapeutic intervention.  
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INTRODUCTION 

 

Liver cancer is one of most devastating malignancies. Hepatocellular carcinoma (HCC) 

accounts for >90% of primary liver malignancies and is the third leading cause of cancer-

related deaths worldwide. Most cases of HCC are found in patients with cirrhosis caused by 

chronic hepatitis B (HBV) or C (HCV) infection (1). It develops in particular when chronic 

infection with HBV or HCV repeatedly causes the body’s immune system to attack liver cells 

followed by repetitive damage of cell cycle which leads to mistakes during its repair and in 

turn leads to carcinogenesis (2). For the majority of advanced HCC cases, curative treatments 

are not possible and the prognosis is dismal because of underlying cirrhosis as well as poor 

tumor response to standard chemotherapy (3). For patients with advanced disease, 

representing the majority of patients at diagnosis, the only option includes sorafenib 

(Nexavar), an oral multi-kinase inhibitor, which increases patient survival with approximately 

3 months (4). Evidently, new therapeutic options are urgently needed for advanced or 

metastatic HCC.  

Remodeling of the liver microenvironment is a hallmark in the pathogenesis of liver 

cancer (5). In cancer, the microenvironment which is also referred to as stroma, undergoes 

drastic changes, including the recruitment and the activation of stromal cells and the 

remodeling of extra cellular matrix (ECM). Co-evolution of tumor cells with their 

microenvironment during tumorigenesis suggests that tumor-stroma crosstalk may likely 

influence the phenotype of tumor cells and may provide a selective pressure for tumor 

initiation, progression and metastasis (6). In addition, the liver provides a distinct 

immunological environment and the ultimate effects of this environment on cancer 

progression may differ in the liver as compared to other organs (7).  

Mesenchymal stem/stromal cells (MSCs) were initially identified as a heterogeneous 

population of stromal cells in the bone marrow (BM) that support hematopoietic stem cells 

(8). Further studies demonstrated that MSCs possess multilineage differentiation potential, 

can exert anti-inflammatory function, have immunomodulatory properties and influence 

other cells through the production of paracrine factors (9). MSCs attract attention as a 

possible cell-based therapy, especially in immune-related diseases and over 300 trials have 
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been registered (January, 2013, clinicaltrials.gov). The role of MSCs in pathogenesis has been 

less well studied. Recent evidence has come forward in various pre-clinical models that 

MSCs can migrate into certain types of tumors and even using MSC as anti-cancer drug/gene 

delivery has been proposed (10,11). The role of MSCs in cancer development, however, 

remains unclear. Several studies indicated that MSCs restrain cancer growth (12-14); 

whereas other studies have shown that MSCs are able to promote tumor progression and 

metastasis in experimental cancer models (15-18). Thus, it remains largely elusive whether 

MSCs have a beneficial or detrimental role in the cancerous process (19) and 

experimentation with MSCs directly obtained from human cancer is deemed necessary to 

obtain answers here. 

Previously, we have identified a resident population of MSCs within the human adult 

liver which are phenotypically and functionally similar to BM MSCs (20). This raises obvious 

questions as to the potential role of these cells in liver cancer. In this study, we 

demonstrated that human HCC indeed harbors MSCs. Further more, these HCC-derived 

MSCs are highly trophic for tumor growth and therefore represent an interesting target for 

novel therapy.  

 

 

MATERIAL & METHODS 

 

Patients 

For culturing MSCs, tissue samples from 7 individuals who were eligible for surgical resection 

of HCC were collected. Paired fresh liver tumor and tumor-free liver tissue at the maximum 

distance from the tumor were used. For immunohistochemical staining of MSCs maker, 

paraffin-embedded patient HCC (n=12) tissues were collected at the tissue bank at the 

Erasmus MC Rotterdam (Supplementary Table 1). The use of patient materials was approved 

by the medical ethical committee of Erasmus MC (Medisch Ethische Toetsings Commissie 

Erasmus MC) (21). 
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Isolation and culture of MSCs  

Single cell suspensions from adjacent liver tissue and tumor were obtained by tissue 

digestion. Briefly, fresh tissue was cut into small pieces and digested with 0.5 mg/ml of 

collagenase (Sigma-Aldrich, St. Louid, MO) and 0.1 mg/ml of DNase I (Roche, Indianapolis, 

IN) for 30 minutes at 37 ºC. Cell suspensions were filtered through cell-strainers and 

mononuclear cells (MNC) were obtained by Ficoll density gradient centrifugation. Cells were 

cultured in Alpha Dulbecco’s modified Eagle’s medium (Alpha DMEM; Lonza, Verviers, 

Belgium) supplemented with 10% fetal bovine serum (Hyclone, Logan, UT), 100 IU/mL 

penicillin, and 100 lg/mL streptomycin. Adjacent liver tissue and tumor were also cut into 

small pieces for culturing MSCs in 12-well plates. Tissues were cultured in the Alpha DMEM 

medium as above. If MSCs emerged after 2-3 weeks, the tissues were removed and MSCs 

were sub-cultured in conditions as described above.          

 

Flow cytometry 

Cells were stained for 30 min at 4°C with directly-labeled mouse monoclonal antibodies 

directed against human CD13-PECy7, CD34-APC, CD45-PERCP, HLA-I-APC (all BD 

Biosciences), CD73-PE, CD166-PE (BD Pharma, San Jose, CA) and CD105-FITC (R&D Systems, 

Abingdon, UK) for human MSCs and rat antibodies directed against mouse CD90 & CD105 

(R&D Systems, Abingdon, United Kingdom) for mouse MSCs. Flow cytometric analysis was 

performed using the FACSCanto II (BD Biosciences) and 10 000 events were collected for 

analysis performed using FlowJo software.  

 

Adipogenic and osteogenic differentiation 

For adipogenic differentiation, MSCs were cultured for 3 weeks in DMEM supplemented 

with 10% fetal bovine serum, 1 M dexamethasone, 500 M isobut     

g/mL insulin, and 60 M indomethacin (Sigma-Aldrich). Oil Red O staining (Sigma-Aldrich) 

was used for the detection of adipocytes. For osteogenic differentiation, cells were cultured 

for 3 weeks in DMEM with 10% fetal bovine serum supplemented with 0.2 mM ascorbic acid, 

100 nM dexamethasone, and 10 mM b-glycerol phosphate (Sigma-Aldrich). Alizarin Red S 

staining (Sigma-Aldrich) was performed to detect deposited calcium phosphates. 
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Colony forming assay of Huh7 cells  

MSCs were plated in 12-wells reaching ≈30% confluence. After 24 hours, MSCs were 

irradiated with 4 Gy of 60Co gamma radiation. Subsequently, 2000 Huh7 cells, a validated 

human HCC cell line (22), were added to the wells and were cultured in Alpha DMEM 

medium.  

 The colony formation assay was also performed in Huh7 cells treated with MSCs 

conditioned mediums (MSC-CM). MSC-CM was prepared by culturing MSCs with 70-90% 

confluence. CM medium was collected after 48 hours culture. As control, colony formation 

array was performed with Huh7 cells only. Huh7 colonies were counterstained with 

haematoxylin & eosin after two weeks. The colony numbers were counted and their sizes 

were measured by microscope. 

 

Western Blot analysis 

Cell suspensions were lysed in lysis buffer (130mM Tris-HCl pH 8, 20% glycerol, 4.6% SDS, 

0.02% Bromophenol Blue, 2% dithiothreitol (DTT)) and boil in 95ºC for 5 minutes. Twenty 

five microliter of lysates were electrophoretically separated by 8% SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) gels (Invitrogen USA), transferred onto Nitrocellulose transfer 

membranes and the membranes were incubated with the following primary antibodies: 

STRO-1 (Invitrogen corporation) and CD146 (Abcam). The immune complexes were detected 

using horseradish peroxidase-linked anti-mouse or anti-rabbit conjugates as appropriate 

(DAKO, Denmark) and visualized using enhanced chemiluminescence detection system 

(Amersham Biosciences, Amersham, UK). 

 

Immunohistochemistry 

Paraffin embedded liver tumor tissue slides were deparaffined in xylene, rehydrated in 

graded alcohols, and rinsed once in phosphate-buffered saline (PBS) plus Tween 0.05%. For 

antigen retrieval, slides were boiled in Tris/EDTA pH 9.0 for 10 min; 1.5% H2O2 was used to 

block endogenous peroxidase for 10 min at room temperature. The slides were incubated in 

5% milk blocking solution followed by overnight incubation in mouse monoclonal antibody 

STRO-1 (Invitrogen Corporation) with concentration of 1:200 and then counterstained with 
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haematoxylin. As negative control, the primary antibody was replaced by PBS; the positive 

controls were taken from other slides that had successfully stained before. STRO-1 staining 

was scored by two independent observers. The protocol for CD146 staining is similar as 

mentioned above. 

 

HCC xenograft tumor in NOD/SCID mice 

HCC xenograft tumor model in NOD/SCID mice was established as we previously described 

(23). Eight mice aged 6-8 weeks were subcutaneously engrafted with human hepatoma 

Huh7 cells (1X106) with or without MSCs (1X106) into the lower left or right flank, 

respectively. Seven mice were injected with tumor-derived MSCs and one was injected with 

MSCs from adjacent liver tissue. Huh7 cells were labeled luciferase reporter gene for 3 out of 

the 8 mice, as previously described (19). Luciferase activity was measured by IVIS camera 

(Caliper Life Sciences, USA) in living animals. Data was analyzed with Living Image 4.0 

software.  

 At day 19 or 21 post-engraftment, mice were sacrificed and tumors were harvested, 

imaged and weighted. Part of the tumor were fixed with formalin and embedded in paraffin 

for histology evaluation or immunohistochemistry. The use of animals was approved by the 

institutional animal ethic committee (Dier Experimenten Commissie). 

 

Genome-wide gene expression analysis 

The total RNA of 3 independent Huh7 cell lines cultures treated or untreated with MSCs 

conditioned medium was used for genome-wide microarray analysis with the Affymetrix 

GeneChip HuGene 1.0 ST.v1 array (Affymetrix, Santa Clara, CA) according to the 

manufacturer’s procedures. Transcript-level expression measures were generated with the 

robust multi-array average procedure as implemented in the Affymetrix Gene Expression 

Console, and probe set annotations were retrieved from NetAffx with the same software. 

Principal component analysis, forest plot and pathway analysis were performed with Partek 

(Partek, Inc., Saint Louis, MO).  
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Statistical analysis  

Statistical analysis was performed by using the paired nonparametric test, the unpaired 

nonparametric Mann–Whitney test or paired T-test using GraphPad InStat software 

(GraphPad Software Inc., San Diego, USA). P-values <0.05 were considered statistically 

significant. 

 

RESULTS  

 

Obtain MSCs by culturing resected human HCC tissues 

Following surgical resection, patient HCC tissues were subjected to collagenase digestion 

followed by the MSCs-specific culture protocol previously validated (20). This protocol 

yielded ample colonies with an apparently MSCs morphology (Figure 1A and 1B). 

Furthermore, this stringent MSCs culture protocol was successful in 6/7 HCC cases, but only 

in 2/6 cases when applied to adjacent not-transformed liver tissue, which suggests a possible 

enrichment of MSCs in HCC. An even more stringent protocol failed to grow MSCs from 

normal liver (Figure 1C) but still yielded MSCs from HCC tumors (Figure 1D). To confirm that 

these cells represent bona fide MSCs, we assessed the capacity of these cells to yield 

multilineage progeny. As evident from figure 1E and 1F, the cells had capacity for both 

adipogenic and osteogenic differentiation. Furthermore, FACS analysis of their antigenic 

profiles confirmed that these cells are positive for the common mesenchymal markers CD13, 

CD73, CD105 and CD166 and are negative for the common hematopoietic markers CD34 and 

CD45 (Figure 1G).  

 

Enrichment of STRO-1 positive cells in human HCC 

STRO-1 is the best-known MSCs marker (24,25), in particular for in vivo 

immunohistochemical staining of candidate MSCs (11). Western blotting analysis showed 

that STRO-1 protein is abundantly expressed in HCC-derived MSCs (cell culture expanded) as 
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Fig. 1 (G) FACS staining confirmed that these cells are positive for common mesenchymal markers CD13, CD73, 
CD105 and CD166 and are negative for the common hematopoietic markers CD34 and CD45. 

Fig. 1. Culture and characterization of MSCs from 

human liver carcinomas. With a method of 

collagenase digestion of surgical resected human HCC 

and LM-CRC tissues, colonized cell clusters were 

appeared (A) and these cells could rapidly grow out 

and expand by subculture showing typical fibroblast-

like morphology (B). With another method of 

culturing tiny tissue specimen, MSCs-like cells could 

only be obtained from tumor tissues (D) but not from 

adjacent liver tissue (C).  (E) Adipogenic 

differentiation of liver carcinoma derived MSC, 

detected by Oil red O staining for lipid droplet 

(Arrow). (F) Osteogenic differentiation of these cells 

was evaluated by detection of deposited calcium 

phosphates using Alizarin Red S staining (Arrow).  
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 Fig. 2. In situ localization of STRO-1-
positive cells in paraffin-embedded 
patient HCC tissues. (A) Distribution of 
STRO-1 cells in the adjacent, tumor and 
tumor-stromal regions in HCC tissues. 
(B) STRO-1-positive cells are 
significantly enriched in the tumor, in 
particular the tumor-stromal region, 
compared with the adjacent area in 
HCC tissues (n = 12, *P < 0.05, **P < 
0.01). 

BM- or liver-derived MSCs, whereas it is hardly detectable in whole lysates of liver tumor or 

adjacent liver tissue (Supplementary Figure 1A). STRO-1 protein expression was further 

confirmed by immunohistochemical staining of cultured tumor MSCs (Figure Supplementary 

1B). 

Thus, we chose to employ a STRO-1 

antiserum to quantify the candidate MSCs in HCC 

and to compare cell numbers to adjacent tissue. 

For this study, 12 cases of confirmed HCC were 

obtained for immunohistochemical investigation of 

both candidate MSCs number and histospatial 

distribution. STRO-1 positive cells were readily 

observed in both tissues adjacent to the cancer and 

within the tumor (Figure 2A). In the normal region, 

STRO-1 positive cells were mainly located in liver 

sinusoid or veins. The frequency of STRO-1 positive 

cells in adjacent tissue appears low (11±8 positive 

cells/view, mean±SD, n=12), except for livers with 

extensive inflammation (Supplementary Figure 2). 

Morphometric analysis of the samples confirmed 

that the tumor stroma is significantly enriched with 

STRO-1 positive cells as compared to adjacent non-

transformed tissue (Figure 2B). We conclude that 

HCC is enriched with candidate MSCs, suggesting 

active sequestration of these cells by the tumor and 

a possible role of MSCs in HCC tumorigenesis.  
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Fig. 3. Infiltration of MSCs 
into human hepatoma cell-
derived solid tumors in 
mice. (A) Subcutaneous 
engraftment of human 
hepatoma Huh7 cells was 
able to form solid tumors in 
mice. By luciferase labeling 
of Huh7 cells, the tumors 
can be visualized by IVIS 
cameras in living animals. 
(B) Cell culture of digested 
tumors resulted in colonized 
Huh7 cells (grey arrow) 
surrounded by fibroblast-
like cells (white arrow; n = 
6). Fluorescence-activated 
cell-sorting analysis using 
anti-mouse antibodies 
against the typical MSC 
markers CD90 (C) and 
CD105 (D) showed ~1% of 
cells to be positive (n = 2). 

Human hepatoma cells formed tumors in mice are infiltrated with MSCs-like cells  

To further understand the enrichment of MSCs in human HCC, we evaluated whether MSCs 

can infiltrate into HCC tumors that are formed in immunodeficient mice by engraftment of 

human HCC cell line (1  ͯ 106 Huh7 cells). Upon subcutaneously injection of Huh7 cells into 

NOD/SCID mice, solid tumors were formed during a period of 2-4 weeks. When Huh7 cells 

were labeled with luciferase reporter gene, the solid tumor under the skin could be 

visualized by IVIS camera (Figure 3A).  Subsequently, the tumors were harvested, digested 

and cultured in vitro. After 3-7 days culture, Huh7 cells were colonized (Figure 3B, indicated 

by Red arrow) but surprisingly were surrounded by fibroblast-like cells (Figure 3B, indicated 

by White arrow). All the tumors obtained from six mice contained substantial number of 

these cells shown by cell culture expansion. FACS analysis using anti-mouse antibodies 

against typical MSCs markers CD90 (Figure 3C) and CD105 (Figure 3D) measured 

approximately 1% (mean of two batches) of cells to be positive. This suggests that human 

HCC tumors may actively attract MSCs and can transcend the species barrier. Subsequently, 

we initiated experimentation to address the potential role of these MSCs in HCC progression. 
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Tumor MSCs enhance colony unit formation and growth of hepatoma cells through 

secretion of trophic factors 

To explore the possible effects of MSCs on HCC, we performed co-culture experiments, in 

which Huh7 cells were grown in the presence or absence of irradiated HCC-derived MSCs 

(Figure 4A). Co-culture with MSCs significantly increased the number (196 ± 29 Vs 123 ± 36 

clonies/2000 Huh7, Mean ± SD, n = 5, P < 0.05) and the size (1329 ± 258 Vs 570 ± 155 pixels, 

n = 10, P < 0.01) of Huh7 formed colonies (Figure 4B). To investigate whether the effects of 

 

 

 

MSCs in this model system are mediated by cell-to-cell contact or through paracrine 

mechanisms, the experiment was also performed using MSCs-conditioned medium (MSC-

CM). It showed that such conditioned medium increased both the number and size of the 

Huh7 colonies (Figure 5A and 5B), demonstrating that trophic factors of MSCs are powerful 

stimulus to support tumor cell growth.  

Fig. 4. MSCs promote colony formation and growth of hepatoma cells. (A) Coculturing 2000 Huh7 cells in 
12-well plates with irradiated MSCs increased the size and the number of colonies formed. (B) The number 
of colonies formed was 196±29 (mean ± SD) in Huh7 cocultured with MSCs versus 123±36 in Huh7 alone (n 
= 5, *P < 0.05). The average size was 1329±258 pixels versus 570±155 pixels (n = 10, **P < 0.01). 
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To map the molecular regulation of Huh7 cells by MSCs trophic factors, genome-wide 

expression arrays were performed on Huh7 cells treated with (n=3) or without MSC-CM 

(n=3). The principal component analysis of genome-wide expression profiles separated both 

treatment groups into two clusters, reflecting the effects of MSC-CM treatment 

(Supplemental Figure 3). Furthermore, forest plot (Figure 5C) and gene set enrichment 

analysis (Figure 5D) confirmed the up-regulation of cell growth and proliferation-related 

processes and down-regulation of cell death-related pathways by treatment of MSC-CM in 

Huh7 cells. These data further highlight the powerful trophic action of MSCs on the liver 

cancer growth. 

Fig. 5. The trophic factors secreted by MSCs promote colony formation and growth of 
hepatoma cells. (A) Huh7 treated with MSC-conditioned medium resulted in formation of 
more and larger colonies. (B) The size and the number of colonies were significantly increased 
by treatment with MSC-CM.  
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Fig. 5 (C) Forest plot and gene set enrichment analysis (D) of genome-wide gene expression 
array confirmed both the upregulation of cell growth and proliferation-related processes and 
downregulation of cell death-related pathways by treatment of Huh7 cells with MSC-CM. *P < 
0.05; **P < 0.01. 
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MSCs promote tumor growth in mice  

The in vitro studies described above strongly support the notion that MSCs can enhance 

tumor growth. To prove it, Huh7 cells with or without MSCs were subcutaneously injected in 

NOD/SCID mice at the left or right side of the same mouse. Among 8 mice, 3 mice were 

injected with luciferase gene-labeled Huh7 cells. Therefore, the formation of tumors 

involved could be visualized in living animals by IVIS camera (Supplemental Figure 4). After 

engraftment of 19-21 days, mice were sacrificed for analysis of the formed solid tumors. As 

shown in figure 6A, the tumors from the co-injected side (Huh7 with MSCs) are markedly 

bigger than tumors formed in the other side. This is consistent with the observation that the 

weight of the tumors co-injected with MSCs is significantly higher. The tumor weight was 

1.56 ± 0.27 g (mean ± SEM) in the co-engraftment group Vs 0.44 ± 0.19 g in the Huh7 alone 

group (n = 8, P < 0.01) (Figure 6B). Thus cancer-derived MSCs can support tumor growth to a 

large extent. 

 

 

Fig. 6. MSCs promote tumor 
growth in mice. (A and B) 
Coengraftment of Huh7 with 
MSCs in mice resulted in larger 
tumors (right part) than 
engraftment of Huh7 alone (left 
part). (C) The tumor weight was 
1.56±0.27g (mean ± SEM) in the 
coengraftment group versus 
0.44±0.19g in the Huh7 alone 
group (n = 8, *P < 0.01). 
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DISCUSSION 

 

It is well-recognized that the biology and pathology of cancer can only be understood by 

investigating the individual specialized cell types and their crosstalk within the tumor 

microenvironment (6). Recent studies have shown a possible involvement of MSCs as an 

important cellular element within the tumor microenvironment (26). In this study, we add to 

the existing knowledge by showing that STRO-1-positive MSCs are present in HCC at levels 

that are clearly higher as those observed in the surrounding tissue. Culturing these cells from 

resection material and subsequent investigation of their differentiation potential and cell 

surface marker repertoire confirmed the MSCs status of these cells. The most 

straightforward interpretation of these results is that HCC actively recruits MSCs. This notion 

was supported by xenograft experiments, which shows the human HCC model cell line may 

actively recruit murine MSCs. We speculate that HCC are subject to selection pressure that 

favors the acquisition of MSCs attracting properties. Although the mechanisms by which 

MSCs infiltrate into HCC are likely complicated, a potential key factor in this process could be 

Hepatocyte Growth Factor (HGF), well known to be a potent chemo-attractant for MSCs (27), 

which is produced at high levels by most HCC cell lines (28). Furthermore, human HGF is 

active in mice and can thus transcend the species barrier, as we observed the presence of 

mouse MSCs in human HCC cell line formed tumors in mice (Figure 3). Other cytokines are 

likely to contribute to HCC-dependent recruitment of MSCs as well (29). The observation 

that HCC are under apparent selection pressure to recruit MSCs into the tumor environment 

already provides a first hint at the importance of these cells for the HCC growth. 

There is a lively debate in the literature whether MSCs exert a pro- or anti-cancer 

action (19). Several studies reported anti-tumor effects (12-14) whereas others 

demonstrated tumor promoting effects (15-17) of MSCs, depending on the particular cancer 

model and the methodologies applied. Our observation that HCC enriched with MSCs points 

to an important pro-oncogenic action. In addition, in this study we show that tumor-

associated MSCs provide trophic effects on HCC through the production of soluble factors. 

Genome-wide gene expression profiles confirmed the up-regulation of cell growth and 

proliferation-related processes and down-regulation of cell death-related pathways by 
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treatment of MSC-CM in hepatoma cells. Finally, co-engraftment of human HCC-associated 

MSCs substantially promoted tumor growth in a xenograft model of HCC. Thus for at least 

HCC, the role of MSCs in the cancer process seems unequivocally pro-oncogenic. MSCs 

secrete paracrine factors including a variety of growth factors that are known to influence 

tumor proliferation, migration, and angiogenesis (19), which may explain the tumor support 

by MSCs observed in the present study. Although MSCs have been reported to support the 

tumor vasculature, directly by differentiating into pericytes and perhaps endothelial cells (30) 

and through indirect mechanisms by secreting vasculogenic growth factors (31), 

immunohistochemical staining and western blotting analysis of CD146 (angiogenesis marker) 

in the tumors formed in mice however showed no clear difference between the groups 

engrafted with or without MSCs (Supplemental Figure 5). The effects of MSCs on HCC thus 

do not seem to involve improved vascularisation and the effects seen on colony growth are 

more dominant.  IL-6, one of the cytokines, secreted by MSCs, has been showed to promote 

formation of colorectal tumors in mice (32). We confirmed the secretion of IL-6 by MSCs 

using proteomic analysis of the secretome of MSCs (data not shown). However, neither 

adding exogenous IL-6 (Supplemental Figure 6) nor naturalizing MSCs produced IL-6 

(Supplemental Figure 7) by antibody affected colony formation of Huh7 cells. These results 

excluded the involvement of IL-6 in our models. Conceivably, the pathways by which MSCs 

affect tumor growth are rather complicated as MSCs secret over 500 proteins as revealed by 

our proteomic analysis (data not shown). Innovative and high-throughput technologies are 

likely required to further elucidate this system biological interaction between MSCs and 

tumor cells.  

In addition, other mechanisms such as exosomes (or microvesicles) produced by 

MSCs may also be involved in this process. Several studies have demonstrated that MSCs can 

secret exosomes that can result in a cell-to-cell transfer of mRNA, microRNA and proteins 

(33). Exosmes derived from BM MSCs have been shown to facilitate multiple myeloma 

progression (34) and promote gastric carcinoma growth (35). Whereas others have shown 

that exosomes from BM MSCs are able to inhibit growth of glioma (36), hepatoma, Kaposi's 

sarcoma or ovarian tumor in animal models (37). However, the exact roles and mechanisms 

of MSCs produced exosomes in tumor biology remain largely elusive. Immunomodulation, 
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another important feature of MSCs, could also have drastic influence on tumor 

microenvironment (38), although the current tumor models (mainly xenograft models in 

immunodeficient mice) are not able to properly evaluate these effects. Extensive studies 

have demonstrated the expression of several Toll-like receptors (TLR) by MSCs (39), which 

are known to be critically linked with innate and adaptive immunity. It has been described 

that the activation of certain TLRs can polarize MSCs to switch from a predominantly 

immune suppressive MSC2 (TLR3-primed) to a pro-inflammatory MSC1 (TRL4-primed) 

phenotype (40,41). Further study has shown that MSC1-based therapy attenuates tumor 

growth whereas MSC2-treatment promotes tumor growth and metastasis (42). Thus, the 

immunomodulatory property of MSCs deserves more attention in tumor biology.  

Many clinical applications of MSCs are proposed, either as therapeutic agents in their 

own right (immunomodulating and favoring outcome in transplantation and autoimmune 

medicine for instance) or as anti-cancer drug/gene vehicles. The present study argues for 

caution. Clinical application of MSCs for treating liver diseases is currently being investigated 

in efforts to harness the hepatic differentiation potential, anti-inflammatory function and 

immunomodulatory properties of these cells. An early study involved the infusion of 

autologous bone marrow cells, which include the MSCs population, for treating 

decompensated liver cirrhotic patients, including HBV and HCV infected patients (43). More 

recently, using ex vivo cell expanded MSCs, either hepatic-differentiated or undifferentiated 

MSCs, were used to treat liver cirrhotic patients, (10,44). In addition, MSCs were also used 

for immunomodulation therapy of patients after liver transplantation (45). Such studies 

almost unavoidably involve patients who are positive for HBV or HCV. These infections are, 

however, not only important drivers of cirrhosis, but also for developing HCC (46). Of note, 

HCC is an important indication for liver transplantation (47) but also liver transplant patients 

have increased incidence of developing de novo cancer (48). Despite the short-term safety 

reported by these clinical trials, the findings of the present study caution the application of 

MSCs in such patients, and call for vigilant surveillance in patients with high risk of 

developing HCC but already treated with MSCs.  

In summary, this study demonstrated that HCC are enriched with MSCs, which in turn 

provide trophic support for tumor growth. These results shed new light on the crosstalk 
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between MSCs with liver cancer cells and caution the therapeutic application of MSCs for 

liver cancer as well as other liver diseases with high risk of developing malignancy. 

Conceivably, targeting tumor MSCs may represent an innovative therapeutic approach 

against liver cancer.  

 

SUPPLEMENTARY MATERIAL 

 

Supplemental table 1. Characteristics of hepatocellular carcinoma patients. 

 

 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Supplemental Figure 1. (A) 
Western blot analysis showed 
abundant expression of STRO-1 
protein in culture expanded liver 
tumor MSCs as well as liver and 
bone marrow-derived MSCs. But 
STRO-1 protein level is very low in 
whole lysates of liver and liver 
tumor tissues. (B) 
Immunohistochemistry staining 
confirmed the expression of 
STRO-1 in MSCs culture.  
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Supplemental Figure 3. The principal 
component analysis of genome-wide 
expression profiles of Huh7 cells treated 
with or without MSCs conditional 
medium (MSC-CM). The analysis 
separated the two treatment groups 
into two clusters, reflecting the effects 
of MSC-CM treatment in Huh7 cells. 
 

Supplemental Figure 2.  
Immunohistochemistry staining 
showed higher frequency of STRO-1 
positive cells in liver tissues with 
massive inflammation, compared 
with the regular liver tissues. 
 

Supplemental Figure 4. The formation of 
tumors in mice injected with luciferase 
gene-labeled Huh7 cells. The right side is 
co-engrafted Huh7 with MSCs and the 
left side is Huh7 only. The luciferase 
signal is apparently higher in the right 
side, measured two weeks after 
engraftment. 
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Supplemental Figure 6. The effect of 
exogenous cytokine IL-6 on growth of 
Huh7 cells. We found secretion of IL-
6 by MSCs using proteomic analysis 
of the secretome of MSCs. However, 
adding exogenous IL-6 did not affect 
colony formation of Huh7 cells. 

Supplemental Figure 7. The effect of 
naturalizing cytokine IL-6 on growth 
of Huh7 cells. Naturalizing MSCs 
produced IL-6 by antibody did not 
affect colony formation of Huh7 cells.  
 

Supplemental Figure 5. 
 Immunohistochemical staining and 
western blotting analysis of CD146 
(angiogenesis marker) in the tumors 
formed in mice. No clear difference 
was observed between the groups 
co-engrafted Huh7 with or without 
MSCs. 
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Abstract: Colorectal cancer (CRC) is the third most common cancer in the world. CRC tends 

to metastasize to the liver, which may occur in 20% to 70% of patients and represents the 

major cause of death. Mesenchymal stem/stromal cells (MSCs) have shown to be able to 

migrate to CRC site and play an important role in tumor progression. We have previously 

identified a resident MSC population in the liver. Therefore, this study aims to investigate 

whether there is infiltration of MSCs into patient CRC liver metastasis (CRC-LM) and their 

potential effects on tumor cell growth. By culturing resected patient CRC-LM tissue, we 

observed the emerging of fibroblast-like cells. Further phenotype and functional 

characterization confirmed their bona fide MSCs features. In situ staining with a well-

established MSCs marker showed a significant enrichment of candidate MSCs in patient CRC-

LM, particularly the tumor-stromal area. Moreover, MSCs secreted trophic factors 

significantly increased colony formation and growth of a metastatic CRC cell line. In 

summary, we found infiltration and enrichment of MSCs in CRC-LM patient, which could in 

turn nourish tumor cells.  

 

Keywords: mesenchymal stem/stromal cells; colorectal liver metastasis; Trophic action; 

patients  
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Introduction 

Colorectal cancer (CRC) is the third most common cancer in the world. An estimated 1.24 

million people worldwide were diagnosed with colorectal cancer in 2008, accounting for 10% 

of the total cancer patients (http://globocan.iarc.fr/). In approximately 75–80% of cases, 

patients have potentially resectable disease at the time of diagnosis [1]. Liver confined 

metastases (synchronous metastases) are found in 77% of CRC patients presenting stage IV 

disease at diagnosis [2]. The treatment of CRC has evolved greatly in the last 10 years, 

involving complex combined chemotherapy protocols and, in more recent times, new 

biologic agents. Evidence to date suggests potentially distinct roles for bevacizumab and EGF 

receptor-targeted biological agents (cetuximab and panitumumab) in the treatment of 

metastatic CRC. Advances in adjuvant therapy have been limited to the addition of 

oxaliplatin and the substitution of oral fluoropyrimidine (e.g., capecitabine) with intravenous 

5-fluorouracil, however there was no evidence for improved outcome with biological agents 

[3]. Therefore, new therapeutic options are urgently needed for advanced or metastatic 

CRC. 

Mesenchymal stem/stromal cells (MSCs) were first found in the bone marrow (BM) that 

act as stromal cells supporting hematopoietic stem cells [4]. In recent years, MSCs have been 

extensively demonstrated possessing multilineage differentiation potential, anti-

inflammatory function and immunomodulatory properties [5]. More recently, the tumor-

trophic and migratory properties of MSCs demonstrated in various pre-clinical models has 

emerged an interesting concept of using MSCs as carrier for anti-cancer drug/gene delivery 

[6, 7]. This notion also appears to be supported by several studies showing anti-tumor 

effects of MSCs [8-10]. In contrast, others reported that MSCs could promote tumor 

progression or metastasis in animal models [11-13]. Thus, it is still unclear, regarding the 

pro- or anti-cancer role of MSCs, in particular the effects in patients [14]. 

We have previously identified a resident MSC population within the human adult liver 

that are phenotypically and functionally similar to BM MSCs [15]. We subsequently 

demonstrated that MSCs are enriched in human primary liver cancer (hepatocellular 
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carcinoma; HCC) and could exert trophic effects on tumor cells [16]. This prompted us to 

further investigate the presence and the roles of MSCs in liver metastatic CRC (CRC-LM).  

 

Materials and Methods 

Patient Samples 

Nine paired fresh CRC-LM and tumor-free liver tissue were collected for MSCs culturing. 

12 paraffin-embedded patient CRC-LM tissues were collected at the tissue bank at the 

Erasmus MC Rotterdam for immunohistochemical staining of MSC marker (Table 1). The 

medical ethical committee of Erasmus MC proved the use of patient materials. 

 

 

Procedure of Culturing MSCs  

Adjacent liver tissue or CRC-LM tumor were digested into single cell suspensions or cut 

into small pieces. Single cell suspension or small pieces of tissues were cultured for MSCs as 

previously described [16].  

 

Flow Cytometric analysis 

Cells were stained with mouse monoclonal antibodies against CD13-PECy7 (BD 

Biosciences), CD34-APC (BD Biosciences), CD45-PERCP (BD Biosciences), CD73-PE (BD 
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Pharma, San Jose, CA), CD105-FITC (R&D Systems, Abingdon, UK), CD166-PE (BD Pharma, 

San Jose, CA) and HLA-I-APC (BD Biosciences), and flow cytometric analysis was performed.  

 

Assay of Adipogenic and Osteogenic Differentiation 

Adipogenic and osteogenic differentiation were performed as previously described [16]. 

Oil Red O staining was used for adipocytes detection. Alizarin Red S staining was used to 

detect deposited calcium phosphates. 

 

Colony Forming Assay of SW620 cells 

The colony formation assay was performed in SW620 cells, the metastasis colorectal 

cancer cell lines [17], 1000 cells were plated in each well of 6 wells plate and were treated 

with MSCs conditioned medium (MSC-CM), which was prepared by culturing MSCs until 70-

90% confluence and medium was collected 48 hours post-culture. Colony formation assay 

was also performed with SW620 cells only in DMEM medium with 10% fetal bovine serum 

with or without MSC-CM. SW620 colonies were stained with haematoxylin & eosin after two 

weeks.  

 

Immunohistochemistry staining 

Paraffin embedded LM-CRC tumor tissue slides were used to stain with the mouse 

monoclonal antibody STRO-1 (Invitrogen Corporation) and then counterstained with 

haematoxylin [16].  

 

Statistical Analysis  

Statistical analysis was performed by using the GraphPad Software with nonparametric 

Mann–Whitney test or paired t-test. P-values <0.05 were considered statistically significant. 
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Results  

Culture of MSCs from Resected Human CRC-LM Tissues 

To investigate whether MSCs are present in patient CRC-LM tumors, surgical resection of 

CRC-LM tissues of 9 patients were collected and submitted to an MSC culturing protocol 

previous validated for liver tissue [14, 16]. Indeed, mesenchymal like cells were easily 

identified in the resulting cultures (Figure 1A). Upon sub-culturing, rapid grow out and 

expansion of this cell type was validated (Figure 1B). To confirm the bona fide MSCs nature 

of these cells, a functional analysis was performed and demonstrated that these tumor-

derived cells had a multilineage potential with a capacity for adipogenic (Figure 1C) and 

osteogenic differentiation (Figure 1D). In addition, FACS analysis confirmed that these cells 

are positive for common mesenchymal markers CD13, CD73, CD105 and CD166 and are 

negative for the common hematopoietic markers CD34 and CD45 (Figure 2A). Finally, STRO-1 

is considered as the well-known MSCs marker [18], in particular for in vivo 

immunohistochemical staining of candidate MSCs [7]. The STRO-1 protein is highly expressed 

in MSCs cultured from CRC-LM tissues, as evident from immunohistochemical staining 

(Figure 2B).  

 
 

Figure 1. Culture and lineage 
differentiation of MSCs from 
human CRC-LM tissues. With a 
method of culturing tiny tissue 
specimen from surgical resected 
human CRC-LM tissues, fibroblast-
like cells appeared (a) and these 
cells could rapidly grow out and 
expand by subculture showing 
typical MSCs morphology (b). (c) 
Adipogenic differentiation of CRC-
LM derived MSCs, detected by Oil 
red O staining for lipid droplet 
(Arrow). (d) Osteogenic 
differentiation of these cells was 
evaluated by detection of 
deposited calcium phosphates 
using Alizarin Red S staining 
(Arrow). 
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STRO-1 Cells Are Enriched in Human CRC-LM Tumors 

To further characterize whether the presence of MSCs is a general phenomenon in CRC 

metastasis to the liver, we investigated a further cohort of patients using paraffin-embedded 

patient CRC-LM (n=12, Table 1) and immunohistochemical staining of STRO-1. STRO-1 

positive cells were detected in both adjacent tissue and tumor areas (Figure 3A). In the 

regions of the liver apparently unaffected by the cancerous process, STRO-1 positive cells 

mainly locate in liver sinusoid or blood veins. Interestingly, the frequency of STRO-1 in 

tumor, in particular the tumor stromal region, is significantly higher than adjacent tissue site 

(Figure 3B). Thus the presence of MSCs is not only a characteristic of CRC metastasis to the 

Figure 2. Antigenic profiling of cultured MSCs. (a) FACS staining confirmed that these cells are positive 
for common mesenchymal markers CD13, CD73, CD105 and CD166 and are negative for the common 
hematopoietic markers CD34 and CD45. (b) Expression of STRO-1 protein, the best-known MSCs 
marker, confirmed by immunohistochemical staining of cultured tumor MSCs.  
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liver, there is also active recruitment of MSCs to the tumor and these cells are locally 

enriched in the metastasis. MSCs are also present in the primary CRC tumor but hardly 

detectable in the adjacent colon tissue (Figure 3C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSCs Secret Trophic Factors That Can Enhance Colony Unit Formation and Growth of 

Human Metastatic CRC Cells 

Previously, we showed that human liver MSCs can exert trophic action on HCC cells [16], 

but whether these cells have the capacity to foster CRC cell is unknown. Thus we decided to 

investigate whether factors secreted by MSCs influence colony unit formation and growth of 

the SW620 CRC cell line. This cell line was initially isolated from a lymph node during a wide-

Figure 3. In situ localization of STRO-1 positive cells in paraffin-embedded patient primary CRC and 
CRC-LM tissues. (a) Distribution of STRO-1 cells in the adjacent, tumor and tumor-stroma regions 
in CRC-LM tissues. (b) STRO-1 positive cells (an average from 3 HP fields) are significantly enriched 
in the tumor, in particular the tumor-stroma region, compared with the adjacent area in CRC-LM 
tissues (n = 12, *P < 0.05, **P < 0.01). (c) In primary CRC tissues, STRO-1 positive cells are present 
in the tumor but hardly found in the normal adjacent area. 
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Figure 4. Trophic factors secreted by MSCs promote colony formation and growth of 
metastasis CRC cells. SW620 treated with MSCs conditioned medium (MSC-CM) resulted in 
formation of more and larger colonies (A & B). Treatment of SW620 with MSC conditioned 
medium significantly increased both the number (251.3 ± 46.9 Vs 282.1 ± 55.6 colonies/ 500 
SW620, Mean ± SD, n = 6, P < 0.05) (C) and the size (184.0 ± 33.6 Vs 222.8 ± 57.8 pixels, n = 30, 
P < 0.01) (D) of SW620 formed colonies. 

spread tumor metastasis from the colon to an abdominal mass [17]. SW620 cells were seed 

for colony forming assay and subsequently treated with MSC-conditioned medium (MSC-

CM). This treatment significantly increased both the number and size of the SW620 colonies 

(251.3 ± 46.9 Vs 282.1 ± 55.6 colonies/ 500 SW620, Mean ± SD, n = 6, P < 0.05) and the size 

(184.0 ± 33.6 Vs 222.8 ± 57.8 pixels, n = 30, P < 0.01) of SW620 formed colonies (Figure 4C 

and 4D). These results indicate that trophic factors secreted by human liver MSCs provide a 

potent stimulus to support CRC growth in the liver environment.  

 

 
 

 

 

 

 

Discussion 

 

CRC tends to metastasize to the liver, which may occur in 20% to 70% of patients and 

represents the major cause of death [19]. The liver holds a distinct cellular and molecular 
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environment [20] and structural changes of tumor microenvironment of CRC often occur 

once metastasis in the liver [21]. Recent studies have demonstrated the involvement of 

MSCs as an important cellular element within tumor microenvironments [22]. 

MSCs were initially discovered in the BM stromal compartment, but lately were identified 

in number of organs/tissues, including the liver [14]. Extensive studies have demonstrated 

that MSCs can migrate to the tumor site and incorporate into its microenvironment [23, 24]. 

It has also been reported that MSCs migrate to colorectal tumors [25, 26]. The common 

approach to study the homing of MSCs into tumor is transplanting culture expanded MSCs 

into animal models bearing tumor [24]. In this study, we have successfully located candidate 

MSCs in patient CRC-LM and adjacent tissue by immunohistochemical staining with a well-

established MSCs Marker, STRO-1. Interestingly, the frequency of STRO-1 cells is significantly 

higher in the tumor region, in particular the tumor-stromal area of CRC-LM, compared with 

paired adjacent liver tissues. These cells can cultured from resected CRC-LM tissues and 

expanded in vitro. This tumor-homing property of MSCs is likely regulated by several specific 

danger signals and chemotactic factors [27, 28], although the exact mechanisms remain 

elusive.  

There is constant debate whether MSCs suppress or support tumor growth and 

progression [14]. Several studies demonstrated anti-tumor effects [8-10] whereas others 

showed tumor promoting effects [11-13] of MSCs in different tumor models. Regarding the 

effects on CRC, most of the studies have shown a pro-cancer effects of MSCs [29-31]. 

Consistently, we observed that trophic factors secreted by MSCs can promote colony 

formation and growth of a metastasis CRC cell line. MSCs secrete paracrine factors including 

a number of growth factors that are known to influence cancer cell proliferation, migration, 

and angiogenesis [14].  

In summary, this study has demonstrated the presence and local selective enrichment of 

MSCs in human CRC-LM. Trophic factors produced by MSCs can favor the growth of 

metastasis CRC cells. These results may help to understand the role of MSCs in favoring CRC 

liver metastasis. In addition, it cautions against the application of anti-cancer therapy or anti-

cancer gene/drug delivery using MSCs as these may intrinsically favor the cancerous process. 
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ABSTRACT 

 

Objective: Molecular targeted therapy against hepatocellular carcinoma (HCC) has only 

demonstrated a temporary treatment response. Thus, further understanding of the 

molecular biology and pathogenesis of HCC is crucial for future therapeutic development. 

SMAD4, recognized as an important tumor suppressor, is a central mediator of Transforming 

Growth Factor Beta (TGFB) and Bone Morphogenetic Protein (BMP) signaling. This study 

investigated the role of SMAD4 in HCC. 

Design: Nuclear expression of SMAD4 were stained in a cohort of 140 HCC patients using 

paraffin embedded liver tumor tissue in tissue microarray (TMA). HCC cell lines were used 

for functional assay in vitro and in immune-deficient mice.  

Results: Nuclear SMAD4 levels were significantly increased in patient HCC tumors as 

compared to adjacent tissues. Furthermore, knockdown of SMAD4 significantly reduced the 

efficiency of colony formation and migratory capacity of HCC cells in vitro and was 

incompatible with HCC tumor initiation and growth in mice. Knockdown of SMAD4 partially 

conferred resistance to the anti-growth effects of BMP ligand in HCC cells. Importantly, 

simultaneous elevation of SMAD4 and phosphorylated SMAD2/3 is significantly associated 

with poor patient outcome after surgery. Although SMAD4 can also mediated an anti-tumor 

function by coupling with phosphorylated SMAD1/5/8, this signaling however is absent in 

majority of our HCC patients.  

Conclusion: This study revealed a highly non-canonical tumor promoting function of SMAD4 

in HCC. The drastic elevation of nuclear SMAD4 in sub-population of HCC tumors highlights 

its potential as an outcome predictor for patient stratification and a target for personalized 

therapeutic development. 



Chapter 5.  SMAD4 Exerts a Tumor Promoting Role in Hepatocellular 

Carcinoma 

P.Y. Hernanda 

 

73 
 

SUMMARY BOX 
 
What are already known about this subject 
 SMAD4 is originally identified as a candidate 

tumor suppressor gene  
 SMAD4 loss or inactivation is associated with 

several types of cancers  
 SMAD4 mutation in hepatocellular carcinoma 

(HCC) appears rare 
 
What are the new findings 
 Drastic elevation of nuclear SMAD4 level in 

patient HCC  tumors.  
 High SMAD4 expression has been screwed 

towards tumor promoting effects due to 
simultaneous elevation of p-SMAD2/3 in subset 
of HCC patients.  

 SMAD4 can also mediate an anti-tumor signaling 
by coupling p-SMAD1/5/8, this complex however 
is absent in majority of HCC patients  

 
How might it impact on clinical practice in the 
foreseeable future 
 This is an unexpected results in a view of the 

dogma that SMAD4 is a potent tumor suppressor 
and have certainly shed a new light on the 
molecular biology of HCC. More importantly, 
SMADs-based molecules may have potential as 
outcome predictors for patient stratification and 
targets for personalized therapeutic 
development. 

Introduction 

SMAD proteins are recognized as central mediators of Transforming Growth Factor Beta 

(TGFB) and/or Bone Morphogenetic Protein (BMP) signaling pathways, which regulate a 

plethora of physiological processes including cell growth and differentiation.1 Accordingly, 

deregulation of TGFB/BMP pathways almost invariably leads to developmental defects 

and/or diseases, in particular cancer.2 These two pathways signal through the family of 

SMAD proteins to exert their effects. In mammals, there are 8 SMADs that are subdivided 

into 3 distinct classes: receptor-

regulated SMADs (R-SMADs) 

comprising SMAD2 and SMAD3 

(transduce TGFB signaling) and 

SMAD1, SMAD5, and SMAD8 

(transduce BMP signaling); a common 

SMAD called SMAD4; and 2 inhibitory 

SMADs, namely, SMAD6 and SMAD7.3 

SMAD proteins are highly conserved 

within their family and across species, 

with SMAD4 representing a somewhat 

divergent subtype which still retains 

about 40% identity with other family 

members.4 SMAD4 binds to receptor-

regulated SMADs and forms 

heteromeric complexes and 

facilitating the translocation of these 

heteromeric complexes into the 

nucleus. In the nucleus, the 

heteromeric complex binds to 

promoters and interacts with 

transcriptional activators2, 5 and the 
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presence of nuclear SMAD4 protein has profound consequences for gene expression. 

 Originally identified as a candidate tumor suppressor gene at 18q21.1 decades ago,6 

the tumor suppressive function of SMAD4 has now almost achieved dogmatic status and loss 

of its activity has been implicated in the in the initiation and progression of a multitude of 

cancer types.2, 7-10 Loss or inactivation of both normal gene copies is associated with 

carcinoma in several organ systems, including approximately 55% of pancreatic 

adenocarcinomas,6 15% to 55% of extrahepatic cholangiocarcinomas11 and a smaller 

percentage of gastrointestinal and other carcinomas.12, 13 Strikingly, loss of SMAD4 

expression in hepatocellular carcinoma (HCC) has not been observed, prompting 

investigations into role and importance of this tumor suppressor in this disease. 

 HCC which accounts for the majority of primary liver malignancies is the fifth most 

prevalent neoplasm and the third most frequent cause of cancer-related death and is 

characterized by a remarkable failure of conventional treatments.14 Most cases of HCC are 

found in patients with cirrhosis caused by chronic hepatitis B or C virus infection, in 

particular in Asian countries.15 The unique etiology as well as the distinct environment that 

the liver holds may govern a differential signaling network compared to other cancers. One 

study reported a very small percentage of HCC displaying a Asp332Gly mutation in SMAD4 

gene, but it is unknown whether this mutation affects its function; whereas another study 

failed to identify mutations in SMAD4, and thus functionality-corrupting mutations in SMAD4 

appear rare.16, 17 Hence, we endeavored to establish the role of SMAD4 in HCC which we 

uncovered a non-conventional function of SMAD4 in HCC as a tumor promoter.  

  

Material and Methods 

 

Tissue microarray (TMA) 

To make tissue microarray, paraffin-embedded HCC patient tissues (n = 140, between 2004 

to 2013) were collected from the pathology department of Erasmus Medical Centre 

(Erasmus MC) Rotterdam. The use of patient materials was approved by the medical ethical 

committee of Erasmus MC (Medisch Ethische Toetsings Commissie Erasmus MC).[17] 
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Immunohistochemistry 

Paraffin embedded liver tumor tissue in tissue microarray (TMA) slides were deparaffinized 

in xylene, rehydrated in graded alcohols, and rinsed once in phosphate-buffered saline (PBS) 

plus Tween 0.05%. For antigen retrieval, slides were boiled in Tris/EDTA pH 9.0 for 30 min 

(for SMAD4 antibody) and 10 min for other antibodies; 3% H2O2 was used to block 

endogenous peroxidase for 10 min at room temperature. The slides were incubated in 5% 

milk blocking solution followed by overnight incubation in mouse SMAD4 antibody (1:100 

dilution, Santa Cruz Biotechnology, Inc), goat p-SMAD2/3 antibody (1:250 dilution, Santa 

Cruz Biotechnology, Inc) and rabbit p-SMAD1/5/8 (1:500 dilution, Cell Signaling) and then 

counterstained with haematoxylin. The SMAD4 scoring was based on the nuclear staining 

and the p-SMAD2/3 and p-SMAD1/5/8 scoring were based on cytoplasm and/or nuclear 

staining. The following scores were applied: score 0 for 0-10% positive staining, score 1 for 

10-30% positive staining, score 2 for 30-70% positive staining, score 3 for >70% positive 

staining, and score 4 for >70% positive staining + high intensity. The scorings were done by 

two investigators and the difference of scoring was valued by Kappa test. 

 

Lentiviral shRNA vectors 

Lentiviral backbone vectors for SMAD4 knockdown and non-targeting control were obtained 

from the Erasmus Center for Biomics (the Sigma–Aldrich TRC library). A vectors expressing 

shRNA targeting GFP (not expressed in HCC cell lines) served as control (CTR). Lentiviral viral 

particles were generated as described previously.[18] 

 

Cell culture and reagents 

Human hepatoma cell lines (BEL-7404 and Huh7) were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM; Lonza) supplemented with 10% fetal bovine serum (FBS, Sigma–

Aldrich) and 1% penicillin/streptomycin (p/s) (Gibco). SMAD4 knockdown cells and control 

cells were generated by inoculation of lentiviral vectors and subsequently selected and 

maintained in DMEM with 10% FBS, 1% p/s and 2 μg/ml puromycin (Sigma). Recombinant 

human BMP4 protein (100µg/ml, Merck Millipore) and recombinant human noggin 

(50µg/ml, R&D System) were used to treat cells, respectively. 
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Colony forming assay   

Colony formation was performed in BEL-7404 and Huh7 cells as described previously.[19] 

After trypsinizing, 1000 cells were added to each well of 6-well plate and were cultured in 

DMEM medium as previously described. The colonies formed are counterstained with 

haematoxylin & eosin after two weeks. 

 

Western blotting 

Subconfluent cells were lysed in Laemmli sample buffer containing 0.1 M dithiothreitol and 

incubated for 5 min at 96°C. Immunoblotting was performed using fluorescent Odyssey 

immunoblotting (LI-COR Biosciences, Lincoln, NE). Antibodies used were mouse SMAD4 

antibody (1:500 dilution, Santa Cruz Biotechnology, Inc), goat p-SMAD2/3 antibody (1:500 

dilution, Santa Cruz Biotechnology, Inc) and rabbit p-SMAD1/5/8 (1:500 dilution, Cell 

Signaling). Quantification was performed using Odyssey LI-COR software. 

 

Ring-barrier migration assay 

Ring-barrier based migration assays were performed as previously described.[20, 21] For 

BEL-7404 and its sh-SMAD4 cells, 4x105 cells were seeded, while for Huh7 and its sh-SMAD4 

cells, 3x105 cells were seeded in the ring in DMEM+ 10% FBS+ 1% P/S. After 24 h, the 

migration barrier was removed and the cells were washed twice followed by the addition of 

fresh medium.  

Cell migration was monitored with time-lapse microscopy on Axiovert 100 M inverted 

microscopes, equipped with AxioCam MRC digital cameras (Carl Zeiss B.V., Sliedrecht, NL). 

The total distance covered by the cells in 24 h was termed ‘total distance of migration’ (µm), 

while directional cell movement to the cell-free center of the coverslip was termed ‘effective 

distance of migration’ (µm). Migration efficiency (%) was determined as the percentage of 

the effective migrated distance over the total migrated distance. Migration velocity was 

calculated as the total distance migrated as a function of time (µm/h). All cell tracking 

measurements were conducted using AxioVision 4.9.1 software. P-values were calculated 
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using the two-tailed Mann-Whitney test. Track diagram images were processed in Adobe 

Illustrator CS6 (Adobe Systems Inc, San Jose, CA). 

HCC xenograft tumor in nude mice 

HCC xenograft tumor model in nude mice was established as previously described.[22] Ten 

mice for each cell line (BEL-7404 and Huh7), aged 6-8 weeks, were subcutaneously engrafted 

with 1 million control (CTR) and SMAD4 knockdown cells into the lower left or right flank, 

respectively. Tumor initiation in the mice was monitored. At the end of experiment, mice 

were sacrificed and tumors were harvested and weighed. The use of animals was approved 

by the Animal Care and Ethics Committee at Hangzhou Normal University, Hangzhou, China. 

 

Statistical analysis  

Statistical analysis was performed by using Chi Square test, nonparametric Mann–Whitney 

test, cox regression analysis and Kaplan Meier survival analysis in IBM SPSS Statistical 21. T-

test was also used using GraphPad InStat software (GraphPad Software Inc., San Diego, 

USA). P-values <0.05 were considered as statistically significant. 

 

Results 

Drastic elevation of nuclear SMAD4 expression in the tumors of sub-population of HCC 

patients 

The paucity of data surrounding the functionality of SMAD4 in HCC prompted us to analyze 

SMAD4 expression and activation in a panel of resected HCC from 140 individual patients 

and compare the results to adjacent non-transformed tissue. In these patients, nuclear 

SMAD4 protein (Fig. 1A) was taken as measure of SMAD4 signaling activity, as it is generally 

assumed that this fraction of the SMAD4 pool represents the transcriptionally active form of 

the protein. The staining was scored by two independent investigators with a Kappa test of 

0.773, suggesting that there was an excellent agreement in scoring between the two 

investigators. The levels of SMAD4 protein positivity range from low (score: 0-<2), moderate 

(score: 2-<3) to high (score: 3-4) both in the HCC tumors and their adjacent sites (Fig. 1A & 

1B). Strikingly, nuclear SMAD4 levels were considerably higher in human HCC tissue as 

compared to normal adjacent liver tissue (n =140, P < 0.01) (Fig. 1A & 1C). Subsequent 
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Fig. 1. Strong elevation of nuclear SMAD4 expression in the tumors of sub-population of HCC patients. 
(A) The levels of SMAD4 protein positivity range from low (score: 0-<2), moderate (score: 2-<3) to high 
(score: 3-4) both in the HCC tumors and their adjacent sites. Scale bar, 100 pixels. (B) The distribution of 
SMAD4 score among HCC patients. (C) Overall, SMAD4 expression levels were significantly higher in 
human HCC tissues compared with normal adjacent liver tissues. Error bars represents mean ± s.e.m 
from n = 140, paired t-test, **P < 0.01. A significant increase was also observed in tumors compared 
with adjacent tissues in the high grade patients (n = 43, paired t-test, ***P < 0.001). (D) Nuclear SMAD4 
level was significantly higher in undifferentiated tumor than in well differentiated tumor of HCC. From 
cox regression analysis (n = 130 analyzable patients), high SMAD4 level in surgical resected HCC tumor 
tend to have higher risk of fast recurrence (hazard ratio; HR = 1.377) (E) and higher risk of poor survival 
(HR = 1.766) (F). Kaplan Meier analysis (n = 130) also indicated a trend of faster disease recurrence (E) 
and lower cumulative survival (F), although not statistically significant. 

subgroup analysis according to the nuclear SMAD4 score in the tumor showed that there 

was no difference of SMAD4 levels between tumor and adjacent tissue in patients displaying 

low to moderate nuclear SMAD4 scores (n = 97, data not shown); whereas a drastic 

elevation was observed in tumor compared with adjacent tissue in the high SMAD4 

expression group, (3.47 ± 0.45 vs 2.27 ± 0.92, mean ± s.e.m, n = 43, P < 0.001) (Fig. 1C).  
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Analysis focusing on clinical behavior of the cancer (Supplementary Table 1) revealed 

that high levels of nuclear SMAD4 were not significantly associated with tumor size (n = 98 

analyzable patients), number of tumor lesions (n = 129 analyzable patients) and vascular 

invasion (n = 78 analyzable patients), but significantly associated with higher levels of alpha-

fetoprotein (AFP) pre-resection (n = 135 analyzable patients, P < 0.01). Serum AFP has been 

suggested as an independent indicator for HCC prognosis and patients with high AFP levels 

have been reported to have shorter survival.24 In addition, SMAD4 is significantly associated 

with fibrosis (P < 0.01) (Supplementary Fig. 1). Liver fibrosis is in turn strongly correlated 

with HCC development.25 Furthermore, nuclear SMAD4 level was significantly higher in 

undifferentiated tumor than in well differentiated tumor of HCC (2.53 ± 0.23 vs 1.94 ± 0.11, 

mean ± s.e.m, n = 127, P < 0.05) (Fig. 1D). Interestingly, SMAD4 is also significantly correlated 

with the positivity of SALL4, an oncofetal protein (Supplementary Fig. 2). It was recently 

identified as a marker of a subtype of HCC with progenitor-like features. It is associated with 

a poor prognosis and is a potential target for treatment.26, 27  

Importantly though, apparently high SMAD4 positivity in surgically resected HCC (n = 

130 analyzable patients) tend to have higher risk of fast recurrence (Hazard Ratio (HR) = 

1.377, 95% CI: 0.755-2.594) and higher risk of poor survival (HR = 1.766, 95% CI: 0.915-3.362) 

(Fig. 1E & 1F). Kaplan Meier analysis (n = 130 analyzable patients) also indicated a trend of 

shorter time to recurrence and lower cumulative survival in high SMAD4 level patients, 

although not statistically significant (Fig. 1E & 1F). We interpreted that higher nuclear 

SMAD4 levels may be associated with more aggressive types of tumors in HCC patients. 

 

Silencing of SMAD4 expression reduced colony formation in human hepatoma cell lines 

In order to obtain an insight into the mechanisms possibly mediating the negative relation 

between SMAD4 signaling and HCC clinical behavior, we employed lentiviral RNAi vectors 

expressing shRNA (sh-SMAD4) to stably knockdown SMAD4 expression in human HCC cell 

lines and subsequently characterized the cellular consequences thereof. Supplementary 

figure 3 showed the efficacy of gene silencing using this strategy. A vector expressing shRNA 

targeting GFP served as control (CTR). The success of this approach was confirmed by 

western blot and probing for SMAD4 protein (Fig. 2A), which showed almost absence of the 
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protein in the knockdown cell lines, whereas the control cell lines remain SMAD4 proficient. 

Using immunofluorescent staining, it has confirmed the efficiency of SMAD4 knockdown in 

both Huh7 and BEL-7404 cell lines. But BEL-7404 cells have much stronger nuclear SMAD4 

level than Huh7 cells (Fig. 2B), suggesting that SMAD4 is more active in BEL-7404 cells.  

 
 Fig. 2. Decreased efficiency of colony formation in SMAD4 knockdown HCC cells. (A) Successful 

knockdown of SMAD4 in BEL-7404 and Huh7 cell lines was first confirmed on protein levels by 
western blot. (B) Immunofluorescent staining confirmed the efficacy of SMAD4 knockdown. BEL-
7404 cells have much stronger nuclear SMAD4 level compared to Huh7 cells. (C). BEL-7404 cells are 
significantly more efficient in forming colony than Huh7 cells. A significant decrease of the numbers 
of formed colonies was observed in BEL-7404 cells with SMAD4 knockdown (sh-SMAD4), compared 
with mock knockdown (CTR). Error bars represent mean ± s.d, n = 10, t-test, **P < 0.01. Similar 
results were observed in Huh7 cells (n = 10), t-test, *P < 0.05. 
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Colony formation assay is a robust tool to evaluate the ability of a single cell to 

support proliferation. Employing this assay, we observed that BEL-7404 cells are more 

efficient in colony formation than Huh7 cells, which is consistent with their higher nuclear 

SMAD4 levels (Fig. 2C). Furthermore, a significant decrease of the numbers of formed 

colonies was detected in BEL-7404 cells with SMAD4 knockdown compared with the mock 

cells (CTR vs sh-SMAD4: 565.7 ± 117.4 vs. 451.5 ± 107.2 colonies/1000 cells, mean ± s.d, n = 

10, P < 0.01) (Fig. 2C). Similar results were observed in Huh7 cells (CTR vs sh-SMAD4: 326 ± 

149 vs 226.3 ± 62.5 colonies/1000 cells, mean ± s.d, n = 10, P < 0.05) (Fig. 2C). Thus, in 

contrast to most other cell types where SMAD4 expression is associated with reduced cancer 

growth, SMAD4 expression supports proliferation of HCC cells. 

 

Knockdown of SMAD4 attenuated the ability of HCC cell migration  

Cell migration is a fundamental function underlying cellular processes including invasion or 

metastasis of cancer cells. We thus investigated the role of SMAD4 in migration of HCC cells 

using a ring-barrier system. Silencing of SMAD4 expression resulted in attenuated migratory 

capacity towards the cell free area both in BEL-7404 and Huh7 cells. In BEL-7404 cells with 

SMAD4 knockdown, significant reduction was observed in total migration (CTR vs sh-SMAD4: 

97 ± 28.4 vs 77 ± 21.2 µm, mean ± s.d, n = 30, P < 0.001), effective migration (CTR vs sh-

SMAD4: 46.8 ± 12.2 vs 33.7 ± 11.6 µm, mean ± s.d, n = 30, P < 0.001), and migration velocity 

(CTR vs sh-SMAD4: 4.0 ± 1.2 vs 3.2 ± 0.9 µm/hour, mean ± s.d, n = 30, P < 0.001) (Fig. 3A). 

In Huh7 cells with SMAD4 knockdown, quantification revealed a significant reduction 

in total migration (CTR vs sh-SMAD4: 174.1 ± 54.3 µm vs 128.7 ± 42.1 µm, mean ± s.d, n = 30, 

P < 0.01), effective migration (CTR vs sh-SMAD4: 109.1 ± 33.2 µm vs 55.4 ± 22.4 µm, mean ± 

s.d, n = 30, P < 0.001), migration efficiency (CTR vs sh-SMAD4: 63.60 ± 9.60% vs 43.95 ± 

16.62% mean ± s.d, n = 30, P < 0.0001) and migration velocity (CTR vs sh-SMAD4: 7.3 ± 2.3 vs 

5.4 ± 1.8 µm/hour, mean ± s.d, n = 30, P < 0.001) (Fig. 3B). These results indicate that SMAD4 

in HCC cells supports migration and in conjunction with the colony formation data support 

the notion of a non-canonical pro-oncogenic function of SMAD4 in HCC. 
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Fig. 3. Silencing of SMAD4 inhibited HCC cell migration. (A) In BEL-7404 cells with SMAD4 knockdown, 
significant reduction was observed in total migration, effective migration and migration velocity in 24 
hours whereas (B) in Huh7 cells with SMAD4 knockdown, quantification revealed a significant reduce 
in total migration, effective migration, migration efficiency and migration velocity in 24 hours. Error 
bars represent mean ± s.d from n = 30, Mann Whitney test, *P < 0.05, **P < 0.01, *** P < 0.001, ns: 
not significant. Scale bar, 100 µm. 
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Fig. 4. Knockdown of SMAD4 
inhibited growth of BEL-7404 
cell formed tumors in nude 
mice. (A) No significant 
difference regarding the time 
required for tumor initiation 
between control cells and 
SMAD4 knockdown BEL-7404 
cells. ns: not significant. (B) 
The weight of formed tumor 
in SMAD4 knockdown cells 
was significantly lower than in 
control cells (n = 10), paired t-
test, *P < 0.05 (C). The solid 
arrows indicate the tumors 
formed by control cells and 
the dashed arrows indicate 
SMAD4 knockdown BEL-7404 
cells formed tumor. (D) The 
appearance of formed tumors 
in centimeter length. (E) 
Immunohistochemistry 
staining for a proliferation 
marker p-histone H3 
demonstrated a significant 
reduction of proliferating 
cells in tumors formed by 
SMAD4 knockdown cells (n = 
9, paired t-test, *P < 0.05). 

Silencing of SMAD4 limited hepatoma initiation and growth in mice 

 

To finally ensure the tumor promoting effects of SMAD4, we evaluated the impact of SMAD4 

loss on tumor initiation and growth in nude mice. One million CTR and SMAD4 knockdown 

cells were subcutaneously injected into the left or right side of the mice, respectively.  
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As shown in figure 4A, there was no significant difference regarding the time required for 

tumor initiation between CTR and SMAD4 knockdown BEL-7404 cells. However, the weight 

of formed tumor in SMAD4 knockdown cells was significantly lower than those formed by 

CTR cells (CTR vs sh-SMAD4: 0.25 ± 0.05g vs 0.15 ± 0.03g, mean ± s.e.m, n = 10, P < 0.05) (Fig. 

4B, 4C and 4D). Immunohistochemistry staining for a proliferation marker p-histone H3 in 

these tumors confirmed a significant reduction of proliferating cells in tumors formed by 

SMAD4 knockdown BEL-7404 cells (n = 9, P < 0.05) (Fig. 4E). 

 

Fig. 5. Knockdown of SMAD4 in Huh7 cells failed to initiate tumor in nude mice. (A) Knockdown of 
SMAD in Huh7 significantly abolished the tumor formation, whereas 7 out of 10 mice in the control 
group formed tumors (paired t-test, **P < 0.01) (B) The weight of formed tumor. (C) The solid 
arrows indicate Huh7 in control group formed tumors in mice. (D) The appearance of formed tumors 
in centimeter length. 
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Most impressively, knockdown of SMAD in Huh7 cells resulted in complete abolishment of 

tumor formation, whereas 7 out of 10 mice in the CTR group formed tumor (weight: 0.59 ± 

0.15g, mean ± s.e.m, n = 7) (Fig. 5). Collectively, these results are in line with the outcomes 

of our in vitro experimentation and the observation that high SMAD4 expression in human 

HCC tissue is associated with worse prognoses firmly demonstrates that SMAD4 exerts a 

tumor promoting role in HCC. 

 

Simultaneous elevation of SMAD4 and phosphorylated SMAD2/3 is significantly associated 

with poor patient outcome 

Upon binding of the cognate ligands to the TGFB receptor, phosphorylated SMAD2/3 (p-

SMAD2/3) binds to SMAD4 to form heteromeric complex, translocate to the nucleus and 

activate TGFB signaling.28 We thus performed immunohistochemistry staining of p-SMAD2/3 

in the TMA that was used for SMAD4 staining (n = 140). The levels of p-SMAD2/3 protein 

positivity range from low (score: 0-<2), moderate (score: 2-<3) to high (score: 3-4) both in 

the HCC tumors and their adjacent sites (Fig. 6A). 

The patient groups (low, moderate or high) is categorized according to expression 

levels in the tumors. Although no significant difference overall (n = 140), p-SMAD2/3 levels 

were significantly lower in HCC tissue as compared to normal adjacent liver tissue in patients 

with low to moderate scores (n = 86, P < 0.001, data not shown); whereas it is significantly 

higher in the tumor of in patients with high scores (n = 54, P < 0.001) (Fig. 6B). No 

statistically significant relation with p-SMAD2/3 levels was observed regarding to the size (n 

= 98), the differentiation stage (n = 127) or the number of tumor foci (n = 129) 

(Supplementary Table 2). However, high p-SMAD2/3 expression in tumor is significantly 

associated with high recurrence rate (n = 47, P < 0.05) and patient death rate (n = 44, P < 

0.05) (Supplementary Table 2). Moreover, cox regression analysis (n =130) indicated that 

patients with high level of p-SMAD2/3 may have higher risk of fast recurrence (HR = 1.649, 

95% CI: 1.008-3.174) and higher risk to poor survival (HR = 1.633, 95% CI: 0.856-3.116) (Fig. 

6C & 6D). Kaplan Meier analysis (n = 130) also revealed a tendency of shorter time to 

recurrence and a trend to less cumulative survival in patients with high levels of p-SMAD2/3 

in the tumor (Fig. 6C & 6D). 
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Fig. 6. Simultaneous elevation of p-SMAD2/3 and SMAD4 is significantly associated with poor clinical 
outcome in HCC patients. (A) The levels of p-SMAD2/3 protein positivity range from low (score: 0-<2), 
moderate (score: 2-<3) to high (score: 3-4) both in the HCC tumors and their adjacent sites. Scale bar, 
100 pixels. (B) There were more patients with higher p-SMAD2/3 score both in tumor and adjacent sites. 
No significant overall difference of p-SMAD2/3 expression between HCC tissue and normal adjacent liver 
tissue. Nevertheless, in the high grade patients group, p-SMAD2/3 expression was significantly higher in 
HCC tissues compared to adjacent sites (n = 54). Error bars represents mean ± s.e.m, paired t-test, *** 
P<0.001. From cox regression analysis (n = 130), high levels of p-SMAD2/3 tend to have higher risk of fast 
recurrence (HR = 1.649) (C) and tend to have higher risk of poor survival (HR = 1.633) (D). Kaplan Meier 
analysis (n = 130) confirmed a trend of shorter time to disease recurrence (C) and also a trend of less 
cumulative survival (D). (E) 22 out of 140 patients have simultaneously sufficient levels of both p-
SMAD2/3 (n = 16 high; n = 6 moderate levels) and SMAD4. (F) These patients have significantly poor 
clinical outcome as shown by both cox regression and Kaplan Meier analysis. * P < 0.05.  
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 As a phosphorylated protein, moderate levels of p-SMAD2/3 would be expected to 

be already sufficient to trigger the downstream signaling transduction in the presence of 

SMAD4. A sub-population (n = 22) HCC patients have a simultaneous elevation of SMAD4 

and p-SMAD2/3, which represents as a hallmark for the activation of the downstream 

signaling of TGFB (Fig. 6E). Cox regression analysis revealed that these patients have 

extremely higher risk of fast recurrence (progression) (HR = 2.049, 95% CI: 1.035-4.056) (Fig. 

6E). Kaplan Meier analysis also confirmed that these patients are significantly faster  to 

disease recurrence (P < 0.05) (Fig. 6E). These results indicate that SMAD4 together with p-

SMAD2/3 exerts a tumor promoting function in HCC patients. 

 

An anti-tumor signaling mediated by phosphorylated SMAD1/5/8 and SMAD4 is  

inactivated in majority of HCC patients 

Upon binding of BMP ligands, phosphorylated SMAD1/5/8 (p-SMAD1/5/8) binds to SMAD4 

to form heteromeric complex, translocate to the nucleus and activate BMP signaling.28 

Although the exact role of BMP signaling in cancer is highly context-dependent, a recent 

study demonstrated that BMP4, a BMP ligand, inhibited the tumorigenic capacity of HCC 

cells.29 We further examined the effects of BMP4 on HCC cells. In Huh7 cells, BMP4 

significantly reduces colony formation ability of Huh7 cells and knockdown of SMAD4 

attenuated the effects of BMP4. The efficiency of colony formation was reduced by BMP4 

treatment in CTR cells by 47.02 ± 6.5% but only by 25.3 ± 6.4% in SMAD4 knockdown Huh7 

cells (mean ± s.d, n = 4, P < 0.01) (Fig. 7A). Consistently, adding BMP inhibitor Noggin 

appears to increase the efficiency of colony formation in CTR cells (124.5 ± 19.1%, mean ± 

s.d, n = 4) but has much less effect (109.6 ± 9.5%, mean ± s.d, n = 4) in SMAD4 knockdown 

Huh7 cells (Fig. 7B). Thus BMP4 significantly reduced the colony formation ability of 

hepatoma cells, which was consistent with previous reports in other cancer,30-32 and 

knockdown of SMAD4 attenuated the effects of BMP4. Western blot analysis showed the 

effects of BMP4 and Noggin on the protein levels of SMAD4, p-SMAD2/3 and p-SMAD1/5/8.   
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Fig. 7. BMP4 significantly reduced the colony formation ability of HCC cells and its ability was 
attenuated by silencing SMAD4. (A) The efficiency of decreasing colony formation by BMP4 
treatment was significantly reduced in Huh7 cells with SMAD4 knockdown. Error bars 
represent mean ± s.d from n = 4, paired t-test, **P < 0.01. (B) Although the difference was not 
statistically significant, adding BMP inhibitor Noggin appeared to increase the efficiency of 
colony formation in control cells and to less extend in SMAD4 knockdown Huh7 cells. Error 
bars represent mean ± s.d from n = 4, paired t-test, ns: not significant. (C) Protein levels of 
SMAD4, phospho-SMAD2/3 and phospho-SMAD1/5/8 after BMP4 treatment and (D) protein 
levels of SMAD4, phospho-SMAD2/3 and phospho-SMAD1/5/8 after Noggin treatment. 

 

 

 

 

 

 

 

 

This was in broad agreement with the efficacy of the experimental strategy but also 

suggested the existence of SMAD4-dependent feedback loops on BMP signaling elements 

(Fig. 7C & 7D). Our results confirm that activation of BMP signaling, which involves both 

SMAD4 and p-SMAD1/5/8, exerts anti-HCC effects. 

 Next, we further explored the role of this pathway in our HCC cohort. 

Immunohistochemistry staining of p-SMAD1/5/8 was performed in the TMA (n = 140), and 

was scored and categorized as described for SMAD4 and p-SMAD2/3 (Fig. 8A & B). Although 

p-SMAD1/5/8 is significantly higher in the tumor tissue compared to adjacent liver tissue 

(Fig. 8C), only a small subset of patients have high levels of p-SMAD1/5/8 in the tumor (17 

out of 140, see Supplementary Table 3). 
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Fig. 8. The anti-tumor signaling mediated by p-SMAD1/5/8 and SMAD is inactivated in most of the HCC 
patients. (A) The levels of p-SMAD1/5/8 protein positivity range from low (score: 0-<2), moderate (score: 2-
<3) to high (score: 3-4) both in the HCC tumors and their adjacent sites. Scale bar, 100 pixels. (B) Different to 
SMAD4 or p-SMAD2/3, there were less patients with high p-SMAD1/5/8 score both in tumor and adjacent 
sites, although (C) overall p-SMAD1/5/8 expression was significantly higher in HCC tissue compared to 
adjacent liver tissue. The p-SMAD1/5/8 levels were also significantly higher in HCC tissue compared to 
adjacent tissue in the high grade (n = 17) group. Error bars represents mean ± s.e.m, paired t-test, **P < 0.01, 
***P < 0.001. (D) From cox regression analysis (n = 130), patients with high level of p-SMAD15/8 tend to have 
less risk of fast recurrence (HR = 0.486) and less risk to poor survival (HR = 0.639). Kaplan Meier analysis (n = 
130) showed similar trends. (E). However, there are only 8 patients have simultaneously sufficient levels of 
both SMAD4 and p-SMAD1/5/8 (n = 2 high; n = 6 moderate levels), suggesting that this signaling is inactivated 
in most of the HCC patients.  
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No significant relation was observed regarding to the size (n = 98) and the number of tumor 

foci (n = 129) (Supplementary Table 3). Interestingly, a Bonferroni-corrected clinical 

parameter analysis revealed a negative correlation between tumor p-SMAD1/5/8 level and 

age (Supplementary Table 3). Patients with high levels of p-SMAD1/5/8 appear to have lower 

risk of fast recurrence (HR = 0.486, 95% CI: 0.171-1.359) and lower risk to poor survival (HR = 

0.639, 95% CI: 0.226-1.808) (Fig. 8D). Kaplan Meier analysis also revealed a trend of longer 

time to recurrence and higher cumulative survival in these patients (Fig. 8D).  

As a phosphorylated protein, p-SMAD1/5/8 could sensitively control the downstream 

signaling transduction. Since the anti-tumor function of this signaling requires both SMAD4 

and p-SMAD1/5/8, we further categorized the expression levels of both proteins in the same 

patients. As shown in figure 8E, there are only 8 patients having simultaneously sufficient 

levels of both SMAD4 and p-SMAD1/5/8 (n = 2 high; n = 6 moderate levels). These results 

suggest that SMAD4 and p-SMAD1/5/8 mediated anti-tumor signaling is inactivated in 

majority of our HCC patients. 

 

Discussion 

 

In this study, we reported a drastic elevation of nuclear SMAD4 expression in tumors of 

subset of HCC patients. High expression of SMAD4 was further demonstrated to be 

functionally important for hepatoma formation and progression. Importantly, simultaneous 

elevation of SMAD4 and p-SMAD2/3 in sub-population of HCC patients significantly 

associated with poor outcome after surgery. Although SMAD4 coupled with p-SMAD1/5/8 

can also mediate an anti-tumor effect, this signaling however is silent in majority of our HCC 

patients. Thus, we conclude that high SMAD4 expression has been screwed towards a tumor 

promoting signaling in HCC (Fig. 9). This is unexpected in view of the dogma that SMAD4 is a 

potent tumor suppressor.  
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  SMAD4 was initially described in pancreatic cancer, named DPC4 (deleted in 

pancreatic carcinoma, locus 4), and appears critical in pancreatic cancer progression.33, 34 

SMAD4 loss occurs in 40–50% of colon cancers,35 which is associated with metastasis, 

advanced disease and reduced survival. Similarly, its loss in cholangiocarcinoma36 or prostate 

cancer8 is also related to more progressive disease. In head-and-neck cancer and squamous 

cell carcinoma of esophageal, skin or mammary glands, however, loss of SMAD4 promotes 

both tumor initiation and disease progression.37
 The tumor suppressor function of SMAD4 is 

often closely linked to its capacity to mediate TGFB and BMP signals. However, we question 

whether activation or silencing of TGFB/BMP downstream components, including SMADs, is 

always ligand dependent in cancer? Because in xenografts of human hepatoma cell lines in 

mice, which are thus unlikely to encounter their (human) ligands, we observed that high 

expression of SMAD4 is even required for tumor formation and growth. In contrast to our 

observation, a previous study has reported a lower protein level of SMAD4 in HCC tissue 

compared with adjacent liver tissue in an Asian cohort.38 A possible explanation could be 

that the etiologies of HCC may influence the expression of SMAD4. In Asia, viral hepatitis is 

the main cause of HCC; whereas only less than 30% of patients in our European cohort have 

viral hepatitis history. In addition, technical differences, including the source of antibody and 

the protocol of immunohistochemical staining, may also result in discrepancy. In this study, 

we have used a robust staining protocol for SMAD4 (see Methods section) that was 

optimized and established in our previous studies.39, 40 

The essential role of TGFB/BMP signaling in cancer is certainly well-documented, 

whereas its exact functions are also context dependent.41 TGFB1 was also well-recognized 

for its dual role in carcinogenesis.42 It acts as a tumor suppressor in early stages of 

hepatocarcinogenesis by inducing apoptosis43 and at a later stage, however, liver tumor cells 

often become resistant to its pro-apoptotic effect, and produce large amounts of TGFB 

themselves.44 Using genomic approaches, previous studies have established an early and a 

late TGFB signatures that can discriminate distinct subgroups of HCC. Late TGFB gene 

signature displays more invasive phenotype and increased tumor recurrence.45 This 

signature also apply in HCC cell lines and Huh7 was identified to have early TGFB signature45 

and is associated with response to TGFB cytostatic and cytotoxic effects (Supplementary Fig. 
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4). This inhibitory effect of TGFB is SMAD4 dependent (Supplementary Fig. 4). In our HCC 

cohort, a subset of patients have simultaneous elevation of SMAD4 and p-SMAD2/3 

(Supplementary Table 4), indicating the activation of TGFB downstream signaling. These 

patients however have a significant worse outcome after surgery, confirming an tumor 

promoting function of TGFB signaling in these HCC patients. These results suggest that our 

HCC patients probably have a late TGFB gene signature, although we do not have the right 

format of patient materials stored for experimental examination of this signature. 

Several distinct BMP ligands were reported to act together to promote the migratory 

and invasive potential of cancer cells,46 including in HCC.47 In contrast, a recent study 

demonstrated that BMP4 induced differentiation of HCC cancer stem cells and inhibited 

their tumorigenic capacity.29 Our in vitro study indicated activating BMP signaling by adding 

BMP4 ligand in HCC was able to effectively suppress colony formation of HCC cells, which 

was consistent with previous reports in other cancer.30-32 However, silencing of SMAD4 gene 

attenuated this effect, confirming that these anti-oncogenic actions require basal levels of 

SMAD4. Despite an anti-tumor effects of BMP pathway, this signaling however is silent in 

majority of our HCC patients, by losing the key components, either SMAD4 or p-SMAD1/5/8, 

or both of them. The obvious implication of this observation is that HCC cells should prove 

exquisitely sensitive to stimulation with BMP ligands mediating such signaling. In conjunction 

with the recent FDA approval of BMP2 and BMP7 as treatment for certain bone 

pathologies.48 However, we have to be cautious that there are also studies reporting pro-

oncogenic roles of BMP ligands in particular settings. For instance, BMP7 and BMP9 have 

been shown to have tumor promoting functions in some experimental cancer (including 

HCC) models.47, 49, 50 Nevertheless, our results call for further study exploiting this Achilles’ 

heel of HCC. 

In summary, this study reports a significant elevation of nuclear SMAD4 expression in 

patient HCC tumors. High SMAD4 expression has been screwed towards tumor promoting 

effects due to simultaneous elevation of p-SMAD2/3 in subset of patients. SMAD4 can also 

mediate an anti-tumor signaling by coupling p-SMAD1/5/8, this complex however is absent 

in majority of patients due to lack of either SMAD4 or p-SMAD1/5/8, or both of them. These 
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results have certainly shed new light on the molecular biology of HCC and more importantly 

SMADs-based molecules may have potential as outcome predictors for patient stratification. 

 

              
 

Fig. 9. The model of action of SMADs in HCC. SMAD4 and p-SMAD2/3 are elevated in 
subset of patients that mediate a tumor promoting effect. Although SMAD4 together 
with p-SMAD1/5/8 can also exert an anti-tumor effect, this complex however is absent 
in majority patients, due to missing of either SMAD4 or p-SMAD1/5/8, or both of them. 
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SUPPLEMENTARY MATERIAL 

Supplementary Figure 1 

 

 

 

 

 

 
Fig. S1. SMAD4 is significantly associated with liver fibrosis. Score 0 for 0-10% positive staining, score 1 for 10-
30% positive staining, score 2 for 30-70% positive staining, score 3 for >70% positive staining, and score 4 for 
>70% positive staining. 0-1 represents any score from 0 to (including) 1; 1-2 represents any score higher than 1 
and up to 2; 2-3 represents any score higher than 2 and up to 3; 3-4 represents any score higher than 3 and up 
to 4. P < 0.01; Chi-Square test. 

 

Supplementary Figure 2 

 

Fig. S2. SMAD4 is significantly 
correlated with the positivity of 
SALL4, an oncofetal protein. SALL4 
is negative in adjacent liver tissue, 
but is positive in the HCC tumors of 
sub-population of patients. P1 
represents a patient with positive 
SALL4 in the tumor and P2 
represents a patient with negative 
SALL4 in the tumor. P < 0.01; Chi-
Square test. 
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Supplementary Figure 3 

 

 

 

 

 

Supplementary Figure 4 

 
Fig. S4. The diverse effects of TGF-b on different HCC cell lines. (A) The effects on HCC cell proliferation/viability 
was determined by MTT assay. Treatment with TGF-b (5 ng/ml) resulted in potent inhibitory effects on Huh7 
cells, but only minor effect on BEL-7404 and 97H cells, even slightly promoted growth of Hep3B cells. Data 
presented as Mean ± SD, n = 3 independent experiments with 7 replicates in total. (B) One week treatment of 
TGF-b (2 ng/ml) confirmed the differential effects on Huh7 and Hep3B cells. (C). TGF-b (5 ng/ml, for 5 days) 
treatment inhibited cell growth but also altered their morphology. Knockdown of SMAD4 attenuated the 
inhibitory effects of TGF-b. 

Fig. S3. Selection of optimal lentiviral 
shRNA vectors for targeting SMAD4. 
Western blotting was used to evaluated 
the efficacy of SMAD4 knockdown in 
Huh7 cells. Sh40 was selected for follow-
up experimentation. 
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Supplementary Table 1 Patient characteristics according to SMAD4 expression level.  

No Characteristics 
SMAD4 expression Total  

patients P-valuea 
Low-mod High 

1  Age 60.70 ± 15.62 59.88 ± 12.61 140/140 0.763 

2  Sex (% male) 68/97 (70.1%) 29/43 (67.4%) 97/140 0.753 

3  Recurrence 32/97 (33,0%) 15/43 (34.9%) 47/140 0.827 

4  Death 30/97 (30,9%) 14/43 (32.6%) 44/140 0.848 

5  Size of tumor 6.88 ± 0.63 6.55 ± 0.99 98/140 0.777 

6  Number of lesions 1.56 ± 0.11 1.39 ± 0.17 129/140 0.413 

7  Vascular invasion 54/85 (63.5%) 24/36 (66.7%) 78/140 0.742 

8  AFP before resection* 5.00 16.00 135/140 0.005 

* P value < 0.01  
aCategorized parameters were compared using Pearson’s Chi-Square test, mean differences were tested using 
Student’s t-test, median differences were tested using Mann-Whitney test 
 

 

Supplementary Table 2 Patient characteristics according to p-SMAD2/3 expression level. 

No Characteristics 
p-SMAD2/3 expression Total 

Patients P-valuea 
Low-mod High 

1  Age 58.71 ± 15.76 63.22 ± 12.56 140/140 0.077 

2  Sex (% male) 57/86 (66.3%) 40/54 (74.1%) 97/140 0.330 

3  Recurrence* 23/86 (26.7%) 24/54 (44.4%) 47/140 0.031 

4  Death* 21/86 (24.4%) 23/54 (42.6%) 44/140 0.024 

5  Size of tumor 6.68 ± 5.38 6.97 ± 5.13 98/140 0.796 

6  Number of lesions 1.44 ± 1.00 1.6 ± 1.20 129/140 0.376 

7  Vascular invasion 51/74 (68.9%) 27/47 (57.4%) 78/140 0.199 

8  AFP before resection 10.00 7.00 135/140 0.077 

* P value < 0.05  
aCategorized parameters were compared using Pearson’s Chi-Square test, mean differences were tested using 
Student’s t-test, median differences were tested using Mann-Whitney test aCategorized parameters were 
compared using Pearson’s Chi-Square test, mean differences were tested using Student’s t-test 
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Supplementary Table 3 Patient characteristics according to p-SMAD1/5/8 expression level. 

No Characteristics 
p-SMAD1/5/8 expression Total 

Patients P-valuea 
Low-mod High 

1  Age*** 62.24 ± 11.96 47.53 ± 24.29 140/140 0.000 

2  Sex (% male) 88/123 (71.5%) 9/17 (52.9%) 97/140 0.119 

3  Recurrence 43/123  (35,0%) 4/17 (23.5%) 47/140 0.350 

4  Death 40/123 (32.5%) 4/17 (23.5%) 44/140 0.454 

5  Size of tumor 6.70 ± 5.14 7.45 ± 6.38 98/140 0.657 

6  Number of lesions 1.50 ± 1.07 1.41 ± 1.23 129/140 0.708 

7  Vascular invasion 70/105 (66.7%) 78/121 (64.5%) 78/140 0.194 

8  AFP before resection 8.00 7.50 135/140 0.664 

***P value < 0.0001 
aCategorized parameters were compared using Pearson’s Chi-Square test, mean differences were tested using 
Student’s t-test, median differences were tested using Mann-Whitney test 

 

 

Supplementary Table 4 Patient characteristics according to high SMAD4 expression and 
moderate-high p-SMAD2/3 expression level. 

No Characteristics 

High SMAD4 + Mod-high p-SMAD2/3 
expression level Total 

Patients P-valuea 
No Yes 

1  Age 61.04 ± 15.45 57.85 ± 10.82 140/140 0.319 

2  Sex (% male) 80/114 (70.2%) 17/26 (65.4%) 97/140 0.633 

3  Recurrence 35/114 (30.7%) 12/26 (46.2%) 47/140 0.132 

4  Death 34/114 (29.8%) 10/26 (38.5%) 44/140 0.392 

5  Size of tumor 6.85 ± 5.23 6.50 ± 5.53 98/140 0.800 

6  Number of lesions 1.52 ± 1.08 1.44 ± 1.12 129/140 0.744 

7  Vascular invasion 67/100 (67%) 11/21 (52.4%) 78/140 0.203 

8  AFP before resection 6.50 14.00 135/140 0.136 

* P value < 0.05 
aCategorized parameters were compared using Pearson’s Chi-Square test, mean differences were tested using 
Student’s t-test, median differences were tested using Mann-Whitney test 
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Abstract 

Aim. To investigate whether hepatitis virus infection interacts with bone morphogenetic 

protein (BMP) signaling in the process of hepatocellular carcinogenesis 

Methods. A tissue microarray (TMA) of 140 paraffin-embedded surgically resected 

hepatocellular carcinoma (HCC) patient specimens were used for immunohistochemical 

staining for p-SMAD1/5/8 and SMAD4. Hepatitis C and B cell culture models were used for in 

vitro studies.   

Results. P-SMAD1/5/8 and SMAD4 protein were expressed at a higher level in HCC as 

compared to the normal adjacent area. There is a negative association between the 

apparent activation of BMP signaling in cancer cells and a history of prior hepatitis in 

patients with HCC. Patients with prior hepatitis exhibit significantly lower p-SMAD1/5/8 

expression (P<0.01), although SMAD4 expression in HCC is higher in patient with a history of 

viral hepatitis. The association between activation of BMP signaling and a prior viral hepatis 

is remarkable in that from clinical parameters, we found only chirrosis to be significantly 

associated with history of hepatitis in our cohort and no significant relation was observed 

between prior viral hepatitis and patient’s characteristics such as age, sex, tumor size and 

the number of tumor foci. In a cell culture models, hepatitis B or Hepatitis C infection did not 

activate BMP signaling, and treatment of cells with a BMP ligand or inhibitor did not affect 

hepatitis C virus (HCV) infection.   

Conclussion. Although downregulation of BMP signaling is a striking characteristic in HCC 

patients with a prior history of viral hepatitis, viral infection of liver cells itself does not 

majorly involve BMP signaling. Hence, the difference in activation of elements involved in 

BMP signaling seen in HCC patients more likely represents altered interaction between the 

cancer cells and the surrounding stroma in viral hepatitis-associated HCC rather as cancer 

cell intrinsic properties.  
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Introduction  

Hepatocellular carcinoma (HCC) is the major manifestation of primary liver malignancy and 

the fifth most prevalent neoplasm and the third most frequent cause of cancer-related 

death. HCC is characterized by a remarkable failure of conventional treatments, making 

better prevention and treatment modalities of paramoubt importance. Most cases of HCC 

are found in patients with cirrhosis caused by chronic hepatitis B or C virus infection. The 

unique etiology as well as the distinct environment that the liver holds may govern a 

differential signaling network compared to other cancers, but is still largely understood. 

Most likely, however, corruption of existing signaling mechanisms involved in cell fate 

specification in normal liver development play an important role. Unfortunately the nature 

of signals involved remains only partly understood and its likely that as yet unidentified 

morphogenetic signals are important here. 

A possible mediator of aberrant morphogenetic signalling in liver pathology are the 

Bone morphogenetic proteins (BMPs). BMPs are a group of morphogens that belong to the 

Transforming Growth Factor beta (TGF-beta) superfamily of developmentally active signals. 

BMPs act in physiology through an autocrine and paracrine mechanisms, binding to cell 

surface receptors and triggering a sequence of downstream events. Initially, BMPs were only 

identified by their ability to induce the formation of bone and cartilage and controlled 

release from BMP family members has now become an accepted clinical mode aiding for 

instance fusion of vertebral bodies to prevent neurologic trauma or for the treatment of 

tibial non-union where a bone graft has failed 1. However, BMPs are now emerged to be 

pivotal morphogenic signals, specifying cell fate in a myriad of cell types and in addition a 

plethora  of other biological functions in physiology and pathophysiology 2. Deregulation of 

BMP pathway is often associated with developmental defects and/or diseases, in particular 

cancer of tissues derived of endodermal origen 3. 

A possible functionality of BMP in the liver and its associated pathology has been less 

well established. A recent study, however, described that human liver sinusoid endothelial 

cells (LSEC) can promote hepatitis C virus (HCV) replication within hepatocytes via secretion 

of BMP4 4,5. In contrast, an earlier study reported that the BMP family member BMP7 can 

inhibit HCV replication 6. In addition, overexpression of soluble BMP inhibitors was decribed 
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in HCV-associated HCC tumors 7. Thus although the data in the literature is not consistent, it 

appears that BMPs are involved in the biology of viral infection of hepatocytes and the 

associated cancers, prompting further research. Especially given the potential importance of 

the biological and clinical implications that establishing a role for BMP signalling in viral 

hepatitis and its associated cancer might have, we attempted to further investigate the role 

of BMP signalling in HCV infection in the context of HCC.  Our results reveal that specifically 

hepatitis virus infection-associated cancers are characterised by a downregulation of BMP 

signalling, probably through processes that are established after viral infection has occurred 

and thus relate to the oncological process rather as to the viral infection per se. We thus 

propose that exogenous application of BMPs may become a treatment option for specifically 

hepatitis-related cancers. 

 

Methods 

Tissue microarray (TMA) 

To make the tissue microarray, paraffin-embedded surgically resected HCC patient tissues (n 

= 140, obtained between 2004 to 2013) were collected from the pathology department of 

Erasmus Medical Centre (Erasmus MC) Rotterdam and processed through previously-

described routine procedures 8. The use of patient materials was approved by the medical 

ethical committee of the Erasmus MC (Medisch Ethische Toetsings Commissie Erasmus MC).9  

 

Immunohistochemistry 

Paraffin embedded liver tumor tissue in tissue microarray (TMA) slides was deparaffinized in 

xylene, rehydrated in graded alcohols, and rinsed once in phosphate-buffered saline (PBS) 

plus Tween 0.05%. For antigen retrieval, slides were boiled in Tris/EDTA pH 9.0 for 30 min 

(for the anti-SMAD4 antibody) and in Citrate acid pH 6.0 for 10 min (for the anti-p-

SMAD1/5/8 antibody) ; 3% H2O2 was used to block endogenous peroxidase for 10 min at 

room temperature. The slides were incubated in a 5% milk blocking solution followed by 

overnight incubation with a mouse anti-SMAD4 antibody (1:100 dilution, Santa Cruz 

Biotechnology, Inc) or a rabbit anti-p-SMAD1/5/8 (1:500 dilution, Cell Signaling), followed by 
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an appropriate secondary antibody and then counterstained with haematoxylin. As negative 

control, the primary antibody was replaced by 5% milk blocking solution; the positive 

controls were taken from other slides that had successfully been stained before. The SMAD4 

scoring was based on the nuclear staining and the p-SMAD1/5/8 scoring were based on 

cytoplasm and/or nuclear staining. The following scores were applied: score 0 for 0-10% 

positive staining, score 1 for 10-30% positive staining, score 2 for 30-70% positive staining, 

score 3 for >70% positive staining, and score 4 for >70% positive staining + high intensity. 

The scores were categorized from low (score: 0-<2), moderate (score: 2-<3) to high (score: 3-

4). The scorings were done by two investigators and the difference of scoring was 

determined through a  Kappa test. 

 

Hepatitis B and C cell culture models 

Huh7-ET replicon assay system was based on Huh7 cells containing a subgenomic HCV 

bicistronic replicon (I389/ns3-3v/LucUbiNeo-ET) 10. Stable luciferase expressing cells were 

generated by transducing naïve Huh7 cells with a lentiviral vector expressing the firefly 

luciferase gene (LV-PGK-Luc). Transduced cells were expanded for at least 10 days before 

use in experiments. As an infectious HCV model, Huh7.5.1 cells harboring the full-length 

JFH1-derived genome were used 11.Hepatitis B virus (HBV) particles were produced in the 

HepG2.2.15 cell line 12. 

 

Measurement of luciferase activity  

The HCV permissive Huh7 cells were transduced with LV-PGK-Luc and were plated in 96-well 

multiplates. Recombinant human BMP4 protein (100µg/ml, Merck Millipore) and 

recombinant human noggin (50µg/ml, R&D System) were used to treat cells, respectively, as 

appropriate. After 24, 48 and 72 hrs of culture, t luciferase activity was measured. For firefly 

luciferase, luciferin potassium salt (100 mM; Sigma) was added to cells and incubated for 30 

minutes at 37℃. Luciferase activity was quantified with a LumiStar Optima luminescence 

counter (BMG LabTech, Offenburg, Germany). 
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Quantitative RT-PCR 

RNA was isolated using a Machery-Nagel NucleoSpin RNA II kit (Bioké, Leiden, The 

Netherlands) and quantified using a Nanodrop ND-1000 (Wilmington, DE, USA). cDNA was 

prepared from total RNA using an iScript cDNA Synthesis Kit from Bio-Rad (Bio-Rad 

Laboratories, Stanford, CA, USA). HCV IRES and GAPDH cDNA of was amplified for 40 cycles 

and quantified by real-time PCR (MJ Research Opticon, Hercules, CA, USA) using SYBRGreen 

according to the manufacturer's instructions. GAPDH was used as a reference gene to 

normalize gene expression. 

 

Western blotting 

Subconfluent cells were lysed in Laemmli sample buffer containing 0.1 M dithiothreitol and 

incubated for 5 min at 96°C. Immunoblotting was performed using fluorescent Odyssey 

immunoblotting (LI-COR Biosciences, Lincoln, NE) as described previously 11. Antibodies used 

were mouse SMAD4 antibody (1:500 dilution, Santa Cruz Biotechnology, Inc) and rabbit p-

SMAD1/5/8 (1:500 dilution, Cell Signaling). Quantification was performed using Odyssey LI-

COR software. 

 

Statistical analysis  

Statistical analysis was performed by using Chi Square test in IBM SPSS Statistical 21. Mann-

Whitney or T-test was also used using GraphPad InStat software (GraphPad Software Inc., 

San Diego, USA). P-values <0.05 were considered as statistically significant. 

 

Results 

 

A history of prior hepatitis is associated with deregulation of BMP signalling in HCC 

Following engament of the BMP receptor complex with its cognate ligands, further BMP 

signalling involves the of phosphorylated SMAD1/5/8 (p-SMAD1/5/8) to SMAD4 and the 

thus-formed heteromeric complex supsequently translocates to the nucleus to provoke 

specific genetic responses.2 Hence, we explored the activation of BMP signalling using p-
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SMAD1/5/8 levels and nuclear localization of SMAD4 as a read-out. For this purpose 

immunohistochemical staining was performed of a paraffin-embedded tissue microarray 

(TMA) (n=140). The staining was scored by two independent investigators and the Kappa  

test for SMAD4 scoring in TMA was 0.773, which was deemed acceptable. 

 
Tabel 1. Clinical parameters of the HCC patients investigated in this study 

*P<0.05,  **P<0.01 
aCategorized parameters were compared using Pearson’s Chi-Square test, mean differences were tested using 
Student’s t-test 
 

Interestingly, nuclear SMAD4 protein levels were considerably higher in the HCC 

tumor as compared to the normal adjacent area (Fig. 1a). Analysis of the relation between 

nuclear SMAD4 levels and clinical parameters of the patients involved revealed that nuclear 

SMAD4 levels correlate well with a history of prior hepatitis (P<0.05) (Fig. 1b), but not with 

other clinical parameters. We thus concluded that activation of common component of 

signalling within the TGF-beta superfamily of patients is observed in HCC but that this effect 

is restricted to subgroup of patients that develop this disease as a consequence of a prior 

hepatitis. 

No Characteristics 
Hepatitis history 

Patients P-valuea 
No Yes 

1  Age 60.73 ± 2.32 58.55 ± 1.69 140/140 0.093 

2  Sex (% male) 61/95 (64.2%) 36/45 (80.0%) 97/140 0.059 

3  Size of tumor 7.15 ± 0.73 5.48 ± 0.76 98/140 0.128 

4  Number of lesions 1.29 ± 0.07 1.27 ± 0.25 129/140 0.346 

5  Differentiation*     127/140 0.043 

  Good   33/94 (35.1%) 8/33 (24.2%) 41/127   

  Moderate    50/94 (53.2%) 15/33 (45.5%) 65/127   

  Bad    11/94 (11.7%) 10/33 (30.3%) 21/127   

6  Cirrhosis** 37/95 (38.9%) 30/45 (66.7%) 67/140 0.002 

7  High-mod SMAD4 53/95 (55.8%) 32/45 (71.1%) 85/140 0.083 

8  High-mod p-SMAD1/5/8** 34/95 (35.8%) 6/45 (13.3%) 40/140 0.006 

9  High-mod SMAD4 + p-
SMAD1/5/8 18/95 (18.9%) 4/45 (8.9%) 22/140 0.127 
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Figure 1. Dysregulation of BMP signaling components in HCC tumors of patients with hepatitis 
history. (a) An increase of SMAD4 expression in HCC tumor area compared to the normal adjacent 
area. (b) An increased of SMAD4 expression was associated with hepatitis history. (c) p-SMAD1/5/8 
was predominantly expressed in the HCC tumor compared to the normal adjacent area and (d) 
patients with hepatitis history had significantly lower p-SMAD1/5/8 expression than those without 
hepatitis history.  
 
 

 

 

 

A similar analysis was performed with regard to p-SMAD1/5/8 immunoreactivity in 

these patients. Mirroring the results obtained with nuclear SMAD4 staining, p-SMAD1/5/8 

protein was predominantly present in the HCC tumor when compared to the normal 

adjacent area (Fig. 1c) and patients with a history of hepatitis had significantly lower p-

SMAD1/5/8 expression than those without hepatitis history (Fig. 1d and Table 1). A  positive 

correlation between cirrhosis and prior hepatitis was also detected (Table 1) however, no 

significant relation was observed between p-SMAD1/5/8 immunoreactivity and patient’s 

characteristics such as age, sex, tumor size (n = 98 analyzable patients) and the number of 

tumor foci (n = 129 analyzable patients) (Table 1). There were only 22 out of 140 HCC 

patients (15.7%, Table 1) which displayed both moderate to high level of SMAD4 and p-
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SMAD1/5/8 expression. Since the activation of BMP signaling is associated with both 

SMAD1/5/8 phosphorylation and nuclear localization of SMAD4, a possible interpretation of 

our results isthat in HCC patients, and especially those with a history of prior hepatitis 

canonical BMP signaling is inactivated since only a small subset of patients have tumors with 

evident nuclear SMAD4 combined with a p-SMAD1/5/8 signal (4 out of 45 HCC patients with 

a history of hepatitis) (Tabel 1).  

 

BMP signaling does not affect hepatitis viral infection  

The apparent negative association between SMAD1/5/8 phosphorylation or nuclear SMAD4  

and HCC linked to a prior hepatitis might suggest that either BMP signaling is somehow 

involved in hepatitis virus infection or that down regulation of BMP signaling is important for 

progression to HCC once infection has been established. To distinguish between these 

possibilities, we further investigated whether HBV or HCV infection directly affects tBMP 

signaling. To this end, immortalized hepatocyte cell models were infected with HBV or HCV 

in vitro. However, no clear effect on either SMAD4 or p-SMAD1/5/8  immunoreactivity was 

observed upon infection determined by western blot (Fig. 2a), suggesting that viral infection 

does not directly interact with BMP signaling. Consistently, treatment with human 

recombinant BMP4  did not show any effect either on luciferase activity of a HCV replicon 10 

(Fig. 2b) or on cellular viral RNA in aof HCV infectious model 11 (Fig. 2c) employing either 1, 

10 & 100 ng/ml of the recombinant protein. Parallel performed western blotting analysis for 

p-SMAD1/5/8 (Fig. 2c) confirmed the biological activity of BMP4 used in our experimentation 

and demonstrated a capacity of our model to respond to the morphogen. Conversely, 

Noggin, a protein that binds and inactivates members of the TGF-beta superfamily signaling 

proteins including BMP4 2 did not affect HCV infection in both models (Fig. 2d and 2e), but 

was proficient in inhibiting BMP4-provoked smad1/5/8 phosphorylation (Fig. 2e). Thus, it 

appears that BMP signaling activation is not implicated in hepatitis virus infection, at least in 

cell culture models. 
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Figure 2. The effects of modulating BMP signalling on HCV infection in Huh7-based cell culture 
models. (a) Western blot analysis showed HCV infection could downregulate p-SMAD1/5/8 
expression (b) HCV subgenomic replicon containing luciferase reporter gene was treated with human 
recombinant BMP4 at indicated concentrations. HCV luciferase was measured at 24, 48 and 72 hrs. 
No significant difference was observed (mean±SD, n=8). (c) Treatment of BMP4 did not affect cellular 
HCV RNA in the JFH-1 derived infectious model (mean±SD, n=4). Western blot confirmed the 
activation of SMAD1/5/8 phosphorylation, the downstream events of BMP signaling. (d) Treatment of 
noggin, the inhibitor of BMPs, also did not affect HCV infection in either subgenomic replicon 
(mean±SD, n=6) or (e) infectious model (mean±SD, n=3). The activity of noggin was confirmed by 
showing inhibition of SMAD1/5/8 phosphorylation.  
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Discussion 

In this study, we report a specific dysregulation of BMP signaling in tumors of HCC patients 

with a history of hepatis. As we did not detect any effect of BMP signaling in the hepatitis 

virus infection process per se, the most straightforward interpretation of our results is that 

downregulation of BMP signaling a process occurring specifically in the progression towards 

hepatititis-associated liver cancer. Thus our results call for further research in the potential 

usefulness of BMP signaling-activating medication in this subgroup of patients. A possibility 

here would be treatment with the relatively side-devoid statins, which have been associated 

with increased BMP signaling in colon cancer through demethylating the BMP2 promoter, 

activating BMP signalling, inducing differentiation of CRC cells, and reducing 'stemness' 13. If 

liver cells, like colon cells respond to statin treatment by the activation of BMP signaling, 

statins could be a useful addition to treatment regimens in hepatitis-associated HCC.  

The literature on the role of BMP signaling in hepatitis virus infection is confusing. A 

recent study described that LSEC can promote HCV replication within hepatocytes via 

secretion of BMP4 4,5 and that this effect can be mimicked by commercially available BMP4 

in cell culture models. We could not confirm this effect in our experimental set up, using the 

same concentration of exogeneously applied BMP4.  In contrast, an earlier study reported 

that the BMP family member BMP7 can inhibit HCV replication. By inhibiting BMP signalling 

with Noggin, we also did not observe an effect on HCV infectionWe found that BMP signaling 

was not able to modulate HCV infection 4. Thus it is still a question whether BMP4 is the key 

factor that contributes to the proviral effects of LSEC, but the current study does not support 

this concept and other not virus infection-related mechanisms linking BMP signalling to the 

carcinogenesis of hepatitis-associated HCC are more likely to be responsible for the negative 

association between this disease and BMP signalling observed in the present study.  

Despite a decrease of p-SMAD1/5/8 in hepatitis associated HCC tumors, we also 

observed an increase of SMAD4 expression. However, this increase in SMAD4 may not be 

related to activation of BMP signaling, since SMAD4 can also mediate signalling through the 

TGFB pathway 14. HBV-encoded oncoproteins have been associated with an increase in 

SMAD4 nuclear translocation and amplification of TGFB signaling 15, but further work is 
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necessary to address the importance of TGFB signalling in the context of viral hepatitis-

associated HCC.   

In summary, this study reports downregulation of BMP signaling components in 

patient HCC tumors, restricted to those patients with a history of prior hepatitis , but did not 

uncover evidence that BMP signaling can directly modulate hepatitis virus infection, 

suggesting that down regulation of BMP signaling is especially important in the progression 

to full blown cancer following the establishment of hepatitis. Defining  the exact mechanism 

involved may yield useful novel therapeutic avenues for dealing with specifically this 

subpopulation of HCC patients. .  
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ABSTRACT 

BACKGROUND AND AIMS: Disease recurrence is a major challenge for the ultimate success 

of liver transplantation (LT) as treatment for hepatocellular carcinoma (HCC). The use of 

immunosuppressants is an important risk factor for HCC recurrence; whereas such impact 

could differ drastically among different types of immunosuppressants. This study 

investigated the effects and mechanism-of-action of mycophenolic acid (MPA) in 

experimental HCC models and in liver transplanted HCC patients. METHODS: Five HCC cell 

lines and nude mice with partial immunodeficiency were used. The association of 

mycophenolate mofetil (MMF), the pro-drug of MPA, with HCC recurrence was 

retrospectively analyzed in a LT cohort. RESULTS: With clinically achievable concentrations, 

MPA effectively inhibited cell proliferation and single cell colony formation. It can does-

dependently trigger cell apoptosis and arrest HCC cells in G0/G1 phase. Supplementation of 

exogenous guanosine nucleotide partially restored the inhibitory effects of MPA on HCC 

cells. Ectopic over-expression of IMPDH2, the target of MPA, that lacking the binding sites of 

MPA but retaining its enzyme activity resulted in complete resistance to MPA. In nude mice 

subcutaneously engrafted with HCC cells, MPA significantly delayed tumor formation and 

constrained tumor growth. Immunohistochemical staining in harvested tumor tissues 

confirmed the cell cycling arresting and apoptosis triggering effects of MPA in mice. Most 

importantly, the use of MMF has a strong association with reduced disease recurrence and 

improved survival in liver transplanted HCC patients. CONCLUSIONS: By targeting IMPDH2, 

MPA can specifically counteract HCC in experimental models. In liver transplanted HCC 

patients, the use of MMF is strongly associated with reduced disease recurrence and 

improved survival. These results warrant prospective clinical trials for further investigation. 
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INTRODUCTION 

Introduction 

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death 

worldwide.1 Surgical resection or liver transplantation (LT) are the only potentially curative 

treatment options. LT is particularly attractive because of the resection of the tumor along 

with the replacement of the diseased liver that is at risk for development of new malignant 

lesions. Moreover, liver transplantation cures the underlying liver disease and related other 

complications. However, tumor recurrence is a common challenge for the ultimate success 

of both surgical resection and LT.2 An unique risk factor strongly associated with recurrence 

in LT patients is the universal use of immunosuppressants after transplantation, which is to 

prevent graft rejection.3-5 

   Besides a general impairment of the immunosurveillance system, different types of 

immunosuppressants however could have distinct mechanisms that are independent of the 

host immunity to affect the process of malignancy.5-8 Current research is mainly focusing on 

the mammalian target of rapamycin (mTOR) inhibitors, including rapamycin (sirolimus) and 

everolimus. They are thought to be the only class of immunosuppressive agents that may 

reduce HCC recurrence, as having been reported by some retrospective or meta-analysis 

studies.9-13 However, these studies do not provide firm evidence to conclude the superiority 

of mTOR inhibitors on HCC recurrence.14 In particular, prospective studies supporting this 

notion are still lacking, and higher rejection rates were reported for monotherapy of 

sirolimus or everolimus in liver transplanted HCC patients.15, 16 Yet, HCC is a rather 

heterogeneous malignancy with multiple etiologies.17, 18 It is unlikely that one 

immunosuppression protocol fits all cases. Therefore, the impact of other 

immunosuppressants also deserve to be carefully investigated, in order to define 

appropriate immunosuppressive regimens for management of HCC recurrence after LT.  

   Mycophenolic acid (MPA) and its prodrug, mycophenolate mofetil (MMF), are currently 

widely used for prevention of allograft rejection because of lacking nephrotoxicity.19 These 

drugs act through depletion of guanine nucleotide pools by inhibition of inosine 

monophosphate dehydrogenase (IMPDH), in particular the isoform 2 (IMPDH2).20 This 

results in blockage of de novo guanine nucleotide synthesis and inhibition of lymphocyte 
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proliferation.19 Interestingly, MPA has been reported to be able to inhibit cancer cell 

proliferation and induce caspase/ mitochondrial-dependent apoptosis in several 

experimental models of human solid tumors and hematological malignancies.21-24 A large 

prospectively conducted observational cohort study observed a tendency toward a lower 

risk of malignancy in MMF versus non-MMF treated renal transplanted patients.25 However, 

this class of immunosuppressants has not been extensively studied in the setting of HCC 

recurrence after LT. This consideration inspired us to explore the effects and mechanism-of-

action of MPA in experimental HCC models and in HCC-related LT patients. 

 

 

Patients, Materials and Methods 

 

Patient Information 

A LT database established by our previous study4 was used for retrospective analysis of the 

effect of MMF use on HCC recurrence. This cohort included patients transplanted between 

October 1986 to December 2007 at the Erasmus MC University Medical Centre Rotterdam, 

The Netherlands. 44 out of 385 LT patients were identified as HCC-related LT and thus 

subjected to the analysis. 

 

Patient Tissue 

Tissue samples from individuals who were eligible for surgical resection of HCC were 

collected. The use of patient materials was approved by the medical ethical committee of 

Erasmus MC (Medisch Ethische Toetsings Commissie Erasmus MC). 26   

 

Reagents 

Stocks of MPA and guanosine (AMRESCO LLC, USA) was dissolved in dimehtyl sulfoxide 

(DMSO) (Sigma-Aldrich, St Louis, MO), Antibodies against IMPDH2, p-Histone3 and Cleaved 

caspase3 were purchased from Abcam, MILLIPORE and Cell Signaling, respectively. 
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Cell Culture 

HCC cell lines, including BEL7404, Hep3B, SMCC7721, PLC/PFR/5 and Huh7, were grown in 

Dulbecco’s modified Eagle’s medium (DMEM) (GIBCO Life Technologies), supplemented with 

10% (v/v) fetal bovine serum (FBS) (Hyclone Technologies), 100 units/mL of penicillin and 

100 µg/mL of streptomycin. All the cells were incubated at 37℃ in a humidified atmosphere 

containing 5% CO2. 

 

MTT Assay 

Cells were seeded in 96-well plate, at a concentration of 6×103 cells/well in 100 μL medium. 

All of the cells were incubated overnight to attach to the bottom of the wells, and then 

treated with serials dilutions MPA (1, 5, 10, 15, 20, 25 and 30 μg/mL). Cell viability was 

analyzed by adding 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, 5 

mg/mL) (Sigma-Aldrich, St Louis, MO) and 150 μL DMSO. Absorbance was determined using 

Enzyme mark instrument at the wavelength of 490 nm. 

 

Colony Formation Assay 

Cells were harvested and resuspended in culture medium, then counted and plated in 6-well 

plates (for BEL7404 cell, 500 cells/well, and for Hep3B cell, 1000 cells/well). Formed colonies 

were fixed by 70% ethanol and counterstained with haematoxylin & eosin after two weeks. 

Colony numbers were counted and their sizes were measured by microscope. 

 

Analysis of Cell Cycle 

Cells (5×105/well) were plated in six-well plates and incubated overnight to attach the wells, 

then serials concentrations of MPA were added. Control group was added with equal volume 

of PBS. After 48 h, control and treated cells were trypsinized and washed with PBS and then 

fixed in cold 70% ethanol overnight at 4℃. The cells were washed twice with PBS and 

incubated with 20 μg/mL RNaseA at 37℃ for 30 min, and then with 50 μg/mL propidium 

iodide (PI) at 4℃ for 30 min. The samples were analyzed immediately by Flow cytometric 

(FACS) (AriaTM, BD Biosciences). Cell cycle was analyzed by ModFit LT 3.0 software.  
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Analysis of Cell Apoptosis 

Cell apoptosis analysis were performed by staining cells with AnnexinV-FITC and PI. Cells 

(5×105/well) were seeded in six-well plates and incubated at 37℃ in 5% CO2 for overnight, 

then serials dilutions of MPA were added, control group was added with equal volume of 

PBS. After 24, 48 and 72 h, all of the cells were trypsinized and resuspended in Annexin-

binding buffer, then stained with Alexa Fluor 488 AnnexinV and PI, and incubated at room 

temperature for 15 min. Detection of apoptosis was performed by FACS.  

 

Xenograft Assays in Nude Mice 

HCC xenograft tumor model in nude mice was performed in accordance with current 

prescribed guidelines and under a protocol approved by the Institutional Animal Care and 

Use Committee of Hangzhou Normal University, China.27 Mice were all female and 4-6 

weeks of age at the time of inoculation, and were subcutaneously inoculated with 5X106 of 

BEL7404 cells. After 20 hours, mice were divided into 3 groups and were treated with 

different doses of MPA or placebo (240 mg/kg body weight, n = 10; 60 mg/kg body weight, n 

= 11 and PBS, n = 10).28 MPA was injected via the intraperitoneal (IP) route for 20 

consecutive days. Tumor formation was monitored. The size of tumors were measured by 

vernier caliper every 3 days. Volume(tumor)=0.5×length×width2. At day 30 post-engraftment, 

mice were sacrificed and tumors were harvested and imaged. Tumor tissue were fixed with 

4% paraformaldehyde and embedded in paraffin for histology evaluation or 

immunohistochemistry.  

 

Immunohistochemistry 

Paraffin embedded tumor tissue slides were deparaffined in xylene, rehydrated in graded 

alcohols, and rinsed once in PBS plus Tween 0.05%. Slides were boiled in citrate acid buffer 

pH6.0 for 10 min for antigen retrieval; 3% H2O2 was used to block endogenous peroxidase 

for 20 min at room temperature. The slides were incubated in 5% milk blocking solution 

followed by overnight incubation with rabbit monoclonal antibody against IMPDH2, rabbit 

polyclonal antibody against p-Histone H3 and rabbit polyclonal antibody against cleaved 

caspase 3 with concentration of 1:500, 1:1000, 1:300 and then counterstained with 
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haematoxylin. As negative control, the primary antibody was replaced by PBS; the positive 

controls were taken from other slides that had successfully stained before. IMPDH2, 

phospho-Histone H3 and Cleaved staining was scored by two independent observers.  

    The number of cell mitosis was counted in 10 high-power fields (x400). Median 

number of mitosis for each 10 field was calculated for each sample of different groups. The 

percentage of cleaved caspase 3 positive cells was also counted in each of 10 high-power 

fields (x400). The average number of every 10 percentages was taken as the value of each 

sample. Three categories was used to evaluate the percentage of positive apoptosis: <10% 

mild; 10%-50% moderate; >50% high. And the intensity of IMPDH2 staining was presented 

by categories: + weak; ++ moderate; +++ strong. 

 

Statistical Analysis  

Statistical analysis was performed by using the paired nonparametric test, the unpaired 

nonparametric Mann–Whitney test or paired T-test using GraphPad InStat software. Chi 

Square test, cox regression analysis and Kaplan Meier survival analysis in IBM SPSS. P-values 

<0.05 were considered statistically significant. 

 

Results 

 

MPA Inhibited Cell Proliferation and Colony Unit Formation in HCC Cell Lines 

In order to investigate whether MPA may directly affect cellular physiology of HCC cells, the 

effects of this drug on cell proliferation and single cell colony unit formation (CFU) were 

evaluated in different cell line models of this disease. MPA does- and time-dependently 

inhibited cell proliferation in all 5 HCC cell lines with clinically achievable concentrations29 

(Figure 1). In apparent agreement, MPA profoundly inhibited the number and size of 

colonies formed in the CFU assay. It appears that relatively low concentration (1 μg/ml) of 

MPA has already impeded colony formation, whereas higher concentrations (2-5 μg/ml) are 

not compatible with colony formation at all (Figure 2). In BEL7040 cells, 322 ± 27 

colonies/500 cells were formed in untreated but only 148 ± 27 colonies were formed in 1 

μg/ml MPA treated groups (mean ± SEM, n = 6, P < 0.01) (Figure 2A). Accordingly, the size of  
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CFU was significantly smaller in MPA treated compared to untreated groups (96 ± 5 pixels Vs 

278 ± 8 pixels, mean ± SEM, n = 30, P < 0.01) (Figure 2B). Similar results were also observed 

in Hep3B cells (Figure 2C and 2D). We concluded that MPA strongly interferes with HCC 

expansion in vitro and experiments were initiated to explore the cell kinetic basis of this 

effect. 

 

Figure 1. MPA 
inhibited cell 
proliferation in HCC 
cell lines. With 
clinically achievable 
concentrations, MPA 
potently inhibited 
cell proliferation in 
all 5 HCC cell lines 
determined by the 
MTT assay (Mean ± 
SD, n = 5). 
 

Figure 2. MPA 
inhibited single cell 
colony formation. 
MPA inhibited the 
ability of colony 
formation in 
BEL7404 cell line (the 
number (A) and the 
size (B) of CFU) and 
in Hep3B cell line 
(the number (C) and 
the size (D) of CFU) 
(Mean ± SEM, n = 6 
or 30, respectively, 
**P < 0.01). 
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MPA Arrested Cell Cycling and Induced Cell Apoptosis 

To further understand how MPA acts on HCC cell growth, assays for quantifying cell cycling 

and apoptosis were performed. Treatment of MPA does-dependently increased the 

proportion of HCC cells in the G0/G1-phase and concomitantly decreased the proportion of 

cells in the S-phase and the G2/M-phase of both BEL7404 (Figure 3A) and Hep3B (Figure 3B) 

cell models of HCC. In addition, MPA dose-dependently triggered early and late cell 

apoptosis (Figure 3C, 3D and 3E). These data suggested that MPA inhibit HCC cell growth by 

arresting cell cycle and inducing apoptosis. 

 

 
Figure 3. MPA arrested cell cycling and triggered cell apoptosis. BEL7404 cells (A) and Hep3B cells (B) were 
arrested in the G0/G1 phase by MPA treatment (Mean ± SD, n = 3. *P < 0.05; **P < 0.01); (C) Flow cytometric 
analysis of cell apoptosis. (D) MPA significantly enhanced both early and late apoptosis at 5-25 ug/ml 
concentrations (Mean ± SD, n = 3, *P < 0.05; **P < 0.01). 
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Figure 4. Anti-proliferative effects of MPA were 
partially restored by supplementation of 
exogenous guanosine. The number (A) and the 
size (B) of CFU were partially restored by 
supplementation of exogenous guanosine after 
treatment of MPA in BEL7404 cell line (Mean ± 
SD or SEM, n = 6 or 30, respectively, *P < 0.05; 
**P < 0.01). 
 

Exogenous Nucleotide Supplementation 

Partially Restored the Anti-growth Effect of 

MPA  

Depletion of intracellular nucleotide pool is the 

key immunosuppressive mechanism employed 

by MPA to inhibit lymphocytes proliferation.30 

Supplementation of exogenous guanosine 

nucleotide indeed partially counteracted the 

anti-proliferation effects of MPA on HCC cells. 

This is marked at low doses of MPA (1 and 2 

μg/ml), but high doses of MPA out-compete 

exogenous guanosine nucleotides (Figure 4A). 

This effect was also observed when colony 

formation by HCC cell line models was studied 

(Figure 4B). These results promoted further 

investigation on the molecular mechanisms. 

 

IMPDH2 Is a Key Mediator of MPA Affecting 

HCC Cell Growth  

MPA can effectively bind to IMPDH, leading to 

the inhibition of the enzymatic activity of de 

novo nucleotide biosynthesis. Although there 

are two isoforms, IMPDH2 exhibits a 5-fold 

higher sensitivity to inhibition by MPA as 

compared to the type I isoform (IMPDH1).20 

IMPDH2 is often up-regulated in cancer.31 

Immunohistochemical staining of our patient 

HCC tissues showed remarkable high 

expression of IMPDH2 at protein level (Figure 



Chapter 7.  IMPDH2-Targeted Constraint of Hepatocellular Carcinoma by 

Mycophenolic Acid in Experimental Models and in Liver Transplant Patients 

P.Y. Hernanda 

 

125 
 

S1), suggesting that this enzyme constitutes a relevant target for MPA in HCC. 

    To further investigate the functional role of IMPDH2, we used a lentiviral vector 

expressing an experimentally mutated IMPDH2 (LV-mutIMPDH2) fused with GFP.32, 33 The 

product of this construct has normal IMP hydrogenase activity but lacks the binding site for 

MPA. Transduction of this vector resulted in successful expression of this mutated allele in 

HCC cells (Figure 5A). In BEL7404 cells, forced expression of this mutated IMPDH2 coincided 

with resistance of these cells with respect to MPA effects on cell proliferation as determined 

by MTT assay (Figure 5B). In CFU assay, forced expression provoked a non-competitive 

resistance to MPA effects on colony size and number (Figure 5C and 5D). Furthermore, 

expression of the mutated IMDH2 allele prevented MPA-induced apoptosis (Figure 5E and 

5F). These results demonstrated a key role of IMPDH2 in mediating the effects of MPA on 

HCC cellular physiology. 

 

 

Figure 5. Anti-proliferative 
effects of MPA were 
almost completely restored 
by ectopic over-expression 
of IMPDH2. (A) An 
experimentally mutated 
IMPDH2 fused to GFP 
reporter was expressed by a 
lentiviral vector. It has 
normal IMP hydrogenase 
activity but lacks the 
binding site for MPA. (B) 
Ectopic expression of 
IMPDH2 restored the 
inhibitory effects of MPA on 
cell viability. The number 
(C) (Mean ± SD, n = 6, 
**P<0.01).and the size (D) 
(Mean ± SEM, n = 30, 
**P<0.01) of CFU were 
largely restored in IMPDH2 
over-expressed BEL7404 
cells. The percentage of 
early apoptosis (E) and late 
apoptosis (F) induced by 
MPA were significantly 
reduced in IMPDH2 over-
expressing cells (Mean ± SD, 
n = 3. *P < 0.05; **P < 0.01). 
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Figure 6. MPA delayed tumor initiation, inhibited HCC cell proliferation and induced cell apoptosis in 
mice. (A) MPA treatment significantly delayed tumor initiation of BEL7404 cells in nude mice. (B) Low dose 
(60 mg/Kg body weight) of MPA slightly promoted tumor growth, but high dose (240 mg/Kg body weight) 
constrained tumor growth, compared with PBS treated mice. (C) The appearance of formed tumors. (D) 
Immunohistochemical staining of harvested tumor tissue section revealed a significant down-regulation of 
IMPDH2 protein levels by treatment of MPA. Accordingly, treatment of MPA significantly reduced the 
percentage of p-histone H3 positive (proliferating) cells (E) and significantly increased cleaved caspase 3 
positive (apoptotic) cells (F). (Mean ± SEM, PBS, n = 10; 60 mg/kg, n = 11; 240 mg/kg, n = 9, *P<0.05; 
**P<0.01). 
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MPA Delayed Tumor Initiation, Inhibited HCC Cell Proliferation and Induced Cell Apoptosis 

in Mice 

Insight into the effects of MPA on HCC in vivo was obtained in experiments in which nude 

mice were used for subcutaneous engraftment of BEL7404 cell line (5×106 cells). 20 hours 

after inoculation, mice were IP injected with MPA or vehicle for 20 consecutive days. In this 

xenograft model of experimental HCC, treatment of MPA (60 mg/kg body weight) 

significantly (P < 0.05) delayed tumor initiation (Figure 6A). In 240 mg/kg body weight of 

MPA treated group, one mouse was failed to form tumor; whereas other mice all 

successfully formed tumors. Tumor growth was followed by measuring the volume every 3 

days. Treatment of 60 mg/kg body weight of MPA slightly increased the tumor volume 

(conceivable due to immunosuppression); whereas 240 mg/kg body weight of MPA 

constrained tumor growth (Figure 6B and 6C). 

    Immunohistochemical staining of tumors harvested from these mice has 

demonstrated a significant down-regulation (P < 0.05) of IMPDH2 at protein levels by 

treatment of MPA (Figure 6D). MPA significantly inhibited tumor cell proliferation, as shown 

by significant reduction (P < 0.05) of proliferative cells assessed by the percentage of p-

histone H3 positive cells (Figure 6E). Furthermore, MPA treatment coincides with a 

substantial tumor cell apoptosis, as shown by a significant increase in the percentage of 

cleaved caspase 3 positive cells (Figure 6F). These results showed that MPA can significantly 

delay tumor initiation, specifically inhibit tumor cell proliferation and effectively trigger HCC 

cell apoptosis in mice; whereas its immunosuppressive property can potentially mask this 

specific anti-tumor effect. 

 

MMF Use Is Strongly Associated with Reduced HCC Recurrence and Improved Survival in 

Liver Transplant Patients 

Confirming the anti-tumor effect of MPA in patients is of foremost importance in managing 

immunosuppressive medication in HCC patients after LT. In fact, the transplantation setting 

is more fair for assessing this specific anti-tumor effect, since all the patients are under 

immunosuppressive condition. Retrospective analysis was performed in a LT cohort that was 

used for our previous study.4 44 out of 385 patients were identified as HCC-related liver 
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transplantation and thus included in this analysis. 12 patients were treated with 

immunosuppressive regimens containing MMF (Table S1); whereas 32 patients were treated 

with immunosuppressive regimens that do not contain MMF. As shown in Table 1, there is 

no significant difference regarding to patient characteristics, including age and sex. 

Importantly, There are also no significant differences regarding to known prognostic factors 

of HCC recurrence after LT,31 including the size of tumor, the number of lesions, tumor 

differentiation stage, vascular invasion and the level of AFP before transplantation (Table 

S2).  

 

   
Figure 7. MMF use in patient is associated with better clinical outcome in HCC transplanted patients. (A) 
Kaplan Meier analysis (n = 44) revealed that patients using MMF is significantly slower to HCC recurrence (P < 
0.05) (A) and with better survival (B). Consistently, cox regression analysis showed that patients using MMF 
have a lower risk of fast recurrence (progression) (C) and lower risk of poor survival (D). HR: Hazard Ratio; *P < 
0.05. 
 

However, only 1 out of 12 patients (8.3%) in the MMF group developed recurrence; 

whereas 15 out of 32 patients (46.9%) in the control group developed recurrence during 

follow up. Thus, the use of MMF was significantly associated with lower recurrence rates (P < 

0.05) and higher survival rates (P < 0.01) (Table S2). Kaplan Meier analysis confirmed that 

patients using MMF have significantly slower HCC recurrence (P < 0.05) (Figure 7A) 

associated with better survival (P < 0.05) (Figure 7B). Consistently, cox regression analysis 
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revealed that patients using MMF have a lower risk of fast recurrence (progression) (HR = 

0.169, 95% CI: 0.022-1.284) (Figure 7C) and lower risk of poor survival (HR = 0.128, 95% CI: 

0.017-0.967) (Figure 7D). These results indicate that MMF use is associated with reduced 

HCC recurrence and improved survival in liver transplant patients. 

 

Discussion 

Although it is suspected that immunosuppressive medication following LT facilitate HCC 

recurrence, the issue of how specific immunosuppressive drugs affect the disease process is 

only poorly understood.35 Obviously, a regimen that can perform its immunosuppressive 

function necessary for preventing graft rejection but that concomitantly exerts anti-tumor 

effects against HCC should be the preferential clinical choice in this particular setting. In this 

respect, mTOR inhibitors attract attention as they are potent renal function-sparing 

immunosuppressants but potentially also have anti-proliferative activity on tumor cells.9-13 

However, only approximately 50 % of all HCC exhibits activation of mTOR downstream 

signaling elements and retrospective or meta-analysis based studies do not provide firm 

evidence to conclude that mTOR inhibitors exert beneficial effects with regard to HCC 

recurrence.12, 36, 37 Indeed, both experimental and clinical evidence suggests that tumors 

bearing different genetic mutations can respond differentially to mTOR inhibitors.38, 39 Given 

the heterogeneity of HCC,17 other immunosuppressive regimens also deserve careful 

attention. In this study, we demonstrated a cancer-constraint effect of MPA through 

IMPDH2 in experimental HCC models. We further provided clinical evidence that MMF is 

associated with reduced disease recurrence and improved survival in HCC-related liver 

transplant patients. 

    Mechanistically, the effect of MPA on HCC appears through inhibition of its canonical 

target, IMPDH. Such enzymes catalyze the rate-limiting step in de novo guanine nucleotide 

biosynthesis. The enzymatic activity of IMPDH is composed of two separate isoenzymes, 

type 1 and 2, encoded by the genes IMPDH1 and IMPDH2.40 IMPDH2, which exhibits a 5-fold 

higher sensitivity to MPA than IMPDH1, is up-regulated in proliferating cells,41 including in 

various types of tumors as well as well in HCC as we observed in this study. Ectopic 

expression of the experimentally-mutated IMPDH2 that retained enzymatic activity but 
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lacked the binding site of MPA largely restored the anti-HCC effects of MPA. Surprisingly, 

supplementation of guanosine restored to a much lesser extent, the inhibitory effects of 

MPA. Interestingly, a recent study in Drosophila has demonstrated a double role of IMPDH. 

It can also act as a transcription factor to either enable or restrict cell proliferation.42 MPA 

might also act in HCC as a transcription factor, but obviously further experimentation is 

necessary to address this possibility. 

   A potential anti-malignant effect of MPA in patients has been evaluated in clinical 

settings other than LT. A phase 1 clinical trial in patients with advanced multiple myeloma 

showed a positive correlation between clinical responses and depletion of the intracellular 

deoxyguanosine triphosphate levels by MMF.43 However, another clinical study in pancreatic 

cancer failed to show any beneficial effects, thus these effects may be cancer type specific or 

can be masked by the immunosuppressive properties of MPA.44 Our data support that MPA 

has potent inhibitory effects on HCC growth in vitro and delays tumor initiation in mice. 

However, in mice, low dose of MPA slightly stimulated tumor growth (conceivable by 

suppressing anti-tumor immunity) but high dose constrained tumor growth again. More 

importantly, a clear inhibition of tumor cell proliferation and induction of HCC cell apoptosis 

were observed in MPA treated mice. These results indicate an immunosuppressive and an 

anti-tumor action simultaneously occurring in vivo. Thus, the transplantation setting is 

perfect for investigating its specific antitumor effect, since all the patients are under 

immunosuppression. Indeed, a tendency toward a lower risk of malignancy in MMF-treated 

renal transplant patients versus non–MMF-treated renal transplant patients has been 

reported in a large, prospectively conducted, observational cohort study.25 

    Excitingly, after performing a retrospective analysis in our LT cohort, we found a 

strong association between MMF use and reduced HCC recurrence and improved patients 

survival. Importantly, there are no significant differences regarding to patient characteristics 

and no significance of some essential prognostic factors of HCC recurrence34 between these 

two groups. Given the single center and retrospective nature, other clinical and 

preferentially randomized studies are needed to confirm our findings. 

    In summary, this study demonstrated that clinically relevant concentrations of MPA 

are capable in constraining HCC cell growth in experimental models. We further provided 
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clinical evidence that MMF is associated with reduced HCC recurrence and improved survival 

in liver transplant patients. Confirming these experimental findings and retrospective clinical 

observations by prospective randomized trials could lead to better management of 

immunosuppressive medication for HCC patients after liver transplantation.  
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SUPPLEMENTARY MATERIAL 

 

Figure S1. Protein expression of IMPDH2 in patient 
HCC tumors.  
As shown by immunohistochemical staining (left 
panel), IMPDH2 is highly expressed in patient HCC 
tumor (solid arrow) compared with adjacent tissue 
(dashed arrow). To further evaluate IMPDH2 

expression in more patients, a tissue microarray (TMA, middle panel) containing surgical resection of HCC 
tissues were used (12 cases have both normal and tumor tissue and 4 cases have tumor tissue only). The use of 
patient materials was approved by the medical ethical committee of Erasmus MC. (Medisch Ethische Toetsings 
Commissie Erasmus MC) The high expression level of IMPDH2 was confirmed in this cohort (right panel).  
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Table S1. Clinical informations on patients that use MMF 

 
 Note: - no recurrence; N/D not determined.  
 

Table S2 Patient characteristics according to MMF use.  

No Characteristics 
MMF use 

P-valuea No 
(%/Median) 

Yes 
(%/Median) 

1  Age 56.50 58.00 0.383 
2  Sex (% male) 23/32 (71.9%) 10/12 (83.3%) 0.698 
3  Recurrence* 15/32 (46.9%) 1/12 (8.3%) 0.032* 
4  Death** 18/32 (56.2%) 1/12 (8.3%) 0.006** 
5  Size of tumor 2 cm 2 cm 0.890 
6  Number of lesions 2 2 0.808 

7 
 Differentiation 

- Good 
- Moderate -Bad 

 
9/31 (29.0%) 

22/31 (71.0%) 

 
3/11 (27.3%) 
8/11 (72.7%) 

1.000 

9  Vaso - invasion 9/30 (30%) 1/11 (9.1%0 0.238 
10  AFP before resection 35 15 0.408 
11 Prednisone use after LTxb 26/31 (83.9%) 10/12 (83.3%) 0.644 
12 Follow up time 130 weeks 114.5 weeks 0.663 

aCategorized parameters were compared using Pearson’s Chi-Square test, mean differences were tested using 
Mann Whitney test 
bLTx = Liver transplantation, given around 3 months following LTx 
 

No Age 
(yrs) 

LTx date Recurrence 
date 

Start date 
MMF 

End date 
MMF 

MMF 
Period 

(weeks) 

AFP before 
transplantation 

1 58 22-May-1992 - 26-Jan-98 21-Feb-08 525 N/D 
2 50 18-Jan-1998 - 26-Sep-02 04-Feb-11 436 116 
3 55 18-May-2006 - 24-May-06 04-Jul-13 371 15 
4 53 28-Jul-2007 - 13-Aug-07 12-Jun-13 304 6 
5 60 21-Dec-2005 - 25-Jan-06 07-May-09 171 94 
6 69 21-May-2000 - 19-Dec-05 22-Sep-08 144 15 
7 63 05-Sep-2007 - 11-Sep-07 15-Jun-10 144 19 
8 65 20-Nov-2004 19-Jun-2007 15-Sep-05 17-Mar-08 130 101 
9 58 01-Jan-2007 - 29-Jan-07 21-Jan-10 155 9 

10 24 09-Feb-2005 - 02-Mar-05 20-Apr-06 59 1 
11 65 23-Aug-2007 - 23-Aug-07 21-Sep-07 4 2 
12 56 22-Jan-2007 - 26-Jan-07 15-Oct-07 37 200 
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Chapter 8 

 
Summary and Discussion 

 
The only potentially curative treatment options for hepatocellular carcinoma (HCC) are 

surgical resection and, for patients who are not eligible for resection, liver transplantation 

(LT), although the majority of HCC patients, in fact, are not eligible for either resection or 

transplantation. However, disease recurrence is the main challenge to the success of these 

treatments and thus further studies are urgently called for. The present thesis tries to make 

a contribution here. 

Molecular targeted therapy against HCC provides only temporary clinical efficacy. For 

patients with advanced disease, which represent the majority of patients at diagnosis, the 

only major option is sorafenib (Nexavar), an oral multi-kinase inhibitor, which increases 

patient survival by approximately 3 months[1]. I reasoned that, further understanding of the 

molecular biology and pathogenesis of HCC would provide clues for optimizing current 

therapies and developing novel theraupetic approaches providing enhanced survival benefit 

for these patients and this train of thought has been the guiding motif of the work described 

in this thesis.  

 

Pivotal role of mesenchymal stromal cells in the microenvironment of liver cancer  

Remodeling of the liver microenvironment is a hallmark in the pathogenesis of liver 

cancer[2]. Co-evolution of tumor cells with their microenvironment during tumorigenesis 

suggests that tumor-stroma crosstalk may likely influence the phenotype of tumor cells and 

may provide a selective pressure for tumor initiation, progression and metastasis[3]. In 

addition, the liver provides a distinct immunological environment and the ultimate effects of 

this environment on cancer progression may differ in the liver as compared to other 

organs[4]. Looking at the pathogenesis of HCC in which the major risk factors include 
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infection with HBV or HCV[5], carcinogenesis might develop in particular when chronic 

infection with HBV or HCV provokes activation of regulatory feed back loops that include the 

repeated recruitment of MSCs to the liver. In turn, secreted factors by these cells can 

suppress immune system and promote tumor growth. A detailed literature investigation that 

supports my view in this is provided in this thesis (Chapter 2). However, despite a significant 

body of scientific literature on this subject it is still not clear whether MSCs in liver tumor are 

recruited locally (thus true liver MSCs) or that they derive from the circulation and represent 

cells that were originally released from the BM (BM MSCs). Indeed, both sources might act in 

conjunction. In response to injury or infection, MSCs can be released from BM into the blood 

circulation and migrate towards the injured sites to promote tissue regeneration[6]. High 

circulating levels of BM originated cells, such as endothelial progenitor cells, have been 

observed in HCC patients, which can conceivably subsequently home into the tumor and 

promote tumor growth [7]. In addition, in experimental rodents intravenous infusion of 

MSCs results in the accumulation of these MSCs into the lung, the spleen and the liver which 

already have high endogenous levels of MSCs. Especially enriched with MSCs become 

orthotopic HCC tumors, when compared to lung and spleen, indicating that liver tumors are 

able to recruit MSCs with high efficiency [8]. Together, the case for MSCs  as an important 

factor contributing to the progression of HCC seems compelling.  

Indeed, even although the role of MSCs in the tumor microenvironment has dualistic 

characteristics (in general the attenuation of the inflammatory process will counteract 

neoplastic transformation), I provide good experinmental evidence that apparently in liver 

cancer and especially in HCC the tumor promoting role is more prominent than the tumor 

suppressive role (Chapter 3). Their existence in the tumor environment of liver cancer was 

initially suggested through studies showing that MSCs are enriched in human liver tumor 

compartment and could exert trophic effects on tumor cells. Genome-wide gene expression 

array and pathway analysis confirmed the up-regulation of cell growth and proliferation-

related processes and down-regulation of cell death-related pathways by treatment of MSC-

conditioned medium (CM) in Huh7 cells. Similar results I found also with respect to the effect 

of MSCs in CRC metastasis to the liver (Chapter 4). Trophic factors produced by MSCs can 

favor the growth of metastasic CRC cells. This may help to understand the role of MSCs in 
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favoring CRC liver metastasis.  Thus a picture emerges that especially in the liver the MSCs 

shape the immunological and growth factor landscape to favour neoplastic processes. 

MSCs have been extensively investigated in clinical trials to treat various diseases, 

including for treating cancer (NCT02068794; NCT02079324; NCT01983709). Although MSCs 

have not been used for treating liver cancer yet (to our knowledge), over 30 trials have been 

registered at ClinicalTrials.gov for treating various liver diseases. Such studies almost 

unavoidably involve patients who are positive for hepatitis B or C virus infection, or liver 

transplant recipients. These infections are, however, important drivers of cirrhosis and HCC 

[9]. In addition, HCC is an important indication for liver transplantation and liver transplant 

patients also have increased incidence of  de novo cancer. Thus, I call for caution of using 

MSCs to treat liver cancer or even premalignant liver diseases. In fact, tumor MSCs may 

represent as anticancer targets, given their potent immunosuppressive and tumor 

promoting properties, therefore targeting tumor MSCs in HCC may represent a new avenue 

for therapeutic intervention. Antibodies recognizing tumor MSC-specific epitopes provide an 

obvious opportunity here and I feel that in view of the results presented in this thesis studies 

aimed at identifying such epitopes are urgently needed. Lacking progress here, are the 

technical difficulties associated with such studies 

 

Pivotal role of SMAD4 in the tumor microenvironment of liver cancer 

The unique etiology of HCC in conjunction with the distinct environment that the liver 

provides with regard to the growth of oncogenenic processes suggests that differential 

signaling network compared to other cancers may exist in HCC as compared to other 

cancers. Such specific signaling networks may allow rational design of novel therapeutic 

avenues to combat disease. This thesis provides evidence that this may indeed be the case. 

SMAD signaling appears  important in the tumor microenvironment of liver cancer. SMAD4 

was originally identified as a candidate tumor suppressor gene and SMAD4 loss or 

inactivation is associated with several types of cancers. However, a drastic elevation of 

nuclear SMAD4 levels was observed in patient HCC  tumors (Chapter 5). High SMAD4 

expression converts signaling through this protein towards tumor promoting effects, 

probably due to the simultaneous elevation of p-SMAD2/3 in a subset of HCC patients. This 

indicates a role for TGFB signaling as a tumor promoting factor in HCC. In apparent 
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agreement, at a later stage in disease progression, liver tumor cells produce large amounts 

of TGFB[10]. HBV encoded oncoprotein pX, which increases Smad4 nuclear translocation and 

amplifies TGFB signaling[11], is one of possible mechanisms to explain the  why in liver 

cancer SMAD4 has different behavior as compared to other cancers where SMAD4 

predominantly acts as a tumor suppressor. This is an unexpected result in a view of the 

dogma that SMAD4 is a potent tumor suppressor and thus these results have certainly shed 

a new light on the molecular biology of HCC.  The challenge now is to translate this finding 

into novel therapeutic approaches. 

Importantly in support of my interpretation of the role of SMAD signaling in liver 

cancer is that my findings do not necessarily contradict to previous findings in other tumors 

types. A possible explanation for the tumor type specificity of the role for SMAD signaling I 

detected, is that SMAD4 in liver cancer is highly associated with the presence of other SMAD 

components. SMAD4 can also mediate anti-tumor signaling by coupling to SMAD1/5/8-

dependent BMP signaling. Intriguingly, this complex is absent in the majority of HCC 

patients.  

In addition, downregulation of BMP signaling components in patient HCC tumors was 

associated with hepatitis history (Chapter 6). I did not find evidence that BMP signaling can 

directly modulate HCV infection, and thus the effect of BMP signaling appears connected to 

carcinogenis per se, rather as in the initiation of oncological disease. Others reported an 

increase in a set of genes of cognate BMP inhibitors (GPC3, GREM1, FSTL3, and FST) in HCC 

tumor samples[12], which might be the reason why BMP signaling is mostly inactivated in 

HCC, but this awaits further study. Furthermore, the exact mechanism as to how hepatitis 

infection interacts with BMP signaling needs to be further explored. Most importantly, 

SMAD molecules may have potential as outcome predictors for patient stratification and are 

targets for  therapeutic development in personalized medicine. 

 

Mycophenolic acid represents a potential favoured immunosuppressant for HCC patients 

after liver transplantation  

Liver transplantation is an effective treatment for HCC. However disease recurrence 

following LT remains a major challenge. The use of immunosuppressants following LT is 

known to be an important risk factor for HCC recurrence. Immunosuppressants are widely 
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used after LT to reduce the risk of graft rejection. Beside a general impairment of the 

immunosurveillance system, different types of immunosuppressants could have other 

distinct mechanisms that are independent of the host immunity to affect the process of 

malignancy [13-16]. Current research is exclusively focusing on the mammalian target of 

rapamycin (mTOR) inhibitors, including rapamycin (sirolimus) and everolimus. They are 

thought to be the only class of immunosuppressive agents that may reduce HCC recurrence 

reported by some retrospective or meta-analysis studies [17-20]. However, these studies do 

not provide firm evidence to conclude the superiority of mTOR inhibitors on HCC recurrence 

[21].  

Our study demonstrated a specific effect of immunosuppressant mycophenolic acid 

(MPA) in limiting HCC cell growth by targeting IMPDH2 in experimental models. More 

importantly, we found that MPA is strongly associated with reduced disease recurrence in 

liver transplanted HCC patients and with significantly improved patient survival (Chapter 7). 

Although this is a single center, retrospective study with relatively small number of patients, 

the potent protective effects on HCC recurrence that we have observed for sure warrant 

prospective clinical trials for further validation. 

Not only on tumor cells, MPA can also effectively modulate the tumor 

microenvironment. MPA has been shown to potently inhibit endothelial cell and fibroblast 

proliferation, invasion/migration[22]. Moreover, genomic data analysis provide a molecular 

basis for the anti-angiogenic and anti-fibrotic effects of MPA [22]. Interestingly, MPA can 

inhibit MSCs proliferation and affect their multilineage differentiation at therapeutic doses 

[23]. These results suggest that inhibition of tumor MSCs by MPA may also occur in patients 

and contribute to its anti-tumor activity. 

Although MPA will likely not be used as anti-cancer treatment alone, dissemination 

of its anti-HCC effects and mechanism promises to be particular helpful for the optimal 

management of HCC patients after LT especially to reduce the risk of HCC recurrence.  
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Perspectives 

 

• Despite the fact that MSCs have mainly a tumor promoting role in liver cancer, they 

also have tumor suppressive actions which are described in chapter 2. Therefore, 

further laboratory and clinical investigations are warranted to devise strategies for 

making MSCs more effective with regard to their anti-tumor action. If successful, 

MSCs could become a preventive therapy for chronic hepatitis leads to liver cancer 

since MSCs are recruited continuously in the setting of chronic infection.  

 

• Discovery of the tumor promoting function of SMAD4 in HCC provides another novel 

avenue of combating liver cancer, especially in the context of viral hepatitis that is 

associated with increased SMAD4 levels. The hepatitis B encoded oncogene, which 

provokes nuclear SMAD4 accumulation provides another target for novel therapy for 

HCC prevention.  

 

• MPA represents a promising option of immunosuppressive therapy for HCC patients 

after LT, because of tis anti-HCC function. Thus, prospectively designed trials are 

warranted to further validate our findings.  
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Publiekssamenvatting in het Nederlands 
 

De lever  is een belangrijk en veelzijdig orgaan. Met een massa van anderhalve 

kilogram en 20% van het zuurstofverbruik is de lever het actiefste, na de huid het zwaarste 

en na de hersenen wellicht ook het veelzijdigste orgaan. De lever is uniek onder de andere 

organen, in die zin dat een beschadigde lever weer regenereert.  Anders ligt het wanneer het 

uiterst fijn opgebouwde leverweefsel verwoest wordt en overwoekerd wordt door 

bindweefsel. Zo'n verschrompeling van de lever (cirrose) kan zeer veel verschillende 

oorzaken hebben, waaronder alcoholisme en virale hepatitis (waaronder met name hepatitis 

B en C), en vormt vaak het voorstadium van leverkanker. De eerste symptomen verschijnen 

vaak pas laat. Een vol gevoel in de leverstreek, vermoeidheid, slechte eetlust , geelzucht en 

gewichtsverlies. Binnen afzienbare tijd, als de tumor gegroeid is, kan bij palpatie de tumor 

gevoeld worden. Patiënten kunnen ook klagen over pijn in de bovenbuik. De prognose is, net 

als bij alle kankers, afhankelijk van de stadium van de ziekte. Bij een primaire levertumor 

zowel als bij uitzaaiingen zijn de vooruitzichten echter over het algemeen niet goed. In dit 

proefschrift heb ik een bijdrage proberen te geven aan beter begrip en behandeling van 

leverkanker.  Hoofdstuk 1 beschrijft de exacte kaders en motivaties die mijn 

promotieonderzoek hebben gevormd. 

Hiertoe voer ik in hoofdstuk 2 een  literatuurstudie uit naar een celtype in de 

omgeving van de kankercel, de mesenchymale stamcel. Deze cellen zijn biologische erg 

actief en werken met name ontstekingsremmend. Interessant is, is dat mesenchymale 

stamcellen specifiek lijken op te hopen in en rond levertumoren. Omdat mesenchymale 

stamcellen buiten het lichaam gekweekt en gemanipuleerd kunnen worden is het dus 

denkbaar om ze in het laboratorium  eerst te voorzien van anti-kanker genen en vervolgens 

terug te geven aan de patiënt. Uit mijn literatuur studie blijkt echter dat mesenchymale 

stamcellen van nature het kankerproces ondersteunen en ik roep dus op tot voorzichtigheid 

in het doen van klinische testen met deze cellen. Deze bezorgdheid werd helaas bewaarheid 

in hoofdstuk 3 en hoofdstuk 4 waar ik experimenteel het effect van mesenchymale 

stamcellen op primaire leverkanker alsook op in de lever groeiende  uitzaaiingen van dikke 

darm kanker onderzocht door ze te transplanteren naar muizen waar ik experimenteel 

kanker in veroorzaak. Het blijkt dat de kankers sneller groeien.  Ik moet dus concluderen dat 
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mesenchymale stamcellen in het geheel niet geschikt zijn om kanker mee te behandelen. In 

hoofdstuk 8 betoog ik echter wel dat de stamcellen zelf geschikt zijn als doelwit van 

antikankerbehandeling. Antilichamen bijvoorbeeld die specifiek mesenchymale stamcellen 

neutraliseren zouden een rol kunnen spelen bij de behandeling van leverkanker. 

In hoofdstuk 5 richt ik mijn aandacht op de leverkankercel zelf. Hierbij ontdek ik dat 

leverkankercellen andere eigenschappen hebben in vergelijking tot kankercellen elders uit 

het lichaam. Waar zogenaamde SMAD signalen normaliter een belangrijke rol spelen  bij het 

voorkomen van kanker, blijken deze zelfde SMAD signalen in de lever juist te leiden tot 

stimulatie van het oncologisch proces. Met deze kennis kan gepoogd worden therapie te 

ontwikkelen die juist gericht op het remmen van SMAD signalen en op deze wijze de ziekte 

te bestrijden. In hoofdstuk 6 diep ik deze materie nog verder uit en kijk ik met name hoe 

deze signalen zich verhouden tot de (vermoedelijke) oorzaak van de kanker (virale hepatitis 

versus andere oorzaken, zoals overmatig alcoholgebruik).  

In het laatste experimentele hoofdstuk, hoofdstuk 7, richt ik mij op wat er gebeurd na 

de behandeling. Leverkanker wordt vaak bestreden door chirurgische verwijdering van lever, 

en transplantatie van een donorlever. Door de verschillen in immuunmoleculen tussen de 

donorlever en die aanwezig in de patiënt, wil het lichaam de nieuwe lever afstoten. Om dit 

te voorkomen wordt immunosuppressie gebruikt. Er zijn vele soorten immunosuppressie en 

er wordt al lang vermoed dat de keuze van het immunosuppressief de kans op het 

terugkomen van de kanker kan beinvloeden. Zowel door biostatistische analyse van 

patiëntendossiers alsook gebruik van diermodellen en celcultuurstudies laat ik zien dat 

gebruik van het het immuunsuppressief mycofenolzuur veel betere resultaten oplevert, met 

betrekking tot de groei van leverkanker, in vergelijking tot andere medicatie. Het lijkt dus 

aanbevelingswaardig om juist deze medicatie te gebruiken na transplantatie van levers bij 

patienten met leverkanker.  Deze resultaten worden nog een uitvoerig tegen het licht 

gehouden in hoofdstuk 8. Uiteindelijk heeft mijn proefschrift dan ook nieuw inzichten 

opgeleverd zowel wat betreft de moleculaire mechanismen in de kankercel, haar interactie 

met omgeving van de kanker cel alsook de interactie van de kankercel met medicatie die 

gebruikt wordt bij behandeling. 
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