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Introduction 

‘-omics’ technologies 
Novel technologies and their applications fuel new insights and discoveries in any 
field of molecular life sciences, medicine, molecular epidemiology and 
biotechnology. One of those revolutions represents technologies that monitor a 
(nearly) complete class of biomolecules in a process of interest. These data-dense 
technologies have been designated omics technologies, in which the suffix -omics 
refers to the respective technologies monitoring (I) DNA in the context of complete 
genomes (genomics), (II) genome-wide RNA transcript expression levels 
representing the transcriptome (transcriptomics), (III) global protein and/or post-
translational modifications (PTMs), designated the proteome (proteomics), or (IV) 
nearly all cellular metabolites, named the metabolome (metabolomics). 
The principle of both proteomics and metabolomics relies on mass differences 
measured with great accuracy by mass spectrometry due to protein/metabolite 
levels or the presence of PTMs. Sophisticated and stringent isolation methods of 
PTMs and stable isotope labelling of amino acids allowing quantitative analysis of 
protein samples have further propelled proteomics technology. The genome and 
transcriptome have been extensively investigated by microarray technology over the 
past decade. Microarrays are based on comparative hybridization of fluorescently 
labeled DNA or cDNA (in case of RNA expression) under stringent conditions to 
capture probes (complementary oligonucleotides) printed on a solid surface. This 
allows the analysis of (tens of) thousands of molecules simultaneously, 
revolutionizing the scale and depth in which DNA and RNA could be investigated. 
The recent emergence of next generation sequencing (NGS) has further changed 
the landscape of genome and transcriptome analysis. NGS, also named massive 
parallel sequencing, can sequence hundreds of millions DNA molecules 
simultaneously. A single NGS run can sequence the human genome ∼37 times in 
27h, thereby tremendously facilitating whole genome (re)sequencing projects and 
genome analyses such as single nucleotide polymorphisms (SNP), mutation, 
insertion/deletion and DNA methylation detection. In addition, NGS can map 
protein–DNA and DNA–DNA interactions at nucleotide resolution. Transcriptomics of 
large and small RNAs can be performed by simultaneously sequencing millions of 
cDNA molecules. Since NGS does not rely on capture probe design and their 
presence on arrays, novel non-coding RNAs, splice variants, post-transcriptional 
modifications and nascent RNA synthesis can be quantitatively analysed. In this 
review, we will discuss the contribution of omics technologies to understanding the 
DNA damage response (DDR), with the emphasis on genomics and transcriptomics 
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in particular by NGS technologies, and the future prospective of omics research in 
the DDR research field. 

The DNA damage response 

It has been estimated that DNA acquires 10,000 of lesions every day already from 
endogenous sources alone such as reactive oxygen species and metabolic 
products. In addition, several exogenous sources also produce DNA lesions, e.g. 
ultraviolet (UV) light from the sun, ionizing radiation and numerous environmental 
and manmade chemicals. DNA lesions can interfere with vital the DNA metabolic 
processes replication and transcription as well as with associated chromatin 
reorganization. In contrast to RNA, proteins and metabolites, DNA is the only cellular 
component that cannot be replaced upon damage and therefore solely relies on 
repair. It is also the largest molecule in the cell, and when paternal and maternal 
alleles are considered separate, it is unique in most cells. Moreover, since DNA is at 
the top of the informational hierarchy, unrepaired DNA lesions or incorrectly repaired 
DNA damage can have lasting consequences (1). Indeed, unfaithful DNA repair 
results in mutations, insertions, deletions or chromosomal aberrations, which may 
lead eventually to cancer development. Many spontaneously tumours as well as 
hereditary cancer syndromes have defects in DNA repair and response genes, 
hence illustrating the importance of maintaining genome integrity. On the other 
hand, studies in human progeroid syndromes and corresponding transgenic mouse 
models indicate that accumulation of unrepaired DNA damage contributes 
significantly to aging and numerous age-related pathologies, again pointing toward 
the significant role of DNA damage in health and disease. 
To deal with the adverse effects of DNA damage, cells have an arsenal of DNA 
repair mechanisms, each recognizing and repairing its own spectrum of lesions. In 
addition to DNA repair systems, cell cycle checkpoints are activated that halt cell 
proliferation to provide a time window to repair. When damage is beyond repair, cell 
death or cellular senescence, a permanent cell cycle arrest, is induced to remove 
the damaged cell from the tissue or to prevent it from replicating, with enhanced risk 
of mutations and cancer. All DNA repair systems, cell cycle checkpoints and 
additional pathways whose activity changes upon DNA damage are collectively 
known as the DDR. It is of utmost importance that the DDR is tightly controlled, 
since there is a delicate balance between incorrect repair driving carcinogenesis and 
hyper-activation, inducing apoptosis or senescence that leads to loss of tissue 
homeostasis, a contributing factor to aging and age-related pathologies (1-4). 
Moreover, the amount and type of DNA lesions, but also context (e.g. cell type, 
proliferation vs. post-mitotic), determine the cellular outcome of DNA damage 
signalling. It is therefore not surprising that cells have an ingenious DDR that 
maximizes survival and decides on cell fate. Studies in the last two decades have 
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presented a schematic overview of DDR signalling layers that coordinate the cellular 
response to DNA damage (Figure 1). The first step involves detecting DNA lesions 
by a class of sensor proteins. These sensors are required for recruiting various 
factors to the site of damage such as DNA repair factors, but also transmit a signal 
to so-called transducer proteins, of which ATM and ATR checkpoint kinases are the 
most prominent examples. These transducers in turn diversify and amplify the 
damage signal to the third layer, which are so-called effectors, which control the 
activity of several cellular processes and pathways, such as cell cycle arrest and 
apoptosis. Sensor and transducer signalling primarily relies on protein interactions 
and alterations in protein activity by PTMs such as phosphorylation, ubiquitination, 
etc. Several effectors however, are transcription factors, e.g. p53, or microRNAs, 
which demonstrates that the RNA component within the DDR is also essential. 
While the basic DDR as drawn in Figure 1 already consists of >100 genes, 
transcriptomics and proteomics have discovered that hundreds of additional proteins 
are targets of checkpoint kinases and more than a thousand genes are differentially 
expressed upon DNA damage as a result of transcription factor/microRNA 
regulation. Thus, transcriptomics and proteomics have tremendously expanded our 
view of the DDR. 

Proteomics 

Mass spectrometry after protein complex isolation has been instrumental to identify 
novel protein–protein interactions and modifications and boosted various branches 
of the molecular life sciences, including DDR research. In addition, specialized 
proteomics screens dramatically expanded the components and repertoire of PTM 
events in the DDR. PTMs are an integral step in signal transduction and within the 
DDR, including phosphorylation, acetylation, (poly)ADP-ribosylation, ubiquitination, 
sumoylation and neddylation (5, 6). Since checkpoint kinases ATM and ATR are 
central nodes in the DDR, one of the first proteomics screening approaches aimed 
at identifying target proteins. ATM and ATR phosphorylate S and T residues in 
target proteins at a conserved SQ or TQ motif. Antibodies specifically raised against 
these phosphorylated motifs were used to isolate ATM/ATR target proteins 
phosphorylated after DNA damage, which was followed by mass spectrometry 
analysis (7). Interestingly, more than 500 ATM/ATR target proteins were identified, 
which were not only known targets involved in DNA repair and checkpoint function, 
but also many proteins from processes previously not linked to the DDR such as 
RNA processing factors. Additional proteomics screens identified numerous proteins 
phosphorylated after DNA damage independent from ATM/ATR (8-10). These 
screens together disclose an extensive network of phosphorylation events, crosstalk 
between ATM/ATR and several other signal transduction pathways (e.g. 
insulin/IGF1 receptor signalling) and identified additional effectors that control RNA 
expression programs.  
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Figure 1: Schematic overview of DNA damage response (DDR). Components of the DDR 
have been classified into three steps: sensors, transducers and effectors. Sensors and 
transducers consist of proteins and their post-translational modifications. Effectors also include 
microRNAs and gene expression changes by transcription factors. Both protein and RNA 
responses are required for cell fate determination after DNA damage, i.e. repair & checkpoint 
recovery, cell death, cellular senescence or differentiation. 
 
Other PTMs in the context of DNA damage have also been analysed by proteomics, 
e.g. ubiquitination (11, 12), sumoylation (13-15), parylation (16) and acetylation (17). 
These screens identified known DNA repair and checkpoint proteins, but also 
chromatin remodelling factors and many proteins previously unknown to participate 
in the DDR, indicating the complexity of signalling networks in the DDR at the PTM 
level. It is highly conceivable that PTMs in the DDR exhibit crosstalk to fine-tune the 
cellular response or outcome of DNA damage signalling. The effector protein p53 is 
among the best-studied examples. p53 is not only phosphorylated at several amino 
acids, but is also acetylated, ubiquitinated, sumoylated, methylated, neddylated, 
ADP-ribosylated and glycosylated at several residues (18). Therefore, proteomics 
screens that quantify multiple PTMs in parallel could unravel such intricate networks. 
A multilevel proteomics approach was designed to quantify protein phosphorylation, 
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acetylation and abundance in parallel. This study found that the ubiquitination 
cascade itself is targeted by several phosphorylation events in the DDR (17). In 
summary, proteomics contributed enormously to our understanding of the complex 
signalling events in the DDR and the prospect of multilevel PTM proteomics studies 
will further unravel these elaborate networks (19, 20).  

Transcriptomics 

The cellular outcome of DNA damage signalling is for a large part determined by 
transcriptional programs controlled by key effector proteins, including the 
transcription factor p53 (Figure 1). Transcriptional reprogramming is essential for the 
execution and outcome of DDR signalling, e.g. transient cell cycle arrest, 
senescence or apoptosis. Microarray technology has significantly enhanced our 
understanding of the transcriptional response associated with DNA damage. Many 
microarray-based transcriptomics studies have been published to date in which 
cells/organisms were exposed to DNA damage. It is very difficult to compare results 
between studies and extract common transcriptional changes, because most of 
these studies were performed under completely different conditions, e.g. cell 
type/tissue, dose and time after treatment. Moreover, technical variation is induced 
by choice of microarray platform, normalization procedure and statistics. Based on 
all these microarray studies, we estimate that the expression of up to a few 
thousand genes is altered after DNA damage, depending on dose, agent, cell type, 
etc. Overall conclusions could be that besides p53 several additional transcription 
factors control gene expression after DNA damage and numerous cellular processes 
and pathways are controlled by the DDR at the transcriptional level (21, 22).  
Global gene expression profiling has been very informative to interpret the role of 
DNA damage in the complex processes of aging (23-25). Human accelerated aging 
syndromes and corresponding transgenic mouse models with specific DNA repair 
defects indicated a causal role of DNA damage in aging, which was based on age-
related pathology and aging phenotypes at the cellular and tissue level (24, 26). 
Microarray analysis revealed that a large part of the transcriptome of naturally aged 
wild type mice was significantly overlapping with global gene expression profiles 
from accelerated aging mouse models with defects in transcription-coupled DNA 
repair. This indicates that transcription-blocking lesions are involved in establishing 
the aging transcriptional landscape. Moreover, these transcriptomics analyses 
revealed the presence of a DNA damage-triggered survival response, which 
includes suppression of the somato- (growth hormone and IGF1), lacto- and 
thyrotrophic hormonal axes and induction of e.g. the antioxidant defence. This 
response resembles the longevity-promoting response by dietary restriction as seen 
in transcriptomics, which is constitutive active in long-lived dwarf mutants. 
Subsequently, microarrays generated from cell cultures exposed to UV, which 
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induces transcription-blocking lesions, mimicked these age-related gene expression 
profiles including the survival response, providing further molecular evidence that 
DNA damage contributes to aging. 
Although mRNAs are the most studied RNA molecules to date, it is becoming 
apparent that not-for-protein coding (non-coding) RNAs are abundantly present in 
cells, even more plentiful than mRNAs (27, 28). One of the best-studied classes of 
non-coding RNAs are microRNAs, which are small (∼22 nucleotides) endogenous 
non-coding RNAs that repress target gene expression by binding to complementary 
target sites mainly residing in 3′ UTRs, thereby predominantly inducing mRNA 
degradation (29). MicroRNA microarray technology identified several differentially 
regulated microRNAs in response to DNA-damaging agents (30-36). Based on 
microRNA array time series a hypothesis was postulated that in the DDR 
microRNAs act in between the fast PTM response and the relative slower gene 
transcriptional responses via promoter regulation (31, 37). Since a single microRNA 
can target hundreds of different mRNAs simultaneously, this observation could 
provide a mechanism to rapidly alter a complete gene expression program followed 
by more stable changes at the promoter. Subsequent evidence by microRNA arrays 
demonstrated that a significant part of all microRNA expression after DNA damage 
was controlled by ATM and its target KHSRP (38). Upon DNA damage, ATM 
phosphorylates KHSRP, which then binds specific primary microRNAs from the 
nuclear pool of primary microRNAs and accelerates their biogenesis into mature 
microRNAs. Thus, microRNAs in the DDR are likely effectors that quickly adapt 
gene expression programs. The transcription-independent mechanism of microRNA 
regulation provides a manner to transiently and rapidly alter gene expression upon 
DNA damage. Importantly, DNA damage responsive microRNAs are frequently 
misexpressed in human cancer, thereby modulating resistance to genotoxic 
chemotherapy (35, 36, 39, 40).  
Transcriptomics by NGS, also designated RNA sequencing, has identified an 
enormous amount of non-coding RNAs, both small and long originating from exonic, 
intronic and intergenic regions (41-47). The overt majority has unknown functions. 
Standard mRNA sequencing relies on enrichment of poly-adenylated transcripts 
followed by sequencing (Panel I, Box 1). Next to known mature and partially 
processed RNA species, sequence information also includes low abundant mRNAs, 
poly-adenylated long non-coding RNAs and the correct representation of splice 
variants originating from over 95% of the multi-exonic genes (48). Paired-end 
sequencing in which sequencing is performed from both ends of the cDNA 
fragments also detects gene fusion events (49) important for tumorigenesis (50-53). 
Small RNA sequencing relies on the enrichment of all RNA species smaller than 
∼30 nucleotides (Panel II, Box 1). Sequence information not only detects 
microRNAs, but also their isoforms (isomiRs), not detectable by array technology. 
IsomiRs are sequence length modifications of the mature microRNA due to 
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imprecise precursor cropping or dicing (54) or post-transcriptional addition of 
nucleotides to the 3′ end by specialized enzymes (55). Besides microRNAs, small 
RNA sequencing also detects thousands additional small RNAs of which most have 
unknown functions. Furthermore, specific protocols have been developed to 
sequence long non-coding RNAs (28), isolate chromatin-bound non-coding RNAs 
(47), strand-specific sequencing to identify antisense transcripts (56) or nascent 
RNA (57, 58) (Figure 2).  
Currently, only few mRNA or small RNA transcriptomics studies by NGS in relation 
to the DDR have been published (59-64) in which the data analysis was mainly 
focussed on mRNAs or mature microRNAs. RNA sequencing identified several long 
non-coding RNAs that participate in the p53 response by regulating cell cycle arrest 
and apoptosis (65-68). In another study nascent RNA isolation followed by NGS was 
performed to monitor the global effect on RNA synthesis by camptothecin treatment, 
which inhibits topoisomerase I thereby blocking replication and transcription (69). 
Camptothecin primarily affected transcription elongation and withdrawal led to 
transcription resumption starting from the 5′-end of genes, while stalled RNA 
polymerases in gene bodies did not recover. Recovery of RNA synthesis was 
independent of CSB, an essential component of transcription-coupled repair (TCR), 
indicating that TCR is not involved in the repair of or RNA synthesis recovery from 
transcription-blocking Top1 lesions. One of the key advantages of NGS-based 
transcriptomics is direct sequence information. It was shown that DICER and 
DROSHA, components of the microRNA biogenesis pathway, are essential for the 
activation of the DDR at the transducer level. RNA products generated by DICER 
and DROSHA are required to restore DDR activation. NGS demonstrated that DDR 
activation requires DICER- and DROSHA-dependent small RNAs originating from 
the site of the double strand DNA break (70). Taken together, transcriptomics 
technologies have been extremely powerful in deciphering alterations in the 
transcriptome after DNA damage and provided several new insights in the DDR. 

Genomics 

NGS especially impacted DNA research in relation to the DDR. Although DNA 
microarrays have provided valuable information, NGS with the capacity to sequence 
the genome ∼37 times in 27 h data at nucleotide resolution (compared to 
hybridization-based microarray results) dramatically accelerated and quantitatively 
improved genome research associated with DNA damage (Figure 2, overview NGS 
technologies). One of the most frequently used applications of whole genome 
sequencing or exome sequencing, which only sequences known coding areas (71), 
is the identification of SNP/mutations associated with specific genetic traits or 
genetic diseases, which have been performed for numerous human diseases. 
Importantly, SNPs or defects in human DDR genes have been linked by these 
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studies to e.g. accelerated ovarian aging (72), karyomegalic interstitial nephritis (73) 
and UV sensitivity syndrome, the last unresolved genetic disorder due to deficiency 
in nucleotide excision repair (74), linking defects in DDR factors to human age-
related pathology. 
 

 
Figure 2: Overview of next generation sequencing (NGS) methods. NGS protocols 
depicted above the dashed line have been developed to investigate DNA. Detection of DNA-
protein (ChIP), DNA-DNA interactions or chromatin conformational changes (3C-sequencing or 
its derivatives). Nucleotide resolution-mapping of double strand breaks (BLESS). Whole 
genome sequencing (DNA-seq) or only protein-coding regions of the genome (exome 
sequencing). NGS protocols below the dashed line have been developed to investigate RNA. 
RNA-protein interactions by immunoprecipitation of proteins followed by RNA-sequencing 
(RIP). Protocols that sequence RNA enriched for poly-adenylated transcripts or small RNAs. 
Protocols for nascent RNA sequencing (GRO/NET/TIF). Ribosomal RNA-depleted total RNA 
sequencing (RNAome). 
 

Evidently, somatic genomic aberrations due to DNA damage, e.g. mutations and 
chromosomal rearrangements, can be resolved by NGS at nucleotide resolution. 
Although this appears logical, this approach is met with technical limitations due to 
the random and infrequent nature of somatic mutations that cannot be separated 
from sequencing errors. These complications were overcome by performing a 
sophisticated single cell sequencing approach that rules out these errors and 
correctly calls somatic mutations by ENU in the Drosophila genome (75). One 
potential complication of single cell and single DNA sequencing may be the fact that 
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damages may be present in the original DNA molecule, which cause de novo 
mutations in the sequencing protocol. In addition to mutations, DNA rearrangements 
are also often masked. This was improved by Strand-seq (76), a single-cell 
sequencing technique that sequences the original parental DNA template strands in 
daughter cells following cell division. Both single-cell-sequencing techniques will be 
very useful in determining mutation frequencies of genotoxic compounds, in cancer 
samples and during aging. 
Next to monitoring genetic aberrations, genomics protocols are valuable tools to 
study basic DDR biology. Specialized NGS methods, chromosome conformation 
capture sequencing (or its derivatives), analyse nuclear architecture, nucleosome 
positioning or the 3D chromosomal interaction landscape (77). This sequencing 
technique has been used to examine whether chromosomal translocations in human 
cancer originate from selection of random translocations, targeted DNA damage or 
frequent interactions between translocation partners (78). While location and 
frequency of recurrent translocations, including those driving B-cell malignancies, is 
due to targeted DNA break formation, nuclear organization was identified as the 
main driver in non-targeted rearrangements (78). Another application of 
chromosome conformation capture sequencing examined distant enhancer 
elements of the central DDR transcription factor p53, which drives transcriptional 
programs triggering cell cycle arrest and in a later stage apoptosis or cellular 
senescence. Genome-wide p53-binding sites were found located far from any 
known p53 target gene. Chromosome conformation capture sequencing discovered 
that these p53-bound enhancer regions interact intra-chromosomally with multiple 
neighbouring genes to convey long-distance p53-dependent transcription regulation. 
Moreover, these regions produced p53-dependent enhancer RNAs that are short 
RNAs (200–1000 nucleotide long) required for efficient transcription of target genes 
(79). These results illustrate the complexity of the DDR in the context of genomic 
DNA. 
Chromatin immunoprecipitation coupled to NGS, ChIPSeq in short, maps DNA–
protein interactions at nucleotide resolution. Using an inducible double strand DNA 
break (DSB) system, the chromatin landscape of γH2AX around the DSB was 
mapped and its spreading properties along the damaged chromosome (80, 81). 
Since chromatin remodelling is essential for a proper DDR, this technology could 
provide complete chromatin maps from the sites of DNA damage. ChIPSeq is often 
used to map transcription factor binding sites. ChIPSeq provided a genome-wide 
profile of p53-binding sites, which revealed stimulus-specific functions of p53 during 
differentiation and DNA damage (82). ChIPSeq was also used to map single strand 
DNA by targeting Rad52 in fission yeast, which binds to single strand DNA formed at 
DNA lesions (83). This method was applied to identify DNA damage sites in the 
genome. 
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Direct detection of DNA damage and mapping its genomic location could be applied 
to identify hotspots for DNA damage and analyse at which locations DNA repair is 
most (in)effective. These approaches in ChipSeq are often hampered or limited by 
the choice of protein and quality of the antibody. Recently, a method has been 
developed that directly labels DSBs in situ with a linker followed by isolation and 
NGS (84). This approach named BLESS (direct in situ breaks labelling, enrichment 
on streptavidin and next-generation sequencing) maps DSBs at nucleotide 
resolution. Replication stress-induced DSBs by aphidicolin in human cells identified 
more than 2000 fragile regions that were overrepresented with genes, satellite 
repeats and frequently rearranged regions found in human cancer. In toto, genomics 
approaches by NGS constitute important tools to monitor DDR processes at 
unprecedented nucleotide resolution. 
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Aims of the thesis 

For-protein-coding RNA molecules, mRNAs, are the best-studied RNA species to 
date. Gene expression profiles after DNA damage using microarray technology have 
been frequently documented in literature. It is becoming clear however, that non-
coding RNAs are more abundantly present in cells than mRNAs (27, 28). Among all 
non-coding RNAs, microRNAs are one of the best-studied classes of non-coding 
RNAs. MicroRNAs are small (~22 nucleotides), endogenous non-coding RNAs that 
repress mRNA expression by inducing mRNA degradation and to a lesser extent via 
translation inhibition (29). MicroRNA microarray technology identified several 
differentially regulated microRNAs in response to genotoxic stress (30-36). DNA 
damage responsive microRNAs are frequently misexpressed in human cancer 
thereby, e.g. dysregulating cell cycle checkpoints or modulating resistance to 
genotoxic chemotherapy, indicating their importance in disease (35, 36, 39, 40). 
Based on microRNA array time series a hypothesis was postulated that in the DNA 
damage response microRNAs act in between the fast response by post-translational 
modifications of proteins and the relatively slower gene transcriptional response via 
promoter regulation (31, 37). Since a single microRNA can target hundreds of 
different mRNAs simultaneously, this observation could provide a mechanism to 
rapidly alter a complete gene expression program followed by more stable changes 
at the promoter. 
Genotoxic agents are an important class of carcinogenic compounds. In order to 
reduce rodent assays for carcinogenic properties of compounds, which are also 
laborious, expensive and imply animal use, we aimed to employ microarray 
technology to investigate whether mRNA and/or microRNA expression profiles could 
identify classifiers that predict genotoxic and/or carcinogenic potential of 
compounds. Chemicals, before entering the market, need to be thoroughly screened 
for carcinogenic (and other hazardous) properties to protect society and the 
environment. In chapter 2 we performed a short-term mouse exposure study 
followed by gene and microRNA expression profiling to test the predictive potential 
of both microRNA and mRNA expression alterations in vivo. In chapter 3, a large-
scale time-resolved in vitro exposure study using genotoxic carcinogens, non-
genotoxic carcinogens and oxidative compounds was performed to determine the 
predictive potential of microRNA expression in carcinogenic hazard prediction.  
The emergence of next generation sequencing applied to transcriptomics, also 
designated RNA sequencing, has identified an enormous amount of previously 
unknown non-coding RNAs (41-47). Currently, only few mRNA or small RNA 
transcriptomics studies by NGS in relation to the DDR have been published (59-64). 
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These studies were mainly focussed on a single time point or treatment, and either 
sequenced mRNAs or mature microRNAs. In chapter 4 we performed an elaborate 
RNA sequencing study in which mES cells exposed to equitoxic doses of UVC, IR 
and cisplatin were used. We analysed both mRNA and microRNA expression in time 
(4, 8 and 12h) after exposure and focussed on RNA expression kinetics. 
Standard mRNA and small RNA sequencing protocols rely on enrichment of specific 
RNA classes, poly-adenylated transcripts in mRNA sequencing and size selection in 
small RNA sequencing. In chapter 5 we designed a sequencing method that does 
not rely on class selection for RNA sequencing. This method monitors all RNA 
species, large and small, coding and non-coding, in a single sequence run thereby 
quantitatively preserving all RNA classes, allowing cross-class comparisons. 
Chapter 6 discusses the findings of these studies and provides directions for future 
research. 
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Abstract  

There is a high need to improve the assessment of, especially non-genotoxic, 
carcinogenic features of chemicals. We therefore explored a toxicogenomics-based 
approach using genome-wide microRNA and mRNA expression profiles upon short-
term exposure in mice. For this, wild-type mice were exposed for seven days to 
three different classes of chemicals, i.e., four genotoxic carcinogens (GTXC), seven 
non-genotoxic carcinogens (NGTXC), and five toxic non-carcinogens. Hepatic 
expression patterns of mRNA and microRNA transcripts were determined after 
exposure and used to assess the discriminative power of the in vivo transcriptome 
for GTXC and NGTXC. A final classifier set, discriminative for GTXC and NGTXC, 
was generated from the transcriptomic data using a tiered approach. This appeared 
to be a valid approach, since the predictive power of the final classifier set in three 
different classifier algorithms was very high for the original training set of chemicals. 
Subsequent validation in an additional set of chemicals revealed that the predictive 
power for GTXC remained high, in contrast to NGTXC, which appeared to be more 
troublesome. Our study demonstrated that the in vivo microRNA-ome has less 
discriminative power to correctly identify (non-)genotoxic carcinogen classes. The 
results generally indicate that single mRNA transcripts do have the potential to be 
applied in risk assessment, but that additional (genomic) strategies are necessary to 
correctly predict the non-genotoxic carcinogenic potential of a chemical. 
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Introduction 

Cancer is currently the leading cause of death in the Western world. Reasons for 
this high frequency in Western countries can mainly be attributed to lifestyle and 
environmental factors, which are thought to enhance abnormalities in the 
(epi)genetic material of cells and thereby facilitating the cancer process (85). 
Genotoxic carcinogens are a class of cancer-facilitating substances that share the 
commonality of causing DNA damage and, hence, interfere with DNA replication, 
transcription of genes, or the functionality of proteins. These genotoxic effects are 
considered part of the tumour initiation process and increase the risk of 
carcinogenesis. Other chemicals that are able to induce cancer, but do not directly 
interact with DNA, are non-genotoxic carcinogens (86). These compounds are 
generally not directly involved in tumour initiation, but may induce tumour-promoting 
effects (86-88). 
To protect society and the environment from carcinogen exposure, chemicals are 
thoroughly screened before being marketed. Generally, each substance is initially 
subjected to several tests exploring its genotoxic potential. When a substance is 
considered to be genotoxic, based on the results from both in vitro and in vivo 
genotoxicity tests, plus if human exposure risk and/or production levels are high, the 
substance is subjected to long-term carcinogenicity rodent bioassays (89, 90). 
These long-term bioassays have various disadvantages, including being time-
consuming, expensive, and requiring large numbers of animals. Furthermore, the 
use of chronic exposures to high doses may result in a high rate of false-positive 
results (91). Another pitfall of this testing strategy is a bias toward genotoxic 
carcinogen identification. The initial short-term in vitro and in vivo genotoxicity 
assays are designed to detect genotoxic potential, possibly leaving non-genotoxic 
carcinogens unidentified. This can result in a substantial risk for society and the 
environment (88). 
Alternative approaches are therefore needed to identify the carcinogenic potential of 
substances. To circumvent the aforementioned disadvantages in carcinogenicity 
testing, we set out to test the potential of microRNA and mRNA expression data, as 
a means for correct identification of (non-)genotoxic carcinogens, thereby providing 
a more ethical approach in terms of animal use and welfare in terms of reduction 
and refinement. Transcriptomics analyses have been shown to be a useful and 
informative contribution to the current carcinogenicity testing methods (87, 92-100). 
These studies have indicated that discriminative mRNA signatures after short-term 
exposure can, to a certain extent, be indicative for carcinogenic modes of action or 
predictive for the tumour endpoints after chronic exposure. Most of the large-scale in 
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vivo studies have been performed in rats and often focussed on carcinogens with 
one target tissue, e.g., hepatocarcinogens. In the present study, we searched for 
molecular classifiers in expression profiles of murine liver generated upon a 7-day 
exposure to a genotoxic carcinogen (GTXC), non-genotoxic carcinogen (NGTXC), or 
a non-carcinogen (NC). We considered direct-acting chemicals or their reactive 
xenobiotic metabolites as GTXC. Indirect-acting genotoxic modes of action (e.g., 
induction of oxidative stress) were considered as NGTX modes of action. Four 
GTXC, seven NGTXC, and five NC were used for classifier selection. In addition to 
mRNA profiles, we also examined microRNA profiles to address the question 
whether microRNAs are a useful addition to such a set of classifiers. MicroRNAs can 
post-transcriptionally regulate up to 65% of the transcriptome and have a clear 
influence on cellular processes. To date, several specific microRNAs are 
overrepresented in cancerous tissues or specific tumour types or are responsive to 
DNA damage (101-105). However, the potential of microRNA transcripts as 
classifiers for carcinogen identification has not been investigated thoroughly. 
Our study generated a classifier set (set of transcripts that collectively can be used 
as classifier) that discriminated between GTXC, NGTXC, and NC toxicants with high 
accuracy upon verification in the original chemical set in a 7-day in vivo experimental 
setup. Validation of the classifier set in an additional chemical set demonstrated that 
predictive potential for GTXC remained high, but also showed that prediction of 
NGTXC potential requires additional (genomic) strategies. Moreover, in this short-
term in vivo setup, microRNA appeared to be less discriminative than mRNA. 

Materials and methods 

Animals 

Six-week-old male wild-type mice (C57BL/6J, n = 4 per group) were acclimated for 
two weeks and subsequently treated for seven days with a GTXC, NGTXC, or NC 
through feed, gavage, or i.p. injection. From the day of weaning, the health status of 
the mice was monitored daily and mice were weighed weekly starting at acclimation. 
Animals were kept in the same stringently controlled (specific pathogen-free, spf) 
environment, fed ad libitum, and kept under a normal day/night rhythm. After seven 
days of exposure, mice were killed at a fixed time of the day. During autopsy, 
several organs (including the liver) were isolated and stored according to protocol 
using RNAlater (Qiagen, Valencia, CA, USA). 

In vivo short-term exposure studies 

Details for all chemicals used in the short-term exposure studies are shown in Table 
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1. For some of these chemicals, appropriate doses were based on previously 
performed 28-day dose-range finding (DRF) and mid-term studies [2-AAF, BaP, 
CSA, DEHP, DES, E2, PBB, res, Wy, D-man, DMBA, MMC (106-109). For new 
compounds, not tested by us before, we performed 28-day DRF studies prior to the 
toxicogenomic studies using an identical setup as previous performed studies 
mentioned above. In short for these DRF studies, six- to nine-week-old male 
C57BL/6J mice (n = 10 per group) were exposed to one of the selected chemicals, 
using multiple doses based on the literature or expert advice. Substances were 
administered through the feed (continuously), gavage (every other day), or i.p. 
injection (every third day). See Table 1 for the applied route of administration for 
each chemical. Body weights were monitored daily for the first 10 days and semi-
weekly thereafter. If body weight changes were not conclusive to identify a suitable 
dose, the liver was studied macroscopically to determine a suitable sub-toxic dose 
that can be used for the short-term 7-day exposures (data not shown). An exposure 
time of 7 days was selected, based on previous results (96) in which full genome 
responses upon 3, 7, and 14 days of exposure to several GTXC, NGTXC, and NC 
were examined. Herein, 7-day exposures appeared to be a suitable time point to 
trigger exposure-related gene expression changes. 
 
In the subsequent 7-day exposure studies, dietary exposure was continuous during 
the experiment, application using i.p. injection occurred at day 0, 3, and 6 (autopsy 
on day 7), and exposure using gavage at day 0, 2, 4, and 6 (autopsy on day 7) 
(Table 1). Body weights were recorded during this 7-day exposure period. 
Comparison of different control groups (gavage, i.p. injection or feed) showed no 
significant differential effect at the transcriptional level (Luijten et al. in preparation). 
Hence, only food-administrated control samples were implemented in this study. 

RNA isolation, mRNA, and microRNA expression profiling 

Hepatic total RNA was isolated using the miRNeasy kit (Qiagen, Valencia, CA, USA) 
and the QIAcube (Qiagen, Valencia, CA, USA) according to the manufacturer’s 
instructions. All samples passed RNA quality control using capillary gel 
electrophoresis (RIN >7.6) (Bioanalyzer 2100; Agilent Technologies, Amstelveen, 
The Netherlands). Amplification, labelling, and hybridization protocols details were 
performed according to manufacturer’s protocols, using the Affymetrix Mouse 
Genome 430 2.0 Array platform (Affymetrix, Santa Clara, CA, USA). The same total 
RNA isolates as used for mRNA were used for isolation of microRNAs. MicroRNA 
profiling was performed as previously described (31). 
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Table 1. Overview of chemicals and their details used for short-term exposures 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detailed information overview of chemicals used for exposure studies (column 1-6) and the 
number of differentially expressed transcripts (FDR<0.05) for mRNA (column 7) and microRNA 
(column 8) compared to controls. A. Chemicals used for classifier identification. B. Additional 
chemicals used in in the extended validation set. Solvent: * = sunflower oil, # = PBS, † = 1% 
v/v ethanol/0.5% methyl cellulose. 
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Transcriptomics analyses 

Quality control and correction of significant hybridization and experimental blocking 
effects, normalization, annotation, and subsequent data analysis were performed as 
previously described (110). In short, all raw data passed the quality criteria, but 
relevant effects of labelling batches were detected. The raw data were annotated 
[according to (111)] and normalized using the robust multi-array average (RMA) 
algorithm [Affy package, version 1.22.0 (112), available from the Bioconductor 
project (http://www.bioconductor.org) for the R statistical language (http://cran.r-
project.org)]. The data were corrected for labelling batch effects using a linear model 
with group-means parameterization and labelling batch (random). The normalized 
data were statistically analysed for differential gene expression using a mixed linear 
model with coefficients for block (random) and each experimental group (fixed) (113, 
114). False discovery rate (FDR) correction was performed globally across all 
contrasts [according to (115)]. Only annotated Entrez genes were used for further 
analysis. Functional genomics analyses, using the top 1000 FDR-ranked genes, 
were performed using Metacore GeneGO pathway analyses (version 6.11 build 
41105, GeneGo Inc. St. Joseph, MI, USA), to assess the biological response upon 
each chemical exposure. Results were clustered by hand into more general 
functionalities for representation purposes (Table 2). The raw microRNA data were 
normalized using quantile normalization. For the CSA-, Wy-, and CPPD- exposed 
groups, quality control discarded one outlier per group. Normalized values were 
analysed for differentially expressed microRNAs using a linear model [bioconductor 
package Limma; (113)] and corrected for multiple testing (116). The transcriptomic 
results are deposited at the NCBI Gene expression Omnibus: GSe43847 
(microRNA) and GSe43977 (mRNA). 

Classification analyses 

A tiered approach was used to derive a final classifier set (Figure 1). Software-based 
algorithms K-nearest neighbour (KNN), prediction analysis for microarrays (PAM-r), 
and random forest (RF) were applied using the mRNA and microRNA transcriptome 
separately as input (Figure 1). The R implementation used for these methods can be 
found in R-packages ‘class,’ ‘pamr,’ and ‘randomForest,’ respectively. We used a 2-
step approach to generate classifiers to discriminate between genotoxic (GTXC), 
non-genotoxic (NGTXC), and non-carcinogens (NC). In the first step, classifiers are 
generated to discriminate the GTXC from the other two classes, and in the second 
step, classifiers for identification of NGTXC are retrieved. Since the number of 
chemicals within each class was unbalanced and it is well-known that the KNN and 
PAM-r algorithms tend to create a bias toward classification of unknown compounds 
to the larger group, we adapted the scripts for the cross-validations in such a way 
that the group sizes within the training set were as large as possible but balanced. 
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This resulted in group sizes that comprised all but one of the compounds of the 
smaller group, and one additional compound to that number for the larger group. For 
example, a classifier set to identify 2-AAF (as a genotoxicant) is generated by 
training on the three other GTXC and four compounds from the rest class (a 
combination of NGTXC and NC). To select biomarkers for KNN and PAM-r, we 
performed a 100-fold cross-validation, each time with such a balanced training set 
(Figure 1). For RF, this was not necessary, as the difference in class probabilities 
can be accounted for by setting the cut-off parameter. For RF, we used a simple 
leave-one-compound-out fold scheme. For each fold of the cross- validation, the 
classifiers were ranked according to the algorithm’s features selection (e.g., 
shrunken centroid distance for PAM-r, calculated importance for RF and p value 
based on a t statistics for KNN). Different lengths of lists of ranked features were 
tested, and only those genes from the list that gave the lowest error on classification 
of the unseen compounds in the fold were selected as potential classifier. 
As some folds used up to the whole array for the best result, we limited those lists to 
the top 100 highest ranked genes. Each algorithm therefore yielded per fold top 100 
(or less) lists for the GTXC versus the rest analysis and top 100 (or less) lists for the 
NGTXC versus NC analysis. For classifier selection (Figure 1), we first analysed per 
algorithm how many times a transcript was present within those generated top 100 
lists. To prevent inclusion of false positives, transcripts were only considered for 
further selection into the classifier if they were present in more than 10% of the top 
100 cross-validation lists and a top-ranked (TR) classifier set was generated 
consisting of transcripts that were yielded most often within the cross-validations per 
algorithm (ranked from most abundant to minimally >10%). The three (KNN, PAM-r, 
and RF) generated TR-classifier sets were subsequently screened for overlap. This 
overlapping top-ranked (OTR) classifier set was then ranked based on an OTR 
score (the sum of percentages that a transcript was present in the cross-validations 
in each algorithm, e.g., KNN 25%, PAM-r 50%, RF 15% yields an OTR score of 90). 
As a final step in the classifier selection, we subsequently checked the generated 
OTR classifier set for usability implementing a class average fold-change threshold 
of −1.5 < Fc > 1.5 (Figure 1). This final classifier set was firstly verified using the 
same three algorithms RF, KNN, and PAM-r and previous settings to measure 
predictive potential in the total training set and subsequently validated in an 
additional validation set of chemicals (Figure 1). In these verification and validation 
steps, a chemical was assigned to a certain class, when the majority of the 
algorithms (two out of three) predicted this class. 
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Table 2. Clustered and categorized Metacore GeneGO pathway responses upon 7-day 
exposure.  
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Results 

Short-term in vivo exposure studies 

The goal of this study was to explore the potential of both microRNA and mRNA 
transcripts as molecular discriminators for classification of (non-)genotoxic 
carcinogens. Transcripts, alone or part of a classifier set, should ideally be able to 
correctly discriminate between three different chemical classes (GTXC, NGTXC, and 
NC). Wild-type male mice were therefore exposed to one of the sixteen tested 
chemicals, as depicted in Table 1a (four GTXC, seven NGTXC, and five NC). 
Concurrently, a control (untreated) study was performed. We included various GTXC 
and NGTXC with different carcinogenic potencies and/or carcinogenic modes of 
actions. To possibly extract more robustly performing classifier transcripts, we also 
included NC which mimic a mode of action of one of the included NGTXC: DIDP and 
DEHP are both phthalates, BPA, E2, and DES are ER-α ligands, and TBTO and 
CSA are immune suppressive substances. During the 7-day exposure period, body 
weights were monitored. Control groups exhibited, on average, a 3% increase in 
body weight (calculated for the actual exposure period from day 0 to day 7). 
Exposure to TBTO, CSA, and E2 resulted in a slight decrease (>1%) in body weight 
compared to the start of the exposure of, respectively, 5, 4, and 3%. The remainder 
of the exposures led to an increased or steady (increase or decrease <1%) body 
weight during the treatment. no gross macroscopic injurious lesions were found at 
necropsy in exposed livers, apart from all Wy-exposed mice, which exhibited yellow-
spotted livers. This was possibly caused by fat deposits, a common finding upon 
Wyeth-14.643 exposure (NTP, 
http://ntp.niehs.nih.gov/ntp/htdocs/ST_rpts/tox062.pdf). 

Functional genomics analyses confirm modes of action of chemical 
exposures 

From an identical patch of the liver, mRNA and microRNA profiles were generated 
for each of the sixteen exposed groups as well as the control group. To assess 
whether the transcriptional response to each exposure was comparable to the 
described chemical modes of actions and properties in the literature, functional 
genomics analyses were performed using Metacore software (see “Materials and 
method”). For this, the top 1,000 of most significantly regulated genes (ranked on 
FDR, compared to the untreated samples) for each chemical were used as input. 
Clustered categorized functional responses for all exposures are shown in Table 2 
(Metacore GeneGO overrepresentation pathway map analysis, FDR <0.05). For 
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most substances, previously reported modes of actions and biological 
consequences could be retrieved from these analyses. For example, exposures to 
the genotoxicants 2-AAF, AFB1, BaP, and CPPD all yielded numerous 
overrepresented pathways involved carcinogens PBB and res generated, among 
others, a partly genotoxic signature. Substances belonging to the NGTXC and NC 
classes yielded the expected variety of functional responses, ranging from a strong 
signature related to fatty acid oxidation and metabolism (DEHP, Wy, DIDP, and 
TBTO; all peroxisome proliferators) to induced immune-related responses (sodium 
diclofenac) and a cholesterol-associated response (CSA). Functional genomics 
analyses generally confirmed the expected effect of the chemical exposures and 
granted use of these transcriptional data as input for possible classifier identification. 
To obtain optimal discriminative classifier sets for GTX and NGTX carcinogens, we 
used a tiered approach which is described in detail in the following sections below 
and the “Materials and method” section (see also Figure 1). 
 

 
Figure 1. Schematic overview of the tiered classifier selection, verification, and 
validation approach. 
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Discriminative classifier selection for GTX and NGTX carcinogens 

To obtain predictive classifier sets from the combined mRNA and microRNA 
transcriptome, we employed different software-based classification algorithms 
(Figure 1). We used three different algorithms to avoid favouring a certain feature 
selection: K-nearest neighbour (KNN), predictive analysis of microarray (PAM-r), 
and random forest (RF). KNN is a non-parametric method for classifying objects 
based on closest training examples in the feature space, whereas PAM-r performs 
sample classification from gene expression data using the nearest shrunken 
centroid method. RF selects features randomly in order to construct a collection of 
decision trees with controlled variation.  
Based on the results of previous classification studies (96), we selected a 2-step 
classification approach for our current study. In the first step, a classifier set is 
generated to separate GTXC from the other two classes (rest = NGTXC and NC); 
the second step yields a classifier set to discriminate between NGTXC and NC. This 
2-step approach was performed for each of the three algorithms (Figure 1) using a 
100-fold cross-validation and subsequent classifier selection (see “Materials and 
method” for details). Herein, each ‘fold’ yields a classifier set for a selected test 
compound. The cross-validation for both the GTXC versus rest and NGTXC versus 
NC steps resulted in classifier lists that were subsequently ranked according to the 
feature selection of the particular algorithm. The top 100 of transcripts was selected 
per list. These transcript lists were then used for further classifier selection (Figure 
1). 
Within the GTXC versus rest and the NGTXC versus NC steps, for each algorithm, 
we analysed and ranked the transcripts according to how many times a transcript 
was present within the 100-fold generated top 100 lists. For each algorithm, top-
ranked (TR) classifier sets were created, consisting of transcripts that were present 
most abundantly over the 100 lists (with a minimum of 10% of the lists to avoid false-
positive classifiers) (Figure 1). The TR-classifier sets for KNN, PAM-r, and RF were 
subsequently screened for overlap, yielding an overlapping top-ranked (OTR) 
classifier set [Figure 1]. The OTR-classifier sets contain the most abundantly yielded 
transcripts for all the generated TR-classifier sets over the three algorithms and 
thereby include the transcripts that most strongly influence classification. We 
subsequently increased the robustness of the generated OTR-classifier set by 
implementing an additional class average fold-change threshold of −1.5 < Fc > 1.5 
(Figure 1). The class average fold change is the average fold change of a transcript 
of all chemical exposures of a certain class (GTXC, NGTXC, NC) (columns 1–3, 
Figure 2). One of the GTXC-specific classifiers following these requirements was 
Cyp1a2, which is well-known to be involved in the metabolism of several groups of 
xenobiotics and not only GTXC.  
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Figure 2. Heatmap of fold-change values of the 27 (mRNA) transcripts of the final 
optimized classifier set distinguishing GTXC, NGTXC, and NC upon 7-day in vivo 
exposure. column numbers are depicted below. The heatmap, and row numbers at the left 
side. columns 1–3 represent average fold-change values per class. columns 4–19 represent 
fold-change values per chemical indicated at the top of the column. Upon classifier selection, 

transcripts 1–20 are considered GTXC-specific classifiers (1–13 upregulated, 14–20 
downregulated) and transcripts 21–28 are NGTXC classifiers (21–24 upregulated, 25–28 
downregulated). 

 Arch Toxicol

1 3

partly) discriminate the classes from each other, microRNA 
transcripts in this short-term in vivo setup appear to be less 
suitable for carcinogen discrimination. We therefore pursued 
validation only using the strongest (mRNA) transcripts we 
generated upon initial analyses (Fig. 2).

Verification and validation of classifier set in original 
and additional chemical set

The final classifier set, consisting of nineteen GTXC-
specific and eight NGTXC-specific mRNA transcripts, 

was selected based on the combined outcome of three dif-
ferent software-based classification tools (Supplemental 
Information 6). As such, the performance of this ultimate 
set was yet unknown. Although the classification will tend 
to be overoptimistic because the total training set itself 
was used to determine the final classifier set, classifying 
the training set with the selected classifier set will give an 
indication of the maximal possible classification accuracy 
of this set of chemicals (we will later validate this accu-
racy). We calculated the overall predictive accuracy by 
again applying a 2-step approach using the KNN, PAM-R, 

Fig. 2  Heatmap of fold-change 
values of the 27 (mRNA) 
transcripts of the final optimized 
classifier set distinguishing 
GTXC, NGTXC, and NC upon 
7-day in vivo exposure. Column 
numbers are depicted below 
the heatmap, and row numbers 
at the left side. Columns 1–3 
represent average fold-change 
values per class. Columns 4–19 
represent fold-change values per 
chemical indicated at the top 
of the column. Upon classifier 
selection, transcripts 1–20 are 
considered GTXC-specific clas-
sifiers (1–13 upregulated, 14–20 
downregulated) and transcripts 
21–28 are NGTXC classifiers 
(21–24 upregulated, 25–28 
downregulated)
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Based on this knowledge, we excluded this transcript from the final classifier set. 
The final set now includes nineteen classifiers that should be able to discriminate 
GTXC from the rest and an additional eight classifiers to further identify NGTXC 
(Figures 1 and 2). 

MicroRNA as potential transcriptomic carcinogen classifiers 

No microRNAs were identified as OTR-classifiers for GTXC and NGTXC when using 
the combined mRNA and microRNA transcriptome as input. Messenger RNA 
therefore proved to contain more discriminative power in this short-term in vivo 
approach. To be conclusive whether or not microRNA can be used for classification 
of carcinogens in a short-term in vivo setup, we additionally performed a similar 
analysis strategy (Figure 1) using only the microRNA data as input. Without 
application of a fold-change threshold, this approach yielded several possible 
classifier microRNAs. 
However, when applying the same thresholds as previously (−1.5 < Fc > 1.5), no 
distinctive classifier candidates for GTXC and NGTXC classification could be 
identified. Implementing a less-stringent threshold of −1.3 < Fc > 1.3 yielded twelve 
microRNAs, but their discriminative potential is low or absent (Figure 3). In contrast 
to the mRNA expression levels in Figure 2, the heatmap in Figure 3 indicated that a 
fold-change threshold for microRNA classifiers was only marginally distinct for a 
certain class on average (column 1–3). Additionally, on individual exposure level, 
this threshold was mostly not suitable to correctly assign a chemical to its correct 
class (column 4–19). Due to the fact that a lower fold-change threshold had to be 
implemented to (only partly) discriminate the classes from each other, microRNA 
transcripts in this short-term in vivo setup appear to be less suitable for carcinogen 
discrimination. We therefore pursued validation only using the strongest (mRNA) 
transcripts we generated upon initial analyses (Figure 2). 

Verification and validation of classifier set in original and additional 
chemical set 

The final classifier set, consisting of nineteen GTXC-specific and eight NGTXC-
specific mRNA transcripts, was selected based on the combined outcome of three 
different software-based classification tools. As such, the performance of this 
ultimate set was yet unknown. Although the classification will tend to be 
overoptimistic because the total training set itself was used to determine the final 
classifier set, classifying the training set with the selected classifier set will give an 
indication of the maximal possible classification accuracy of this set of chemicals 
(we will later validate this accuracy). We calculated the overall predictive accuracy 
by again applying a 2-step approach using the KNN, PAM-r, and RF algorithms and 
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use the same cross-validation fold scheme for training and test as with the gene 
selection, now with the fixed classifier set as input. A chemical is assigned to a 
certain class, when the majority of the three algorithms predicted this class. 
Summarized results are shown in Table 3. The predictive value seemed to be very 
good as concordance (94%), sensitivity (100%), and specificity (80%) were all very 
high.  
 

 
Figure 3. Heatmap of fold-change  values of the best-performing microRNA transcripts 
generated  by only using microRNA as  data input. Column numbers are depicted below 
the heatmap, and row numbers at the left side. Columns 1–3 represent  average fold-change 
values per class. Columns 4–19 represent fold-change values per chemical indicated at the top 
of the column. Upon classifier selection (using −1.3 < Fc > 1.3), transcripts 1–2 are considered 

GTXC classifiers, transcripts 3–8 NGTXC classifiers, and transcripts 9–12 NC classifiers. 
 
We subsequently validated the possible biomarkers using an additional set of eight 
chemicals. Transcriptional profiles upon 7-day exposures in C57BL/6J male mice 
were generated for three genotoxic carcinogens [7,12-dimethylbenz(α)anthracene 
(DMBA), dimethylnitrosamine (DMN), mitomycin c(MMC)], two non-genotoxic 
carcinogens [carbon tetrachloride (CCL4), 2,3,7,8-Tetrachlorodibenzodioxin 
(TCDD)], and three non-carcinogenic but potentially toxic chemicals [amiodarone 
(AD), tolbutamide (TBA), valproic acid (VPA)]. Use of this validation set revealed 
that the predictive value of the possible biomarkers was in fact lower. The specificity 
for genotoxic compounds was very high (100%), but the specificity for NGTXC, and 
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especially the sensitivity, was low, leaving an overall percentage of correctly 
classified chemicals at 50% (see Table 3). Although the validation set of chemicals 
was relatively small, these results indicated that correct identification of NGTXC and 
putative toxic NC is more difficult and might require additional (genomic-based) test 
strategies. 
 

Table 3. Overview of predictive power of the selected classifier set 

 

 

 

Discussion 

In the present study, we examined the potential of a transcription-based assay that 
focuses on the issues of misclassification of NGTXC and that can aid to a more 
ethical approach toward animal use and welfare. We used a short-term in vivo-
based assay, considering the benefits of an in vivo system for correct carcinogen 
identification, such as fully functional metabolic, signal transduction and endocrine 
processes, and the possibility to test substances via a relevant route of 
administration. Several other in vivo toxicogenomics studies were performed over 
the last years, although most used rat as a model system (87, 92-94, 97-100). Even 
though predictive results varied, these studies provided evidence that some mRNA 
transcriptional signals could potentially serve as discriminators for carcinogenic 
potential of substances. 
 
In the present study, we analysed the discriminative power of both microRNA and 
mRNA transcripts to identify the (genotoxic) carcinogenic features of chemicals. 
Multiple classifier algorithms with different feature selections were used, which 
yielded a classifier set consisting of 27 mRNA transcripts being able to partly 
discriminate between GTXC, NGTXC, and NC. no microRNAs met the applied 
criteria, which indicated that microRNA expression signatures have less 
discriminative potential for carcinogenic classes when compared to mRNA in a 
short-term in vivo murine study, but possibly also in other species or in vitro assays. 
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The fact that the number of microRNAs present in our dataset was smaller than the 
number of mRNA transcripts is not the reason for the underrepresentation, since any 
transcript with a strong discriminative signature would be selected from the 
analyses. MicroRNAs are considered major regulators of the genome, and 
expression is therefore possibly very tightly controlled, resulting in a less 
pronounced or class-specific regulation. Nowadays, only one microRNA (mir34-a) 
has been associated with a genotoxic p53-dependent response in numerous cell 
types and exposures (117) and is generally considered a genotoxic microRNA 
biomarker. However, this microRNA was not significantly regulated in vivo upon 
short-term GTXC exposures in our study, even though some of the GTXC 
exposures in our study did exhibit a significant p53-dependent DNA damage 
response based on the mRNA pathway analyses (Table 2, SI4, 2-AAF, and AFB1). 
In line with these findings, recent publications indicated that mir34-knockout mice 
and cell lines do not diverge from the wild-type situation concerning p53 response 
and tumour development (both spontaneous and upon genotoxic stress) (118, 119) 
This indicates that not all experimental circumstances and cellular conditions result 
in a default upregulation of mir-34 upon genotoxic stress. Possibly, the use of 
different exposures times or higher dosing might result in a more pronounced 
microRNA regulation. 
The final classifiers in our set were not expected to undisputedly represent a well-
known or anticipated class-specific biological response because of the experimental 
setup, i.e., using carcinogens with different potencies and modes of action, including 
potentially toxicity inducing NC. Nevertheless, a biological or functional relationship 
to cancer for several classifier transcripts has been reported by other studies. This is 
most obvious for the large majority of the GTXC classifiers, which have been 
previously linked to carcinogenesis [Tiam2 (120) Id2 (121, 122), Il1b (123), Nedd4 l 
(124), Slc45a3 (125), Zbtb16 (126)], tumour suppressive effects [Phf17 (127), Nr4a1 
(128), Ihpk2 (129), or have been shown to be regulated upon DNA damage [Il1a 
(130)]. The NGTXC classifiers in our set might not represent every possible NGTXC 
mode of action, but are apparently at least representative for several of them since 
we used NGTXC exposures with a variety of modes of action (e.g., immune 
suppressants, peroxisome proliferators, and hormonal carcinogens). Additionally, 
several of the transcripts in both classifier groups (e.g., LOC75771, 4931408D14Rik, 
and 9030619P08Rik) have no known function yet and might therefore be interesting 
candidates for further research concerning genotoxicity or carcinogenic responses. 
None of the included mRNA transcripts were part of any of the classifier sets 
generated in previously mentioned in vivo studies (87, 92-94, 97, 99), most likely 
because these studies used rat as a model system, performed mostly NGTXC 
versus NC exposures and occasionally different target tissues or cell types were 
used in those studies. Therefore, the current classifier set and the results of the 
functional pathway analyses (SI4) could shed some new light on transcriptional 
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responses toward GTXC, NGTXC, and NC exposure in mice and, more importantly, 
help elucidate processes that are mostly regulated upon (certain types of) NGTXC 
exposure. 
The final set of 27 transcripts was generated to discriminate between GTXC, 
NGTXC, and NC. The predictive outcome for the original set of chemicals was very 
high: concordance (94%), specificity (100%), and sensitivity (80%). This indicated 
that the applied strategy for classifier selection was a valid approach. We 
additionally made an initial attempt to validate this classifier set using an extra set of 
chemical exposures. Predictive potential for GTXC remained a 100% correct when 
tested in the small validation set, although more chemicals need to be tested to 
validate the true potential of this classifier set. In contrast to GTXC, the classifier set 
performed less well in correctly identifying NGTXC and NC. TCDD, a NGTXC, was 
misclassified in the validation, possibly due to its specific mode of action through the 
aryl hydrocarbon receptor (of which no NGTXC was present in the training set) 
and/or due to collateral DNA damage, which could potentially induce a ‘genotoxic’-
like profile (131, 132). Misclassification of NC in the validation set might also be due 
to their toxic nature, inducing cellular stress and indirect (oxidative) DNA damage 
upon exposure. Also, in vivo-derived classifier sets from Fielden et al. and Nie et al. 
showed high predictive potential based on training results, but upon extensive 
validation, the predictive power decreased substantially (87, 97). Concordance 
levels dropped to 64 and 55%, respectively, (100), accentuating the need for novel 
genomic-based approaches. Obviously, to create a more realistic view of the 
potential of our (and other) classifier sets, more elaborated validation studies are 
needed. So far, however, our results and those of others indicated that a set of 
single classifier transcripts might not be sufficient to obtain high predictive power for 
these three classes of chemicals. Therefore, additional genomic strategies, inclusion 
of multiple tissues, and also re-evaluation of the chemical classes are necessary. 
 
Results of our and previous studies showed that the many possible modes of 
actions and indirect effects of NGTXC and NC make it difficult to distinguish 
between these classes and should therefore be extended into more suitable groups 
of chemicals to evaluate carcinogenic features. Several NGTXC and NC, for 
example, do induce some form of genomic instability (pointed out by mutagen or 
chromosomal aberration assays) or result into collateral (DNA) damage, but were 
considered NGTXC or NC due to lack of a chronic bioassay and other supportive 
evidence. Regarding future prospects, it might be necessary to screen a multitude of 
the NGTXC-related (often tumour-promoting) processes or modes of action in order 
to assess whether a chemical has non-genotoxic carcinogenic potential. 
Additionally, non-carcinogenic, but toxic, responses should be inventoried to create 
an improved filter for distinction between toxic and carcinogenic modes of actions. 
For this approach, however, an elaborate database of NGTXC and NC exposure 
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data is a prerequisite. Together with previous large-scale in vivo studies focusing on 
NGTXC, our results contribute to mapping these cellular responses and processes. 
 
In conclusion, our results show that microRNAs have less potential as a classifier 
when compared to mRNA transcripts in a short-term in vivo setup and might require 
longer exposure times or higher doses for a more pronounced response. In our 
study, the classifier set as presented above was able to predict genotoxic 
characteristics with very high accuracy, but indicated that discrimination of non-
genotoxic carcinogenic and toxic features of a chemical requires additional or 
different (genomic-based) strategies. We believe that our results create a realistic 
view of possibilities, drawbacks, and future necessities in the field of toxicogenomics 
and are a meaningful contribution to the development of alternative testing 
strategies for carcinogen identification. 
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Abstract 

The human body is continuously exposed to various compounds that could initiate or 
accelerate cancer development. Such carcinogenic compounds can be classified 
into a genotoxic and non-genotoxic group. Especially carcinogenicity of non-
genotoxic compounds is difficult to determine with current in vitro assessments and 
therefore has to be improved urgently. Here, we used a toxicogenomics-based 
approach by genome-wide microRNA expression profiling of mouse embryonic stem 
(mES) cells to identify microRNA classifiers for genotoxic carcinogens (GTXC), non-
genotoxic carcinogens (NGTXC) and oxidative (Ox) compounds. We exposed mES 
cells to four NGTXC, four GTXC and four Ox compounds. Differential microRNA 
expression was determined 4, 8 and 12 hours after exposure and was used to 
assess its discriminative power for NGTXC, GTXC and Ox. We generated an 
accurate classifier set, which was discriminative for NGTXC using a tiered approach. 
In conclusion, our initial study indicates that microRNA expression profiles can 
potentially discriminate between NGTXC, GTXC and Ox compounds with high 
accuracy. 
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Introduction 

Compounds that interfere with DNA metabolism can induce DNA damage. When not 
properly repaired, DNA damage can be fixed in the genome as mutations, 
insertions, deletions or chromosomal rearrangements. Mutation accumulation is 
considered to be an important driver of the tumour initiation process and increases 
the risk of cancer development. Therefore, these types of compounds are classified 
as genotoxic carcinogens (GTXC). Carcinogenesis, however, can also arise from 
compounds that do not damage DNA, which are designated non-genotoxic 
carcinogens (NGTXC) (86). Currently, long-term rodent bioassays are mostly used 
to monitor carcinogenic potential of compounds (89, 90). Almost all currently present 
in vitro and in vivo short-term carcinogenicity assays are designed to detect 
genotoxic potential. This will likely not identify NGTXC and could result in a 
substantial risk for society and the environment (88). In addition, animal testing has 
the disadvantage of being expensive, time-consuming and ethically aggravating with 
respect to animal welfare. Moreover, application of high doses in rodent 
carcinogenicity assays, which irrelevant to human exposure, can lead to false 
positive results when used in chronic exposures (91). Therefore, in vitro models 
have an enormous appeal in regard to carcinogenicity risk assessment of 
compounds. The use of mouse embryonic stem (mES) cells in risk assessment of 
compounds is emerging due to several experimental advantages, such as 
pluripotency and wild type DNA damage response (DDR) (133-135). In general, 
genome-wide gene expression profiling is the most frequently used technology for 
generating classifiers in vivo as well as in vitro, including in mES cells (136, 137). It 
is becoming apparent that several thousands of small and long non-coding RNAs 
are present in a cell, which are hardly inspected for toxicological classifier potential. 
The best-studied class of non-coding RNAs are microRNAs, which are endogenous 
small (~23 nucleotides) non-coding RNA molecules that predominantly induce 
mRNA degradation via complementary binding. A single microRNA can potentially 
target hundreds of genes (29). Expression profiling demonstrated differentially 
expressed microRNAs in response to DNA damaging agents (30-32), NGTXC 
treatment (136, 138) and in cancer (30, 35, 36, 40, 139). MicroRNA expression is 
regulated at the transcriptional and post-transcriptional level (38, 117). It has been 
shown that microRNAs respond within hours after DNA damage and are restored 
back to basal level within 24 hours (31, 40). This led to the hypothesis that 
microRNAs are early response factors, which should be taken into account in 
exposure studies. A recent short-term study in mice exposed to GTXC, NGTXC or 
non-carcinogenic compounds implemented microRNA expression profiles to predict 
discriminative power in vivo (136). The heterogeneity within the cell population in 
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organs and the seven-day exposure time frame instead of hours, could explain the 
lack of discriminative power. MicroRNA expression data obtained from an in vitro-
based system could circumvent the aforementioned problems and might be able to 
correctly identify carcinogens. 
In this study, we have investigated the discriminative power of microRNAs to 
correctly predict exposure to NGTXC, GTXC and oxidative (Ox) compounds in mES 
cells by microRNA arrays. Cells were chronically exposed for 4, 8, and 12 hours to 
identify the optimal early response for microRNA classifier detection. Our study 
indicates that microRNA expression profiles can discriminate between NGTXC, 
GTXC and Ox compounds with high accuracy. 

Materials and Methods 

Mouse embryonic stem (mES) cells (HM1) were cultured as described (21). One vial 
of mES cells was thawed and cultured for two passages on primary mouse 
embryonic fibroblast-derived feeder-coated plates followed by one passage on 
gelatin-coated plates before exposure. The mES cells in experiment were treated 
with compounds (Table 1) or mock-treated with equal volume dimethylsulfoxide 
(DMSO) or phosphate buffered saline (PBS), depending on dissolvent used for the 
compound. The treatments were equitoxic, resulting in a 30% survival based on 
clonogenic survival. After 4h, 8h and 12h continuous exposure, total RNA was 
isolated using Qiazol Lysis Reagent (Qiagen) and total RNA was purified with the 
miRNeasy kit (Qiagen), according to manufacturer's instructions. RNA integrity 
(scores >9.0) was determined on the Agilent 2100 Bioanalyzer (Agilent) according to 
manufacturer’s instructions. This procedure was repeated four times to obtain four 
independent biological replicates. 

MicroRNA expression profiling 

MicroRNA profiling was performed as previously described.(37) In short, Total RNA 
was labelled (Cy3) using the ULS aRNA labelling kit (Kreatech). The labelled total 
RNA was hybridized to the LNA-based microRNA capture probe set (Exiqon) in a 
Tecan HS4800 pro hybridization station and scanned in a Tecan LS Reloaded 
scanner. Data extraction was carried out by Imagene software. Quality control of the 
intensity distribution after background subtraction identified related samples. The 
three (or four) most related (out of four) samples were used to maximize the number 
of microRNAs to be included for analysis. For Wy (4h) two biological replicates were 
discarded as outliers. Quantile normalized data were analysed for differentially 
expressed microRNAs (Table 1) using the correct vehicle as control by LIMMA 
(bioconductor package Limma; (113) and corrected for multiple testing (116). 
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Heatmaps were generated using TM4 microarray software suite (140). The 
Pearson’s product moment correlation coefficients were calculated in R (stat 
package) for the whole array expression values. The transcriptomic results are 
deposited at the NCBI Gene Expression Omnibus: GSE57839. 

Classification analyses 

A tiered approach was used to derive a final classifier set as described in (136). In 
short, we applied the Prediction Analysis for Microarrays (PAM-R) in a 2-step 
approach to generate classifiers to discriminate between non-genotoxic (NGTXC), 
genotoxic (GTXC) and oxidative (Ox) compounds. The R-package ‘pamr’ used for 
these methods can be found in the bioconductor repository. Training for compound 
classification within the PAM-R algorithm was performed using a 100-fold cross-
validation with a balanced training set as described in (136). We have chosen 
NGTXC versus the Rest (GTXC and Ox) as a first step in the analysis procedure, 
due to the high overlap between GTXC and Ox classes in mode of action (both 
genotoxic) and their high overlap in a Pearson correlation analysis. The algorithm 
yielded 100 top-50 lists for the NGTXC versus the Rest analyses and 100 top-50 
lists for the GTXC versus Ox analyses. To prevent inclusion of false positives we 
first analysed how many times a transcript was detected within those 100-fold 
generated top-50 lists. Transcripts were only considered for further classifier 
selection if they were present in at least 50% of the top-50 cross-validation lists. A 
Top-ranked (TR) classifier set was generated consisting of transcripts yielding most 
often within the 100-fold cross-validation. To increase the robustness of the classifier 
sets we applied a fold-change threshold of FC ±1.3 on average in one of the 
classes. 

Results 

The aim of this study was to explore whether microRNA expression profiles can 
classify carcinogenic compounds and discriminate between NGTXC and GTXC. In 
theory, the complete array or part of it should ideally be able to correctly classify 
samples in all three chemical classes (NGTXC, GTXC and Ox). First, samples were 
prepared by thawing a vial of mES cells that were grown for two passages on feeder 
layers and subsequently transferred to gelatin-coated plates. Then, these mES cells 
were exposed to one of the twelve compounds as depicted in Table 1 or mock-
treated (DMSO or PBS). Total RNA was isolated 4, 8 or 12 hours after continuous 
exposure. The complete procedure was repeated four times to obtain biological 
replicates (Figure 1A). 
  



Chapter 3 

46 

 
 
 

  



MicroRNA signatures for in vitro carcinogen classification 

47 

 

 
Figure 1. The experimental set-up and whole array clustering. A) Schematic overview of 
the sample preparation. B) Spearman-correlation clustering using the whole array expression 
values, I-V depicting the cluster groups.  
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After microRNA profiling and data extraction, we averaged expression values of the 
biological replicates to calculate fold changes between treated groups and their 
respective controls. Based on these fold changes, we determined whether 
microRNA expression changes in the complete array, irrespective of significance, 
were able to generate a meaningful classification using Pearson correlation 
clustering. Classification of 12 treatments divided in 3 classes and 3 time points 
resulted in 5 groups (Figure 1B). 3 groups referred to GTXC and Ox clustered per 
time point, i.e. cluster-groups I, IV and V, corresponding respectively to the 8, 4 and 
12 hour time point (Figure 1B). The cluster groups II and III referred to 3 of the 4 
NGTXC in a time independent manner (Figure 1B). NGTXC Cyclosporin A (CSA) 
was consistently clustering together with the GTXC and Ox classes, indicating a 
putative misclassification of CSA or CSA being a false-positive genotoxic agent 
(141, 142). The observation that most NGTXC are clustering apart from the GTXC 
and Ox classes indicates the presence of specific microRNA classifiers for the 
NGTXC class. 
Based on complete array classification, we selected a two-step classification 
approach, Predictive Analysis of Microarray (PAM-R), to identify a microRNA 
signature that can accurately predict NGTXC, GTXC and Ox (Figure 2A, see M&M 
for details). The PAM-R classification algorithm utilizes the nearest shrunken 
centroid method from microRNA expression datasets to classify samples (96, 136). 
In the first step, we determined the predictive power of microRNAs specific for 
NGTXC by comparing the NGTXC class to the other two classes combined (Rest = 
GTXC and Ox) for each time point (4h, 8h or 12h). The second step was aimed at 
discriminating between the GTXC class and the Ox class to predict GTXC 
microRNAs at each time point. To obtain classifier sets with sufficient predictive 
power for the selected test compound a training set was used. Such a training set 
consisted of compounds from the same group as the selected compound together 
with a balanced number of compounds from other groups. For example, to identify 
DES as a non-genotoxicant, training on the three other non-genotoxicants and four 
compounds from the Rest was performed. First, we evaluated the predictive power 
of whole array expression values to identify the time point that discriminates best for 
each step. As seen by Pearson correlation clustering, PAM-R classified CSA to the 
Rest (GTXC and Ox) throughout all time points in the first step. MicroRNA 
expression profiles from the 4h and 12h time point resulted in the highest predictive 
power in step 1 and 2, respectively. Therefore, we proceeded with the 4h time point 
to identify a set of microRNAs specific for NGTXC and the 12h time point for the 
GTXC. In each step (NGTXC vs. Rest, and for GTXC vs. Ox) cross-validation of the 
tested groups to the training set resulted in a total of 100 classifier microRNA lists 
per time point. By applying 100 training sets and limiting the list to the top-50 we 
increased the robustness of the classifiers, preventing false positives. In order to 
even further avoid false positive classifier microRNAs we selected only those 
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microRNAs that were present in at least 50% of all top-50 lists with a fold change 
threshold of ±1.3 on average in at least one of the classes. These criteria generated 
Top-Ranked (TR) classifier sets for each step. The final classifier set consisted of 31 
microRNAs being able to discriminate between NGTXC, GTXC and Ox (Figure 2 
and 3; and Table 2). The NGTXC classifier from step 1 included 26 microRNAs 
(Figure 2A) and showed a clear separation between the NGTXC and the Rest 
(Figure 2B, column 1-3). Again, CSA mapped to the GTXC and Ox classes rather 
than NGTXC (Figure 2B). The predictive power of this 26 microRNA classifier set in 
our training set was high (Figure 3). The classifier set obtained in the second step 
could discriminate the GTXC and Ox classes, although less pronounced than the 
classifier set from step 1 (Figure 2 and 3). Thus, microRNA expression profiling can 
possibly identify classifiers that could discriminate between NGTXC, GTXC and Ox 
compounds.  
 

Table 2. Overview of the predictive power per step 
 
 
 
 
 
 
 
 

Discussion 

In this study we aimed to design an in vitro-based assay that can aid in non-
genotoxic carcinogen identification. Our experimental approach focussed on 
microRNA expression profiling in mES cells to address the issue of misclassification 
of NGTXC compounds as well as investigating the optimal time after exposure. The 
kinetics for both mRNA and microRNA in cellular responses is largely unknown, but 
likely very important (21, 31). Therefore, we applied microRNA expression kinetics in 
the present study to find the optimal time of exposure by including multiple time 
points (4, 8 and 12 hour). We composed the classifier steps between NGTXC, 
GTXC and Ox with the best performing time points to maximize the discriminative 
power of our microRNA expression profiles. The final classifier set of 31 transcripts 
comprised 5% (26 for step 1 and 5 for step 2) of the complete array. This final set 
had high predictive values, concordance (92%) and sensitivity (75% for NGTXC and 
100% for GTXC and Ox).  
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The drawbacks of an in vitro system are the lack of fully functional metabolic, signal 
transduction and endocrine processes or the possibility to test substances via a 
relevant route of administration. Several in vivo toxicogenomics studies were 
performed over the last years (87, 92-94, 97-100, 136, 143) with varying predictive 
results. These studies provided evidence that some mRNA transcriptional signals 
could serve as discriminators for carcinogenic potential but were less predictive for 
non-genotoxic potential of substances. Therefore, in vitro microRNA expression 
profiling will contribute to carcinogenic risk assessment.  
MicroRNA expression classifier sets at 4h and 8h revealed low predictive potential in 
discriminating between the GTXC and Ox classes in our training set. This can be 
explained by the fact that oxidative stress can also transiently induce DNA damage, 
which is quickly repaired within minutes to hours after exposure. Oxidative stress is 
able to provoke DNA damage signalling, which explains the overlapping response 
with the GTXC. Since oxidative stress is very transient and quickly repaired and 
therefore not long-lasting as compared with many genotoxic treatments, exposure 
time should likely be extended to better discriminate between GTXC and Ox. 
Indeed, we found a higher predictive potential for microRNAs at the 12h time point 
discriminating between GTXC and Ox. While the microRNA classifier sets showed a 
high predictive power in detecting all three classes, further validation is needed with 
additional chemicals from each of the tested groups. 
In conclusion, we show that microRNAs have classifier potential in short-term in vitro 
exposure assays in mES cells. The microRNA classifier set was able to predict 
NGTXC with very high accuracy, but indicated that discrimination between GTXC 
and Ox needs to be validated in additional datasets and likely requires additional 
optimal exposure time points or different strategies, such as combinations with 
mRNA biomarkers. Thus, microRNA expression profiling is a promising tool and 
might contribute to the development of alternative testing strategies towards 
carcinogen classification in risk assessment. 
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Figure 3. Predictive power of the classifier sets, step 1 and 2 combined. Step 1, NGTXC 

versus Rest (GTXC and Ox combined) and step 2 GTXC versus Ox. A class (NGTXC, GTXC 
or Ox) was assigned when the majority of predictions (75% or more) were correct. 
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Abstract 

To maintain genome integrity, cells have evolved an elaborate response to DNA 
damage. Gene expression regulation is important to execute the various steps and 
final cellular outcome of DNA damage signalling. Each class of DNA lesions is 
repaired by different DNA repair systems and can activate different cellular 
responses that may result in different cellular outcomes after DNA damage 
signalling. Specific and overlapping responses at the gene and microRNA level 
induced by several types of DNA lesions are not well described in a single time-
resolved experiment. Therefore, wild type mouse embryonic stem cells were 
exposed to equitoxic doses of ultraviolet C radiation (UVC), cisplatin and ionizing 
radiation (IR), each inducing different DNA lesions, i.e. helix distorting-lesions 
(UVC), intra- and interstrand crosslinks (cisplatin) and single- and double-strand 
breaks (IR). Total RNA was isolated 4, 8 and 12 hours after the start of treatment 
and used for Next Generation Sequencing of the poly-adenylated RNA and small 
RNA fraction. Besides genotoxic stress-specific responses, we isolated a common 
gene and microRNA expression response across all genotoxic stresses in which 
gene and microRNA expression patterns were markedly different. Gene expression 
was highly similar across all time points, while microRNAs were expressed in short 
waves in which the expression pattern altered each 4 hours. Our data point towards 
different roles for genes and microRNAs in executing specific steps in the DNA 
damage response. 
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Introduction 

The sole cellular component that cannot be replaced when damaged and therefore 
completely relies on repair is DNA. Besides a daily damage load of ten thousand 
DNA lesions from endogenous sources, exogenous sources such as ultraviolet (UV) 
light, ionizing radiation (IR) and various chemicals also damage DNA. Unrepaired 
DNA lesions are thought to contribute to the aging process and age-related 
diseases, while incorrectly repaired DNA damage lead to mutations or chromosomal 
aberrations that may drive carcinogenesis (1). To deal with these adverse effects of 
DNA damage, cells have an arsenal of DNA repair mechanisms, each recognizing 
and repairing own spectra of lesions, but also DNA damage checkpoint pathways 
that arrest proliferation to enable the cell to repair the damage, or, when damage is 
beyond repair, trigger apoptosis or cellular senescence. All processes whose activity 
changes upon DNA damage including DNA repair systems and cell cycle 
checkpoints are collectively known as the DNA Damage Response (DDR). The 
cellular outcome of DNA damage signalling is determined by the amount and type of 
DNA lesions, but also cellular context (e.g. cell-type, proliferation versus a post-
mitotic state). The tight regulation of the DDR is of utmost importance, since there is 
a delicate balance: defects in repair drives carcinogenesis whereas hyper-activation 
can prematurely induce apoptosis or cellular senescence that negatively affect 
tissue homeostasis, a contributing factor to aging and age-related pathologies (1-4). 
To maintain this balance in the DDR and induce the correct outcome of DDR 
signalling gene expression level alterations are important. These are predominantly 
established by the inactivation or activation of specific transcription factors and 
microRNAs. The best-studied example is the transcription factor p53, which controls 
cell cycle arrest and apoptosis genes, but also in undifferentiated cells terminal 
differentiation (144-147). MicroRNAs are small (~22 nucleotides) endogenous non-
coding RNAs that repress target gene expression by binding to complementary 
target sites that mainly reside in 3’UTRs, thereby predominantly inducing mRNA 
degradation (29). A single microRNA can target hundreds of different mRNAs 
simultaneously, providing a mechanism to rapidly alter a complete gene expression 
program. Based on microRNA array time series after DNA damage, it was 
hypothesized that microRNAs act during the DDR in time between the fast post-
translation modification (PTM) response and the relatively slower gene 
transcriptional response via promotor regulation (31, 37). 
Most knowledge about gene and microRNA expression changes has been 
generated by microarray-based transcriptomic analysis of cells or organisms 
exposed to DNA damage. RNA sequencing of poly-adenylated RNAs or small RNAs 



Chapter 4 

56 

has distinct advantages, including quantitative detection of RNAs. Moreover, post-
transcriptional modifications of RNAs as well as novel (and known) RNAs can be 
detected by RNA sequencing. These novel RNAs consist of transcripts or fragments 
of transcripts originating from annotated as well as non-annotated regions in the 
genome. To date, only few mRNA or small RNA transcriptomics studies by RNA 
sequencing in relation to the DDR have been published (59-64). Currently, it is 
obscure whether different types of DNA lesions trigger similar or lesion-specific gene 
and microRNA expression responses. This is due to the fact that comparison of 
results between studies is very difficult since often very different conditions were 
used, e.g. cell type/tissue, dose and time after treatment. Based on current 
transcriptomic studies, it is estimated that the expression of up to a few thousand 
genes and a few hundred of microRNAs are altered after DNA damage, depending 
on dose, agent, cell type, etc. Overall conclusions could be that besides the well-
studied p53 transcription factor, several additional transcription factors and 
microRNAs control gene expression after DNA damage that together regulates 
numerous cellular processes (21, 22, 30-36, 39, 40).  
We took advantage of the Next Generation Sequencing (NGS) technology to map 
differentially expressed poly-adenylated RNAs (including mRNAs) and small RNAs 
(including microRNAs) in mouse embryonic stem (mES) cells throughout time 
following DNA damage. We exposed mES cells to the DNA-damaging agents UVC, 
IR and cisplatin. Each genotoxic agent induces its specific spectrum of DNA lesions, 
which was used to map both lesions specific and general RNA expression 
responses. 

Materials and Methods 

Total RNA isolation 

MES cells (HM1) were cultured as described (21). One vial of mES cells was thawed 
and grown for two passages on feeder-coated plates followed by one passage on 
gelatin-coated plates before taken into experiment. The mES cells in experiment 
were treated with 5µM cisplatin (Platosin), exposed to 4J/m2 UVC or, 4 Gy IR or 
mock-treated. Treatments with cisplatin, UVC and IR were equitoxic, resulting in a 
40% survival-based on clonogenic assays (of ‘colony-forming ability’) (148, 149). 
After 4, 8 and 12h exposure total RNA was isolated using Qiazol Lysis Reagent 
(Qiagen) and total RNA was purified with the miRNeasy kit (Qiagen), according to 
manufacturer's protocols. The integrity of the RNA was determined on the Agilent 
2100 Bioanalyzer (Agilent) according to manufacturer’s protocol. All scores were 
>9.0. This procedure was repeated three times to obtain independent biological 
replicates. Subsequent sequencing protocols were performed on the total RNA from 
the same biological samples. 
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Sample preparation and sequencing 

Total RNA enrichment for sequencing poly(A) RNAs was performed with the TruSeq 
mRNA sample preparation kit (Illumina) according to the manufacturer’s protocols 
(mRNASeq). In short, 1 µg of total RNA for each sample was used for poly(A) RNA 
selection using magnetic beads coated with poly-dT, followed by thermal 
fragmentation. The fragmented poly(A) RNA enriched samples were subjected to 
cDNA synthesis using Illumina TruSeq preparation kit according to the 
manufacturer’s protocol. Then, cDNA was synthesized by reverse transcriptase 
(Super-Script II) using poly-dT and random hexamer primers. These cDNA 
fragments were subsequently blunt-ended by end-repair reaction, followed by dA-
tailing. Finally, specific double-stranded bar-coded adapters were ligated and library 
amplification for 15 cycles was performed.  
CDNA libraries for small RNA sequencing were generated by Illumina TruSeq 
smallRNA kit v1.5 (smallRNASeq), according to the manufacturer’s instructions. In 
short, specific bar-coded adapters were ligated to 1 µg of total RNA followed by 
reverse transcriptase and amplification for 11 cycles. Small RNAs were enriched by 
fractionation on a 15% Tris-borate-EDTA gel, excising the RNAs of 15-30 nucleotide 
of length. 
Pooled cDNA libraries all consisted of equal concentrations of bar-coded samples. 
The mRNASeq and smallRNASeq pooled libraries were sequenced, all 36bp single 
read on the HiSeq2000 (Illumina). 

Sequencing data analysis 

The analysis of the sequencing datasets was performed with TRAP (Chapter 5). In 
short, the smallRNASeq reads were, prior to the analysis with TRAP, trimmed for 
adapter sequences with a custom script. Reads from mRNASeq were aligned to the 
mouse mm9 reference genome using NARWHAL automation software (150). TRAP 
extracted the reads that aligned within and between RefSeq transcripts from the 
resulting BAM files. Exonic reads were summed per transcript and a specific 
transcript or region was referred to as expressed, when a predefined threshold was 
reached (5 reads per million). The threshold was defined as a minimum number of 
reads that could be aligned to a transcript or non-exonic region across all biological 
replicates in at least one of the experimental groups. The expressed transcripts were 
divided using the RefSeq identifiers into coding and non-coding transcripts and, the 
non-exonic regions were divided by location into intronic or intergenic regions. 
Statistical analysis of the transcripts and regions was performed with EdgeR (151). 
Next, we used TRAP to analyse reads smaller than 36 nucleotides from 
smallRNASeq. Trimmed sequence reads were discarded if smaller than 14 
nucleotides of length. Reads were referred to as expressed when the threshold was 
reached, which was defined as a minimal of 5 reads being present in all biological 
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replicates in at least one experimental group. The expressed reads were 
subsequently aligned to rRNA sequences (5s and 5.8s), tRNA sequences, the 
miRBase (152) database (v19) or genome (using NARWHAL) (150). Statistical 
analysis of the tRNA aligned reads and miRBase (152) aligned reads (microRNAs) 
was performed with EdgeR (151). The reads aligned to the genome (small RNAs) 
were further processed as long RNAs in TRAP, described above.. 

Statistics and pathway analysis 

Differentially expressed (DE) transcripts were identified with EdgeR (151), assuming 
a negative binomial distribution of the reads, with a detection cut-off of fold change > 
1.5 and FDR < 0.05. The Pearson’s product moment correlation coefficients were 
calculated in R (stat package) for the expression and fold changes of all RNA 
classes. Pathway analysis was performed with Ingenuity Pathway Analysis Software 
(IPAtm) and/or DAVID (153, 154). 

Enrichment RNA species  

The enrichment of RNA species was defined by the proportion, the number of reads 
that primary aligned to the genome, of RNA classes. Only reads used to align to the 
genome were 36 nucleotides of length in the mRNASeq data or did not align to 
miRBase (152), tRNA or rRNA sequences in the smallRNASeq data. The proportion 
of small RNA reads (<36 nucleotides) was defined by being uniquely aligned to 
miRBase (152), genome or tRNA. 

Results 

The aim of this study was to construct the RNA landscape of the DNA damage 
response. Mouse ES (mES) cells were exposed to three genotoxic agents, each 
with their specific DNA lesion spectrum, i.e. intra- and interstrand crosslinks by 
cisplatin, photo-products by UVC and single- and double strand DNA breaks as well 
as oxidative damage by IR, together covering a wide range of DNA lesions. Total 
RNA for mRNA sequencing (mRNASeq) and small RNA sequencing (smallRNASeq) 
was obtained by thawing one vial of mES cells that were grown for two passages on 
feeder-coated plates followed by one passage on gelatin-coated plates and 
subsequently treated with cisplatin, UVC, IR or mock-treated. Genotoxic stress was 
applied in equitoxic doses correlating with 50% survival in a colony formation assay. 
Total RNA was isolated 4, 8 and 12 hours after treatment. This complete procedure 
was repeated three times to obtain biological replicates for statistical analysis. Each 
RNA sample was used for both mRNASeq and smallRNASeq (Figure 1A). 



The RNA landscape kinetics of the DNA damage response 

59 

First, we monitored the completeness of each sequencing run. The mRNASeq and 
smallRNASeq datasets showed the expected enrichment for mRNA (Figure 1B) and 
microRNA (Figure 1C), respectively. Next, we analysed which percentage of 
transcripts was overlapping between samples and the expression correlation 
between conditions. This is important, because insufficient overlap in and 
expression correlation of RNA transcripts between all conditions is an indicator of 
technical or biological variation that could hamper subsequent analysis. The overlap 
in detected genes and microRNAs between different conditions was >94% 
(Supplemental Figure 1). We observed a similar overlap in the other detected RNA 
classes (small/large non-coding RNAs, intronic/intergenic regions; data not shown), 
which indicates absence of large technical variation. One would expect, when the 
DDR only controls a specific subset of genes, that most genes have equal 
expression in each sample and thus the presence of linear relationship between 
gene expression levels derived from two samples. A Pearson correlation analysis 
showed a high and very significant correlation between all conditions across all RNA 
classes (Figure 1D and Supplemental Figure 2), which indicates together with the 
transcript overlap that only minor variation is introduced by the technical procedure 
or experimental conditions. 
Next we visualized variation in expression using a principal component analysis 
(PCA). Samples with large technical or experimental variation would be randomly 
distributed in the plot whereas samples with predominantly biological variation would 
cluster per condition. The PCA plots mapping gene and microRNA expression 
alterations demonstrated that samples belonging to one condition clustered together 
(Figure 1E, 1F). In addition, there was a clear difference between mock-treatment 
and mES cells that were exposed to genotoxic stress, indicating the presence of 
differentially expressed genes (DEGs) and microRNAs (DEmiRs). Only gene 
expression 4h after UVC was similar to non-irradiated mES cells, indicating delayed 
gene expression changes in the cellular response to UVC. At the microRNA 
expression level however, there is a clear difference between 4h UVC treatment and 
control mES cells, suggesting that microRNA and gene expression have different 
kinetics in response to DNA damage. Indeed, gene expression clustered primarily 
per genotoxic agent, while microRNA expression appeared to group per time point. 
These observations indicate a difference in response to DNA damage between 
mRNAs and microRNAs. 
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RNA expression kinetics 

The PCA plots indicate that the regulation of gene and microRNA expression follows 
different kinetics. To further investigate gene and microRNA responses after DNA 
damage, we determined DEGs and DEmiRs in all conditions. As expected from the 
PCA plot, only 4 DEGs were identified 4h after UVC (Figure 2 and Supplemental 
Figure 3). The 8 and 12 hours after UVC treatment revealed many DEGs, over a 
thousand at 8 hours and around three thousand at 12 hours respectively. 
Approximately 80% of the DEGs at the 8h were also found at 12 hours, suggesting 
that 8 hours after UVC a general response is induced. In contrast to UVC, DEGs 
were identified 4h after IR and cisplatin (Figure 2A). About 50% of DEGs overlapped 
across all time points after IR as well as cisplatin treatment (Figure 2A). Moreover, 
the number of DEGs shared by all treatments per time point increased in time 
(Supplemental Figure 3A). Thus, there are many overlapping DEGs across time per 
genotoxic treatment as well as across DNA-damaging agents, indicating a general 
gene expression response after DNA damage. 
If there was a general gene expression response after DNA damage, one would 
expect that overlapping DEGs would be regulated in the same direction. Therefore, 
we plotted the fold changes from all overlapping DEGs after IR and matching fold 
changes from cisplatin and UV treatments (Figure 2B, panel I). Indeed, the direction 
of expression of common DEGs after IR was almost completely identical between 
time points as well as genotoxic stressors (Figure 2B; Supplemental Figure 3B).  
 
 
Figure 1. Experimental design and quality control. A) Sample preparation scheme in which 
mES cells were treated with 5 µM cisplatin, 4 J/m2 UVC, 4 Gy IR or mock-treated (equal 
volume DMSO). Both sequencing methods were performed on the exact same samples. B) 
The proportion of RNA species detected by mRNASeq with a cut-off of minimum five reads 
found in all biological replicates in at least one of the experimental groups. Coding transcripts 
(69.3%), non-coding transcripts (1.2%) and reads from mitochondrial RNA (1.5%), intronic 

regions (11.8%) and intergenic regions (16.3%). C) The proportion of small RNA species 
detected by smallRNASeq with a cut-off of a minimum of five reads found across all biological 
replicates in at least one of the experimental groups. Small RNA classes: tRNA fragments 
(5.2%), small coding (2.5%), small non-coding (18.3%), mature microRNA (miR) (28.6%), 
microRNA isoforms (isomiR) (29.7%), small intergenic (8.5%) and small intronic RNAs (7.3%). 
The indicated percentage represents the total aligned RNAs from that particular class 

compared to the total number of reads. D) Pearson correlation between all experimental 
conditions. The average number of sequence reads per RNA species per condition was used. 
Only mRNA or microRNA transcripts with at least 20 reads on average across all samples 
were used. E and F) Principal component analysis depicting mRNAs (E) and microRNAs (F).  
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Correspondingly, shared DEGs from cisplatin or UV treatments were uniformly 
regulated across time, but also highly similar in the other genotoxic stresses (Figure 
2B, panel II and III). The high overlap and uniform direction of DEGs indicate a 
general gene expression response in time after DNA damage. 
If there was a general gene expression response after DNA damage, one would 
expect that overlapping DEGs would be regulated in the same direction. Therefore, 
we plotted the fold changes from all overlapping DEGs after IR and matching fold 
changes from cisplatin and UV treatments (Figure 2B, panel I). Indeed, the direction 
of expression from common DEGs after IR was almost completely identical between 
time points as well as genotoxic stressors (Figure 2B; Supplemental Figure 3B). 
Consistently, shared DEGs from cisplatin or UV treatments were uniformly regulated 
across time, but also highly similar in the other genotoxic stresses (Figure 2B, panel 
II and III). The high overlap and uniform direction of DEGs indicate a general gene 
expression response in time after DNA damage. 
The number of replicates could mask the percentage of overlapping DEGs due to 
decreased statistical power. It could be conceivable that a DEG found in one specific 
condition is similarly regulated in other conditions, but due to variance not identified 
as a DEG. Therefore, we selected fold changes of all DEGs in one condition (Figure 
2C, y-axis) and examined their Pearson correlation coefficient with corresponding 
genes from the other conditions (Figure 2C, x-axis). If DNA damage-induced gene 
expression changes were similar between conditions, regardless of significance of 
each individual gene, one would expect a high correlation. We observed high and 
significant correlations between every condition and their corresponding genes in 
the other conditions, except for the 4h UVC time point (Figure 2C and Supplemental 
Figure 3C). In conclusion, DNA damage in general activates highly similar gene 
expression response across time. 
The PCA plots indicate different gene and microRNA expression responses after 
DNA damage (Figure 1E, 1F), in which time after treatment is the main determinant 
for microRNAs rather than the DNA-damaging agent. Subsequently, we determined 
DEmiRs per condition and determined overlap between conditions. As expected 
from the PCA plots, we observed that DEGs were more overlapping between 
genotoxic agents per time point (Figure 3A) than across time in a single genotoxic 
stress (Supplemental Figure 4A), although the percentage of DEmiRs per condition 
is high. This observation suggests that time is the main determinant in microRNA 
expression control after DNA damage. 
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Figure 2. Differential expressed genes and kinetics. A) Overlapping and specific differential 
expressed genes (DEGs) between the 4, 8, 12h time points after UVC, IR and cisplatin 
treatment. B) Heatmap depicting fold changes from overlapping DEGs in time from IR (panel I), 
cisplatin (panel II) and UVC (panel III) compared to the other genotoxic stresses. For UVC 
overlapping DEGs between 8 and 12h were also included. C) Pearson correlation using fold 

changes of DEGs per condition (y-axis) and corresponding mRNAs in other conditions (x-axis).  
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In a time-dependent general response to DNA damage with regard to microRNA 
expression, all microRNAs should be regulated in the same direction, which cannot 
be derived from DEmiR identification alone. The DEmiRs in common between the 
agents per time point were plotted against all other conditions. We observed highly 
similar regulation of common DEmiRs per time point across all three genotoxic 
stresses, which is not present in the other time points (Figure 3B). Common DEmiRs 
per genotoxic stress plotted across time did not show a uniform response 
(Supplemental Figure 4B). These results indicate that DNA damage-induced 
microRNA expression is altered within a few hours, while gene expression changes 
are similar across time and type of DNA lesion. 
In agreement with gene expression data, the small number of replicates per 
condition could mask the detection of similar microRNA expression responses. 
Therefore, we selected all DEmiRs from one condition (Figure 3C, y-axis) and 
determined the Pearson correlation coefficient between their fold changes and the 
same microRNAs in the other conditions (Figure 3C, x-axis). In agreement with our 
previous analyses, we observed a high and significant correlation between 
genotoxic stresses in the same time points, but a low/absent correlation or even 
anti-correlations between different time points (Figure 3A and Supplemental Figure 
4A). Our results indicate that microRNA expression changes are highly similar 
between genotoxic agents and are only maintained for a few hours. 
Besides genes and microRNAs, mRNASeq and smallRNASeq detect additional non-
coding RNA classes. In each of these classes, of which the overt majority has an 
unknown function, differentially expressed transcripts were identified. To examine 
expression patterns, we applied the same correlation analysis as for genes and 
microRNAs (Figure 2C, 3C) and observed that specific classes were regulated as 
genes, microRNAs or have unique expression correlations across time and 
genotoxic stresses (Supplemental Figure 5 and 6). 

Functional analysis 

To obtain functional information from the DEGs, we performed pathway and gene 
ontology terms (GO-terms) enrichment analysis. Since DEGs were highly correlated 
across time and genotoxic treatment (Figure 2), we first constructed gene lists with 
maximal correlation for either genotoxic stress or time point. For example, the 
maximal correlation gene list of IR consists of all DEGs present in at least one of the 
time points and similarly regulated with a 1.5 fold threshold in the remaining time 
point(s), regardless of statistical significance. We identified numerous pathways and 
GO-terms in each of the conditions of which the majority overlapped between 
treatments or time points (Figure 4). 
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Figure 3. Differential expressed microRNAs and kinetics. A) Overlapping and specific 
differential expressed microRNAs (DEmiRs) between genotoxic stresses after 4h, 8h and 12h 
(panel I, II and III). B) Heatmap depicting fold changes from overlapping DEmiRs across all 
genotoxic agents after 4h (panel I), 8h (panel II) and 12h (panel III) compared to the other time 
points. C) Pearson correlation using fold changes of DEmiRs per condition (y-axis) and 

corresponding microRNAs in other conditions (x-axis).  
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Figure 4. KEGG pathways and Gene-Ontology analysis. Panel I) Venn diagrams of 

significant (p-value <0.05) enriched KEGG pathways clustering treatment or time after 

treatment. Maximum correlation DEG lists are used. Panel II) Venn diagrams of significant (p-

value <0.05) enriched Gene-Ontology terms clustering treatment or time after treatment. 

Maximum correlation DEG lists are used. 
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As expected, the p53 pathway was found significantly enriched in all time points and 
treatments (Figure 4, panel I). Processes directly controlled by the p53 pathway, 
including apoptosis and cell cycle, were strongly regulated in the expected direction, 
that is upregulation of pro-apoptotic and cell cycle arrest genes and downregulation 
of anti-apoptotic and cell cycle progression genes (Figure 5A). Several additional 
p53 target genes were induced, such as DNA repair and autophagy genes (Figure 
5A). Several p53 target genes, including Akt, Pten and Mdm2, were regulated by all 
agents in the opposite direction as expected from p53 activation, suggesting the 
presence of a negative feedback loop by secondary factors aimed at restricting p53 
activity. 
 

Figure 5. Heatmaps of core regulated pathways. A) Heatmap of significantly regulated p53 
target genes. B) Heatmap of significantly regulated stem cell renewal, pluripotency and 

differentiation markers. C) Heatmap of miR-290-295 cluster. 
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Besides apoptosis, terminal differentiation is another possible cellular outcome when 
damage is beyond repair (155, 156). All genotoxic stresses control the Hedgehog 
and Wnt signalling pathways (Figure 4). These pathways are both involved in stem 
cell self-renewal and cellular differentiation (157, 158), indicating that DNA damage 
in mES cells induces terminal differentiation via these pathways. In order for a mES 
cell to differentiate, self-renewal should be inhibited (159). All self-renewal factors 
were gradually downregulated after DNA damage, most prominently after cisplatin, 
which is probably the most potent and persistent replication inhibitor (Figure 5B). 
Conversely, several differentiation markers gradually increased (Figure 5B). 
Together this indicates that cellular differentiation is initiated after DNA damage. It 
has been shown that the miR-290-295 cluster, containing microRNAs 290 to 295, is 
only expressed in mES cells and is not expressed in differentiated cells (160). These 
microRNAs are not yet downregulated (Figure 5C). suggesting that at the 12h time 
point terminal differentiation is still in the initiating phase, but is not yet completed. 

Discussion 

Here, we generated a time-resolved map of RNA expression changes in response to 
several types of DNA damage in mES cells. We isolated a common gene and 
microRNA expression response across all genotoxic stresses, in which gene and 
microRNA expression patterns were markedly different. Gene expression was highly 
similar across all time points and genotoxic stresses, while microRNAs were 
expressed in short waves. This points towards different roles for genes and 
microRNAs in executing specific steps in the DNA damage response. 
Numerous studies have been published in which gene and/or microRNA expression 
profiling has been performed after DNA damage, each using different time points, 
cell types, genotoxic stresses, dosages and technologies (21, 59-64, 161). These 
differences in experimental set up hamper the identification of common and specific 
responses activated by different types of DNA lesions. Several overrepresented 
pathways identified in our RNA sequencing datasets are also found by other studies, 
in which the p53 pathway is the best-studied example. Our study design allows 
detection of common and specific responses for genes, microRNAs and additional 
non-coding RNAs across time and type of DNA damage.  
The use of three different DNA lesion-inducing treatments has also the benefit of 
eliminating RNA expression responses from possible side effects. For example, 
cisplatin treatment provokes the regulation of a large number of RNAs. Cisplatin can 
also damage proteins and RNAs, which is likely to elicit additional cellular 
responses, including transcriptional alterations. Further putative side effects might 
be oxidative stress from IR and RNA and lipid membrane damage by UVC. Although 
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gene expression was highly similar across time and different genotoxic stresses, 
some noticeable differences were observed. The absence of DEGs 4 hours after 
UVC treatment as a result of technical errors is unlikely. Both the experimental set-
up (Figure 1A) and the identification of several DEmiRs from the exact same 
samples overlapping with IR and cisplatin argue against this possibility. UV-lesions 
can induce DDR signalling by blocking DNA replication, leading to replication fork 
collapse and DDR signalling (162, 163). Secondly, UV-lesions efficiently block 
transcription, which also poses a signal for DDR activation (162, 163).  
The observed delayed UV-response in mES cells could be explained by these UV-
lesion characteristics. Specialized translesion DNA polymerases will bypass 
damaged DNA during S-phase, which initially prevents replication fork arrest and 
DDR activation (164). Nucleotide excision repair (NER) is the main DNA repair 
machinery to repair UV-lesions. NER consists of two sub-branches: transcription-
coupled repair (TCR) that repairs UV-lesions in transcribed DNA strands and global 
genome NER (GG-NER), which repairs UV-lesions across the genome (163). 
Transcription-blocking lesions can induce p53 signalling (165). It has been shown 
however, that mES cells rely more on GG-NER and to a lesser extent on TCR (148), 
which could also explain the observed delayed response. The experimental design 
of this study allows for analysing gene and microRNA kinetics responses across 
time. The clearest difference was observed between gene and microRNA 
expression in which the latter was expressed in time-specific patterns. Moreover, 
most DEGs and DEmiRs were induced, indicating a mainly activating response at 
the RNA level. These observations suggest that differential gene and microRNA 
expression are controlled by fundamentally different mechanisms. DNA damage-
induced gene regulation as detected by RNA sequencing is likely the result of 
transcription activation in mES cells. MicroRNAs repress target gene expression by 
translation inhibition and/or mRNA degradation, in which the latter is detectable by 
RNA sequencing (29). The absence of DEGs and presence of many DEmiRs 4 
hours after UVC indicate that translation inhibition, and not mRNA degradation, is 
the main mechanism of microRNAs to control gene expression in mES cells. In 
contrast, mouse NIH3T3 fibroblasts exhibit clear microRNA-mediated mRNA 
degradation after UV treatment as seen in a genome-wide profiling study 
(unpublished data), indicating cell type specific differences in choice of repression-
mechanism. Therefore, gene expression alterations triggered by DNA damage will 
likely be the result of changes in promoter activity and concomitant transcription 
factors and/or repressor complexes. This can therefore be more easily studied in 
mES cells, since microRNA-mediated mRNA degradation does not interfere with 
mRNA expression changes. The short waves of microRNA expression are in 
agreement with a model in which microRNAs act in-between the early protein 
interaction and post-translational modification response and the relative slower 
transcription regulation (37). Post-transcriptional regulation of microRNAs 
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themselves likely controls the observed fast and transient induction of microRNAs. 
Specialized proteins bind specific primary microRNAs and accelerate their 
maturation. Both the DNA damage checkpoint proteins ATM and p53 are shown to 
control post-transcriptional microRNA expression via this mechanism (38, 166). 
Thus, these results indicate expression kinetics is necessary for a properly 
functioning DDR. 
Numerous transcripts and fragments from non-coding and non-annotated regions 
were detected by mRNASeq and smallRNASeq. Hundreds of these transcripts or 
fragments were found differentially expressed. However, the overt majority doe not 
have a described function in literature. There are only a few non-coding RNAs 
verified and functionally characterised in relation to p53, including a large intergenic 
non-coding RNA (lincRNA) lincRNA-p21 (65). We found lincRNA-p21 expressed in 
mES cells and significantly regulated 8h after IR and cisplatin treatment. The 
hundreds of differentially expressed non-coding RNA transcripts without known 
function could add new layers to the DDR. 
Currently, little is known about the role of differential expression kinetics in the DDR. 
This study favours a model in which DDR-related transcription factors activate a 
general gene expression response required for the various steps within and the 
cellular outcome of DNA damage signalling, while microRNAs control the fine-tuning 
and timing of these events. This would imply that microRNAs regulate the outcome 
of DDR signalling depending on the type of genotoxic insult and/or the severity of 
the insult. The applied DNA damage doses in this study will lead to ~50% cell 
survival, but also apoptosis and/or terminal differentiation in mES cells as final 
cellular outcome. Further research is needed to elucidate how gene transcription 
and microRNA-mediated gene repression networks control cellular fate in response 
to DNA damage. In conclusion, we constructed an extensive overview of gene and 
microRNA expression changes in response to DNA damage, which will serve as a 
resource for future DDR studies.  
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Supplemental Figure 1. Overlapping expressed mRNAs and microRNAs. Real numbers of 
mRNAs and microRNAs detected by mRNASeq and smallRNASeq. 
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Supplemental Figure 2. Pearson expression correlation of additional RNA classes. 
Pearson correlation between all experimental conditions. The average number of sequence 

reads per RNA species per condition was used. Only transcripts with at least 20 reads on 
average across all samples were used. 
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Supplemental Figure 3. Differential expressed mRNAs and kinetics. A) Overlapping and 
specific DEGs between genotoxic stresses after 4h, 8h and 12h (panel I, II and III). B) 
Heatmap depicting fold changes from overlapping DEGs across all genotoxic agents after 4h 
(panel I), 8h (panel II) and 12h (panel III) compared to the other time points. C) Pearson 
correlation using fold changes of DEGs per condition (y-axis) and corresponding mRNAs in 
other conditions (x-axis).  
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Supplemental Figure 4. Differential expressed microRNAs and kinetics. A) Overlapping 

and specific DEmiRs between the 4, 8, 12h time points after UVC, IR and cisplatin treatment. 
B) Heatmap depicting fold changes from overlapping DEmiRs in time from IR (panel I), 
cisplatin (panel II) and UVC (panel III) compared to the other genotoxic stresses. For UVC 
overlapping DEmiRs between 8 and 12h were also included. C) Pearson correlation using fold 
changes of DEmiRs per condition (y-axis) and corresponding microRNAs in other conditions 
(x-axis). 
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Supplemental Figure 5. Pearson correlation between differential expressed transcript 
and regions from mRNASeq. Pearson correlation using fold changes of differentially 
expressed long non-coding transcripts and non-annotated regions per condition (y-axis) and 
corresponding transcripts in other conditions (x-axis). 
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Supplemental Figure 6. Pearson correlation between differential expressed transcript 
and fragments from smallRNASeq. Pearson correlation using fold changes of differentially 
expressed small non-coding transcripts per condition and non-annotated regions (y-axis) and 

corresponding transcripts in other conditions (x-axis). 
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Abstract 

Current RNA expression profiling methods rely on enrichment steps for specific RNA 
classes, thereby not detecting all RNA species. We report RNAome sequencing that 
determines expression of small and large RNAs from ribosomal RNA-depleted total 
RNA in a single sequence run. Since current analysis pipelines cannot reliably 
analyse small and large RNAs simultaneously, we developed TRAP, Total Rna 
Analysis Pipeline, a robust interface that is also compatible with existing RNA 
sequencing protocols. RNAome sequencing quantitatively preserved all RNA 
classes, allowing cross-class comparisons. We demonstrate the strength of 
RNAome sequencing in mouse embryonic stem cells treated with cisplatin. 
MicroRNA and mRNA expression in RNAome sequencing significantly correlated 
between replicates and was in concordance with both existing RNA sequencing 
methods and gene expression arrays generated from the same samples. Moreover, 
RNAome sequencing also detected additional RNA classes such as enhancer 
RNAs, novel RNA species and numerous differentially expressed RNAs 
undetectable by other methods. At the level of complete RNA classes, RNAome 
sequencing also identified a specific global repression of the microRNA and 
microRNA isoform classes whereas all other classes such as mRNAs were 
unchanged. We demonstrate that RNAome sequencing quantitatively preserves 
global and differential RNA expression patterns of RNA classes in mouse embryonic 
stem cells, which facilitates the identification of relationships between different RNA 
classes. These characteristics of RNAome sequencing will significantly improve 
expression analysis as well as studies on RNA biology not covered by existing 
methods. 
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Introduction 

The discovery of thousands of non-coding RNAs, both small and large, has 
reshaped RNA biology. These non-coding RNAs have been implicated in numerous 
biological processes and diseases (42, 45, 167-171). A significant part of non-coding 
RNA function is controlling gene expression, e.g. microRNAs have been established 
as such regulators (31, 168, 172-174), but it is becoming clear that long non-coding 
RNAs (lncRNAs), including non-polyadenylated transcripts ranging from several 
hundred to thousands of nucleotides in length also regulate gene expression (65, 
175, 176). An example is the recently identified enhancer RNA (eRNA) class, which 
are mostly non-polyadenylated lncRNAs transcripts ~50 to 2000 nucleotides in 
length generated at enhancer sites of active promoters (79, 170, 177, 178). Thus, 
systematic quantitative expression analysis of non-coding RNA classes in 
combination with mRNA expression will therefore assist in unravelling RNA networks 
in much greater detail and boost our understanding of cellular processes and 
diseases. 
Gene expression profiling by microarray technology has substantially transformed 
biology by systematically monitoring the global gene expression, but also has some 
limitations such as the quality of the capture probes and novel RNA discovery. The 
emergence of next generation sequencing (NGS) technology has enormously 
improved these limitations of arrays and further revolutionized the deciphering of 
RNA networks by sequencing millions of RNA-derived complementary DNA (cDNA) 
molecules. Established NGS protocols monitoring RNA expression rely on 
enrichment of specific RNA classes, e.g. poly-adenylation (poly(A)) selection for 
mRNA sequencing (mRNASeq) or gel-size selection for small non-coding RNA 
sequencing (smallRNASeq).  
Our objective was to set up RNAome sequencing (RNAomeSeq), which we defined 
as sequencing ribosomal RNA (rRNA)-depleted total RNA, both small and large 
RNAs, coding and non-coding in a single sequencing run. Sequencing of rRNA-
depleted total RNA has been performed before to discover novel non-coding RNA 
species (28, 179, 180). In contrast to these methods, RNAomeSeq also includes 
small RNA analysis in the sequence run and does not fractionate rRNA-depleted 
RNA into a large and small RNA sample before sequencing, which could loose 
important information about the abundance of RNA classes. While there are several 
RNA sequencing analysis algorithms available, none of these can simultaneously 
analyse both small and large RNAs from a single sample. Therefore, we developed 
a robust and reliable RNA expression analysis tool named TRAP (Total Rna 
Analysis Pipeline), which is also compatible with existing RNA sequencing protocols. 



Chapter 5 

82 

We show the improvements of RNAomeSeq over existing profiling protocols, i.e. 
mRNASeq, smallRNASeq and microarray, in mouse embryonic stem (mES) cells 
after cisplatin treatment. 

Results 

To obtain material for all omics protocols, mES cells were thawed, grown for 2 
passages and subsequently either cisplatin- or mock-treated. 8 hours later total RNA 
was isolated. This complete procedure was repeated 4 times to obtain biological 
replicates for statistical analysis (Figure 1A). Cisplatin treatment was chosen due to 
its well-documented transcriptional response in mES cells (21). Samples received 
rigorous DNase treatment during total RNA isolation to eliminate genomic DNA 
contamination. Then, total RNA from each sample was aliquoted for usage in all 
omics protocols, i.e. RNAomeSeq, mRNASeq, smallRNASeq and Affymetrix gene 
expression arrays (Supplemental Table 1). The latter three were processed 
according to manufacturer’s instruction (see Material and Methods).  
Subsequently, total RNA aliquots for RNAomeSeq were depleted of highly abundant 
ribosomal RNA, using biotin-labelled LNA probes specific for ribosomal RNAs (i.e. 
5S, 5.8S, 18S and 28S), and the remaining RNA was fragmented by sonication. All 
steps in this procedure were highly reproducible (Supplemental Figure 1). 
Sequencing adapters were ligated to the fragmented RNA allowing the generation of 
a cDNA library. Finally, adapter dimers (fragments < 145nt) were removed by gel 
size selection and the cDNA library was sequenced (36 nucleotides reads) (Figure 
1B). 
While there are several RNA sequencing analysis algorithms available, none of 
these can reliably and simultaneously analyse both small and large RNAs from a 
single sample. Therefore, we developed TRAP (Total Rna Analysis Pipeline), which 
extracts data from sequence files, categorizes RNAs in classes, identifies post-
transcriptional sequence modifications of small RNAs and performs statistical 
analysis. Moreover, TRAP is also compatible with standard mRNASeq and 
smallRNASeq (Figure 2). Briefly, prior to the analysis with TRAP, datasets 
containing small RNAs (i.e. the RNAomeSeq or smallRNASeq) were trimmed for 
adapter sequences. Then, sequence reads were divided into a small RNA category 
with RNA species length between 14 and 36 nucleotides after adapter trimming or 
into a group in which RNA species length is at least 36 nucleotides. The latter group 
was aligned to the reference genome with NARWHAL automation software (150).  
Expressed transcripts and regions were divided by RefSeq identifiers into 4 
categories, i.e. coding transcripts, non-coding transcripts, intergenic or intronic 
transcripts (Figure 2A). All reads in the small RNA category were first aligned to 
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rRNA sequences (5s and 5.8s), tRNA sequences, miRBase database (v19) (152) for 
microRNA identification and aligned to the genome using NARWHAL (150). Reads 
that aligned to the genome (small RNAs) were further processed as the longer RNA 
category in TRAP.  
 

 
Figure 1. RNAomeSeq set up and analysis. A) Diagram of biological replicate sample 

preparation from mES cells treated with 2.7µM cisplatin or mock-treated (equal volume DMSO) 
for 8 hours. This procedure was repeated 4 times to obtain 4 independent biological replicates. 
All omics methods were performed on the exact same samples. B) Schematic of the 
RNAomeSeq method. Total RNA was depleted of rRNA, fragmented and adapters were ligated 
to prepare a compatible cDNA library followed by fractionation on gel. Short sequencing reads 
(<36 nucleotides) were trimmed for adapter sequences and further processed by TRAP (Figure 

2). 36 nucleotide sequencing reads were processed as long RNAs. 
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The modular structure of TRAP also allows easy adjustments regarding transcript 
identifiers (e.g. GENCODE instead of RefSeq) or statistical algorithms (e.g. DESeq 
instead of EdgeR). The detection of short transcripts, such as snoRNAs, resulted in 
an overestimation of these transcripts when normalizing on transcripts length (such 
as RPKM or FPKM). Therefore, we only used statistical analysis algorithms with raw 
reads as input. There are several statistical analysis algorithms available for RNA 
sequencing datasets (151, 181-183). We tested the performance of 4 algorithms in 
the mRNASeq dataset and determined overlap in the microarray dataset 
(Supplemental Table 2). Three had similar performance, identifying 2055 to 2836 
differentially expressed genes (DEGs), which were highly overlapping with the 
microarray results (74.2% - 76.8%). We used EdgeR(151) as the standard statistical 
analysis algorithm in TRAP for further analyses. 
Subsequently, we analysed the RNAomeSeq dataset. The reads obtained from 
RNAomeSeq allowed us to measure the abundance of all RNA classes found in 
mES cells (Figure 3A). Only 7.8% of the reads mapped to rRNA sequences (7.7% 
45s in the large fraction, 0.1% 5/5.8s rRNA in small fraction), showing efficient 
depletion of rRNA. The percentage of reads that aligned (Supplemental Table 3) and 
did not align to the genome was similar to the mRNASeq and smallRNASeq 
datasets (Supplemental Figure 2). These unaligned reads are likely to result from 
SNP-rich regions (TRAP’s default settings allows 2 mismatches to the reference 
genome), small RNA fragments (TRAP’s default settings only include RNA 
molecules >14 nucleotides), reference genome differences or sequencing errors 
(Supplemental Figure 2). In the RNA fraction with a length of at least 36 nucleotides 
from RNAomeSeq we identified exonic reads, which refers to annotated, for function 
coding, transcripts (coding transcripts, mitochondrial transcripts, small nucleolar 
RNAs (snoRNAs) and annotated long non-coding RNAs (including e.g. pre-
microRNAs)) and transcripts originating from intronic or intergenic regions (Figure 
3A), which is similar to previously published long RNA classes distribution (184). 
The small RNA fraction contained mature microRNAs, microRNA isoforms (isomiRs) 
and additional small RNA molecules. In these non-microRNA/isomiR classes of 
small RNAs we identified fragments of tRNAs and small RNAs from coding, non-
coding, intergenic and intronic regions (Figure 3A). The abundance of RNA classes 
found by mRNASeq (Figure 3B) and smallRNASeq (Figure 3C) showed the 
expected RNA classes enriched for poly(A)-coding transcripts and small RNAs, 
respectively. 
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Figure 2. Schematic of the Total RNA Analysis Pipeline, TRAP, for analysis of 
sequencing datasets. A) Modules for long RNA analysis, script1 for RefSeq annotated exonic 
transcripts and script2 for RefSeq annotated non-exonic regions. B) Modules for small RNA 

analysis, script3 to align trimmed reads to first rRNA, than tRNA sequences and the microRNA 
database, miRBase version 19. 
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Figure 3. The proportion of RNA species found in mES cells. A) The proportion of RNA 
classes detected by the RNAomeSeq protocol with a minimum of one read per million found 
across all biological replicates from at least one of the experimental groups. Detecting small 
RNA classes (right panel): tRNA fragments (0.2%), small coding (0.2%), small non-coding 
(0.3%), mature microRNA (miR) (0.7%), microRNA isoforms (isomiR) (0.9%), small intergenic 
(1.7%), small intronic (2.0%); and long RNA classes (left panel): non-coding transcripts also 
containing complete tRNAs (12.2%), coding transcripts (2.2%), snoRNA (19.4%), mitochondrial 
(1.9%), histones (0.2%), intronic region (37.4%), intergenic region (20.7%) classes. B) The 
proportion of RNA species detected by the mRNASeq protocol with a minimum of five reads 
found across all biological replicates from at least one of the experimental groups. Detecting 
coding transcripts (71.0%), non-coding transcripts (1.2%) and reads from mitochondrial (2.3%), 
histones (0.1%), intronic regions (9.3%) and intergenic regions (16.2%). C) The proportion of 
small RNA species detected by the smallRNASeq protocol with a minimum of five reads found 
across all biological replicates from at least one of the experimental groups. Detecting small 
RNA classes: tRNA fragments (4.0%), small coding (2.0%), small non-coding (17.6%), mature 
microRNA (miR) (27.9%), microRNA isoforms (isomiR) (25.7%), small intergenic (10.6%) and 
small intronic (12.1%). The indicated percentage represents the total aligned RNAs from that 
particular class compared to the total number of reads, excluding rRNA reads. 
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To assess reliability, we determined correct RNA class representation in 
RNAomeSeq. Experimental verification of correct class representation is difficult to 
assess for most RNA classes. Poly(A) RNA however, can be quantitatively 
measured in a sample. Our results indicate that ~90% of total RNA represents rRNA 
(Additional file 2), ~2.2% of all reads referred to coding transcripts (Figure 3A) and 
mRNASeq that is based on poly(A) selection, indicated that ~71% of all reads map 
to coding regions (Figure 3B). This suggests that approximately 0.3% of total RNA 
represents poly(A) RNA. We measured poly(A) RNA content of our samples directly 
by poly(dT) beads isolation followed by bioanalyzer analysis (Supplemental Figure 
3). This analysis indicate that indeed ~0.3% poly(A) RNA is present in total RNA, 
which is in line with our RNAomeSeq results. Additional cell lines from human and 
mouse origin had similar poly(A) RNA content, indicating that this observation is not 
specific for mES cells (Supplemental Figure 3). 
Reliability is also determined by putative biases introduced by RNAomeSeq 
compared to standard mRNASeq or smallRNASeq. First, we analysed the 
representation of transcripts in RNAomeSeq and mRNASeq by plotting the 
percentage of detected transcripts in transcript length bins (Figure 4A). A >99% 
overlap of coding transcripts was observed between RNAomeSeq and mRNASeq 
without any differences in transcript length distribution. Secondly, we determined 
gene expression correlation between RNAomeSeq and mRNASeq by plotting read 
count per million (CPM) per coding transcript in a XY-scatterplot (Figure 4B). 
Quantitative gene expression levels detected by RNAomeSeq were highly similar to 
mRNASeq (Pearson correlation coefficient R=0.86; p<2.2e-16). There was a 
noticeable difference: a class of coding transcripts was highly expressed in 
RNAomeSeq (Figure 4B, red circle), but hardly expressed in mRNASeq. This group 
consisted of histones, which have very short or absent poly-A tails and are therefore 
hard to detect with standard mRNASeq. Thirdly, we determined the distribution of 
sequence reads mapping to coding transcripts across the gene body (Figure 4C). In 
contrast to mRNASeq in which read density was equal across the gene body except 
for the 5’ and 3’ transcript ends, RNAomeSeq harboured several specific peaks. 
These peaks were produced by intronic snoRNAs, which transcripts overlap with 
exons from host genes. Therefore, these sequences were automatically included in 
this analysis. Removal of intronic snoRNAs from the analysis, which are also not 
detected by mRNASeq, abolished these peaks and produced a similar distribution 
as seen in mRNASeq. 
Finally, we determined any bias for small or large transcripts in the detected 
sequence reads. The percentage of detected sequence reads was plotted for 
transcript length bins (Figure 4D). A slight deviation was observed compared to 
mRNASeq, which could be explained by intronic snoRNAs and histone sequences 
(Figure 4D). In toto, RNAomeSeq performs equally compared to standard 
mRNASeq without any biases in detecting coding transcripts 
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Subsequently, we determined putative biases in microRNA and isomiR detection by 
RNAomeSeq. By plotting the percentage of detected transcripts in transcript length 
bins, we observed that the representation of transcripts in RNAomeSeq and 
smallRNASeq was similar (Figure 5A). There was however, a clear shift towards 
increased microRNA length in both smallRNASeq and RNAomeSeq compared to 
miRBase (v19), which could be explained by a lack of isomiRs in miRBase. 
Quantitative microRNA and isomiR expression correlation between RNAomeSeq 
and smallRNASeq was also very similar (Pearson correlation coefficient R=0.76; 
p<2.2e-16) between RNAomeSeq and smallRNASeq as seen in a XY-scatterplot in 
which CPM per microRNA/isomiR has been plotted (Figure 5B). Finally, we 
determined any bias for microRNA/isomiR length in the detected sequence reads by 
plotting the percentage of detected microRNA/isomiR transcripts per length (Figure 
5C). A slight deviation was observed between the two methods, i.e. a decrease in 
microRNA/isomiRs with a length of 21 nucleotides and an increase in 24 nucleotide 
long microRNAs/isomiRs. Sample preparation differences such as gel excision 
(smallRNASeq) might explain the differences. RNA fractionation as performed in 
RNAomeSeq could result in fragments of long transcripts in the small RNA 
compartment that align to the genome and thereby generate observed differences 
between RNAomeSeq and smallRNASeq (Figure 3A, 3C). We did not observe any 
obvious expression correlation in coding, non-coding, intergenic and intronic 
transcript levels between the small and large fractions in RNAomeSeq 
(Supplemental Figure 4). Taken together, this data indicate that RNAomeSeq 
correctly represents small RNA expression as well. 
 
Table 1. The Pearson-correlation between replicate samples in RNAomeSeq, mRNASeq 
and smallRNASeq. For the coding transcripts and/or microRNAs, all correlations had p-value 
< 2.2E-16. 
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Figure 4. Representation of coding transcripts. A) Coding transcript length distribution of 
the whole genome or detected by mRNASeq and RNAomeSeq. B) The Pearson-correlation 
between and X-Y scatter plot of coding transcript expression between RNAomeSeq and 
mRNASeq, histones encircled in red. C) Distribution of reads along the body of all coding 
transcript for mRNASeq, RNAomeSeq and RNAomeSeq depl (depleted of histones and 
transcripts with intronic snoRNA). D) Distribution of reads aligning to the detected coding 
transcripts by mRNASeq, RNAomeSeq and RNAomeSeq depl (depleted of histones and 
transcripts with intronic snoRNA) in regard to transcript length.  
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We continued by analysing expression level correlations between the biological 
replicates from coding transcripts in mRNASeq, microRNAs in smallRNASeq and 
both coding transcripts and microRNAs in RNAomeSeq. We observed very high and 
significant correlations for all replicates, which was on average a 0.99 and 0.95 
correlation coefficient for the existing protocols and RNAomeSeq, respectively 
(Pearson rank correlation, all samples p-values < 2e-16) (Table 1), indicating that 
the RNAomeSeq procedure in itself is very reliable and can be used for expression 
profiling. We performed statistical analysis between cisplatin and mock treatment 
and compared the results from RNAomeSeq to mRNASeq and microarray 
(Supplemental Figure 5). First, we compared DEGs between microarray and 
mRNASeq, since both rely on poly(A) selection and are therefore expected to be 
most similar. For comparisons with the microarrays, probes were first filtered for 
correct annotation, i.e. probes annotated in the RefSeq database. RefSeq annotated 
probes specific for microarrays and not found in mRNASeq were mostly low intensity 
signals and therefore likely not expressed (Supplemental Figure 5A). 77% of the 
DEGs found by microarray (n=4/group) were also significantly regulated in 
mRNASeq (n=3/group). Moreover, DEG fold changes were highly correlated as well 
(Supplemental Figure 5B). We identified genes and enriched pathways as previously 
reported for cisplatin treatment in mES cells (21), indicating, together with the highly 
overlapping DEGs between microarray and mRNASeq, correct performance of the 
experiment and TRAP. High DEG fold change correlations were also observed 
between RNAomeSeq and microarray (Supplemental Figure 5C) and between 
RNAomeSeq and mRNASeq (Supplemental Figure 5D). Thus, we conclude that 
differential expression is also preserved in RNAomeSeq.  
Since RNAomeSeq quantitatively preserves all RNA species in a single sequence 
run, we compared all RNA classes in mES cells with and without cisplatin treatment. 
We observed a specific global repression of the microRNA and isomiR classes after 
cisplatin treatment (Figure 6). This observation is in agreement with observations 
that key components of the microRNA biogenesis pathway are targeted by caspases 
during apoptosis (185, 186), which is consistent with the onset of apoptosis of 
cisplatin-treated mES cells. This demonstrates that RNAomeSeq can be used to 
study behaviour of complete RNA classes. 
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Figure 5. Representation of microRNAs and isomiRs. A) Length distribution of the 
microRNA/isomiRs transcripts in the miRBase database or detected by smallRNASeq and 
RNAomeSeq. B) The Pearson-correlation between and X-Y scatter plot of microRNA/isomiRs 
expression between RNAomeSeq and smallRNASeq. 

Discussion 

Here we demonstrated that RNAomeSeq is a robust and reliable method to 
sequence both small and large RNAs, coding and non-coding, in a single 
sequencing run. Expression correlations with standard smallRNASeq and 
mRNASeq were very high. In addition, we found that isomiRs are abundantly 
present in mES cells, which can be well documented by RNAomeSeq as well as 
standard smallRNASeq. Although the exact function of isomiRs is not known (55, 
187), TRAP can provide a thorough isomiR overview. Our approach allows 
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simultaneous analysis of RNA expression, identification of novel RNAs and 
transcripts and a comparison between RNA classes.  
As far as we can determine, the RNAomeSeq method does not introduce additional 
biases in quantitative transcript expression within a RNA class, such as microRNAs 
or coding transcripts, compared with standard smallRNASeq and mRNASeq. Next to 
a high transcript expression correlation between RNAomeSeq and mRNASeq / 
smallRNASeq, we did not observe a transcript length bias or differences in read 
distribution across transcripts. There were some noticeable differences between 
RNAomeSeq and mRNASeq, mostly in the detection of specific RNA classes (see 
Figure 3). RNAomeSeq was able to identify non-polyadenylated RNAs, including 
histones and snoRNAs, and improved detection of annotated long non-coding 
RNAs. The completeness of RNAomeSeq also provides a disadvantage: 
sequencing depth should be sufficient in order to identify and classify differentially 
expressed genes. The expected decrease in sequencing costs however, will 
compensate for the required sequencing depth. 
Current methods based on RNA selection cannot quantitatively determine transcript 
level ratios across RNA classes. While RNAomeSeq detects most, if not all, RNA 
classes besides rRNA, it is conceivable that the technical procedures of 
RNAomeSeq introduce detection biases towards or against specific RNA species 
and classes. Therefore, it remains a question to what extent RNAomeSeq can be 
used to quantitatively determine transcript level ratios between RNA classes or map 
a complete quantitative RNAome from a sample. Qualitative analysis, i.e. 
comparisons between experimental groups, is not hampered by biases. Two 
putative biases could be identified. Small RNAs are favoured over longer RNAs in 
NGS methods and therefore overrepresented. Secondly, RNA fragmentation by 
sonication could result in a break at the hydroxyl or the phosphate group at the 3’ 
end. The 3' adapter used in the NGS protocol is specifically modified to ligate to 
RNAs with a 3' hydroxyl group, such as microRNAs, resulting from enzymatic 
cleavage by Dicer or other RNA processing enzymes. However, the detection of 
numerous isomiRs, to which specialized enzymes add additional nucleotides at the 
3’ end after Dicer cleavage, would suggest that the 3’ adapter has tolerance for 
other 3’ ends as well. Furthermore, if we assume that breakage by sonication occurs 
randomly, we would expect that only 1 in 2 fragments could be used in sequence 
adapter ligation and subsequent cDNA formation, which could translate into a 2-fold 
underrepresentation of non-enzymatically processed small and longer RNAs in 
RNAomeSeq. 
To estimate an underrepresentation or overrepresentation of specific RNA classes, it 
is essential to know the ratio between specific RNA classes. Single cell sequencing 
experiments and subsequent follow up studies have provided an estimate for the 
total number of mRNAs (188) and microRNAs (189) in a single mES cell. These 
data indicate that for every mRNA molecule 5 microRNA molecules are present in 
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mES cells. (188, 189) Since the smallRNASeq adapter ligation kit for RNAomeSeq 
was used, we assume that microRNAs and isomiRs are very efficient labelled and 
sequenced in which 1 microRNA translates to 1 sequence read. 2.2% of the 
detected reads in RNAomeSeq aligned to coding transcripts and 1.6% to microRNA 
transcripts. (Figure 3) Coding transcript with a mean length of 3300 nucleotides 
(Figure 4A) are likely to break evenly during fragmentation with an average fragment 
size of 300 nucleotides (Supplemental Figure 1). Thus, we expect approximately 11 
fragments per transcript. Subsequent calculations estimate the presence of 1 mRNA 
molecule per 8 microRNA molecules in RNAomeSeq, suggesting a ~1.6 fold 
overrepresentation of microRNA or underrepresentation of mRNA molecules.  
While exact RNA content in a single cell or sample is difficult to assess, several 
observations allow us to provide a rough estimate of the expected number of mRNA 
sequencing reads in RNAomeSeq. The poly(A) content of a typical cell is 1% of the 
total RNA (190), implicating an underrepresentation of the poly(A) content in 
RNAomeSeq, since our experiments indicate ~0.3% poly(A) content and an 
estimated 0.2 – 025% mRNAs in total RNA from mES cells (Figure 3A and 
Supplemental Figure 3). Compared to other cell types however, mES cells have 
fewer mRNA molecules per cell (20-fold reduction) as well as lower total RNA 
content per cell (5.5-fold reduction) (188). This suggests a relative ~3.6-fold lower 
mRNA content in mES cells. The standard mRNASeq data indicates that ~71% of all 
poly(A) RNA refers to coding transcripts (Figure 3B). Extrapolating these 
estimations, one would expect ~2% of the reads in RNAomeSeq to refer to coding 
transcripts, which is in agreement with our observations. These calculations suggest 
an overrepresentation of microRNAs rather than underrepresentation of mRNA 
molecules in RNAomeSeq. 
Transcripts from intergenic and intronic regions were abundantly present among 
small and large RNA classes, among which we could also identify differential 
expressed RNAs, suggesting functional roles in the cellular cisplatin response. In 
particular the large content of intronic transcripts was intriguing for both cisplatin- 
and mock-treated samples. We found in RNAomeSeq that on average 37.4% of the 
reads originated from intronic regions. This could be the result of I) the presence of 
pre-mRNAs, II) more stable than anticipated spliced introns, or III) functional non-
coding RNAs originating from intronic regions.  
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Figure 6. Quantitative preservation of all RNA species Total proportion of RNA classes 
before and after cisplatin treatment. Panel I) Long RNA classes, Panel II) Small RNA 
classes. Error bars represent standard deviations. 
 
It is likely that a part of the intronic sequences can be explained by the presence of 
pre-mRNAs or stable introns, although we did not observe that reads from intronic 
regions were evenly distributed across all expressed introns/genes (Supplemental 
Figure 6), which is expected when introns are stable. We also did not observe any 
correlation between highly expressed genes and intronic transcripts nor the 
presence of reads that overlap exon-intron boundaries, which would have been 
expected from pre-mRNAs. We suggest that a significant part of all intronic 
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transcripts are likely bona fide non-coding RNAs, which is consistent with our results 
in which snoRNAs are present in intronic regions (figure 4C) and previous reports 
indicating the presence of intron-derived non-coding RNAs (191-194).  
In addition, we also noted numerous intergenic RNAs upstream of gene promoters, 
which were not present in mRNASeq or smallRNASeq. Their location and size were 
reminiscent of a recently identified class of non-poly(A) non-coding RNAs, named 
eRNAs. These are detected as sequence peaks upstream of the promoter. Since 
only very few eRNAs have been experimentally verified, we did not systematically 
categorize them in a distinct RNA class as seen in Figure 3. The widespread 
occurrence of non-poly(A) RNAs in close proximity of highly expressed genes 
(examples see Supplemental Figure 7) suggests that RNAomeSeq can also detect 
eRNAs, exemplifying that RNAomeSeq (but not mRNASeq) can be used to study 
relationships between different RNA classes in an unbiased manner. 
One of RNAomeSeq’s strengths is monitoring global upregulation or repression of 
complete RNA classes since it quantitatively preserves all RNA species in a single 
sample. This allows for monitoring/identifying pathways that control the expression 
of complete RNA classes. A prime example is repression of the microRNA 
biogenesis pathway during tumourigenesis, leading to reduced numbers of mature 
microRNAs in human cancer (195). We observed a specific global repression of the 
microRNA and isomiR classes after cisplatin treatment (Figure 6), demonstrating 
that RNAomeSeq can be used to study behaviour of complete RNA classes. 
 
In summary, we show that RNAomeSeq quantitatively preserves global and 
differential RNA expression patterns of RNA classes. Besides novel RNA species 
identification, RNAomeSeq can identify relationships between different RNA classes, 
allowing the elucidation of RNA networks in much greater detail. For example, 
mRNA expression levels are determined by transcriptional activity, but also by 
microRNA expression. It is becoming clear that eRNAs, generated upstream of the 
gene locus, are needed for transcriptional activity (178) and therefore can serve as 
marks for active transcription. MicroRNAs predominantly act via mRNA degradation, 
which can be visualized by RNA sequencing methods (29). Analysing mRNAs, 
microRNAs and eRNAs simultaneously could indicate which mechanism controls 
observed gene expression changes. In toto, the described characteristics of 
RNAomeSeq will significantly improve expression analysis as well as studies on 
RNA biology not covered by existing methods. 
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Methods 

Total RNA isolation 

Mouse embryonic stem (mES) cells (HM1) were cultured as described (21). One vial 
of mES cells was thawed and grown for two passages on feeder-coated plates 
followed by one passage on gelatin-coated plates before beginning the experiment. 
The mES cells in experiment were treated with 2.7µM cisplatin (75% survival; 
Platosin) or mock-treated (equal volume dimethylsulfoxide (DMSO)). After 8h 
continuous exposure total RNA was isolated using Qiazol Lysis Reagent (Qiagen) 
and total RNA was purified with the miRNeasy kit (Qiagen), according to 
manufacturer's protocols. The integrity (scores >9.0) of the RNA was determined on 
the Agilent 2100 Bioanalyzer (Agilent) according to manufacturer’s protocol. This 
procedure was repeated four times to obtain 4 independent biological replicates. 
Subsequent sequencing and array protocols were performed on the total RNA from 
the same biological samples. 

Microarray sample preparation 

The poly(A) RNA enrichment for Affymetrix GeneTitan® array was performed by 
ServiceXS, following their standard protocol. In short, 100ng of total RNA was 
labelled with the Affymetrix 3' IVT-Express Labeling Kit (containing oligo dT primers), 
amplified and fragmented before hybridizing to Affymetrix HT Mouse Genome 430 
PM Array. 

mRNASeq sample preparation 

Total RNA enrichment for sequencing poly(A) RNAs was performed with the TruSeq 
mRNA sample preparation kit (Illumina) according to the manufacturer’s protocols. 
In short, 1 µg of total RNA for each sample was used for poly(A) RNA selection 
using magnetic beads coated with poly-dT, followed by thermal fragmentation. The 
fragmented poly(A) RNA enriched samples were subjected to cDNA synthesis using 
Illumina TruSeq preparation kit according to the manufacturer’s protocol. Briefly, 
cDNA was synthesized by reverse transcriptase (Super-Script II) using poly-dT and 
random hexamer primers. The cDNA fragments were then blunt-ended through an 
end-repair reaction, followed by dA-tailing. Subsequently, specific double-stranded 
bar-coded adapters were ligated and library amplification for 15 cycles was 
performed. 
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SmallRNASeq sample preparation 

The cDNA library for smallRNASeq was generated by the small RNASeq kit 
(Illumina TruSeq smallRNA v1.5) according to the manufacturer’s protocol. In short, 
specific bar-coded adapters were ligated to 1 µg of total RNA followed by reverse 
transcriptase and amplification for 11 cycles. Small RNAs were enriched by 
fractionation on a 15% Tris-borate-EDTA gel, excising the RNAs of 15-30 nucleotide 
of length. 

RNAomeSeq sample preparation 

Ribosomal RNA (rRNA) depletion was performed using RiboMinus Eukaryote Kit 
(Life Science), according to the manufacturer’s protocol. 10 µg of total RNA was 
incubated with biotin-labelled LNA probes (2 for each of the 4 rRNA species, i.e. 5S, 
5.8S, 18S and 28S) and hybridized to streptavidin-coated magnetic beads. The 
rRNA-depleted samples were concentrated using the RiboMinus Concentration 
Module, according to manufacturer’s protocols. The concentrated rRNA-depleted 
samples were fragmented by sonication (Covaris s200, duty cycle 5% and 
200burst/cycle for 210sec), to fragments smaller than 500 nucleotides. The cDNA 
library preparation was performed according to the smallRNASeq sample 
preparation. Adapter dimers, approx. 145 nucleotides in length, were removed by 
excising RNAs ranging 160- 645 nucleotide of length from the gel, corresponding to 
RNAs 15-500nt in length. The excised gel containing the adapter-ligated cDNA 
fragments were extracted from the gel using the gel breaker kit (IST Engineering). 
Finally, the cDNA was pooled after extraction and further prepared for sequencing. 

Sequencing  

The pooled cDNA libraries all consisted of equal concentration bar-coded samples, 
i.e. three mock- and three cisplatin-treated samples. The mRNASeq and 
smallRNASeq pooled libraries were sequenced in one lane each and the 
RNAomeSeq pooled library was sequenced in two lanes, all 36bp single read on the 
HiSeq2000 (Illumina). 

Total RNA analysis pipeline 

The analysis of the sequencing datasets was performed with TRAP, which stands 
for Total RNA Analysis Pipeline. The analysis was performed on a quad-core CPU 
desktop with 64-bits windows system and 16 gigabyte RAM. Per sample, the 
analysis takes around five minutes for mRNASeq and twenty minutes for 
smallRNASeq. 
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The RNAomeSeq and smallRNASeq reads were, prior to the analysis with TRAP, 
trimmed for adapter sequences with a custom script. Reads from RNAomeSeq and 
mRNASeq were aligned to the mouse mm9 reference genome using Tophat 
(version 1.3.1.Linux_x86_64, --coverage-search, -butterfly-search, --segment-
mismatches 1,--segment-length 18) via the NARWHAL automation software (150). 
We have developed NARWHAL to automate sequence data processing using pre-
existing open-source tools. TRAP makes use of several R Bioconductor (196) 
packages, e.g. Biostrings (version 2.26.3), Rsamtools (version 1.10.2), IRanges 
(version 1.16.6), GenomicRanges (version 1.10.7), Limma (197) and EdgeR (151). 
Reads that aligned within and between RefSeq transcripts were extracted from the 
resulting BAM files using Scripts 1 and 2 in module I. RefSeq can be replaced in 
TRAP by other annotations such as GENCODE depending on the users preference. 
Exonic reads were summed per transcript. In module II, a specific transcript or 
region was referred to as expressed, when a predefined threshold was reached (1 
read per million). The threshold was defined as a minimum number of reads that 
could be aligned to a transcript or non-exonic region across all biological replicates 
in at least one of the experimental groups. In module III, expressed transcripts were 
divided by RefSeq identifiers into coding and non-coding transcripts. The non-exonic 
regions were divided by location into an intergenic or intronic category. Statistical 
analysis of the transcripts and regions can be performed with several published 
statistical algorithms for mRNASeq that are all compatible with TRAP. We used in 
our analysis EdgeR (151), since this was the best performing statistical algorithm. 
Next, we used TRAP to analyse reads smaller than 36 nucleotides from 
smallRNASeq and RNAomeSeq. In module I, trimmed sequence reads were 
discarded if smaller than 14 nucleotides of length. Reads were referred to as 
expressed when the threshold was reached, which was defined as a predefined 
minimal reads being present in all biological replicates in at least one experimental 
group. In Module II, the expressed reads were first aligned to rRNA sequences (5s 
and 5.8s), tRNA sequences, the miRBase (152) database (v19) (using 
vmatchPattern from the Biostrings package) or the genome (using NARWHAL(150), 
using only bowtie; --best, -l 32, -n 2, -M 1). In module III, statistical analysis of the 
tRNA aligned reads and miRBase (152) aligned reads (microRNAs) was performed 
with EdgeR (151). The reads aligned to the genome (small RNAs) were further 
processed as long RNAs in Script 1 and 2 in TRAP. Threshold in TRAP can be 
manually set and adjusted according to needs. 
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Statistics and pathway analysis 

Differentially expressed (DE) transcripts were identified in the mRNASeq dataset 
with EdgeR (151), assuming negative binomial distribution of the reads. DE 
transcripts were identified in the Affymetrix dataset by computing a linear model 
using Limma (197). For both platforms cut-offs were used for DE transcripts 
detection (fold change > 1.5 and FDR < 0.05). Pathway analysis was performed with 
Ingenuity Pathway Analysis Software. 

Proportion of RNA species  

The proportion of RNA species was defined by the number of reads that primary 
aligned to the genome (script 1 and 2 proportion). Only reads used to align to the 
genome were 36 nucleotides of length or did not align to miRBase (152), tRNA or 
rRNA sequences. The proportion of small RNA reads (<36 nucleotides) was defined 
by being uniquely aligned to miRBase (152), rRNA or tRNA. The proportion of 
protein-coding RNAs found in the RNAomeSeq dataset was validated using a gel-
analysis of poly(A) RNA enriched by poly-dT beads. We added magnetic beads 
coated with poly-dT, from the mRNASeq protocol (Illumina TruSeq), to 1ug of total 
RNA. The bound poly(A) RNA was subsequently analysed on an RNA pico-chip 
Agilent 2100 Bioanalyzer (Agilent), using manufacturer’s protocols. 

Availability of supporting data 

Data has been deposited in the GEO database under the number GSE48084. 
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Supplemental Figure 1. Agilent 2100 Bioanalyzer analysis of rRNA depletion and 
subsequent fragmentation step in the RNAome protocol. 
 
  



Chapter 5 

102 

 

 

 
  



Deciphering the RNA landscape by RNAome Sequencing 

103 

Supplemental Figure 2. The proportion of RNA species found in mES cells. A) The 
proportion of RNA classes detected by the RNAomeSeq protocol with a minimum of one read 
per million found in across all biological replicates from at least one of the experimental groups. 

This analysis includes rRNA and unaligned reads. Detecting small RNA classes (right panel): 
5/5.8s rRNA fragments (0.1%), tRNA fragments (0.2%), small coding (0.1%), small non-coding 
(0.2%), mature microRNAs (miR) (0.5%), microRNA isoforms (isomiR) (0.6%), small intergenic 
(1.3%), small intronic (1.5%); and long RNA classes (left panel): 45s rRNA (7.7%), non-coding 
transcripts (9.1%), coding transcripts (1.7%), snoRNA (14.5%), mitochondrial (1.4%), histones 
(0.1%), intronic regions (28.0%), intergenic regions (15.5%) and unaligned (long RNA 12.8% 

and small RNA 4.4%). B) The proportion of RNA species detected by the mRNASeq protocol 
with a minimum of five reads found across all biological replicates from at least one of the 
experimental groups. Detecting RNA classes: 45s rRNA (0.1%), coding transcripts (54.9%), 
non-coding transcripts (0.9%), mitochondrial (1.7%), histones (0.1%), intronic regions (7.2%), 
intergenic regions (12.6%) and unaligned (22.6%). C) The proportion of small RNA species 
detected by the smallRNASeq protocol with a minimum of five reads found across all biological 

replicates from at least one of the experimental groups. Detecting small RNA classes: 5/5.8s 
rRNA fragments (28.4%), tRNA fragments (2.6%), mature microRNA (miR) (18.2%), microRNA 
isoforms (isomiR) (16.7%), small coding (1.3%), small non-coding (11.4%), small intronic 
(7.9%), small intergenic (6.9%) and unaligned (6.5%). The indicated percentage represents the 
total aligned RNAs from that particular class compared to the total number of sequence reads. 
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Supplemental Figure 3. Poly-adenylated (Poly(A)) RNA content of total RNA. 1µg of total 
RNA was added to poly(dT) coated beads from the mRNASeq protocol and poly(A)+ RNA was 
isolated. The concentration of poly(A) RNAs was measured by Agilent 2100 Bioanalyzer 

analysis. This indicated that on average ~0.3% (3ng) of the total RNA was poly(A)+ RNA. A 
representative plot is shown for mES (upper), U2OS (middle) and HEK293T (lower) cells. 
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Supplemental Figure 4. Pearson correlation of transcripts (coding and non-coding) and 
regions (intergenic and intronic). A-D) The expression revealed no correlation for coding 

transcripts (A), non-coding transcripts (B), Intronic regions (C) or Intergenic regions (D) and the 
corresponding fragments, between the long RNA fraction and the small RNA fraction. 
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Supplemental Figure 5. Comparison between microarray and sequencing based coding 
transcript detection. A) Fluorescence intensity distribution for 3856 transcripts detected by 
microarray only. Note that microarray unique transcripts have in general a low intensity and are 
thus likely non-expressed genes. B-D) The correlation of fold changes of RefSeq annotated 
differentially expressed coding transcripts, FDR<0.05 and FC ±1.5, found in RNAomeSeq. (B) 
Microarray versus mRNASeq, (C) microarray versus RNAomeSeq and (D) mRNASeq versus 
RNAomeSeq. 
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Supplemental Figure 6. Distribution of the top 100 highest expressed intronic and 
intergenic regions found in RNAomeSeq. 
 
Supplemental Table 1. Overview of biological samples generated for all protocols. 
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Supplemental Figure 7. Intergenic RNA upstream of Hist1h4h, Eef1a1 and Ubc. Panels 

show the aligned reads to (I) the genomic location, or (II and III) 10-15kb upstream of the 
transcripts genomic location. Panel I) The reads aligning to the transcripts detected by 
RNAomeSeq and mRNASeq. Panel II) 10-15 kb upstream of the genomic locus non-poly(A) 
RNAs were detected in the long RNA fraction of RNAomeSeq, but not in mRNASeq. Panel III) 
The non-poly(A) RNAs detected in the long RNA fraction were almost not detected in the small 
RNA fraction of RNAomeSeq or smallRNASeq. All panels show a span of ~3.5 kb on the 

genome. 
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Supplemental Table 2. Overview of the number and ratio of differentially expressed 
genes found by and overlapping in several statistical packages. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Supplemental Table 3. Overview of the percentage of the total reads aligned. For long 

(reads 36 nucleotide in length) and short (reads <35 nucleotide in length) to the reference 
genome. 
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Discussion 

In addition to endogenous sources such as reactive oxygen species and metabolic 
by-products, several exogenous sources also produce DNA lesions. Examples are 
ultraviolet (UV) light from the sun, ionizing radiation and numerous environmental 
and man-made chemicals. Besides activation of DNA repair systems, DNA damage 
also halts cell proliferation by triggering cell cycle checkpoints, thereby providing 
cells a time window to repair the DNA. When damage is beyond repair, cell death or 
cellular senescence is induced. All pathways associated with DNA damage, 
including DNA repair systems and cell cycle checkpoints, are collectively known as 
the DNA damage response (DDR). The DDR consists of hundreds of genes and is 
controlled and executed by enzymatic activities, protein-protein interactions, post-
translational modifications and gene/microRNA expression changes. ((162, 198-
201); Chapter 1) DDR defects can lead to incorrect repair, which result in mutations 
or chromosomal aberrations that ultimately triggers carcinogenesis. On the other 
hand, specific defects in DDR or hyper-activation can lead to increased levels of 
apoptosis or cellular senescence that will result in accelerated loss of tissue 
homeostasis, a contributing factor to aging (1-4). Moreover, the cellular context (e.g. 
cell type, proliferative state) and amount and type of DNA lesions also determine the 
cellular outcome of DDR signalling. It is therefore not surprising that cells have a 
sophisticated DDR that is tightly coordinated to balance cell survival and cell death 
or cellular senescence and decide cell fate.  
The induction of DNA lesions and concomitant mutations that drive cancer 
development by exogenous sources urges the development of tests to predict 
carcinogenic capacity of unknown chemical compounds and physical agents. 
Therefore, we investigated the cellular response to carcinogenic compounds, both 
genotoxic carcinogens (GTXC) and non-genotoxic carcinogens (NGTXC), to identify 
a molecular classifier that can serve as biomarker. Several in vivo microarray 
toxicogenomics studies were performed over the last years with varying predictive 
results. (87, 92-94, 97-100, 143) These studies provided evidence that specific 
mRNA expression changes could serve as classifiers predicting GTXC, but were 
less able to predict NGTXC. Thus far, toxicogenomics studies focussed on mRNAs 
whereas microRNAs have hardly been investigated. Therefore in chapter 2, we 
performed a short-term (7 days) in vivo exposure study using microarray technology 
to profile mRNA as well as microRNA expression. Mice were exposed to GTXC, 
NGTXC and non-carcinogens (NC). Subsequently, RNA expression profiles were 
generated from liver. We analysed the discriminative power of both microRNA and 
mRNA transcripts to classify the (genotoxic) carcinogenicity of chemicals in vivo. 



General Discussion 

113 

The classifier set yielded consisted of mRNA transcripts being able to partly 
discriminate between GTXC, NGTXC, and NC. MicroRNA expression changes did 
not meet the applied criteria, which indicated that microRNA expression signatures 
have less discriminative power to identify carcinogenic compounds when compared 
to mRNA in short-term in vivo mouse exposure studies. 
Differences in RNA expression are highly time dependent, which should be 
considered in experimental design (21, 31, 40). Changes in microRNA expression 
are observed within hours after infliction of DNA damage and are generally restored 
to basal levels within 24 hours (31, 40), highlighting the importance of including 
microRNA kinetics and early time points in experimental design. Early time points in 
relation to microRNA expression changes were not taken into account in the 
experimental design of the in vivo exposure study (Chapter 2), which could have 
hampered microRNA biomarker identification. Therefore, we applied an in vitro 
approach in chapter 3 in which we treated mouse embryonic stem (mES) cells with 
GTXC, NGTXC and oxidative (Ox) compounds and isolated RNA for microRNA 
profiling 4, 8 and 12 hours after exposure. We took full advantage of the multiple 
time points present in this study and composed a classifier set to identify NGTXC, 
GTXC and Ox with the best performing time point to maximize the discriminative 
power of the microRNA expression profiles. The classifier set obtained at 4h after 
exposure was able to discriminate NGTXC from the other classes (GTXC and Ox). 
In all time points GTXC and Ox classified together. This could be explained by the 
fact that oxidative stress also leads to very transient DNA damage, at least in treated 
cell cultures. Oxidative-stress induced DNA lesions are rapidly repaired within hours 
(202-204) and therefore discriminative classifiers between GTXC and Ox can likely 
be found at later time points. Indeed, the classifier set to discriminate between 
GTXC and Ox with the highest predictive potential was obtained at the 12h time 
point. 
Thus, microRNA expression profiling can assist in compiling classifier sets to predict 
carcinogenic properties of compounds in vitro, but not in a short-term in vivo setup 
as used in chapter 2. Moreover, to verify the potential of our classifier sets, more 
elaborate validation studies with NGTXC and GTXC are essential. Currently, our 
results and those of others indicated that a set of single classifier transcripts, either 
microRNAs or mRNAs (or in combination), might not be sufficient to obtain the 
correct predictive power to identify carcinogenic compounds (especially NGTXC) to 
be applied as a general test. Therefore, additional genomics strategies and 
combinations of different biomolecule datasets, e.g. mRNAs, microRNAs, proteins 
and their modifications and metabolites, are likely necessary.  
The emergence of Next generation sequencing (NGS) has dramatically accelerated 
genomics and transcriptomics studies. Current throughput can handle dozens to 
hundreds of samples in a short time period. In addition, NGS leads to quantitative 
results (absolute numbers of sequences per genomic location/RNA species) instead 
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of relative hybridization signals. NGS also provides datasets at the nucleotide 
resolution. Several dedicated experimental approaches have been developed that 
isolate specific DNA, RNA or chromatin species followed by sequencing. Examples 
at the DNA level include ChIPSeq (205), chromosome conformation capture 
sequencing methods (77) and more specific protocols to monitor double strand 
break (DSB) sites (84) and single cell analysis of mutations or chromosomal 
rearrangements (76). 
The increased complexity of the data generated by NGS requires appropriate 
analysis tools. While several RNA sequencing analysis algorithms are available, 
none of these can reliably and simultaneously analyse both small and large RNAs 
from a single sample. Therefore, we developed TRAP (Total Rna Analysis Pipeline; 
Chapter 5), which extracts data from sequence files, categorizes RNAs in classes, 
identifies post-transcriptional sequence modifications of small RNAs and performs 
statistical analysis. Moreover, TRAPs modular structure allows easy adjustments 
regarding transcripts identifiers or statistical algorithms and TRAP is compatible with 
existing RNA sequencing protocols. Our analysis tool allows simultaneous analysis 
of small and long RNA’s expression, identification of novel RNAs and transcripts and 
a comparison between RNA classes. 
With currently existing NGS-based transcriptomic methodologies we explored the 
RNA landscape of the DNA damage response. These NGS technologies are based 
on transcript selection: gel-excision for small non-coding RNAs (smallRNASeq) or 
poly-adenylation for protein coding RNAs (mRNASeq). In chapter 4 we treated mES 
cells with equitoxic doses of UV, ionizing radiation and cisplatin, each inducing a 
specific set of DNA lesions and isolated total RNA 4h, 8h and 12h after incubation 
that was used for sequencing. We mapped coding and non-coding RNA classes, 
both large and small (including microRNAs), and observed clear differences in 
expression kinetics. MicroRNAs showed a clear time and treatment dependent 
response, whereas the response of mRNAs revealed a more global response. 
These findings indicate the presence of waves of RNA expression responses. 
Further research will be aimed at unravelling the role of these complex RNA 
responses in the DDR.  
Current protocols used in chapter 4 are based on transcript selection. Therefore, 
these methods cannot intrinsically detect all RNA species in a single sample. In 
addition, existing protocols do not allow for monitoring changes in complete RNA 
classes. A prime example is repression of the microRNA biogenesis pathway during 
tumorigenesis, leading to reduced numbers of mature microRNAs in human cancer 
(195). To be able to detect these global changes and (almost) all RNA species in a 
single sequence run we developed a method that does not rely on class selection, 
RNAome Sequencing (RNAomeSeq) (Chapter 5). We defined RNAomeSeq as 
sequencing ribosomal RNA (rRNA)-depleted total RNA, both small and large RNAs 
(coding and non-coding), in a single sequencing run. Using RNAomeSeq we 
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detected the presence of tens of thousands of RNA species. Moreover, we were 
able to detect several recently discovered RNA classes, including small nucleolar 
RNAs and enhancer RNAs that escaped detection with existing protocols. The 
representation of the RNA classes detected by current protocols, i.e. mRNA and 
microRNA, was very accurate in RNAomeSeq. We observed no bias in transcript 
size and a high correlation in both expression and differential expression of 
transcripts, when comparing RNAomeSeq to the corresponding existing protocols, 
mRNASeq for coding and smallRNASeq for microRNAs. These analyses indicate 
that RNAomeSeq does not introduce significant biases in the detection of coding 
and microRNA transcripts. In addition, we observed a specific global repression of 
the microRNA and microRNA isoform classes after cisplatin treatment, 
demonstrating that RNAomeSeq can be used to study behaviour of complete RNA 
classes. The ability of RNAomeSeq to detect all RNA, except ribosomal RNA, will 
help in unravelling the involvement of RNA in cellular processes, diseases, such as 
aging-associated pathology and cancer, and provides an exponential increase in the 
number of potential classifier RNA molecules for diagnostic, prognostic and 
predictive purposes. 

Future prospective 
Cellular heterogeneity in organs, cancer, aging, but also in cell cultures (206), such 
as different cell types and cell states (e.g. proliferating versus post-mitotic), can 
result in “noise” in datasets due to various responses to genotoxic stress. This could 
be addressed by single cell analysis. Several advances in single cell genomics and 
transcriptomics have been made including mutation and chromosomal 
rearrangement frequency determination (76, 207). These technologies will be useful 
to understand the evolution of cancer and metastasis. Furthermore, the relation of 
stochastic DNA damage in the aging process can be addressed. 
Recent advances in omics technologies offered much more complete datasets that 
monitor the behaviour of cellular macromolecules. Intelligent experimental design 
will allow integration of genomics, transcriptomics and proteomics datasets obtained 
under identical conditions and provide a holistic view of the complex DDR networks 
and final cellular outcome of these signalling events. Shifting the focus from single 
omics datasets to integration of multiple types of omics datasets requires 
sophisticated systems biology approaches and mathematical modelling. 
Development of dataset integration and visualization methods is needed to deal with 
these large and complex datasets.  
Both the RNA world as well as the technology to detect RNA have changed rapidly 
over the last decade. The emergence of NGS has tremendously improved the 
discovery of non-coding RNAs. This discovery of non-coding RNAs has added 
additional layers of complexity to the regulation of cellular processes. The function of 
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most non-coding RNAs is obscure to date. Future research will not only be aimed at 
understanding their role in cellular processes, but also their role in diseases, 
potential as therapeutic targets and as markers for diagnostic, prognostic and 
predictive purposes. This will undoubtedly uncover the rest of the iceberg of the 
(non-coding) RNA world. 
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Summary 

DNA damage can originate from endogenous as well as exogenous sources. 
Endogenous sources are formed within the cell, including metabolites and reactive 
oxygen species. Exogenous sources originate from the (natural) environment, for 
example ultraviolet (UV) light from the sun, or man-made chemicals, including 
numerous chemicals. DNA lesions trigger a complex cellular response to repair the 
damage and maximize survival during the damage episode. All pathways associated 
with DNA damage are collectively known as the DNA damage response (DDR). The 
cellular outcome of DDR signalling is determined by the context (e.g. cell type, 
proliferative state), but also amount as well as type of DNA damage.  
The induction of DNA damage and concomitant mutations that drive cancer 
development by exogenous sources urges the development of tests to predict the 
capacity of unknown compounds to be carcinogenic. Therefore, we investigated the 
cellular response to carcinogenic compounds, both genotoxic carcinogens (GTXC) 
and non-genotoxic carcinogens (NGTXC), to identify a molecular classifier that can 
serve as biomarker for (genotoxic) carcinogenicity. Hence in chapter 2, we 
performed a relative short-term (7-days) in vivo exposure study using microarray 
technology to profile mRNA as well as microRNA expression. Mice were exposed to 
GTXC, NGTXC and non-carcinogen (NC) compounds. Subsequently, mRNA and 
microRNA expression profiles from the liver were analysed for discriminative power 
of both microRNA and mRNA transcripts to classify the (genotoxic) carcinogenicity 
of chemicals in vivo. The classifier set yielded consisted of mRNA transcripts being 
able to partly discriminate between GTXC, NGTXC, and NC. MicroRNA expression 
changes did not meet the applied criteria, which indicated that microRNA expression 
signatures have less discriminative power to identify carcinogenic compounds in a 
short-term in vivo mouse exposure studies.  
Differences in RNA expression are highly time-dependent, which should be 
considered in the experimental design. For example, changes in microRNA 
expression are observed within hours after DNA damage, whereas mRNA 
expression changes are observed up to days. Early time points in relation to 
microRNA expression changes were not taken into account in the experimental 
design of the in vivo exposure study in chapter 2, which might have hampered 
microRNA biomarker identification. Therefore, we applied an in vitro approach in 
chapter 3. Mouse embryonic stem (mES) cells were treated with GTXC, NGTXC 
and oxidative (Ox) compounds and after 4, 8 and 12 hours of exposure microRNA 
expression profiles were generated. The classifier sets from 4 and 12 hours after 
exposure could partially discriminate NGTXC from the other classes (GTXC and Ox) 
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and GTXC from the Ox class respectively. On the basis of chapter 2 and chapter 3 
we conclude that microRNA expression profiling might assist in compiling classifier 
sets to predict carcinogenic properties of compounds in vitro, but not in a (relative) 
short-term in vivo setup. 
The emergence of Next generation sequencing (NGS) has dramatically accelerated 
genomics and transcriptomics studies. The accompanied increase in complexity of 
the data generated by NGS requires appropriate analysis tools. Therefore, we 
developed TRAP (Total Rna Analysis Pipeline; chapter 5). By combining currently 
existing NGS-based transcriptomic methodologies with TRAP we mapped the RNA 
landscape of the DDR. In chapter 4 we treated mES cells with cisplatin, UVC and 
ionizing radiation, each inducing a specific spectrum of DNA lesions. Total RNA was 
isolated after 4, 8 and 12 hours of exposure to these agents. Clear differences were 
observed in the kinetics of mRNA and microRNA expression. The changes in 
microRNAs showed a clear time and treatment dependent response, whereas the 
response of mRNAs revealed an independence of time or treatment. These findings 
indicate the presence of waves in RNA expression regulation. Further research will 
be aimed at unravelling the role of these complex RNA changes in the DDR.  
Current protocols to investigate RNA expression, used in chapter 4, are based on 
selection of specific classes of transcripts. In chapter 5, we developed a method, 
RNAome Sequencing (RNAomeSeq) that does not rely on selection of a predefined 
class. We defined RNAomeSeq as sequencing of total RNA in a single sequencing 
run being: only ribosomal RNA-depleted, containing both small and large RNAs as 
well as for-protein-coding and not-for-protein-coding RNAs. Using RNAomeSeq we 
detected tens of thousands RNA transcripts that were undetectable with existing 
protocols. Moreover, RNAomeSeq preserves the correct representation of the RNA 
detected transcripts, i.e. a high correlation between the expression of transcripts 
detected by RNAomeSeq and the corresponding existing protocols (mRNASeq for 
mRNAs and smallRNASeq for microRNAs) was observed. In addition, a microRNA 
specific global repression of the microRNA class after cisplatin treatment was 
observed, demonstrating that RNAomeSeq can be used to study behaviour of 
complete RNA classes. The ability of RNAomeSeq to detect total RNA, except 
ribosomal RNA, will help in unravelling the role of RNAs in physiological and 
pathological cellular processes. Moreover, RNAomeSeq provides an exponential 
increase in the number of RNA molecules for diagnostic, prognostic and predictive 
purposes.  
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Samenvatting 
Schade aan het DNA kan veroorzaakt worden door endogene en exogene bronnen. 
Endogene bronnen worden door cellen zelf gevormd, zoals metabolieten en 
reactieve zuurstof radicalen. Exogene factoren zijn afkomstig uit onze (natuurlijke) 
omgeving, bijvoorbeeld ultraviolet (UV) licht van de zon en ioniserende straling (IR), 
of zijn door de mens gefabriceerd, zoals verscheidene chemicaliën. Alle cellulaire 
netwerken die geassocieerd zijn met DNA schade worden gezamenlijk de ‘DNA 
schade respons (DDR)’ genoemd. De uitkomst van de DDR signalering wordt 
beïnvloed door de cellulaire context (zoals celtype en proliferatiestatus), maar ook 
door de hoeveelheid alsmede de soort schade aan het DNA. 
Het induceren van schade aan het DNA alsmede mutaties die kanker ontwikkelen 
door exogene bronnen dringt aan tot het ontwerpen van testen om de capaciteit van 
onbekende stoffen met betrekking tot het veroorzaken van kanker te identificeren. 
Om die reden hebben wij onderzocht of de cellulaire responsen op 
kankerverwekkende stoffen, zowel DNA beschadigend (GTXC) als niet-DNA 
beschadigend (NGTXC), te classificeren zijn op moleculair niveau met het doel om 
uiteindelijk biomarkers voor kankerinductie (door DNA schade) te identificeren. In 
hoofdstuk 2 hebben we een relatief korte (7-dagen) in vivo blootstellingsstudie 
uitgevoerd en met behulp van microarray technologie zowel mRNA als microRNA 
expressie profielen gegenereerd. Muizen zijn daarvoor blootgesteld aan GTXC, 
NGTXC en niet-carcinogene (NC) stoffen. Vervolgens zijn mRNA en microRNA 
expressie profielen van de lever geanalyseerd om te onderzoeken of de 
kankerverwekkende capaciteit van deze stoffen in vivo te onderscheiden is. 
Onderscheid tussen GTXC, NGTXC en NC kon gedeeltelijk worden gemaakt, maar 
slechts door specifieke mRNA transcripten. MicroRNA expressie veranderingen 
voldeden niet aan de criteria, hetgeen duidt op een lager onderscheidend vermogen 
van microRNAs om de kankerverwekkende capaciteit van stoffen te voorspellen in 
een relatief korte in vivo blootstellingsstudie.  
Verschillen in RNA expressie zijn sterk tijdsafhankelijk, hetgeen in acht genomen 
dient te worden tijdens het opzetten van een experiment. Veranderingen in 
microRNA expressie na DNA schade worden bijvoorbeeld waargenomen binnen 
enkele uren, terwijl veranderingen in mRNA expressie tot dagen later kan worden 
waargenomen. Aangezien vroege tijdspunten niet zijn meegenomen in het 
experimenteel ontwerp van de in vivo blootstellingsstudie in hoofdstuk 2, kan dit de 
identificatie van microRNA als biomarker beïnvloed hebben. Zodoende is er voor 
een in vitro invalshoek gekozen in hoofdstuk 3. Voor deze studie zijn muis 
embryonale stamcellen (mES) behandeld met GTXC, NGTXC en oxidatieve (Ox) 
stoffen, waarna 4, 8 en 12 uur na blootstelling microRNA expressie profielen zijn 
gegenereerd. Na een blootstelling van 4 en 12 uur kon op basis van specifieke 
microRNA transcripten gedeeltelijk onderscheid gemaakt worden tussen 
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respectievelijk de groep NGTXC versus de rest (GTXC en Ox) en GTXC versus Ox. 
Op basis van hoofdstuk 2 en hoofdstuk 3 kunnen we concluderen dat microRNA 
expressie profielen zouden kunnen bijdragen aan het samenstellen van lijsten die 
kankerverwekkende eigenschappen van stoffen kunnen voorspellen in in vitro, maar 
niet in (relatief) korte in vivo blootstellingstudies. 
De opkomst van Next Generation Sequencing (NGS) heeft een enorme impact 
gehad op genomische en transcriptomische studies. De complexiteit van de data 
gegenereerd door NGS vereist aangepaste analyse middelen. Zodoende hebben we 
TRAP (Total Rna Analysis Pipeline) ontwikkeld (hoofdstuk 5). Door bestaande 
NGS-gebaseerde protocollen voor transcriptoom analyse te combineren met TRAP 
hebben we het RNA landschap van de DDR in kaart gebracht. In hoofdstuk 4 
hebben we mES cellen behandeld met cisplatin, UVC licht en ioniserende straling, 
welke ieder een specifiek spectrum van DNA schade veroorzaken. Na 4, 8 en 12 uur 
blootstelling aan deze factoren is RNA geïsoleerd en zijn mRNA en microRNA 
expressie profielen gegenereerd. Duidelijke verschillen werden waargenomen in de 
kinetiek van mRNA en microRNA expressie. De veranderingen in microRNAs waren 
afhankelijk van zowel de tijd als het type DNA schade, terwijl veranderingen in 
mRNAs onafhankelijk hiervan bleken te zijn. Deze bevindingen kunnen wijzen op de 
aanwezigheid van golven in de regulatie in RNA expressie. Verder onderzoek zal 
zich richten op het ontrafelen van deze complexe RNA veranderingen tijdens de 
DDR. 
De huidige protocollen om RNA expressie te meten, gebruikt in hoofdstuk 4, zijn 
gebaseerd op de isolatie van specifieke klasse van RNAs. In hoofdstuk 5 hebben 
we een methode ontwikkeld die niet op selectie van vooraf gedefinieerde klassen 
gebaseerd is, namelijk RNAome sequencing (RNAomeSeq). RNAomeSeq is door 
ons gedefinieerd als het in een enkel proces sequencen van het totale RNA dat 
slechts is ontdaan van ribosomaal RNA, en dus zowel kort als lang RNA als voor-
eiwit-coderend en niet-voor-eiwit-coderend RNA bevat. Aan de hand van 
RNAomeSeq hebben we tienduizenden RNA transcripten gevonden, welke niet te 
detecteren waren met de bestaande protocollen. RNAomeSeq geeft een correcte 
weergaven van RNA transcripten, een hoge correlatie tussen expressie van 
transcripten gevonden met RNAomeSeq vergeleken met de overeenkomende 
bestaande protocollen (mRNASeq voor mRNA en smallRNASeq voor microRNAs). 
Ook werd een microRNA specifieke globale repressie na behandeling met cisplatin 
waargenomen, hetgeen demonstreert dat RNAomeSeq gebruikt kan worden om 
veranderingen in complete RNA klassen te bestuderen. De mogelijkheid om met 
behulp van RNAomeSeq het totale RNA, behalve ribosomaal RNA, te detecteren zal 
bijdragen aan het ontrafelen van de rol van RNA in fysiologische en pathogene 
cellulaire processen. Bovendien biedt RNAomeSeq een exponentiële toename in 
het aantal mogelijke RNA moleculen dat te gebruiken is voor diagnostische, 
prognostische of voorspellende doeleindes. 
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Dan mag ik zeker Karen niet vergeten, de orde in de chaos op het lab, bedankt voor 
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137 

Nils, je verdient toch je eigen stukje. Net zoals mij ben jij ook van het lab naar achter 
de computer verdwenen. Het feit dat je op je racefiets naar het werk kwam, heeft mij 
aangespoord om ook een racefiets aan te schaffen, waardoor ik nu (mits het mooi 
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het trap op en af lopen was ook nog eens goed voor de conditie, en was de 
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voor de zoveelste keer langs kwam waren hartverwarmend te noemen ☺. 
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stand komen van dit boekje. Om te beginnen alle leden van het NTC WP1 dank 
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Houdoe en bedankt!!  
Van het LUMC, de mede-aio’s en inmiddels dr. Mark en dr. Joris D bedankt voor de 
gezellige tijd tijdens de MGC workshops. 
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The one I definitely don’t want to forget and whom I owe a lot of thanks is Branko. 
Mr. B, you’re the person with the strangest working hours ever but you helped me to 
endure the struggle of learning to program in R. Again, thank you!!! 
 
Toch nog een extra stukje voor Joris, je dacht er toch niet met die karige paar 
regeltjes vanaf te komen? Na het plichtmatig kort bespreken van het promotieproject 
hadden we het al snel over van alles en nog wat waardoor het gesprek gigantisch 
uitliep. Ik verwachtte dan ook niks anders dan dat we gemakkelijk door een deur 
zouden kunnen en dat het wel goed zou komen qua begeleiding. De vele uren 
ouwehoeren dat wij de afgelopen jaren samen hebben gedaan, waren vaak 
leerzaam (als het over onderzoek ging) en een welkome afwisseling (wanneer het 
misschien even zo veel uren over al het andere ging). Bedankt! 
 
Een extra bedankje voor Caroline is op zijn plek, zonder jouw had ik niet van deze 
promotieplek af geweten en hier dus niet gestaan! 
 
De mannen (en aanhang waar toepasbaar) uit Tilburg: Jonas, Richard, Jonathan, 
Ruben en Gerrit. Ik ben benieuwd of jullie ooit gesnapt hebben waar ik mee bezig 
ben geweest de afgelopen jaren maar nu kunnen jullie het in ieder geval eindelijk 
lezen. De (te weinige) keren dat ik langskwam in Tilburg en de mannenweekenden 
zijn een fijne afleiding geweest de afgelopen jaren om even niet bezig te zijn met 
mijn promotieonderzoek. Jonas nog extra bedankt dat je mijn paranimf wilt zijn. 
 
De “schoonfamilie”, Hein, Margriet, Leonie en Jeroen, eindelijk is de laatste aan de 
beurt om te promoveren!! Wat een opluchting, nu is dan eindelijk de promotiestress 
voorbij in huize Paulis. Het heeft even geduurd, maar dan heb je ook wat: 3 
doctoren. Dank jullie voor de bemoedigende woorden en interesse gedurende mijn 
promotieonderzoek. 
 
Pap, Mam, Eveline en Rosalie, het is dan zover na een juffrouw en dokter ook een 
doctor in het gezin. Het ver weg wonen in Leiden en daardoor niet snel even langs 
kunnen gaan viel soms zwaar, maar gelukkig wonen Yvette en ik nu weer lekker 
veilig onder de rivieren. Het is cliché, maar pap en mam bedankt voor de 
mogelijkheid die jullie mij hebben gegeven om te kunnen studeren. Pap, ik liet het 
vroeger waarschijnlijk niet vaak blijken, maar zonder jouw stimulatie om 
nieuwsgierig te zijn naar nieuwe dingen en te leren was ik nooit zo ver gekomen. En 
ik ben trots dat je mijn paranimf wilt zijn. Bedankt pap!!!! Mam, bedankt dat je er 
altijd voor me bent, voor een luisterend oor of gewoon om te kletsen, het heeft me 
gebracht waar ik nu ben!! 
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met mij heeft (moeten) doorstaan, Yvette. We hebben het gehaald, sjatteke!! Dat we 
nu beiden dr. zijn en in ruim 6 jaar avontuur, met aardig wat verhuizen (via 
Roermond, Leiden en Eindhoven), weer in het zuiden terecht zijn gekomen had ik 
nooit kunnen dromen. Doordat jij een jaar eerder begon met promoveren, wist ik wat 
me te wachten stond. Zonder je opbeurende humor en onnozelheid, je 
aansporingen en goed voorbeeld was dit boekje er niet geweest!!!! Dat ik na het 
promoveren nog vele (hopelijk minder stressvolle) avonturen samen met jou mag 
beleven!!! 
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