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Samenvatting 

De kransslagaderen, oak wei de coronairen genoemd, voorzien het hart van zu­

urstof en voedingsstoffen zodat het hart kan samentrekken. Aderverkalking, oftewel 

atherosclerose, is een inflammatoire ziekte van de vaatwand waarbij vetachtige 

stoffen zich ophopen in de wand. De wand zal verdikken en in een gevorderd sta­

dium van de aderverkalking het vat afsluiten hetzij doordat de wand niet verder 

kan remodelleren of doordat de plaque ruptureert en de vetachtige stollen in de 

bloedbaan terechtkomen waardoor bloedstolsels ontstaan. Wanneer deze situatie 

te lang duurt, krijgt het achterliggende hartweefsel een tekort aan zuurstof en kan 

afsterven met een hartaanval als gevolg. Dit coronair vaatlijden is nag steeds een 
van de prima ire doodsoorzaken in de westerse were! d. 

Atherosclerotische plaques hebben de voorkeur zich te vormen in de binnenbocht 

van gekromde vaten en nabij vertakkingen. Wandschuifspanning (WSS), een kleine 

kracht op de vaatwand als gevolg van de stroming van het bloed, is een lokaliserende 

factor. Lage WSS stimuleert atherogene processen in de vaatwand, terwijl hoge WSS 

juist een beschermende werking heeft. Ook wordt vermoed dat WSS een rol speelt 

in de progressie en ruptuur van plaques middels de vermeende invloed van WSS 

op de samenstelling van de plaque. WSS is dus een belangrijke parameter om te 

bestuderen in re!atie tot de atherosc!erose, maar bijzonder !astig te meten in de 

coronairen. Daarom wordt vaak gebruikt gemaakt de eindige elementen methode 

waarbij de bloedstroom door de coronairen gesimu!eerd wordt en de WSS berekend 

kan worden. Voor deze berekeningen is een drie dimensionale (3D) beschrijving 

nodig van het lumen van het te bestuderen coronair vat. Om WSS a an atherosc!erose 

te relateren is ook informatie over de wand nodig, bijvoorbeeld de dikte van de 

wand of de componenten van de aderverka!king in de wand. 
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VIII SAMENVATIING 

De gouden standaard om het lumen en de wand van coronairen in patienten in 

beeld te brengen is intravasculaire ultrageluid (IVUS). Echter deze beeldvormende 

techniek is invasief, waardoor deze beperkt toepasbaar is. Bovendien is IVUS een 

twee dimensionale afbeeldingstechniek waardoor het op zichzelf niet geschikt is 

om een 3D lumen te genereren voor de WSS berekeningen. Computer tomografie 

angiografie (CT) van de coronairen is een relatief jonge techniek die de afgelopen 

jaren grate ontwikkelingen heeft doorgemaakt, waardoor CT nu in termen van 

resolutie de beste techniek is om niet-invasief de coronairen in 30 in beeld te 

brengen. In dit proefschrift is onderzocht of CT angiografie kan worden toegepast 

om de relatie te Jeggen tussen WSS en aderverkalking in de coronairen. 

Met CT angiografie kunnen zowel het lumen als de wand in beeld worden 

gebracht. In hoofdstuk 2 is op kwalitatieve wijze de relatie gelegd tussen WSS en 

aderverkalking in corona ire bifurcaties met CT. In deze stu die ken met CT worden 

bevestigd dat aderverkalking vaker voorkomt in regia's met Jage WSS dan in regia's 

met hoge WSS. Daarbij werd tevens gezien dat aderverkalking pas in de hoge 

WSS Jocaties voorkwam als oak de Jage WSS regia's waren aangedaan. Daardoor 

kon worden afgeleid dat aderverkalking ontstaat in de regia's met lage WSS en 

vervolgens groeit in de richting van gebieden waar een hager WSS is. 

Hoewel het kwalitatief relateren van WSS en aderverkalking dus mogelijk is, is uit 

studies waarbij wand en lumen grootte op CT werd vergeleken met IVUS gebleken 

dat deze maten nag teveel afwijken om kwantitatief deze relatie te leggen. Daarom 

is een reconstructietechniek ontwikkeld waarmee 3D patientspecifieke geometrien 

van de coronairen gegenereerd kunnen worden door de nauwkeurige 20 data van 

IVUS te combineren met de 3D data uit CT. Op basis van anatomische kenmerken 

die in beide afbeeldingstechnieken nauwkeurig konden worden ge'identificeerd 

konden lumen- en wandcontouren van IVUS op de 3D middenlijn van het lumen 

geplaatst worden die in CT wordt bepaald. Dit resulteert in een 3D lumen geometrie 

die voldoende nauwkeurig is om WSS in te berekenen. Deze reconstructie techniek 

is gepresenteerd in hoofdstuk 3 en biedt de mogelijkheid om WSS en aderverkalking 

kwantitatief met elkaar te relateren. Omdat de locatie van IVUS beelden door 

middel van de reconstructietechniek bekend is in relatie tot de CT beelden, biedt de 

reconstructietechniek tevens de mogelijkheid om CT beelden en IV US beelden naast 

elkaar te leggen en zo lumen en wand informatie in CT beelden te valideren tegen 

de gouden standaard IVUS. 



SAMENVATTING IX 

Deze laatste toe passing van de reconstructietechniek is gebruikt in hoofdstuk 4 

en 5. In hoofdstuk 4 is bepaald met welke nauwkeurigheid plaques gedetecteerd 

kunnen worden met CT. Meerdere personen hebben de CT beelden ge·interpreteerd 

en aangegeven op welke locaties ze aderverkalking zagen en wat voor een type 

aderverkalking het was (zonder calcificatie, gedeeltelijk gecalcificeerd of geheel 

gecalcificeerd). Vergelijking van hun interpretaties onderling en met de IVUS 

beelden maakte duidelijk dat het detecteren en typeren van aderverkalking nag 

niet zo gemakkeHjk is. De interpretaties verschilden veel tussen de personen; 

de vergrootte afbeelding van calciftcaties op CT belemmerde het zicht op niet 

gecalciftceerde gedeelte van de plaque; en plaques zonder calcificaties konden 

aileen betrouwbaar gezien worden als de plaque een dikte had van meer dan 1 mm. 

Oat oak het detecteren van calcificaties in de wand niet zonder meer goed gaat met 

CT, blijkt uit de stu die in hoofdstuk 5. Aileen grate calcificaties in de wand kunnen 

betrouwbaar gedetecteerd worden op de CT beelden, terwijl de kleine calcificaties 

worden gemist. Het detecteren van plaque en het benoemen van plaque type op 

uitsluitend op basis CT beelden blijft voorlopig lastig en onvoldoende accuraat voor 

het leggen van een kwantitatieve relatie tussen WSS en aderverkalking. 

De reconstructietechniek is in hoofdstuk 6 toegepast om kwantitatief een relatie 

te leggen tussen WSS en aderverkalking. IVUS en CT beelden van patienten met een 

plaque ruptuur werden gebruikt om 3D patientspecifieke reconstructies te maken 

van het lumen, de wand en de locatie van de ruptuur. In de resulterende 3D geometrie 

werd de WSS berekend, waardoor kon worden aangetoond dat rupturen niet aileen 

vaker stroomafwaarts dan stroomopwaarts op de plaque voorkomen, maar ook dat 

de WSS op de locatie van de ruptuur gemiddeld hager is dan de WSS op de plaque. 

In hoofdstuk 7 wordt de reconstructietechniek toegepast om CT te combineren 

met IVUS data en infra rode spectroscopische beelden om zo vetophopingen in de 

vaatwand zichtbaar te maken. Door deze toepassing kan de WSS ook gerelateerd 

worden aan de componenten in de vaatwand die een belangrijke rol spelen in het 

proces van aderverkalking. Er zijn dus volop mogelijkheden om door middel van de 

reconstructietechniek verschillende aspecten van aderverkalking in relatie met WSS 

te onderzoeken. 

Omdat CT een 3D beeldvormende techniek is, he eft het als bijkomend voordeel ten 

opzichte van IVUS dat oak de zijtakken van de coronairen in beeld kunnen worden 

gebracht. Wanneer de zijtakken worden meegenomen in de WSS berekeningen kan 

oak de WSS dicht bij de vertakking worden berekenend, wat interessant is omdat dit 

een locatie is waar aderverkalking bij voorkeur ontstaat. Echter om WSS te berekenen 
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in geometrien met zijtakken zijn er aannames nodig om de verdeling van het bloed 

over de verschillende zijtakken in te kunnen voeren in de berekeningen. In hoofdstuk 

8 zijn twee methoden gepresenteerd om een schatting te doen van de verdeling 

van het bloed over de zijtakken: een gebaseerd op een energiebeschouwing, en 

de ander gebaseerd op metingen uit de literatuur. De keuze van model had effect 

op de absolute waarden van de berekende WSS; echter wanneer de WSS relatief 

werd berekend ten opzichte van de locale WSS, dan was er met name in de stukken 

tussen de zijtakken weinig verschil in de WSS resultaten van be ide modellen. lndien 

men geinteresseerd is in absolute WSS waarden vlakbij de zijtakken dan lijkt het 

verstandig om het model te grbuiken dat gebaseerd is op metingen uit de literatuur. 

Door de nauwkeurigheid van IVUS te combineren met de 3D informatie van CT 

is het dus mogelijk om WSS en aderverkalking patientspecifiek en kwantitatief a an 

elkaarte relateren. Echter de noodzaak voor het gebruik van invasiefverkregen IV US 

beelden beperkt de toe passing van deze techniek in grate patientengroepen en de 

toepassing van meerdere metingen over de tijd in dezelfde patient. Op dit moment is 

CT angiografie veelbelovend om op grotere schaal WSS te onderzoeken in relatie tot 

aderverkalking, echter de resolutie van CT zal moeten verbeteren voor kwantitatieve 

analyses op basis van CT be elden aileen mogelijk zijn. Ontwikkelingen op het gebied 

van CT, automatische segmentatie algoritmen, en voortschrijdend inzicht op het 

gebied van WSS, ontwikkeling, behandeling, en preventie van aderverkalking zullen 

richting moeten geven aan vervolgonderzoek zoals is bediscussleerd in hoofdstuk 9. 
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Introduction 

This chapter gives an introduction to coronary atheroscle­

rosis, wall shear stress and computed tomography (CT) 

angiography. It starts w·1th a description of the pathology 

of coronary artery disease, one of the most important 

causes of death worldwide. It continues with background 

information on the development and progression of 

atherosclerosis, an inflammatory disease found in large 

arteries. Wall shear stress (WSS) is introduced and a sum­

mary is given about the known and hypothesized roles of 

wall shear stress in atherosclerosis development. Existing 

methods and necessary imaging modalities to study WSS 

in relation to atherosclerosis are summarized. CT angi­

ography is an upcoming imaging modality that might aid 

WSS research and therefore also introduced. This chapter 

concludes with the scope and outline of this thesis. 

1 



2 CHAPTER 1 I INTRODUCTION 

1.1 CORONARY ARTERY DISEASE 

Cardiovascular diseases are sti ll considered the world's leading cause of death. In 

2004, 12.9 million people {21.9%) died from either coronary heart disease (12.2%) 

or stroke and other cerebrovascular diseases (9.7%) [WH0-03). Cardiovascular disease 

is known as a disease of the developed countries. However, in absolute numbers al­

most three times as many people die from it in the developing countries [Mackay-04). 

In the Netherlands in 2007 for the first time cancer instead of ca rdiovascular disease 

was the leading cause of death (34.2% versus 29.8%) [Poos-08]. The decrease in car­

diovascular deaths is mainly due to adequate treatment since the prevalence of the 

disease is constant after an severe increase in the seventies and eighties [Feskens-06]. 

And although cancer now predominates the causes of death, coronary artery dis­

ease costs still more lives than lung cancer, the number one cancer. 

Main pulmonary artery 

RCA 

__ A_re~a of infarct 

FIGURE 1-1: External view of the anterior side of the heart with the large arteries and coronary 

arteries depicted. Two coronary branches originate at the aortic root, just above the aortic valve. 

The right coronary artery (RCA) springs from the right aortic sinus, and runs over the epicardial 

side of the right ventricle branching into smaller arteries that penetrate into the muscle. Similarly, 

the left main (LM) artery originates from the left sinus. This artery branches w ithin the fi rst cen­

timeters into two large arteries; the left anterior descending artery (LAD). supplying blood to the 

front side of the left ventricle, and the left circumflex artery (LCX), which supplies the backside of 

the left ventricle. In this image atherosclerosis buildup obstructs the LAD and deprives the myo­

ca rdium downstream from blood. (©1997-2010 Nucleus M edical Art, Inc. All rights reserved). 
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The coronary arteries are the vessels that supply the heart muscle (the myocar­

dium) with blood. They deliver oxygen and nutrients that the heart requires to con­

tract (Figure 1-1). In case of coronary artery disease the coronary circulation fails to 

supply the myocardium with adequate amount of blood, and thus depriving it from 

oxygen. This can cause part of the myocardium to die with heart failure, arrhythmias 

or death as possible consequences. The main cause of coronary artery disease is the 

build up of atherosclerotic plaque in the wall of the coronary artery. This build up 

is very gradual and over a long time. The development of a plaque goes unnoticed 

since the coronary wall has the capacity to remodel. The remodeling of the artery 

wall prevents that the plaque grows into the lumen despite the wall thickening. Dis­

comfort or events due to oxygen deprivation happen when at a certain moment 

either the maximum remodeling capacity of the wall is reached and the athero­

sclerotic plaque becomes flow limiting or because the atherosclerotic plaque bursts 

open and the contact of its contents with the blood causes thrombus formation, 

which can (partially) close the lumen. 

Once the coronary artery disease is revealed, the severity of the disease is grad­

ed by imaging and/or functional measurements to decide upon treatment. In the 

most severe cases immediate revascularization of the coronary artery is necessary 

by open heart by-pass surgery or by stent placement during percutaneous cathe­

terization. Medication, such as lipid-lowering drugs, is prescribed to prevent new 

events. Whether treatment ·Is by a comb.lnation of revascularization and med·1cation 

or medication alone, it will always be accompanied by an advice in lifestyle changes 

to minimize the modifiable risk factors. The most important modifiable risk factors 

include high blood pressure, tobacco use, high cholesterol, alcohol, obesity, physical 

inactivity, and low fruit and vegetable intake. Unfortunately no remedy is available 

to decrease the non-modifiable risk factors for coronary atherosclerosis as advanc­

ing age, gender, ethnicity, and heredity [WH0-03, Mackay-04]. 

1.2 ATHEROSCLEROSIS 

Atherosclerosis is a progressive inflammatory disease in the wall of large arteries. It 

is characterized by accumulation of lipids and fibrous tissue in the wall. Already at 

an early age, adaptive intimal thickening is observed [Stary-87] at sites that are predis­

posed to lesion formation [Stary-92]. These regions include the branch points of arter­

ies, which experience disturbed flow. This earliest appearance of atherosclerosis, 

the fatty streak, is formed by lipid particles accumulating in the intimal part of the 
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arterial wall [Stary~94, Stary-OO]. Here these particles undergo chemical alterations {oxi­

dation) which stimulate the endothelial cells to display adhesion molecules to catch 

monocytes from the blood [Libby-02]. These inflammatory cells are then lured into the 

arterial wall where they become macrophages. These macrophages ingest the modi­

fied lipids, filling themselves with lipid droplets and become 'foam cells'. Gradually 

these foam cells migrate deeper into the intima and heterogenous droplets of lipid 

are formed [Stary-oo, Libby-02]. 

Once these lipid droplets become separate pools of lipid, lipid cores, the fatty 

streak has become an atheroma. Inflammatory molecules promote further growth 

of the plaque and formation of a fibrous cap over the lipid core. Smooth muscle 

cells are induced to migrate to the top of the intima, multiply and produce a fibrous 

matrix over the lipid contents, the fibrous cap, which separates the lipid content 

from the blood [Ubby-02]. This process increases the size of the plaque, but outward 

remodeling prevents severe lumen narrowing [Giagov-87]. 

lnfiammatory molecules secreted by the foam cells can weaken the cap by digest­

ing matrix macromolecules and by damaging smooth muscle cells. These changes 

can thin the fibrous cap and render it susceptible to rupture. These rupture prone 

plaques are also called vulnerable plaques. These vulnerable plaques have retro­

spectively been characterized as having a lipid-rich core, a thin fibrous cap with mac­

rophage accumulation together with decreased smooth muscle content and eccen­

tric expansive remodeling [Falk-95, Virmani-00, Schaar-04]. When such plaque ruptures, 

blood will coagulate as a consequence and the thrombus might occlude the artery. 

The thrombus may eventually resorb and wound healing starts. This event activates 

new responses among which, smooth muscle cell multiplication, migration, and ma­

trix synthesis [Libby-02]. The fibrous cap thickens again, but will now protrude into 

the lumen. This process can repeat itself. The resulting plaque ·mcludes haematoma, 

haemorrhage and thrombus deposits. It has to be noted that not all atheromas will 

evolve into a vulnerable plaque type. Some develop into les·lons in which calcifi­

cation predominates, in others an abundance of fibrous tissue is formed [Stary-OO, 

Ubby-02]. 

The different stages of atherosclerotic disease are hard to distinguish. Different 

classifications have been proposed [Stary-95, Virmani-00] depending on the presence of 

macrophages and lipid, disorganization and degradation of the cell layers in the wall, 

the organization of extracellular lipid, the degree of remodeling, the presence and 

size of fibrous tissue covering the plaque, the presence of a haematoma, haemor-
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rhage and thrombotic deposits, the presence of neovasculature [Virmani-05], and the 

amount of calcifications. Since atherosclerosis is very hard to study in humans dur­

ing their lives, many issues upon the development, progression and differentiation 

to plaque types are still under investigation. 

1.3 WALL SHEAR STRESS 

1.3.1 SHEAR STRESS IN VASCULAR BIOLOGY 

Wall shear stress (WSS) is the (tangential) drag force induced by the blood fiow act­

ing on the inside of the vascular wall. Normal WSS values differ per species, vessel 

type, location and age [Samijo-98]. In healthy human carotid arteries for example val­

ues of 1.5 Pa are found, whereas in the brachial arteries WSS's of 0.48 Pa [Dommecs-03] 

and in coronary arteries of 0.68 Pa [Doriot-OO] are reported. Although the magnitude 

of the WSS is very small in comparison to the blood pressure, it can be sensed by the 

endothelial cells [Bhullor-98]. The level of WSS is actively maintained in the vascular 

system. Changes in WSS due to a change in flow result into immediate adaptation of 

the vascular tone and subsequently by structural remodeling, with adjustments in 

vascular diameter as a consequence [Furchgott-80]. The success ofthis shear stress sta­

bilizing process dependents on the condition of the endothelium and is diminished 

when the mono-layer of endothelial cells is damaged. 

1.3.2 SHEAR STRESS AND LOCALIZATION OF ATHEROSCLEROSIS 

Atherosclerotic plaques are not uniformly distributed in the arterial system. Typical 

predilection sites of the coronary plaques are at the inner curve of the artery and 

near side-branches [Friedman-93]. Thus despite the systemic risk factors, localizing fac­

tors are involved in the origination of atherosclerosis. The localization of atheroscle­

rotic plaques is related to local haemodynamics and in particular to the local WSS 

distribution [Caro-71, Zarins-83, Motomiya-84, Asakura-90]. 

The response of endothelial cells in the presence of low WSS largely explains the 

local susceptibility to atherosclerosis. Low WSS enhances the oxidation and accu­

mulation of lipids in the vessel wall [Murase-98]. The oxidative stress in the wall is in­

creased because the production of nitric oxide (NO) is diminished. NO scavenges the 

oxygen radicals, prevents proliferation of smooth muscle cell, is anti thrombotic and 
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anti atherogenic [Malek-99]. Furthermore, growth factors in the vessel wall stimulate 

the migration and proliferation of the smooth muscle cells. Also the infiammatory 

process of atherosclerosis is WSS regulated, since low WSS enhances the expression 

of adhesion molecules that recruit monocytes and leukocytes into the vessel wall 

[Mohan-99]. In contrast, normal or high WSS protects the endothelium from inflam­

matory activity, stimulates proliferation and diminishes apoptosis of the endothelial 

cells and increases the expression of anti oxidative enzymes [Malek-99]. 

1.3.3 SHEAR STRESS AND GENERATION OF THE VULNERABLE PLAQUE 

Since the lumen diameter is preserved by WSS regulation, the original WSS distribu­

tion will be maintained for a long period of time including the unfavourable, athero­

genic low WSS. This might explain why atheromas develop into eccentric lipid-loaden 

plaques. At a certain moment lumen preservation is not possible anymore and the 

plaque starts to encroach into the lumen and to cause lumen narrowing. As a conse­

quence the local WSS will increase at the upstream side of the plaque. Since plaque 

ruptures or ulcers are frequently observed at the upstream side of a plaque [Fujii-03, 

Lovett-03, de Weert-09], it is hypothesized that the change in WSS biologically influences 

the underlying plaque composition and possibly plaque vulnerability [Siager-05]. 

Increased shear stress at the midcap, upstream of the stenosis might increase the 

local NO production, which induces tissue regression due to apoptosis of the smooth 

muscle cells [Siagec-OS]. The local high WSS might also be responsible for weakening of 

the fibrous cap because of high WSS induced excretion of plasm ins by the endotheli­

um. Therefore, it is hypothesized that high WSS is involved in plaque destabilization, 

which is now investigated in several studies [Krams-06, Gijsen-08, Groen-08]. 

Wall shears stress has thus proven to be an important factor in the localization of 

early atherosclerotic lesions. However still a lot is unknown about the progression of 

atherosclerotic plaques ·mto the different plaque types and what factors determine 

plaque composition. Wall shear stress might be an important factor to study in these 

processes. 
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1.4 ASSESSMENT OF SHEAR STRESS AND CORONARY 

ATHEROSCLEROSIS 

1.4.1 SHEAR STRESS MEASUREMENTS 

To study the influence of WSS on atherosclerotic plaque development and destabili­

zation, simultaneous assessment of WSS and vessel wall characteristics is necessary. 

Local WSS can be obtained if a good description of the local velocity profile is avail­

able. Then WSS can be calculated by the multiplication of the local viscosity of the 

blood and the change in velocity at the boundary layer of fluid at the vessel's wall. 

The number of techniques that can measure a velocity profile in human coronary 

arteries and in combination are able to give an accurate description of the geometry 

of the coronary wall, ·Is limited [Wentzel-01]. Velocity profiles obtained by intravascular 

{Doppler) ultrasound [van der Steen-00] lack accuracy because the velocity profile is 

disturbed by the catheter IKrams-99]. Coronary magnetic resonance imaging (MRI) 

has the ability to measure a flow profile [Schiemann-06], but spatial and temporal reso­

lution are at this moment still too limited to acquire the geometry of the lumen and 

the wall. 

1.4.2 SHEAR STRESS CALCULATIONS 

To overcome the requisite to obtain both the velocity profile and the wall character­

istics simultaneously, the local WSS is often obtained by computational fluid dynam­

ics (CFD). CFD is a numerical technique to solve and analyse problems in the fluid do­

main. The technique involves discretization of the spatial domain to form a volume 

mesh and then apply a suitable algorithm to solve the equations of motions (the 

Navier-Stokes equations in case of simulating blood flow in the coronary arteries). To 

simulate WSS by solving a CFD problem, a description of the 3D geometry of the cor­

onary lumen is needed. In addition material models have to be chosen for the vessel 

wall and the blood. Also boundary conditions have to be prescribed that define the 

behaviour of the materials at the boundaries of the problem. In case of the coronary 

arteries, boundary conditions such as flow and/or pressure have to be prescribed at 

the in,- and outflow parts of the coronary geometry. With the aid of dedicated CFD 

software the defined problem can numerically and iteratively be solved resulting in 
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a description of the velocity and pressure at every point in discretisized geometry. 

With post-processing the WSS can be calculated from the simulated velocity profile. 

The great advantage of this technique over WSS measurements is that WSS can be 

calculated at any position in the geometry and limited flow information is needed. 

1.4.3 CORONARY WALL IMAGING: INTRAVASCULAR ULTRASOUND 

In addition to the WSS, also vessel wall characteristics are needed to study WSS in 

relation to atherosclerosis. Intravascular ultrasound (IVUS) is considered as the gold 

standard for in-vivo coronary lumen and wall assessment [Mintz-OlJ. It is a catheter­

based imaging technique that provides real-time, high resolution, 2D, tomographic 

grey-scale images of both coronary lumen and wall. A catheter is promoted into the 

coronary artery with at its tip a transducer that sends and receives high-frequency 

(20-40 MHz) ultrasound. The reflections of the ultrasound waves at the different 

tissue types are recorded and converted to cross-sectional images as the catheter is 

pulled back from the distal part of the artery towards the ostium. The dimensions of 

the coronary wall and lumen, and some morphology of the coronary plaque, such as 

the presence of calcifications, can be assessed by IVUS. Except for grayscale images, 

new analysis techniques of the IV US data have been developed which add informa­

tion about the composition of the artery wall (Nair-02, Schaar-05]. 

1.4.4 CORONARY IMAGING FOR SHEAR STRESS CALCULATIONS 

The application of CFD for WSS calculation has proven its benefits in atherosclerosis 

research. As mentioned before, the application of CFD requires a 3D description of 

the geometry of the artery under study. For the larger arteries, non-invasive imag­

ing modalities are emerging that allow segmentation of the 30 lumen information. 

MRI, ultrasound and computed tomography (CT) are often used for that purpose in 

the carotid arteries, femoral arteries and the aorta. The small size and movement of 

the coronary arteries hinder non-invasive 3D imaging: Biplane angiography gives no 

information about the wall, IVUS is a 2D technique and thus lacks information about 

the curvature of the artery, and the resolution of MRI is too limited. 

To overcome the 2D aspect of IVUS, a technique was developed in 1995 based on 

the combination of biplane angiography and IV US (ANGUS) lvon B·"gelen-9S, Slagec-00]. 

IVUS provides the lumen and wall contours while angiography is used for the recon­

struction of the 3D curvature of the artery. Although no flow information is present 
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for the CFD simulations with this technique, it provides valuable information about 

relative WSS values. To obtain absolute WSS distribution the technique can be ex­

tended with flow measurements obtained during the same catheterization proce­

dure. The technique is now applied by several research groups and has proven to be 

a valuable tool to study WSS in relation to atherosclerosis in the coronary arteries 

[Krams-97, Gijsen-03, Stone-03, Wentzel-03, Bourantas-05, Wahle-06]. 

Unfortunately, the ANGUS technique has some drawbacks. The technique requires 

invasive imaging and simultaneous acquisition of IVUS and biplane angiography, 

which is not possible in many catheterization rooms. In addition, the reconstruction 

technique is very time-consuming and lacks easy incorporation of the side-branch­

es into the geometry because the IVUS acquisition is only performed in the main 

branch [Gljsen-07]. 

1.5 CORONARY CT ANGIOGRAPHY 

To overcome the limitations of the ANGUS technique, a 30 non-invasive imaging 

technique is necessary with enough spatial and temporal resolution to image the 

lumen and wall with high accuracy and ideally this technique also provides the flow 

through the coronary arteries. Such imaging technique does not yet exist. However 

due to the fast technical developments in spatial and temporal resolution of com­

puted tomography over the last decade, this is the now the 3D non-invasive imaging 

technique with the highest resolution and most potential to image the coronary 

arteries non-invasively for WSS analysis. 

Computed tomography (CT) is a medical imaging technique that uses the attenua­

tion of X-ray beams by the human body to image the internal structures of the body. 

The X-ray tube that transmits the beam, is positioned opposing of the detectors 

in the gantry, which rotates around the patient. While the patients is continuously 

advanced through the gantry, a collimated roentgen beam passes through the pa­

tient and the attenuated radiation is collected with the detectors. The placement 

of several parallel detector rows instead of one detector in 1998 was the herald for 

cardiac CT since this innovation accelerated the scanning procedure, which is neces­

sary to image the rapid moving heart. Whereas the technology started with 4-slice 

CT (4 detectors in row), recently the 128-row, 256-row and 320-row CT's IRybicki-08] 

have been introduced, which the latter allows imaging of the heart within one heart-
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beat. Parallel to the increase of detector rows the dual source CT was developed 

and introduced in 2006. This scanner consists of two x-ray tubes and two detec­

tors mounted perpendicularly in the same gantry [Fiohr·05]. This technique halves the 

temporal resolution but also allows for dual energy acquisition [Ruzsks-os]. 

Coronary CT angiography uses intravenous contrast injection to highlight the ar­

teries. With the aid of electrocardiographic (ECG) synchronization an image of the 

heart and the coronary arteries can be reconstructed in a 30 isotropic voxel space 

during one of the cardiac phases. The technique has proven to be very accurate in 

detection of significant coronary artery stenosis in comparison with traditional an­

giography [Bastarrika-09], although stenosis grading [Husmann-09] and lumen dimension 

assessment is still challenging [Caussin-06]. 

In addition to the lumen, also the coronary wall can be studied. The amount of 

calcium in the coronary wall is already since the use of electron beam CT applied 

for risk stratification, but since it has been demonstrated that CT angiography can 

depict calcified and non-calcified plaque components [Becker-DO], risk stratification 

and risk management based on CT angiography has gained interest. The rationale is 

that different clinical manifestations of coronary artery disease, come with different 

plaque composition [Burke-97, Leber-03, Ehara-04]. 

Ex-vivo plaque characterization based on the attenuation of the components of 

the coronary plaque has been shown to correlate reasonably with histological find­

ings [Becker-03]. In-vivo plaque characterization based on attenuation is more diffi­

cult because of volume averaging effects, the influence of the contrast in the lumen 

[Cademartiri-05] and the overlap in grayscale values (Hounsfield Units) between plaque 

types [Schroeder-04]. Volumetric measuretDents of the plaque are used to estimate 

the plaque burden, but manual annotation has high inter-observer variability and 

the volumes of non-calcified and mixed plaques are underestimated, while calcified 

plaque volumes are overestimated. Fortunately, newer software applications reduce 

the inter-observer variability [Biackmon-09] and show promising results in volumetric 

lumen and wall assessment as compared to lVUS [Boskamp-04, Sun-08, Schepis-09]. To­

gether with the trend of decreasing radiation exposure during acquisition, coronary 

CT angiography might even aim at serial imaging of high-risk patients. 



SCOPE AND OUTLINE 11 

1.6 SCOPE AND OUTLINE 

In the previous paragraphs the importance of research to coronary atherosclerosis 

is stressed, since it is still is one of the most important causes of death. In the pres­

ence of systemic risk-factors, WSS is the localizing factor of atherosclerosis. In addi­

tion, the biological response of the endothelium on WSS is hypothesized to be an 

important factor in the progression and destabilization of plaques and thus an im­

portant parameter for atherosclerosis research. WSS in relation with atherosclerosis 

can be studied in-vivo with the aid of computational fluid dynamics. This technique 

requires a 3D description of the coronary artery under study, which can be obtained 

by a reconstruction technique based on biplane angiography an IVUS. The limita­

tions of this technique might be resolved by a non-invasive 3D imaging technique 

with enough resolution to obtain and the 3D geometry of the coronary lumen and 

to obtain geometrical and morphological information of the coronary wall. Coronary 

CT angiography is at this moment the best non-invasive imaging technique arteries 

in terms of resolution to image coronary arteries. 

In this thesis we investigated how coronary CT angiography can be applied to study 

the relation between WSS and atherosclerosis as stand-alone non-invasive imaging 

technique or in combination with invasive imaging techniques. 

The quality of WSS and wall information that can be obtained by CT angiogra­

phy will determine the extent of its application as stand-alone imaging technique in 

atherosclerosis research. An exploratory study described in Chapter 2, shows that 

with coronary CT angiography it is possible to relate the presence of plaque pres­

ence and WSS in a qualitative way near bifurcations. However, this study also indi­

cated that CT angiography as a stand-alone modality was not yet suitable to study 

these relations in a quantitative way. Automatic segmentation a is still a challenging 

research task, thus obtaining an accurate and reproducible 3D description of the 

lumen is hard. In addition, not a lot is known about the quality of the detection and 

classification of the different plaque types. 
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Since coronary CT angiography cannot be used as stand-alone technique for WSS 

calculations and more extensive validation is still needed, a reconstruction tech­

nique based on placing IVUS images into 3D on the lumen centerline of CT is de­

scribed in Chapter 3. This technique allows for side-by-side comparison of CT and 

IVUS, but also results in a 3D reconstruction of the IVUS lumen and wall contours 

which is suitable for WSS analysis. 

In the next two chapters this reconstruction technique is used to compare IVUS 

and CT side-by-side, such that the plaque detection on CT could be validated against 

IVUS. In Chapter 4 ex-vivo human coronary arteries are imaged to determine the 

minimal size of a non-calcified plaque that can be detected by CT angiography. With 

the same technique, but now in patients, the detection of coronary calcifications by 

CT angiography was validated against IVUS in Chapter 5. 

These validation studies showed the potential of CT angiography but also dem­

onstrated that IVUS is still needed to obtain accurate wall and lumen geometry to 

study WSS in relation to atherosclerosis. In Chapter 6, the reconstruction technique 

described in Chapter 3, is used for the first time to study WSS as WSS patterns are 

related to coronary plaque rupture. 

In Chapter 7 a case report is presented that demonstrates that the reconstruction 

technique is not limited to IVUS alone, but also information from IVUS-derived imag­

ing techniques, or information of techniques added to an IVUS catheter such as in 

this case near-infrared spectroscopy (NIR-IVUS), can be placed into 3D. In this report 

the chance of lipid presence in the artery wall is added as wall information, which 

now can also be related to WSS. 

One of the advantages of the CT derived coronary geometry is that it is not limited 

to the main branch as is IVUS, but that also the side-branches can be incorporated 

into the WSS analyses. However incorporating side-branches goes with applying ex­

tra boundary conditions for the CFD, since the fiow division over the side-branches 

has to be known. Volumetric flow cannot be measured thus a good estimation has 

to be made based on the geometry under study. In Chapter 8 the influence of differ­

ent models to prescribe the outflow boundary conditions on the WSS distribution 

is investigated. 

Chapter 9 accomplishes this thesis with a summary of the studies, and a discus­

sion about the role of CT angiography in clinic practice and in studies relating WSS 

and atherosclerosis. 



Plaque and shear stress 
distribution in human 
coronary bifurcations 

In this chapter the plaque distribution and morphology 

near coronary bifurcations is non-invasively assessed with 

64-slice computed tomography and related to the wall 

shears stress (WSS) distribution. We demonstrated that 

plaque is mostly present in low WSS regions. In case of a 

plaque in a high WSS regions, this plaque is accompanied 

by plaque in an adjacent low WSS regions. It is therefore 

plausible that plaque grows from the outer wall (low WSS) 

of the bifurcation towards the fiow divider (high WSS). 

BASED ON: 
AG van der Giessen, JJ Wentzel, WB Meijboom, NR Mollet, AF van der Steen, FN van de Vosse, 
PJ de Feyter and FJ Gijsen, "Plaque and shear stress distribution in human coronary bifurca­
tions: A multi-slice computed tomography study", Eurolntervention, 2009 Mar;4(5):654-61. 

13 
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2.1 INTRODUCTION 

The formation of atherosclerosis in coronary arteries is localized [Vanderlaan-04, Slag­

er-05]. A key player in the localization of atherosclerosis is low wall shear stress (WSS) 

[Malek-95, Cunn·mgham-05]. In the presence of system·lc risk factors, a vessel wall that is 

exposed to low WSS is more prone to develop atherosclerotic plaques [Giddens-93, 

Malek-99]. 

The WSS to which a vessel wall is exposed, is mainly determined by arterial geom­

etry. In bifurcating arter"1es, the outer wall is exposed to low WSS compared to the 

flowdivider wall [Asakura-90, Tadjfar-04]. In curved arteries, low WSS regions are present 

at the inner bend, while the outer bend is exposed to high WSS [Kirpalani-99]. Intra­

vascular ultrasound studies show that plaques are predominantly found in low WSS 

regions [Krams-97, lwami-98, Tsutsui-98, Jeremias-00]. 

However, in clinical practice it is common to observe plaques that cause lumen 

narrowing not only at low WSS regions but also at the high WSS sensing fiowdi­

vider of coronary bifurcations. Even in the classifications schemes used for typing 

bifurcation lesions on coronary angiography, most of the bifurcation types have lu­

minal narrowing in the flowdivider region of the side-branches [Lefevre-00, Sianos-05]. 

Plaques incorporating the flowdivider are found more frequently in symptomatic 

patients, and thus may represent a more advanced stage of atherosclerosis. Appar­

ently in this stage of the disease plaques are not limited to low WSS regions. 

Angiography is only one of several imaging modalities to visualize the presence of 

atherosclerosis in the coronary arteries [Bhatia-03]. Recently several studies have 

shown the ability of multi-slice computed tomography (MSCT) angiography to de­

tect coronary plaques non-invasively [Mollet-05]. In contrast to conventional angiog­

raphy, MSCT angiography gives 3D information about the coronary geometry and 

not only the lumen is visible, but also the vessel wall harbouring the atherosclerotic 

plaque [Leber-03, van Mleghem-06]. This enables MSCT coronary angiography to detect 

atherosclerosis also in remodeled arteries without severe lumen narrowing [Achen­

bach-04, Leber-05]. 
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In this study we imaged non-invasively with MSCT angiography the 3D geometry 

of the lumen and vessel wall of coronary artery bifurcations in patients. On the basis 

of geometry, we labeled regions in bifurcations according to the expected WSS in 

each region and related the WSS to the plaque frequency, distribution and morphol­

ogy. 

2.2 MATERIALS AND METHODS 

2.2.1 STUDY POPULATION 

We retrospectively studied 28 {18 male, mean age 59.9 ± 6.6 years) consecutive 

symptomatic patients, suspected of coronary artery disease who underwent MSCT 

coronary angiography. Patient demographics are given in Table 2-1. The patients had 

sinus heart rhythm, were able to hold breath for 15 seconds and had no contra­

indications to iodinated contrast material. We only included patients who had not 

previously undergone percutaneous intervention or coronary bypass surgery, and 

had a heart rate lower than 65 beats per minute during scanning. Our institutional 

review board approved the study protocol, and all patients gave informed consent. 

TABLE 2-1: Patient characteristics 

Male 

Age, years (± stdev) 

Symptoms 

Atypical chest pain 

Stable angina pectoris 

Unstable angina pectoris 

Non~ST-segment elevation myocardial infarction 

Asymptomatic 

Risk factors 

Hypertension 

Hyperchol estero I em ia 

Smoking 

Family history of acute coronary syndrome 

Diabetes mellitus 

Obese (body mass index ~30 kg/m2 

N""28. Values are n (%) unless otherwise indicated 

18 (64%) 

S9.9 (6.6) 

1(4%) 

11 (39%) 

4(14%) 

10 (36%) 

2 (7%) 

21 (75%) 

21 (75%) 

8 (29%) 

7 (25%) 

6 (21%} 

5 (18%} 
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2.2.2 SCAN PROTOCOL AND IMAGE RECONSTRUCTION 

The patient preparation, scan protocol_ and image reconstruction procedure have 

previously been described [Mollet-05]. Briefly, patients with heart rates above 70 beats 

per minute received heart-rate-lowering drugs before scanning. Scanning was per­

formed on a 64-slice MSCT scanner {Sensation64®, Siemens, Germany) according to 

a standardized optimized contrast (lomeron 400®, Bracco, Italy) enhanced scanning 

protocol. A bolus tracking technique was used to synchronize the arrival of contrast 

in the coronary arteries with the initiation of the scan. Images were reconstructed 

with ECG-gating, initially during the mid- to end-diastolic phase (350 ms before the 

next R wave) with a temporal window of 165 ms. If image quality was poor, more 

reconstructions at different phases of the cardiac cycle were generated to improve 

it. The dataset with the best image quality was chosen for further processing. The 

in-plane resolution was approximately 0.3 mm and the slice thickness was 0.4 mm. 

2.2.3 MSCT IMAGE PROCESSING 

We investigated the plaque distribution in two bifurcations; 1) the LM-bifurcation, 

which is the branching of the left main (LM) coronary artery into the left anterior de­

scending artery (LAD) and the left circumfiex artery (LCX), and 2) the LAD-bifurcation, 

which is the bifurcation of the first diagonal artery (D,) from the distal LAD (LADd,,,). 

To study these bifurcations the reconstructed MSCT datasets were exported from 

the scanner to MeVislab (MeVis, Bremen, Germany), a software environment for 

image processing and visualization. 

The two bifurcations were analysed separately. We defined a plane through each 

bifurcation, such that both the main branch and the side-branches were visible in 

this plane and that the angle between the side-branches was maximal (Figure 2-1A 

and B). Perpendicular to this plane and the vessel axis, one cross-section of each 

of the side-branches was obtained 1 mm distal to the fiowdivider (see Figure 2-1C) 

We excluded trifurcations from the analysis (n=21). Cross-sections were excluded 

when the diameter of the artery was < 1 mm (n=2), or when the plaque was too 

heavily calcified to clearly distinguish the lumen from the plaque (n=3), see also 

Figure 2-2. In total we analysed 65 cross-sections for this study. 
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FIGURE 2-1: Selection of cross-sections from the bifurcation of interest. Panel A shows a volume 

rendered MSCT dataset with a plane through the mother and side branches of the bifurcation 

of interest. The Hounsfield Unit distribution in this plane is shown in B and a magnification in C. 

InC, the star indicates the flowdivider and the arrows indicate the position of the cross-sections 
shown in D and E. The sketch in F illustrates the division into parts and also the numbering accord­

ing to the expected shear stress levels, which is also applied in D and E. 

2.2.4 SHEAR STRESS 

To relate the plaque location to WSS, we divided the cross-sections into four parts 

from the center of the lumen. The cross-section was divided is such way that the 

fiowdivider was in the middle of one of the parts. We labelled the part covering the 

outer wall of the bifurcation I, the part facing the myocardial side of the heart II, 

the part facing the pericardium Ill, and the part containing the fiowdivider IV (Fig­

ure 2-10 and E). 

The bifurcation affects the WSS pattern primarily. High WSS is assumed in part IV 

due to the flow-division at the flowdivider, while in part I, the outer, non-flowdivider 

wall, low WSS is expected. Besides the effect of the bifurcation, the curvature of the 

artery over the myocardium also influences WSS [He-96]. In comparison to part Ill, 

the WSS is assumed to be lower in part II, because the inner wall of a curved vessel 

is subjected to lower WSS than the outer wall. Thus, the numbering of the parts is 

according to the expected WSS: in part I the lowest and in part IV the highest WSS 

(Figure 2-lF). 
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Patients Bifurcations Cross-sections 

FIGURE 2-2: Exclusion numbers of bifurcations and cross-section because of trifurcations, calcifi­

cations and artery size. Abbreviations: LAD- Left anterior descending coronary artery, LCX- Left 

circumflex coronary artery, LADdist- distal left anterior descending coronary artery {distal to first 

diagonal), 0
1 
-first diagonal coronary artery. 

2.2.5 PLAQUE IDENTIFICATION 

In each cross-section, all parts were inspected for the presence of plaque. Plaque 

was defined as any discernable structure with 1) a lower attenuation than the con­

trast enhanced lumen and higher attenuation than the surrounding epicardial fat or 

2) an attenuation~ 140 HU that could be separately visualized from the lumen (cal­

cified part). The plaque had to be present at the cross-section of interest and at at 

least one cross-section adjacent (0.5 mm distance) to the cross-section of interest. 

When a cross-section had calcified parts, we also denoted the part that contained 

the densest structure, thus with the highest Hounsfield Unit. 

The cross-sections with plaque present in only 1 part, we called min.1mally ·mfiict­

ed. When in 2, 3 or 4 parts plaques were observed we called these cross-sections 

respectively mildly, moderately and severely infiicted. 

2.2.6 STATISTICAL ANALYSIS 

To test whether plaque occurs in a preferential part of a cross-section, we used the 

numerical values assigned to each part. For each cross-section we computed the 

mean of the numbers of the parts that contain plaque. This mean value we call the 

mean shear stress index (MSSI). For instance, when plaque is present in the low WSS 

regions, thus in part I and II, than the MSSI of that cross-section is (1+2)/2 = 1.5. 
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When plaques are randomly distributed over the numbered parts, and thus have 

no preferential location, the averaged MSSI is by definition 2.5. We denote this ref­

erence value as RMSSI. If the MSSI is lower than 2.5, plaque is located mainly in the 

low WSS parts of a cross-section, and if it is higher, plaque is mainly present in the 

high WSS parts of a cross-section. 

We calculated the average MSSI over all cross-sections, and separately over the 

minimally, mildly, moderately and severely infiicted cross-sections and reported the 

values as mean±std. With a student-t-Ies! we tested whether the averaged MSSI was 

significantly different (p<0.05) from the RMSSI of 2.5. 

2.3 RESULTS 

2.3.1 GENERAL 

Most patients {96%) had plaque in one or more of the studied cross-sections. Of the 

65 cross-sections 88% contained plaque. In the 0
1 

branch, which is generally smaller 

than the other inspected branches, atherosclerosis was observed less often than in 

the other branches. Only 75% of the D
1 

cross-sections contained plaque versus 93%, 

86% and 94% of the LAD, LCX and LADd;,, branches. 

Calcified plaques were found in 62% of the patients, and in 29% of the cross­

sections. Of the LADprox and LADdist 37% and 42% of the cross-sections were affected, 

whereas only 5% and 16% of the LCX and D,. 

2.3.2 PLAQUE DISTRIBUTION 

Plaques were found in low WSS parts I and II in 72% and 62% of the cross-sections. 

The high WSS parts Ill, and IV were less often affected than parts I and II, only in 38% 

and 31% of the cross-sections (Figure 2-3). 

The distribution of the plaque configurations is in more detail given in Figure 2-4. 

From the top to the bottom the rows show the possible plaque configurations for 

minimally, mildly, moderately and severely inflicted cross-sections. For each configu­

ration the number of observations is given as well as the corresponding MSSI value. 
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FIGURE 2-3: Plaque distribution. The figure gives the percentage of occurrence of plaque in each 

part, i.e. 72% of all low WSS parts I were inflicted with plaque. 
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FiGURE 2-4: Plaque configurations. All possible plaque configurations are shown, sorted from top 

to bottom on the basis of the number of affected parts and from left to right according to increas­

ing mean shear stress index (MSSI). Each configuration depicts both the number of times (N) that 

it is observed and its MSSI {underlined). The parts are colored according to the expected wall 

shear stress level {see legend). 
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We found 8 cross-sections without plaque. In 10 of the 11 minimally infiicted 

cross-sections plaque was present in the low WSS parts I or II. The high WSS part IV 

was not affected once. In the 21 mildly infiicted cross-sections (2 parts infiicted per 

cross-section) we did not find configurations in which plaques are opposite to each 

other. Again, as in minimally inflicted cross-sections, the low WSS parts contained 

plaque most often. In the 20 moderately infiicted cross-sections (3 parts infiicted) 

plaque was always at least present in the lowest WSS part I. We found 5 severely 

inflicted cross-sections. 

Plaque at the fiowdivider was found in 20 out of the 65 analysed cross-sections. 

The flowdivider was never affected in minimally inflicted cross-sections, while 6 out 

of 21 of the mildly infiicted cross-sections, 9 out of 20 of the moderately infiicted 

cross-sections, and 5 out of 5 of the severely inflicted cross-sections were affected 

in the fiowdivider. In 19 out of the 20 cross-sections, plaque in the fiowdivider was 

accompanied by plaque in low WSS regions I or II. 

Figure 2-3 also shows that the plaque configurations with the lowest MSSI's are 

the configurations that we observed most frequently. Figure 2-5 shows the averaged 

MSSI for all, the minimally, mild, moderately and severely infiicted cross-sections. If 

the plaques are located preferentially at specific regions, the MSSI will be significant­

ly different from the reference value, the RMSSI, which is 2.5. The averaged MSSI 

over all cross-sections was with 2.02 ± 0.62 lower than the RMSSI (p<0.05). When 

we divided the cross-sections according to the severity of infliction, the averaged 

MSSI's are also lower than the RMSSI with the exception of the severely infiicted 

cross-sections, which by definition equals the RMSSI. The MSSI increases with the 

severity of infliction because high WSS parts get involved. 

2.3.3 CALCIUM DISTRIBUTION 

Similar to the plaque, the densest calcium spot was mostly found in the low WSS 

parts I and II. Both part I and part II were infiicted in 17% of the cross-sections while 

parts Ill and IV were only inflicted in 6% and 3% of the cross-sections. 

Figure 2-6 shows all 19 cross-sections with calcium according to the severity of 

plaque inflictions from top to bottom. From left to right the configurations are or­

dered according to the part with the densest spot, which is ·mdicated with a black 

dot in the cross-sections. 



22 CHAPTER 2 I PLAQUE AND WSS IN BIFURCATIONS 

'·0 

3., 

3.0 

Vi 
~ 2.5 - --RMSSI 
:;; 
~ 
0 2.0 
M 
~ 
0 
> 1.5 -
ro 

LO 

0., 

l 11"'57. JJ"'ll 

0.0 
oil minimally mildly moder~tely severely 

inflicted cross-sections 

FIGURE 2-5: Mean shear stress indices (MSSI) of plaques. The averaged MSSI ±variance is shown 

of the plaque parts over all, the minimally, mildly, moderately and severely inflicted cross-sec­

tions. The reference MSSI (RMSSI} is indicated at 2.5. The number of cross-sections is indicated 

with n. *, signHlcant difference (p<O.OS) between the MSSis. :1:, MSSis lower (p<O.OS) than the 
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FIGURE 2-6: Plaque configurations with calcium are shown and sorted from left to right according 

to part with the calcium spot. From top to bottom, the cross~sections are sorted by the severity 

of plaque infliction. The • indicates the position of the densest calcium spot. 
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Of the 11 minimally infiicted cross-sections, only 1 (9%) was calcified. The percent­

age of cross-sections with calcium increased with the severity of infliction up to 60% 

for the severely inflicted cross-sections. The densest spot of the calcification was 

never found in high WSS part IV. Most of the calcified cross-sections (n=10) have the 

densest calcium spot in part II. Part I has the spot in 5 cross-sections and part Ill in 4 

cross-sections. The plaques with the densest spot in part Ill always were in moder­

ately or severely inflicted cross-sections. 

2.4 DISCUSSION 

We reported on the plaque distribution in human coronary arteries assessed by 

MSCT in relation to expected shear stress patterns. We demonstrated that plaques 

in coronary artery bifurcations are most often located in the low WSS regions and 

that plaques at the fiowdivider, which is exposed to high WSS, are always accompa­

nied by plaques in a low WSS region, from where plaques are supposed to originate. 

To compare our findings with histological reports in literature on the different 

phases of atherosclerosis we distinguish three phases in our study. A minimally 

inflicted cross-section can be considered as early atherosclerosis, mildly and mod­

erately inflicted cross-sections as more advanced atherosclerosis, and severely in­

flicted cross-sections as severe atherosclerosis. In early atherosclerosis we observed 

that plaque distal to a bifurcation was found mainly at the wall opposite the fiow­

divider. This is in agreement with histological findings of early atherosclerosis in 

the LM bifurcation of young adults ISvindland-83]. In an older population, Gr¢ttum et 

al. studied the deposition of atherosclerosis also in the LM bifurcation [Gr0ttum-83]. 

Most plaques distal to the bifurcation were observed opposite to the flowdivider 

and slightly directed to the myocardium. In our study we observe plaque in similar 

regions. These are the regions where we expect low WSS. 

Our results are not only supported by histological findings, but also by intravas­

cular ultrasound stud·1es on plaque distribution near coronary bifurcations. These 

studies often include patient groups who have lumen narrowing on angiography 

and who may thus have advanced to severe atherosclerosis. Shimada et al. demon­

strated that the plaque area was larger at the opposite wall of the fiowdivider than 

at the flowdivider itself [Shimada-06]. The influence of the curvature of the arteries 

near bifurcations was investigated by lwami et al. [lwami-98] using a combination of 

intravascular ultrasound and angiographic data. The percentage of plaque in the to-
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tal cross-sectional plaque area was highest at the inner curve of the bifurcation and 

this was most pronounced in the most curved arteries. Badak et al. incorporated the 

position of the myocardium in their analysis. They found that when a side-branch 

was perpendicular to the artery the maximum plaque thickness was found at 190°± 

70', thus opposite the side branch, slightly in direction of the myocardium IBadak-03]. 

To compare our findings we calculated the average angle in a similar way in the 

mild and moderately diseased cross-sections and found that it was very close to 

that found by Badak, that is 205'± 68'. Thus, on the basis of the plaque distribution 

observed in our study and in other studies, we show that not only the bifurcation 

contributes to the low WSS region and initiates plaque formation, but also the cur­

vature of the arteries over the myocardium. 

Other studies lack detailed information on the distribution of calcifications with 

respect to the position of the bifurcation and myocardium. It is known that most 

calcium is found near bifurcations and that it initially occurs in the necrotic core of 

the plaque partly due to apoptosis of vascular smooth muscle cells or macrophages 

[Vattikuti-04]. In our data the calcium spot was found more often at the myocardial 

side {part II) of the coronary artery than at the outer wall of the fiowdivider {part 

1), which is what one would expect on the basis of the plaque distribution. We ob­

served calcium once in a cross-section that was mildly inflicted and thus was by our 

definition, an early from of atherosclerosis. Due to expansive remodeling, it is pos­

sible that an advanced plaque only occupies one part of the cross-section instead 

of growing into the high WSS parts. This might explain the presence of calcium in a 

cross-section with only one inflicted part. 

Although we did not follow patients over time, several observations indicate that 

plaques grow circumferentially from a low WSS region into the high WSS fiowdivider. 

The first observation that supports this, is that the flowdivider was never diseased 

in early atherosclerosis. Secondly, low WSS regions were in all stages of the dis­

ease most often affected. Thirdly, if there is plaque at the fiowdivider, the low WSS 

regions are also diseased. The fourth observation, that plaques are always found 

adjacently in low and high WSS regions indicate that growth is indeed circumfer­

ential. We already mentioned that low WSS regions are predilection sites of early 

atherosclerosis. As the plaque matures, fissuring at the shoulders of the plaque can 

cause the plaque to grow from the low WSS region along the circumference of the 

lumen [Burke-01]. 
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Many studies on plaque distribution in human coronary arteries use IVUS as imag­

ing modality. With its high resolution, it is the gold standard for determining lumen 

and plaque size. However, IVUS is invasive and as 30 information is lost, it is hard 

to identify the pericardia I and myocardial side of a bifurcation. The infiuence of the 

curvature of the artery over the myocardium on plaque localization can therefore 

not be taken into account. Currently, MSCT angiography is the only non-invasive 

imaging modality that can provide both 3D lumen and plaque distribution. High sen­

sitivities and specificities are achieved in scoring significant lesions on 64-slice MSCT 

angiography images [Schmermund-05] and the first comparisons with IVUS on plaque 

measurements are promising [Leber-05]. 

However, due to limitations of the MSCT angiography technique, measuring the 

exact s·1ze and position of the atherosclerotic plaque remains a challenge. In the first 

place, partial voluming effects caused by the high intensity calcium and contrast 

agent can obscure the vessel wall. Secondly, the resolution of MSCT angiography im­

ages cannot compete with those of IVUS: MSCT angiography cannot visualize small 

branches and intimal thickening. Because of these limitations we decided to exclude 

the heavily calcified bifurcations and very small arteries from our analysis. In the 

analysis we chose to introduce a scoring system to assign the presence of plaque 

in predefined parts instead of measuring wall thickness. For calcified plaques, we 

determined only the densest part of the calcium. 

A second limitation is that we included only two types of bifurcations in our study 

and only of the left coronary tree. We inspected two relatively large bifurcations, 

which could be easily identified in the MSCT datasets and which are often treated 

by catheterization. Although we excluded inspection of the complete right coronary 

artery tree, we do not expect WSS to influence plaque distribution here in a differ­

ent way [VanDerLaan-04]. Despite the limited resolution of MSCT, we observed a large 

number (more than one third) of bifurcations that appeared to be trifurcations in 

our dataset. We excluded these trifurcations because WSS is hard to predict in these 

geometries. This reduced the number of bifurcations inspected. 

A third limitation is that we defined the WSS patterns on the basis of general geo­

metrical features of coronary arteries, being the bifurcation and curvature. Local 

and patient specific varieties in geometry and/or fiow may cause the actual WSS to 

deviate from the expected WSS distribution. This might explain the single observa­

tion of a plaque localized in an expected high WSS region. 
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We assessed plaque frequency, distribution and morphology near coronary bi­

furcations with MSCT. Our results are in good agreement with previous findings in 

IVUS and confirm that in early atherosclerosis, plaques are limited to the low WSS 

regions and that the plaque distribution is not only influenced by the bifurcation but 

also by the curvature of the arteries. A new observation is that we showed that the 

calcified spots in more advanced plaques are mostly located in the low WSS regions. 

Besides this we presented that circumferential growth of the plaque from the low 

WSS region into the high WSS regions is a plausible explanation for the presence of 

plaque in the high WSS sensing flowdivider. 
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In this chapter a reconstruction technique is presented 

to obtain 3D patient specific geometries of coronary 

arteries, that are suitable for wall shear stress (WSS) 

computations, by the fusion of intravascular ultrasound 

(IVUS) and coronary computed tomography angiogra­

phy (CT). From the data of 35 arteries, 31 geometries 

could be reconstructed. In two reconstructed arteries we 

showed that despite perturbations in the fusion process 

the relation between WSS and plaque is maintained. This 

new framework can therefore successfully be applied for 

shear stress analysis in human coronary arteries, but also 

allows side-by-side comparison between IVUS and CT im­

ages and contours. 
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3.1 INTRODUCTION 

Although the wall shear stress (WSS), the force per area acting on the lumen wall 

due to the blood flow, is small compared to the pressure, it is an important biome­

chanical parameter in the localization and progression of atherosclerosis [Malek-95, 

Vanderlaan-04]. WSS induces processes on cellular and molecular level that influence 

the atherogenicity of the vessel wall [Siager-OS]. It has also been demonstrated that 

WSS is an important factor in the generation of the vulnerable plaque [Chatzizisis-08] 

and it has been hypothesized that it plays a role in plaque destabilization [Siager-OS]. 

WSS is thus an important parameter to study in relation to atherosclerosis. Since 

WSS is hard to measure accurately in the coronary arteries, the WSS is assessed by 

computational fluid dynamics [Krams-97]. These computations need the 30 geometry 

of the coronary lumen. To relate the WSS to the atherosclerotic plaque size, also the 

30 geometry of the coronary wall is necessary. 

Coronary CT angiography is a very promising 3D imaging modality to visualize 

the coronary arteries, detect significant stenosis [Mollet-os, Mowatt-08] and rule out 

coronary disease [de Feyter-08]. Some studies already showed that WSS calculations 

are possible in CT derived geometries [Frauenfelder-07, Suo-08, Rybicki-09]. However, ac­

curate delineation (manually or automatically) of the lumen is still challenging and 

good discrimination of the vessel wall is even harder[Achenbach-04, Leber-OSa, Leber-DSb, 

Pohle-07]. Thus, CT is yet not a suitable stand-alone imaging modality for studying the 

relation between WSS and atherosclerosis. 

The gold standard for coronary lumen and wall information is intravascular ultra­

sound (IVUS) [Mintz-01]. However, IVUS is a 2D technique that does not provide the 

3D information that is required to generate a geometry of the lumen to compute 

WSS. In this paper we present a framework to fuse the accurate lumen and wall 

information from IVUS and the 3D information from CT to obtain the 3D geometry 

of the coronary lumen and wall that can be used as input for the WSS calculations. 

The fusion of IVUS and CT is validated by comparing the length of IVUS and CT. In 

addition we demonstrate the robustness of the framework by introducing variations 

in the fusion procedure and discussing the effect of these variations on the WSS 

analysis. 
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3.2 MATERIALS AND METHODS 

3.2.1 PATIENTS 

We retrospectively included 23 patients who were treated for coronary artery dis­

ease in our institution. Patients were included if an IVUS pullback was performed 

in one or more of the coronary arteries and underwent coronary CT ang"1ography 

shortly before or after the interventional procedure. Exclusion criteria to perform 

coronary CT angiography were renal failure, contrast allergy, irregular heart rate, 

contra-indications to ~-blockade and the inability to hold breath for 15 seconds. A 

single oral dose of 100 mg metoprolol was administered 45 minutes prior to scan­

ning to patients with a heart rate higher than 70 beats per minutes to improve CT 

image quality [Dewey-07, Ropers-07]. Patients were excluded from this study if they had 

prior bypass surgery. Arteries that were treated were excluded. All patients gave 

informed consent and the institutional review board approved the study protocols. 

3.2.2 CT ACQUISITION 

Scanning was performed on a 64-slice CT scanner (Sensation64®, Siemens, Ger­

many). A detailed description of the patient preparation, scan protocol and image 

reconstruction has previously been described [Mollet-05]. Briefly, a contrast enhanced 

scan (lomeron 400®, Braco, Italy) was performed according to a standardized opti­

mized contrast-enhanced scanning protocol. The initiation of the scan was synchro­

nized to the arrival of contrast in the coronary arteries by a bolus-tracking tech­

nique. The ·Images were reconstructed initially during the m·ld-to-end diastolic phase 

(350ms prior to the R-wave) with a temporal window of 165 ms. Whenever the 

image quality was poor, more reconstructions were made at different phases of the 

cardiac cycle, and the best reconstruction was selected. 
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3.2.3 IVUS ACQUISITION AND ANALYSIS 

During the interventional procedure one or more of the ma·m coronary arteries of 

the patients were imaged with IVUS. Patients received ;?:200 IJ.g of intracoronary ni­

troglycerine before acquisition. A motorized pullback was performed at 0.5 mm/s 

with a commercial available 40 MHz IVUS catheter (Atlantis SR Pro, Boston Scientific, 

Boston, Massachusetts). The pullback was started > 10 mm distal of the segment 

of interest and ended at the aorta-ostial junction. The images acquired just before 

systole were extracted from the complete pullback based on an ECG gating method 

[De Winter-04]. The distance between the extracted images depended on the heart 

rate of the patient during the pullback and was approximately 0.5 mm. The lumen 

and external elastic membrane (EEM) contours were semi-automatically delineated 

on the IVUS images with a validated software package (QIVUS, Medis, Lei den, The 

Netherlands) according to international standardized guidelines [Mintz-01]. This soft­

ware package provides a initial segmentation of the lumen and the EEM and allows 

manual corrections afterwards. The center of the lumen was determined for each 

cross-section by calculating the center of mass Ci of each lumen contour. 

3.2.4 FUSION IVUS AND CT 

The goal of the fusion of IV US and CT was to reconstruct the 3D position and orien­

tation of the IVUS-derived lumen and media contours. We used MeVis Lab (Mevis, 

Bremen, Germany) to build a software tool for the fusion of IV US and CT and for the 

visualization. 

An IVUS stack encompasses a set of n 2D images 1
11

,
11

,
1

1" We used the CTA data and 

corresponding 30 central lumen line to semi-manually determine for each of these 

2D images /
1 
the 3D center of mass of the lumen C

1
, the normal of the 3D plane N,. 

and a vector pointing in the positive y-direction of the 2D IVUS image u,. The differ­

ent steps of the fusion process are explained in detail below. 

1. ANNOTATION OF THE CENTRAL LUMEN LINE: 

We manually annotated the central lumen line by placing points approximately 

every 1-2 mm in the center of the artery as determined by the 3 orthogonal views 

of the CT dataset. The annotation started at the ostium and ended as distally as pos­

sible. A curved multi-planar reformat (MPR) image is generated along the centerline 

to judge the quality of the centerline and, if necessary, to improve it. The centerline 

markers were smoothed en resampled for each 0.2 mm. 
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c 

FIGURE 3-1 : Panel A shows the centerline of the very diseased artery. Perpendicular to this cen­

terline every 0.2 mm cross-sectional images were generated. In these images we searched for the 

landmarks that we found on IVUS. The CT images that were matched to the five landmarks found 

on IVUS are shown in 3 dimensions. In panel B two ofthe five matched landmarks are depicted: at 

th e top the landmarks in CT and at the bottom the landmarks on IVUS. Rotation is applied to the 

IVUS images to obtain t he correct orientation (middle panel) . Panel C shows the IVUS contou rs 

placed on the CT derived centerline together with the CT landmarks. A magnification of the 3D 

contours is shown in panel D. 
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The smoothed centerline is used in the fusion as follows; the IVUS center of mass 

Ci is positioned somewhere on the centerline, N; corresponds to the tangent of the 

centerline at this respective position, and the orientation vector U; is perpendicular 

to Nt The manual interaction is used to determine the two remaining degrees of 

freedom for each IVUS image; the lD centerline position (resulting in c, and N,) and 

the angle of rotation around the centerline (resulting in U,). 

2. MATCHING OF LANDMARKS ON IVUS AND CT 

The lD centerline positions of c.f:i[C
1

/ .. ,C) were determined in a two-step approach. 

First we manually defined the positions for a set of landmark IVUS images 1,. As 

landmarks the bifurcations seen on both IVUS and CT were used. Guided by the 

distance between the bifurcations in the IVUS image stack and their appearance, 

we searched in a stack of cross-sectional MPR CT images (Figure 3-lA) for the same 

bifurcations as were identified on IVUS images. This stack of MPR CT images consists 

of images generated at every 0.2 mm of and perpendicular to the central lumen line. 

For each matched bifurcation that was found we selected the image from the IVUS 

stack which showed the carina of the bifurcation of interest. The image from the 

MPR CT stack was selected which showed the carrna in the same way (Figure 3-lB). 

The lD position on the central lumen line of each the matching MPR CT images was 

assigned to its matched IVUS image resulting in the positions for Ci" This was done 

for all bifurcations found both in IVUS and CT and for at least 2 bifurcations per 

artery. The second step is determining the position of the remaining IVUS images 

between the landmark IVUS images. These were achieved by linear interpolation 

of the lD positions of the landmark images. Thus the position of C and the normals 

N;,{N, .. ,N) of the IVUS images are now known. 

3. DETERMINING ROTATION ANGLE 

Using the semi-manually determined positions of C and normals N;,{N,,..,N) the 

software tool reformatted a set of MPR CT images, with each MPR CT image cor­

responding to one IVUS image. 

For each matched bifurcation we then rotated the selected IVUS image around 

the center of the lumen in such way that the bifurcation had the same orientation as 

the bifurcation on CT (see Figure 3-18), resulting in an orientation vector U; for each 

landmark image 1;- The orientations of intermediate IVUS images were determined 
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by spherical linear interpolation (http:/ /portal.acm.org/citation.cfm?doid=325334.325242).The 

resulting set of 30 IVUS image poses and the associated contours are subsequently 

used to create the 3D lumen and vessel wall geometry of the coronary artery (see 

Figure 3-lC-D). 

3.2.5 LENGTH VALIDATION 

To validate the fusion procedure we compared the length of each fused artery for 

IVUS and CT. On IVUS the length was calculated by multiplying the number of fused 

images by the averaged distance in between the images as was calculated during 

the ECG based extraction of the images. In the CT data, the length of the centerline 

between the first and last CT landmark was computed. 

3.2.6 WALL SHEAR STRESS ANALYSIS 

For two coronary arteries we calculated the WSS in the 30 geometries derived from 

the fusion procedure and related the WSS to the plaque thickness. We selected two 

extremes from the database; one very diseased artery with significant stenotic areas 

and calcifications in the artery wall and one mildly diseased artery with only minimal 

diffused wall thickening without calcifications. From the 30 IVUS contours a lumen 

and wall surface was generated and smoothed (Laplacian 0.2 smoothing factor, 10 

smoothing passes, with boundary and border preservation). The lumen volume was 

meshed with approximately 800 thousand linear tetrahedral elements with an edge­

size of 0.1 mm on the wall (Gambit 2.4.6, Fluent Inc. Products, ANSYS, Inc., USA). 

The WSS was calculated by simulating a 3D incompressible and laminar fiow (FI­

DAP 8.7.4, Fluent Inc. Products, ANSYS,Inc. USA). We assumed the blood to be non­

Newtonian (Carreau model with time constant= 25 s, power law index= 0.25, zero­

viscosity= 0.25 kg/m-s and infinity-viscosity=0.0035 kg/m-s [Seo-OSJ) with a density 

of 1050 kg/m3. We estimated the inlet fiow by assuming a WSS of 0.6 Pa [Ooriot-OOJ at 

the walls and calculated the corresponding inlet fiow by Poiseuille's Law. This fiow 

was prescribed at the inlet by a parabolic fiow profile. WSS was calculated in a post­

processing step using FieldView (FieldView lOF, Intelligent Light, Lyndhurst, USA). 

For more details on the computational methods we refer to Krams et al. [Krams-97]. 
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The plaque thickness is calculated by determining the shortest distance from 

the lumen surface to the wall surface (Vascular Modeling Toolbox [www.vmtk.org]). 

Subsequently the lumen surface is opened along the length of the lumen, and the 

WSS and plaque thickness values are mapped onto a 20 surface as is shown in Fig­

ure 3-5. Each pixel represents 0.5 mm of the arteries length and 10" angle and all 

values within this pixels are averaged. To obtain the relation between the WSS and 

the plaque thickness, both the WSS and the plaque thickness are averaged over 

the length of the artery as was described by Krams et al. IKrams-97] (Matlab 7.1, The 

MathWorks, Inc., Natick, MA, USA). The WSS-plaque-thickness linear relation can 

now be determined by regression analysis [Wentzei-DS] and is described as: 

PT{</>) =aWSS(</>}+b EQUATION 3-1 

, with WSS, the WSS averaged over the length (Pa), PT, the plaque thickness av­

eraged over the length (mm), ¢the radial position and [a] (mm/Pa) and [b] (mm) the 

regression parameters. 

3.2.7 EFFECT OF LANDMARK SELECTION 

The 30 reconstruction of the lumen and vessel wall can be influenced by observer 

dependent choices in the fusion procedure, especially for the selection and rotation 

of the landmarks; a CT image more proximal or distal can be appointed as match to 

the landmark IVUS image and also the rotation applied to orient the IVUS images 

can be user dependent. For both the very diseased and the mildly diseased artery, 

we varied the matching of the IVUS landmarks to the CT images and the rotation as 

depicted in Figure 3-2 and we looked into the infiuence on the WSS and PT analysis. 

First we varied the selection of the CT image that is matched to the IVUS im­

age containing the landmark, thus introducing a longitudinal variation. Instead of 

the original matched CT image, we selected for the second landmark aCT image 

2 slices (0.4 mm) more proximal and for the third landmark we selected a CT im· 

age, 2 slices more distal to the original matched CT image. Secondly, we varied the 

rotation angle for the second landmark and third landmark by changing the rota­

tion angle 5" in opposite direction for the second and third landmark. Finally the 

previous variations in longitudinal and angular direction were combined as a worst 

case scenario for mismatching. Similarly to the original fusion, for these 3 variations 

the IVUS contours were placed into 3D, WSS and plaque thickness were calculated 
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and the WSS-plaque-thickness relation was determined. Subsequently the WSS and 

plaque thickness of these variations were compared to the original matching on a 

pixel-to-pixel basis. By Blant-Aitman analysis we determined the 95% confidence 

interval (CI) of the differences between the original and each of the varied fusions. 

We also identified the location of the maximum plaque thickness and showed how 

the location of the maximum PT and the WSS at this point is infiuenced by the vari­

ations in matching. The regression parameters of the WSS-plaque-thickness relation 

were calculated also for the variations and compared to the regress·lon parameters 

of the original matching. 
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FIGURE 3-2: The squares depict the IVUS landmarks that are matched to the CT landmarks. On the 

left, the original landmarks for the fusion of IV US and CT are depicted. We applied 3 variations 

on the fusion. For the longitudinal variation 1, IVUS landmark 2 is positioned 0.4 mm (2 slices) 

more proximal on the CT centerline and landmark 3 is positioned 0.4 mm (2 slices) more distal. 

For angular variation 2, we changed the rotation of the matched IVUS landmark image around 

the CT centerline. Landmark 2 was rotated 5" counter clockwise and landmark 3 was rotated 5° 

clockwise. Variation 3 is the combination of the previous two variations. Note how these varia~ 

tions influence the distribution of the IV US contours between the landmarks. 
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3.3 RESULTS 

3.3.1 FUSION 

We included 35 arteries (12 LAD, 13 LCX, 10 RCA) from 23 patients in our study. We 

were not able to fuse IVUS and MSCT for 4 arteries (3 LCX and 1 RCA) because not 

enough matching landmarks were found on both IVUS and CT. On average IVUS and 

CTwere fused over a length of36.4 ± 15.7 mm by 3.7 (2-7) landmarks per artery. The 

number of landmarks and fusion length was not different for the 3 main coronary 

arteries (Kruskai-Wallis test, p>0.05). 

3.3.2 LENGTH VALIDATION 

Regression analysis showed a good linear relationship between the IVUS and CT 

length with R'=0.98 (see Figure 3-3A). The averaged length of the fused part was 

5.1% longer on CT than on IVUS (36.4 ± 15.7 mm versus 38.2 ± 16.4 mm, paired 

t-test, p<0.05) with a 95% confidence interval from 17.5% to -7.4% (0.95 mm- 2.66 

mm) (see Figure 3-3B). The relative difference in length was not larger for the LCX 

(9.0%) than for the LAD (3.5%) and RCA (2.8%) (Kruskal-Wallis, p>0.05) (see Fig­

ure 3-3C). 

3.3.3 WALL SHEAR STRESS ANALYSIS 

The fusion of the very diseased artery, an LAD, is visualized in Figure 3-1. This artery 

was fused with 5 landmarks over a length 54.5 mm with 111 IVUS images. Besides 

the validation in length also visual inspection of matched IVUS and cross-sectional 

CT images and the delineation of the IVUS contours on CT as depicted in Figure 3-4 

indicate a successful fusion process. Calculations of flow through this diseased ar­

tery showed WSS values ranging from 0.3 to 6.0 Pa (mean 1.1 ± 1.0 Pa), see Fig­

ure 3-5. The plaque thickness varied over the artery from 0.2 mm to 2.5 mm (mean: 

0.9 ± 0.4 mm). WSS peaks were observed at the stenotic sites and coincide with the 

sites with the largest plaque thickness. The WSS and plaque thickness were posi­

tively correlated (R'=0.77, a=1.5 Pa/mm and b= -0.8 Pa). 
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FIGURE 3-3: Panel A. Regression plot; Panel B. Bland-Aitman plot; C. Difference per artery. Error 

bars indicate the standard deviation. 

FIGURE 3-4: A: 3D CT dataset of the heart fused with the IV US derived geometry of the lumen on 

which the calculated WSS values are depicted. B: Magnification of panel A. C: CT curved multi­

planar reformatted image along the centreline of the diseased artery wit h the fused lumen (pink) 

and wall (blue) IVUS contours. D and E: Cross-sectional CT images at the indicated locations with 

the fused lumen (pink) and wall (blue) IVUS contours. 
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FIGURE 3-5: The wall shear stress (WSS) of the very diseased artery and mildly diseased artery 

are depicted at the 3D lumen wall in the center. The WSS [Pa] (right image) and plaque t hickness 

(PT) [mm] (left image) can be displayed as a 2D image by virtually cutting open and unfolding the 

artery along its length. To obtain the WSS-PT-relation, both are averaged over the length of the 

artery, as can be seen in the left and right panels below the WSS and PT map. These longitudinally 

averaged values are plotted and by regression analysis the relationship between WSS and PT can 

be determined, [a] indicates the slope and [b] the off-set. 
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The mildly diseased RCA was fused over a length of 40.6 mm with 4 landmarks. 

The plaque thickness ranged from 0.5 ± 0.2 mm (0.1-1.1 mm), which is clearly small­

er than for the very diseased artery. The WSS pattern showed no peak values due to 

stenotic sites as in the diseased artery. The WSS varied between 0.3 Pa and 0.9 Pa 

(mean 0.5 ± 0.1 Pa). The WSS-plaque-thickness showed no linear relation (R' = 0.04, 

a=-1.3 Pa/mm and b= 1.2 Pa) (see Figure 3-5). All these parameters confirm that this 

artery is indeed without extensive atherosclerotic disease. 

3.3.4 EFFECT OF LANDMARK SELECTION 

The WSS patterns for the variations are very similar. The averaged WSS value, as 

well as the minimum and maximum WSS values do not change due to the variation 

in landmark selection. The strictest way to evaluate the impact of the variations is 

comparing the differences on a pixel-to-pixel basis as is depicted for the diseased 

artery in Figure 3-6. At pixel level we found that 95% of the WSS differences were 

between -0.45 Pa to +0.40 Pa for the longitudinal variation, between -0.12 Pa to 

+0.10 Pa for the angular variation and between -0.45 Pa to +0.40 Pa for the com­

bined variation (see also Table 3-1) The Bland-Altman plot to compare the original 

fusion with the combined variation is depicted in Figure 3-7. The angular variation 

had no additional influence over the longitudinal variation. 

TABLE 3-1: Agreement of WSS and PT of the original fusion versus the varied fusions 

Variation 1 Variation 2 Variation 3 

R' 95% Cl R' 95% Cl R' 95%CI 

Diseased 

Plaque thickness 0.97 -0.13-0.12 0.99 -0.05-0.06 0.95 -0.14-0.14 

-13.2%-12.7% -5.8%-6.0% -15.6%- 15.5% 

Wall shear stress 0.96 -0.45- 0.40 1.0 -0.12-0.10 0.96 -0.45-0.40 

-28.0%- 2S.O% -29%- 26.0% 

Mildy diseased 

Plaque thickness 0.97 -0.06- 0.06 0.99 -0.03- 0.04 0.97 -0.06-0.06 

-16.3% -lS.S% -6.1%-3.6% -14.7%-14.3% 

Wall shear stress 0.94 -0.05-0.05 0.98 -0.02-0.03 0.9S -0.04- 0.05 

-8.6%-9.4% -4.4%-4.7% -8.0%-8.8% 
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As for the WSS patterns also the plaque thickness patterns look very sim ilar. Also 

the averaged PT over the complete artery was similar for the original and varied fu­

sions, but, as seen for the WSS, loca lly the difference can be large, especially near 
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FIGURE 3-6: For the diseased artery the absolute difference for the 3 variations are depicted for 

the plaque thickness and WSS. Despite some high local differences, the WSS-plaque-thickness­

relation is not changed as result of the variations in fusion. 
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the stenotic sites (Figure 3-6). The plaque thickness differed on a pixel-to-pixel basis 

between -0.13 to+ 0.12 mm (95% Cl) due to longitudinal variation, between -0.05 to 

+0.06 (95% Cl) due to the angular variations and between -0.14 to 0.14 mm (95% Cl) 

for the variations combined (see also the Bland-Aitman plot in Figure 3-7). Table 3-2 

shows that due to the variations, the location of the maximum PT did hardly change, 

however the WSS was 0.4 Pa or 18%, less for variation 3 at this site. 

The WSS-plaque-thickness-relation is hardly influenced by applying variations in 

the fusion (see Figure 3-6); R' was 0.74, 0.71 and 0.76, [a] was 1.4, 1.5 and 1.5 and 

[b] was -0.7, -0.8 and -0.8 for the longitudinal, angular and combined variations. 

In the mildly diseased artery the averaged WSS and plaque thickness patterns 

were very similar for the original fusion and the variations. Also the averaged WSS 

and PT values did not change due to any of the variations. The WSS and plaque 

thickness did change locally, but with lower absolute difference than for the very 

diseased artery (Figure 3-8). As for the diseased artery the influence of the angular 

variation was less for both the WSS and plaque thickness. For the combined, most 

severe variation the WSS differed -0.04 to +0.05 Pa (95% Cl). For the plaque thick­

ness the differences were between the -0.06 to + 0.06 mm (95% Cl) (see also the 

Bland-Aitman plots in Figure 3-7). Because the WSS and plaque thickness was on 

average low in the healthy artery the relative changes are large (Table 3-1). How­

ever, Table 3-2 shows that the variations have no influence on the location of the 

TABLE 3-2: Effect of landmark selection on PT and WSS at maximum PT location 

Maximum PT Location wss 

mm mm angle Pa 

Diseased 

Original 2.5 9.0 15 2.2 

Variation 1 2.5 8.5 20 1.9 

Variation 2 2.5 9.0 20 2.3 

Variation3 2.S 8.5 30 1.8 

Mildy diseased 

Original 1.1 36.0 265 0.7 

Variation 1 1.1 36.0 2SS 0.7 

Variation 2 1.1 36.0 26S 0.7 

Variation 3 1.1 36.5 2SS 0.7 

PT: plaque thickness, WSS: wall shear stress 
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maximum PT and the WSS at the maximum PT location. Also for this mildly diseased 

artery the WSS-plaque-thickness relation did hardly change (R' was 0.04, 0.05 and 

0.04, [a] was -1.2, -1.6 and -1.3 and [b] was 1.2, 1.4 and 1.2 for the longitudinal, 

angular and combined variations. 

3.4 DISCUSSION AND CONCLUSIONS 

In this manuscript a framework to generate 30 coronary lumen and wall geometries 

by fusion of CT and IVUS data of human coronary arteries is presented for the first 

time. The results of the current study show that this new accurate and robust meth­

od is suitable to study the relationship between WSS and atherosclerosis in clinical 

studies. 
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We evaluated the fusion approach by comparing an independent measure: the 

length of the two matched data sets. The results of this study show an excellent cor­

re lation between the two. Furthermore, variation in the selection of landmarks did 

not influence the patterns or spatia lly averaged values of WSS and plaque thickness. 

The method is more sensitive for landmark se lection if we compare the results on a 

pixel-to-pixel basis, especially in severely stenosed arterial segments. 

In many clinical studies, the influence of WSS on atherosclerosis was evaluated 

after app lying spatially averaging of the parameters. In these studies, the relation­

ship between WSS and plaque localization [Krams-97], plaque progression [Wentzel-03, 

Chatzizisis-07), in stent restenosis [Wentzei·Ol, Stone-03, Wentzel-03]) and plaque composi­

tion [Gijsen-08) was established. The results of th is paper show that fusion of CT and 

IVUS is a suitable imaging alternative for these kind of studies. Absolute WSS values 

should however be regarded with caution since some assumptions, such as discard­

ing the side-branches and the estimation of the inlet flow, could influence them. 

The influence of WSS on the vulnerable plaque is less well established, although 

several reviews were published in which possible mechanisms are presented [Siager­

osa, Slager-OSb, Chatzizisis-07, Chatzizisis-08] . These mechanisms often involve local phe­

nomena, and application of the current method in these kind of studies might oc­

casionally lead to inaccuracies in WSS determination. 
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The other imaging procedure to generate a reliable 3D lumen and vessel wall re­

construction relies on the combination of biplane angiography and IVUS. This imag­

ing technique, dubbed ANGUS [Krams-97, Wentzel-01], was validated and used in many 

clinical investigations relating WSS to plaque thickness. Although the accuracy of 

the two methods are comparable (centernne reconstruction error in ANGUS ap­

proximately 4%, in the current method 5%), there are also some differences. The 

main advantage of the ANGUS procedure is that the centerline and IV US imaging are 

virtually simultaneous, and that the procedure does not rely on the selection and 

matching of anatomical landmarks. Furthermore, ANGUS does not require an addi­

tional (MSCT) imaging procedure. The main disadvantage of the ANGUS is that it re­

quires biplane angiography, which is not readily available, thus limiting the number 

of patients that can be investigated. Furthermore, it requires a sheath-based IVUS 

catheter which is not a necessity for the new procedure discussed in this paper. 

Finally, the current fusion method can be combined with lumen segmentation in 

the MSCT images, which opens up the possibility to include side branches -and thus 

coronary bifurcations- in future studies. Since atherosclerosis is often located near 

the bifurcations [VanDerLaan-04], accurate WSS values at these locations may provide 

valuable information. 

Apart from application of WSS analyses, the current framework opens avenues 

for many other applications. Since the 3D position and orientation of the IVUS im­

ages are known, CT cross-sectional images can be generated at the same location. 

This allows for slice-by-slice comparison of the IVUS and CT-cross-sectional images 

in which plaque characteristics can be compared. It is also possible to position the 

IVUS contours into the CT dataset (Figure 3-4) and by this comparison we might be 

able to establish guidelines for quantifying lumen and plaque in CT. Once CT derived 

contours are available, either manually or automatically, the fusion also allows de­

tailed comparison to the IVUS lumen and wall contours. 

The current framework could benefit from automation of the several observ­

er dependent steps. At this moment the centerline is manually drawn, but it has 

been shown that automated centerline extraction is a reliable alternative [Metz-07, 

Schaap-09]. The selection of the landmarks is done on cross-sectional views and this 

will be hard to automate. A different approach to match the landmarks for the fu­

sion is proposed by Marquering et al. [Marquering-08]. Instead of matching in a cross­

sectional view, they used maximum intensity plots in the longitudinal direction for 

both IVUS and MSCT and assessed the landmarks in these longitudinal views. Which 

approach results in the most accurate fusion, is most easy to apply, and most easy to 
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automate, needs to be investigated. Since the semi-automatic segmentation of the 

lumen and EEM is the most time consuming part of this technique, it would benefit 

from validated segmentation algorithms, which to our knowledge are not yet avail­

able. Automation of various steps in the procedure has the additional benefit that 

processing time will reduced considerably. 

A second improvement concerns the length ofthe fused segments. The fused seg­

ments are relatively short, on average 36 mm. An lVUS pullback is for safety reasons 

also limited to a relative small part of the coronary tree. Since small side-branches 

are often not visible on CT, we rely on the large side-branches but at least 2 land­

marks are necessary for the fusion procedure. Short IV US segments therefore hinder 

the fusion over long parts. A third improvement concerns the extraction of the IV US 

images from the complete pull-back. Ideally the images would be extracted in the 

same time-frame of the heart beat as the reconstruction of the CT images. In our 

method the IVUS images are extracted at end-diastole, while the CT is reconstructed 

during mid-diastole. However the influence on the reconstruction is expected to 

be small, since the movement of the arteries during this cardiac phase are small. 

The short fused segments, in combination with the invasive nature of IVUS and the 

accompanying high costs, limit the wide assessment of the WSS influence on the 

atherosclerosis. Overall, it would be a step forward if CT could be used stand-alone 

to obtain lumen and wall information for WSS analysis. Since the resolution of CT 

is still improving and automated segmentation algorithms are under development 

and under validation, WSS analysis in relation to risk prediction might be possible by 

using solely CT as imaging modality. 

In conclusion, the presented framework in which human coronary IVUS and CT are 

fused, can be used to derive 3D lumen and wall geometries in which the relationship 

between WSS and atherosclerosis can be investigated. Moreover the framework 

opens avenues for validation of coronary CT segmentation algorithms. 
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Accuracy of coronary 
plaque detection by CT 

angiography: ex-vivo 
comparison to IVUS 

In this chapter the fusion technique, as presented in the 

previous chapter, is used to co-register cross-sectional 

intravascular ultrasound (IVUS) and computed tomog­

raphy (CT) angiography images from 10 ex-vivo human 

coronary arteries. Atherosclerosis presence and composi­

tion were determined by independent readers to assess 

the reader agreement and the diagnostic accuracy of CT. 

Quantitative measures on IVUS were used to determine 

predictors for the detection of non-calcified plaques. In 

total 1002 cross-sectional images were scored. The read­

er agreement and accuracy for plaque detection varied 

with plaque composition. The plaque thickness was an 

independent predictor for the detection of non-calcified 

plaques. Only non-calcified plaques with a plaque thick­

ness larger than 1 mm could reliably be detected. 

BASED ON: 
AG van der Giessen, MH Toepker, PM Donelly, F Bamberg, C Raffle, T Irlbeck, CL Schlett, H Lee, 

T van Walsum, P Maurovkh, FJH Gijsen, JJ Wentzel and U Hoffmann, "Reproducibility, and 
predictors of accuracy for the detection of coronary atherosclerotic plaque composition by 
coronary computed tomographic angiography- An ex-vivo comparison to !VUS", Accepted for 
publication in Investigative Radiology 
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4.1 INTRODUCTION 

Computed tomography angiography (CTA) of the coronary arteries has excel­

lent sensitivity and good specificity for the detection of coronary artery stenosis 

when compared to invasive coronary angiography [Mollet~os, Hoffmann~06, Meijboom-06, 

Pugliese-06, Leber-07, Mowatt-08]. In addition, coronary CTA provides noninvasive char­

acterization of coronary atherosclerotic plaque, which may be helpful to improve 

risk stratification [Leber-OS]. While CTA is highly accurate for the detection of calcified 

plaque [Schmermund-97, Knez-02] various studies have demonstrated the feasibility to 

detect non-calcified plaque [Leber-03]. These limitations are linked to the difficulty 

to establish the outer boundary of non-calcified plaques as their density is close to 

that of the surrounding myocardial or pericardia I tissue and the blooming effect of 

contrast enhanced blood. Overall, more reliable detection appears to be limited to 

larger non-calcified plaques with'1n the prox'1mal coronary arte(les [Leber-05, lriart-07, 

Motoyama-07, Pohle-07]. 

The purpose of this ex-vivo study was to define the accuracy of CTA in atheroscle­

rotic plaque detection and to determine predictors for CTA plaque detection using 

IVUS plaque quantification as the gold standard. 

4.2 MATERIALS AND METHODS 

4.2.1 EX-VIVO CORONARY ARTERIES 

Six ex-vivo human hearts were studied (International Institute for Advancement of 

Medicine. Phoenix, AZ, USA). Selection criteria included subjects with traditional 

risk factors for coronary artery disease aged between 50 and 70 years that had 

died from a non-cardiac cause. Subjects with known coronary artery disease, prior 

coronary artery revascularization or cardiac death were excluded. The three major 

coronary arteries together with the surrounding pericardia! and myocardial tissue 

were excised and flushed with saline to remove superficial thrombus. Luer tapers 

made of radiation stable polycarbonate material were inserted into the proximal 

and distal lumen of each artery to enable a leak-free infusion of contrast agent. The 

side-branches were ligatured. Typically, the proximal 50 mm of each coronary was 

salvaged. The arteries were placed in a custom tailored plastic vessel box for stabil­

ity (Modern Plastics Inc, Bridgeport, Connecticut, USA). The proximal luer was then 
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connected to a circuit which facilitated the infusion of phosphate buffered saline or 

iodinated contrast at a constant pressure (150 mmHg). The vessels were shipped 

fresh and all imaging experiments were completed within 72 hours ofthe vessel har­

vest. The study was approved by the Massachusetts General Hospital institutional 

review board. 

4.2.2 IMAGE ACQUISITION 

DUAl SOURCE COMPUTED TOMOGRAPHY 

CT imaging of each coronary artery was performed on a 64-slice dual source sys­

tem (CT, Somatom Definition, Siemens Medical Solutions, Forcheim, Germany). In 

preparation for imaging, the vessel box was connected to a cardiac motion simulator 

that recreates the oscillation and velocity of the coronary arteries at pre specified 

heart beats. This technique has previously been described [Achenbach-00, Reimann-07]. 

The motion simulator was synchronized to an electrocardiographic signal genera­

tor which facilitated electrocardiographic gating of the CT data. The heart rate fre­

quency selected for this study was 70 beats per minute. The vessel box was then 

positioned in the center of a semi-anthropomorphic thorax phantom (QRM, Moe­

hrendorf, GermanyL such that movement was along the z-direction of the CT scan­

ner. The apparatus was finally placed in a specially constructed plastic tank which 

contained pH optimized phosphate-buffered saline. 

Data were acquired using a standardized cardiac spiral imaging protocol with a 

tube voltage of 120 kV, exposure of 360 mAs, slice collimation of 0.6 mm, and a 

rotation time of 330 ms). Images were reconstructed at a 17 em field of view, at OA 

mm increments, and a soft cardiac kernel (B26f) during the best diastolic phase as 

chosen by the software. This results in voxel size of 0.33 mm in-plane and 0.4 mm 

in z-direction. The coronary arteries were flushed with a mixture of saline solution 

(0.9% w/v sodium chloride) containing 3% v/v contrast agent (Contrast lsovue 370, 

Bracco Diagnostics Inc, Princeton, New York, USA), which provided an intraluminal 

contrast attenuation of 250 HU [Nikolaou-04]. 
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INTRAVASCULAR ULTRASOUND 

Intravascular ultrasound was performed in a pressure-perfusion system filled with 

phosphate-buffered saline using a 40 MHz IVUS catheter (Galaxy, Boston Scientific, 

Boston, Massachusetts, USA) and motorized pullback (0.5 mm/s, 30 frames/s, from 

distal to proximal). The resulting image rate was retrospectively reduced to one im­

age every 0.2 mm. This image rate was used for further analysis. Images were digi­

tized and stored for analysis on an offline workstation. 

4.2.3 CROSS-REGISTRATION BETWEEN CT AND IVUS 

We used in-house developed software (based on the visualization and imaging soft­

ware MeVislab, Mevis, Bremen, Germany) to manually register and analyse IVUS 

and CT datasets at every 0.4 mm along the artery. 

The registration process was performed as follows: The IVUS image stack was 

post-processed and reduced so that only images separated by an axial distance of 

0.2 mm were selected for analysis (Figure 4-la). In this IVUS stack landmarks such 

as the proximal and distal Iuers, bifurcations and side branches were identified to 

facilitate cross-registration with the CT data set (Figure 4-lb and c). Cross sectional 

CT images were precisely registered with the IVUS stack by the generation of axial 

images every 0.2 mm from a curved multiplanar image format (Figure 4-ld). Due to 

the artificial elongation of the vessel by the IV US guide wire a further CT image stack 

was generated h that precisely aligned the CT images and the IVUS images between 

the reference landmarks (Figure 4-le). At least two landmarks had to be identified 

on both imaging modalities. As a result we obtained a corresponding CT image for 

each IVUS image between the most proximal and most distal landmark with a longi­

tudinal spacing of 0.2 mm. This enabled an exact comparison between the data sets. 

For this analysis every second image from both data sets was used (0.4 mm spatial 

separation). 
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e. CT resampled stack 

FIGURE 4-1: In the IV US stack (a) 3 bifurcations (1 to 3) serve as landmarks (indicated by the dots 

in (b)) for the registration. In the MSCT scan the centerline is tracked through the artery and 

cross-sectional images are reconstructed (black dotted lines). The three bifurcations in the IVUS 

stack are identified in the MSCT cross-sections (c). The MSCT data is resampled between the 

landmarks such that the number of images between landmarks is equal to the number of images 

in the IVUS stack (e). 
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4.2.4 IMAGE ANALYSIS 

DUAL-SOURCE COMPUTED TOMOGRAPHY 

Guided by a longitudinal view of the artery, each cross sectional image was assessed 

for the presence of any plaque and non-calcified, mixed or calcified plaque using a 

fixed window setting (500 HU width, 200 HU level) [Fecendk-06]. Non-calcified plaque 

was defined as any clearly discernible structure that could be assigned to the coro­

nary artery wall in at least two independent image planes and had a CT density less 

than 130 HU but greater than the surrounding connective tissue. Calcified athero­

sclerotic plaque was defined as any structure within the coronary artery wall with 

a density of 130 HU or more that could be separated from the contrast-enhanced 

coronary lumen. Mixed coronary atherosclerotic plaque was defined as the pres­

ence of non-calcified and calcified constituents within a plaque. This approach has 

previously been validated [Leber-03, Achenbach-04, Hoffmann-06]. 

Analyses were independently performed by two observers. In case of disagree­

ment on plaque presence or composition a third observer performed an independ­

ent adjudication reading, which was used for further analysis. In addition one ob­

server analysed the data a second time one week after the first readings to obtain 

intra-observer variability. All observers were blinded to the IVUS images and results. 

INTRAVASCULAR ULTRASOUND 

Lumen and external elastic membrane (EEM) contours were manually drawn 

[Mintz-01] for each cross-section by one observer. These contours were exported to 

Matlab (version 7.1, The MathWorks, Inc., Natick, MA, USA) and lumen area, ves­

sel area, plaque area, maximum and mean intimal thickness and eccentricity were 

determined. Plaque area was defined as vessel area (inside the EEM) minus the lu­

men area. Eccentricity was defined as the maximum plaque thickness divided by the 

minimum plaque thickness. 

We classified on IVUS four types of cross-sections, those without plaque, with 

non-calcified plaque, with mixed plaque and with calcified plaque. A cross-section 

was considered without plaque when the intimal thickness was less than 0.5 mm 

[Ciarijs-97, Tuzcu-01] for at least 90% of the lumen contour. Cross-sections with plaque 

were classified as calcified when the arc of calcification subtended greater than 90' 

of the cross-section as measured from the center of the lumen. A mixed plaque 
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was defined as an arc of calcium less than 90". Cross-sections with plaque, but 

without calcifications were classified as non-calcified. Presence, composition and 

quantitative plaque characteristics as determ·med by IVUS were considered the gold 

standard. 

4.2.5 STATISTICS 

To determine the agreement between the observers on the detection of different 

kind of plaques on CT, we reported the inter- and intra-observer variability by means 

of the non weighted Cohen's Kappa statistic. The CT adjudications reading and IV US 

readings were used to compose a 4x4 contingency table of the cross-sectional classi­

fications. From this table the contingency coefficient was calculated as a measure of 

the association between IVUS and CT (0 for no association and 1 for complete agree­

ment). From the 4x4 table, 2x2 tables were extracted to determine the sensitivity 

(Sens), specificity (Spec), negative predictive value (NPV), positive predictive value 

(PPV), prevalence (Prev) and accuracy (Ace) for the detection of any plaque and for 

the different plaque types. 

Next we performed a more detailed analysis for the subgroup of non-calcified 

plaque. We determined differences for quantitative IVUS characteristics such as lu­

men area, EEM area, plaque area, mean intimal thickness, maximum intimal thick­

ness and eccentricity between non-calcified plaque detected and not detected in CT 

using the non-parametric Mann-Whitney test. We then performed univariate logis­

tic regression to determine the odds for detecting non-calcified plaques in CT with 

change in IVUS based plaque characteristics. A multivariate logistic regression model 

with conditional forward selection was used to determine independent predictors 

for the detection of non-calcified plaques on CT. Lastly, we constructed Receiver 

Operating Characteristics (ROC) curves for plaque measures as a function of the di­

agnostic accuracy to determine the ability to discriminate between true positive and 

false negative findings. 

Cohen's Kappa, sensitivities, specificities, NPV, PPV, prevalence, and contingency 

coefficient are reported by their means with 95% percentile intervals as calculated 

by bootstrapping the data (10 000 times). The IVUS measures are reported with 

bootstrapped mean and standard deviation. For the univariate and multivariate re­

gression the Odds ratios (OR) with 95% confidence (CI) and p-values are reported. 

The ROC analysis is reported by the area under the curve (AU C) values with 95% Cl. 
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We performed the statistical analysis with SPPS 16.01 {SPSS Inc., Chicago, Illinois) 

and the Statistics Toolbox of Matlab {version 7.1, The Math Works, Inc., Natick, MA, 

USA) and p-values <0.05 were considered statistically significant. 

4.3 RESULTS 

Ten coronary arteries {5 LAD's, 1 LCX and 4 RCA's) were harvested from 6 patients {5 

female and 1 male). Eight arter1es could not be prepared for imaging because they 

were too small {1 LAD, 5 LCX, 2 RCA). The patients had at least 2 or more risk factors 

for coronary artery disease. The patient characteristics are depicted in Table 4-1. In 

total, 1002 IVUS and CT cross-sectional images were registered, equal to 40 mm per 

artery. 

4.3.1 INTER- AND INTRA-OBSERVER VARIABILITY 

The intra-observer variability for the detection of any type of plaque was good 

{K=0.76, 95% Cl: 0.73-0.79) and the inter-observer variability was moderate {K=0.52, 

95% Cl: 0.47-0.56). Adjudication was necessary for 298 cross-sections {30%). Intra 

and inter-observer variability were strongly associated with presence and compo­

sition of plaque as detected by IVUS. Inter- and intra-observer variability was low 

TABLE 4-1: Subject characteristics 

Subjects 

1 2 3 4 5 6 

Gender Female Female Female Female Male Female 

Age {years) 61 61 64 59 57 69 

Cause of death SAH SAH ICH RA RA RA 

Obesity X X X X X 

Diabetes X X 

Hypertension X X X X 

Smoker X X X 

Hyperlipidemia X X X 

Known VD X 

VD: Vascular disease, SAH: subarachnoid hemorrhage, ICH: intracranial hemorrhage, RA: respiratory arrest. Hypertension is 

defined as >140 mmHg, obesity is defined as BMI >30 kg/m'. 
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(K=0.23 and K=0.50) for cross-sections without plaque on IVUS (n=223), excel­

lent (K=l.OO) for cross-sections with calcified plaque, and intermediate for those 

cross-section with non-calcified (K=0.48 and K=0.76) and mixed plaque (K=0.42 and 

K=0.56) (see Table 4-2). 

TABLE 4-2: Inter- and intra observer variability for the detection of plaque by CT 

Overall 

Plaque 

No plaque 

Non-calcified 

Mixed 

Calcified 

Inter-observer Kappa Intra-observer Kappa 

(95% Cl) (95%CI) 

1002 0.52 (0.47·0.S6) 0.76 (0.73-0.79) 

Stratified by presence of plaque as determined by IVUS 

779 

223 

0.53 (0.48-0.58) 

0.23 (0.14-0.32) 

0.78 (0.74·0.81) 

0.50 (0.386-0.61) 

Stratified by plaque composition as determined by IVUS 

585 

162 

32 

0.48 (0.42·0.53) 

0.42 (0.21·0.61) 

1.00 (·) 

0.76 (0.71-0.80) 

0.56 (0.38-0.72) 

1.00 (·) 

n "number of cross-sections; Cl =confidence interval; IVUS =intravascular ultrasound 

150 

125 

§ 100 
B • 
"[' 75 

~ 
v 

'0 50 

• .0 

5 25 
0 

0 

1 

IVUS characteristics per artery 

Dna plaque 0 non-calcified II mixed • calcified 

2 3 4 5 6 7 8 9 10 
artery number 

FIGURE 4-2: The presence and composition of the atherosclerotic plaque of each coronary artery 

as defined by IVUS expressed as the number of cross-sections included in the analysis. 
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4.3.2 THE ACCURACY TO DETECT AND CLASSIFY PLAQUE ON CT 

INTRAVASCULAR ULTRASOUND 

Coronary atherosclerotic plaque (intimal thickness~ 0.5 mm) was detected by IVUS 

on 779 (78%) of the 1002 cross-sections. Non-calcified plaque (59%, 585 cross­

sections) was more frequently found than mixed plaque (16%, 162 cross-sections) 

or calcified plaque (3%, 32 cross-sections) (p<0.001). Figure 4-2 demonstrates the 

prevalence and plaque composition across the analysed vessels. The prevalence 

varies from 28-100% and consistently non-calcified plaque was most frequently de­

tected followed by mixed and calcified plaque. 

DUAL SOURCE COMPUTED TOMOGRAPHY 

Any plaque: Of the 779 cross sections in which plaque was detected by IVUS, CT 

demonstrated plaque in 592 cross sections (sensitivity: 76% (73%-78%) sensitivity). 

Of the 223 cross-sections without plaque on IVUS only 19 (9%) cross-sections were 

thought to contain plaque on CT resulting in an excellent specificity of 91% {88%-

95%). Similarly the PPV was excellent with 97% while the NPV was poor with 52% as 

187 cross sections contained plaque by IVUS but not by CT. Figure 4-3 shows 4 ex­

amples of matched cross-sections in whom CT accurately identified the absence of 

plaque, and the presence of non-calcified plaque, mixed plaque or calcified plaque. 

No plaque Non-calcified Mixed Calcified 

FIGURE 4-3: Example of co-registered Intravascular Ultrasound (IVUS) and Dual-Source Computed 

Tomography (CT) images for absence of plaque, and for presence of non-calcified, mixed and 

calcified plaque. The arrows indicate calcium and the stars(*) are placed in the non-calcified part 

of the plaque 
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Plaque composition: Table 4-3 demonstrates that misclassification by CT occurred 

most often in plaques classified as mixed or non-calcified by IVUS (67.9% and 42.6%; 

respectively). The contingency coefficient was 0.63 (95% Cl: 0.61-0.66). Misclassifi­

cation was rare in cross sections containing no or calcified plaque but frequent in 

smaller non-calcified plaques (no detection- poor sensitivity), non-calcified cross­

sections adjacent to calcified cross-sections (blooming of calcification- misclassifica­

tion of non-calcified as mixed plaques and of mixed plaques as calcified). Figure 4-4 

demonstrates these misclassifications. 

TABLE 4-3: Classification of plaque presence and composition on CT compared to IVUS 

IVUS Characteristics 

No Non 
Mixed Calcified Total 

plaque calcified 

n No plaque 204 181 6 0 391 -; 
n 
~ Non caldfied 10 336 54 1 401 • 
OJ 
r; Mixed 7 51 52 13 123 

iii· Calcified 2 17 so 18 87 "· ~ 
Total 223 585 162 32 1002 

Numbers of cross-sections are given. IVUS=Intravascular ultrasound; CT=Computed tomography 

The sensitivity of CT for correct plaque recognition was dependent on plaque com­

position (Table 4-4). The sensitivity to detect non-calcified plaque was 57% (54%-

61%). The sensitivity to classify mixed plaque was very low with 32% (26%-38%) but 

the sensitivity to detect any calcification was 69% (63%-74%) (including both mixed 

and calcified plaque). In contrast, the specificity was high for all plaque types: 84% 

TABLE 4~4: Diagnostic accuracy of CT to detect and classify plaque 

Plaque Type 

Any Non~calcified Mixed Calcified 

Sensitivity 76% (73-78) 57% (54~61) 32% (26-38) 56% (41-71) 

Specificity 91% (88~95) 84% {81~87) 92% (90-93) 93% (92-94) 

Negative predictive value 52% (48-56) 58% (55-62) 87% {86-89) 98% (98-99) 

Positive predictive value 97% (96-98) 84% (81-87) 42% (35-50) 21% (14-28) 

Accuracy 79% (77-82) 69% (66-72) 82% (80-84) 92% {90-93) 

Prevalance 78% (76-80) 58% (56-61) 16% (14-18) 3% (2-4) 

In between the brackets the 9S% confidence interval is given 
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FIGURE 4-4: Maximum intimal thickness and plaque composition by IVUS and CT. We demon­

strate maximum intimal thickness as measured by Intravascular Ultrasound {IVUS), and co-reg­

istered presence and plaque type as detected on IVUS and Dual-Source Computed Tomography 

(CT). The dotted line in the upper graph indicates 0.5 mm intimal thickness, above which it is con­

S-Idered atherosclerotk plaque. The upper panel illustrates one artery in which we demonstrate 

the association of intimal thickness with the ability of CT to detect non-calcified plaque. While 

proximal and distal cross sections with a maximum intimal thickness that largely extends the 0.5 

mm are detected by CT, plaque in the mid section of the artery may be missed by CT because the 

maximum intimal thickness barely exceeds 0.5 mm. The bottom panel illustrates a second aretry 

in which the calcified plaque is overestimated by CT leading to misclassification of mixed plaque 

(as detected by IVUS) as calcified plaque. 
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(81%-87%), 92% (90%-93%) and 93% (92%-94%) for non-calcified, mixed, and calci­

fied plaques. The accuracy to classify plaque correctly increased from non-calcified 

(69%, 66%-72%) to mixed (82%, 80%-84%) to calcified plaque (92%, 90%-93%). 

4.3.3 PREDICTION OF NON-CALCIFIED PLAQUE DETECTION BY DCST 

Table 4-5 provides the IVUS based plaque characteristics (lumen area, vessel area, 

plaque area, mean intimal thickness, maximal intimal thickness, and plaque eccen­

tricity) within two groups: cross sections that were identified as non-calcified plaque 

on both IVUS and CT (True positive CT finding: N=336) and cross sections that were 

identified as non-calcified plaque on IVUS but as normal on CT (False negative CT 

finding: N=181). IVUS cross-sections with plaque missed by CT had significantly larg­

er lumen area and smaller vessel area, plaque area, mean intimal thickness, maxi­

mal intimal thickness and lower eccentricity than cross-sections with true positive 

CT findings (p<O.OS for all) (Table 4-6). For example, the odds of detecting non-calci­

fied plaque in CT increased by 226% with every 0.1 mm increase in intimal thickness 

as measured by IVUS. The ROC analysis demonstrates that AUC for prediction of 

detecting non-calcified plaque on CT was largest for the maximum intimal thickness 

(0.86, 95% Cl: 0.83-0.90) and smallest for the wall area (0.55, 95% Cl: 0.50-0.61). 

In multivariate analysis, lumen area (OR=0.88 per mm, 95% Cl: 0.82-0.95, p=0.001) 

and maximum intimal thickness (OR=1.56 per 0.1 mm, 95% Cl: 1.47-1.77, p<0.001) 

were the only independent predictors (see Table 4-6) and the odds of detecting 

TABlE 4-5: Comparison of IVUS measures for non~calcified plaques detected and missed 

True positives 

Plaque type by IVUS Non-calcified 

Plaque type by CT Non-calcified 

N 336 

Lumen area (mm2) 8.3±4.0 

Vessel area (mm2) 17.6±7.9 

Plaque area (mm 2) 9.3±4.7 

Mean intimal thickness (mm) 0.73±0.25 

Maximum intimal thickness (mm) 1.36±0.50 

Eccentricity 4.4±2.1 

Means and standard deviation are given 

False negatives 

Non-calcified 

No plaque 

181 

9.4±3.7 

15.2±5.1 

5.8±1.8 

0.47±0.11 

0.78±0.21 

3.1±1.6 

p-value 

<0.001 

0.045 

<0.001 

<0.001 

<0.001 

<0.001 
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TABLE 4-6: Results of binary logistic regressions 

0 
0 

~ 
~ 
~ 

~ 

1 

Uni-variate analysis Multi-variate analysis 

Predictor Unit OR /unit p-value OR/unit p-value 

mm' 
0.93 

0.003 
0.88 

0.001 Lumen area 
(0.87-0.98) (0.82-0.95) 

Vessel area mm' 
1.05 

< 0.001 0.104 
(1.02-1.09) 

Plaque area mm' 
1.43 

< 0.001 0.104 
(1.30-1.57) 

Mean intimal thickness 0.1 mm 
2.26 

< 0.001 0.292 
(1.91-2.68) 

Maximum intimal thickness 
1.61 

< 0.001 
1.56 

< 0.001 O.lmm 
(1.47-1.77) (1.47-1.77) 

Eccentricity 
1.54 

< 0.001 0.216 
(1.35-1.77) 

In between the brackets the 95% confidence interval is given 

Non-calcified coronary plaque detection by CT 

l!lllll!llllll detected by CT c=::: not detected by CT ---+-%detected 

140 100 

120 

80 

100 

80 

60 

40 

20 

20 

0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 >2.50 

maximum intimal thickness [mm] 

FIGURE 4-5: Relation between maximal intimal thickness and detection of non-calcified plaqe. 

The sensitivity of Dual-Source Computed Tomography (CT) to detect non-calcified plaque in­

creases with the intimal thickness. Notably, sensitivity reaches 80% or more at a maximal intimal 

thickness of 1 mm. 
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non-calcified plaque in CT increased by 56% (95% Cl: 47%-77%) with every 0.1 mm 

increase in maximum intimal thickness as measured by IVUS. 

4.3.4 ACCURACY OF NON-CALCIFIED PLAQUE DETECTION BY DCST 

Figure 4-5 demonstrates the increase in detection rate with strata of increasing 

intimal thickness, i.e. 80% sensitivity corresponds to 0.78 mm intimal thickness. 

Non-calcified plaques with a small intimal thickness (>0.50 mm ~ 0.75 mm) were 

frequent present (26%), but had a low detection rate (22%), while as the intimal 

thickness increased also the detection rate increased to 54% for >0.75 ::;;1.00 mm, 

78% for >1.00 ~1.25 mm, 89% for >1.25 ~1.50 mm, 96% for >1.50 ~1.75 mm, and 

100% for >0.75 mm. Because 50% of the non-calcified plaques (n=249/494) had an 

intimal thickness~ 1.00 mm, a considerable amount of the non-calcified plaques 

was missed by CT (n=179/494, 36%). However, the detection rate for plaques >1 mm 

thickness was excellent (n=221/245, 90%). 

4.4 DISCUSSION 

This ex-vivo study demonstrates a good overall intra- and interobserver variability 

and accuracy of CT for the detection and classification of coronary atherosclerotic 

plaque as compared to IVUS using a rigorous and novel methodology for the cross­

registration of IVUS and CTA image stacks. We also demonstrate that the ability of 

CT to detect plaque significantly varies with plaque composition and that significant 

misclassification of mixed plaque as calcified plaque and of non-calcified plaque as 

mixed plaque occurs. 

We further demonstrate that plaque thickness and lumen area as measured 

by IVUS are independent predictors of the accuracy of CT to detect non-calcified 

plaque. Moreover, we demonstrate that detection rates increase from 36% for non­

calcified plaques <1 mm intimal thickness to 90% for plaques with >1 mm thickness. 

Overall, these data provide detailed knowledge on the association of CT assessment 

of plaque in relation to the clinical gold standard IVUS and establish 1 mm as an 

excellent detection threshold. 
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Compared to the assessment of stenosis, relatively few studies have assessed the 

feasibility of CTA to detect and characterize coronary atherosclerotic plaque. Normal 

intima of the coronary arteries (intimal thickness: 0.15±0.07 mm in healthy adults 

<50 years of age, intimal thickening by IVUS defined as <0.5 mm [Nissee-01]) cannot 

be assessed due to limited spatial CT resolution by CT. However, the reported char­

acteristics of high risk plaques such as proximal coronary artery location, thin fibrous 

cap atheroma with a necrotic core: 2-17 mm in length, median 8 mm [Virmani-06], 

with lipid pools and core of 1-5 mm2 and >1.0 mm2, respectively ([Virman·l-02, Virma­

ni-06]), make cardiac CT a potential candidate for noninvasive detection and charac­

terization of such plaques. 

Presently available clinical data suggest a high overall accuracy of CTA to detect 

coronary atherosclerotic plaque in comparison to lVUS (sensitivity and specificity 

>90% on a per-lesion basis) [Leber-06, Achenbach-04, Leber-04, sun-08] but the ability to de­

tect non-calcified plaque, which is thought be a key constituent in high risk plaques 

and unique to contrast enhanced CTA, is limited to a sensitivity of 58% with an intra­

observer variability as high as 37% [Leber-05]. 

Our data confirm these observations as we demonstrate good sensitivity (76%, 

95% Cl: 73-78%) and excellent specificity (91%, 95% Cl: 88-95%) for the detection 

of any plaque but significantly lower accuracy for the detection of non-calcified 

plaque (sensitivity: 57%, 95% Cl: 54-61%; specificity: 83%, 95% Cl: 81-87%). One 

explanation for the moderate results in comparison to in-vivo studies is the nota­

ble difference in the analytic approach. We assessed the diagnostic accuracy of CTA 

on a cross-sectional basis while clinical studies report test characteristics on a per 

lesion basis. Because plaque thickness for an individual plaque varies within cross­

sections, smaller parts of a plaque that will be detected on a per lesion basis may 

not be detected on cross-sections. However, the cross-sectional approach permits a 

more detailed insight into how specific plaque characteristics are related to diagnos­

tic accuracy. This approach permitted us to identify predictors of the ability of CT to 

detect and classify plaque. 

Significant misclassification by CT occurs by mislabelling mixed plaque as calci­

fied plaque and non-calcified plaque as mixed plaque (67.9% and 42.6% for mixed 

or non-calcified by IVUS; respectively). Figure 4-4 illustrate how blooming artefacts 

lead to overestimation of calcified plaque by CT so that the non-calcified part of 

mixed plaques detected on IVUS cannot be detected in CT. Similarly, blooming of 

adjacent calcified plaque into cross sections that contain only non-calcified plaque 
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by IVUS leads to mislabelling them as mixed plaques in CT. These results are not 

surprising given the large overestimation of the volumes of calcified that have been 

demonstrated in previous studies [Hoffmann-03, Sarwar-08]. The difficulty to distinguish 

plaque composition is also reflected in the low inter and intra-observer agreement 

for mixed and non-calcified plaque (K=0.42 and K=0.56; K=0.48 and K=0.76; respec­

tively). Overall, we found a close association between inter-observer agreement and 

accuracy of CT assessment of plaque. 

Moreover, we found that on a cross-sectional basis only 3% of IVUS cross-sections 

contain exclusively calcified plaque, while the majority of cross-sections contained 

non-calcified or mixed plaque. These data suggest that a classification of plaque 

composition as mixed and calcified may be artificial as most of the plaques that are 

class"1fied as calcified by CT are indeed heterogeneous in histologic and IV US analysis. 

We demonstrate that maximum intimal thickness and lumen area are independ­

ent predictors for the diagnostic accuracy of CT to detect non-calcified plaque. For 

example, the odds of detecting non-calcified plaque in CT increased by 226% with 

every 0.1 mm increase ·In intimal thickness as measured by IVUS. The odds of de­

tecting non-calcified plaque in CT increased by 56% (95% Cl: 47-77%) with every 

0.1 mm increase in maximum intimal thickness as measured by IVUS. This data also 

demonstrates only 36% of plaque with an intimal thickness of less than 1 mm are 

detected by CT, while CTA achieves a sensitivity of 100% for plaque intimal thickness 

>1.75 mm. Given the distribution of plaque size, 1 mm intimal thickness appears to 

be a reasonable threshold for sensitivity and detection rate (90%), data that verify 

initial in vivo observations by Leber et al. [Leber-04]. Because the effect calcium has 

on the point spread function for resolution, the more calcium in a voxel, the lower 

the he.1ght of the full width half maximum (FWHM) of the point spread function will 

be and the lower the resolution will be. The lower height of FWHM from a widened 

point spread function predicts the exact level of measurement uncertainty that we 

described, which is effectively 1 mm. 

This study uniquely defines the limitations of CTA plaque detection and deter­

mines predictors of accuracy. If CTA can reliably detect >1 mm thick coronary athero­

sclerotic plaque it is likely to impact on future risk prediction models. Probably most 

importantly, these data will enable us to explore the usefulness of coronary CTA as a 

surrogate marker of treatment success or failure. 
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LIMITATIONS 

Our study has several limitations. It is an ex-vivo study on a small number of super­

selected coronary arteries. Despite this the LMS, LAD and RCA were most often as­

sessed. These are the in-vivo sites that are most commonly associated with plaque 

deposition, stenosis and rupture. The inclusion criteria maximized the yield of non­

calcified plaques. This was intentional as CT has long been established as one of 

the most sensitive tests for the detection of coronary artery calcification and non­

calcified plaques appear to be associated with acute coronary syndromes 

Ex-vivo plaque constituents may not be representative oftheir in-vivo equivalents. 

However every effort was made to ensure that our specimens were prepared and 

examined on the shortest possible time from harvest. At all times the vessels were 

maintained at a physiologic pH and temperature to avoid shrinkage. In-vivo valida­

tion of our results would be necessary. 

CT and IVUS images were acquired in a carefully controlled and optimized envi­

ronment. The IVUS and CTA images were not degraded by artefact and noise which 

is commonly encountered in an in-vivo setting. We attempted to reproduce cardiac 

and coronary artery motion with a motion simulator but it cannot fully replicate the 

complexity and velocities of in-vivo coronary arteries that demonstrate beat-to-beat 

variability. Although we applied a stringent and novel approach for co-registration of 

IVUS and CT cross-sections, minimal co-registration errors could not be completely 

eliminated. 

We did not use the second tube, that allows for dual energy scanning, for calcium 

subtraction or iod'me specific scans but simply as a second tube decreasing the scan 

rotation time. Using the dual energy option potentially may have helped the prob­

lem of calcium blooming and improved plaque detection. 

Lastly, the analysis of consecutive cross-sections inherently presents a clustered 

analysis of data and readings of individual cross-sections are not independent. How­

ever, we addressed this issue by reporting the 95% confidence intervals of the data 

after bootstrapping. Our results suggest a limited effect of data clustering because 

the bootstrapped confidence intervals did not significantly differ from normal 95% 

interval analysis. Although random presentation of the cross-sectional images to 

the readers is an alternative approach to prevent data clustering, such an approach 

may lead to unrealistically low diagnostic accuracy when compared to an in-vivo per 

plaque analysis. 
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CONCLUSION 

The diagnostic accuracy and reader agreement of CT technology for the detection of 

coronary plaque is dependent on plaque composition. This ex-vivo study defines the 

limits of CT plaque detection as misclassiftcation of non-calcified as mixed plaque 

and mixed plaque as calcified plaque and a reduced sensitivity to detect non-calci­

fied plaque with <1 mm maximal plaque thickness. These data are crucial to assess 

whether this technique can be utilized as a surrogate marker of treatment success 

or failure. 



66 CHAPTER 4 I CORONARY PLAQUE DETECTION BY CT 



Small coronary 
calcifications are not 

detectable by 64-slice 
computed tomography 

In the previous chapter the accuracy to detect and clas­

sify plaque was established in ex-vivo coronary arteries. 

In this chapter coronary arteries were imaged in-vivo in 

patients with intravascular ultrasound (IVUS) and com­

puted tomography (CT) angiography. Again these images 

are registered by the method presented in Chapter 3. 

Calcification were scored on both modalities and in IVUS 

the length and maximum arc were measured. In the reg­

istered images we identified calcification. In 31 arteries 

we detected 99 calcifications on IVUS, of which only 47 

were seen on CT. Calcifications that were detectable on 

CT were in 80% of the cases larger than 2.0 mm in length 

and/or larger than 36' in angle. Thus the assessment of 

small calcifications with CT is restricted. 

BASED ON: 
AG van der Giessen, FJH Gijsen, JJ Wentzel, PM Jairam, T van Walsum, LAE Neefjes, NR Mollet, 

WJ Niessen, FN van de Vosse, PJ de Feyter and AFW van der Steen, "Small coronary calcifica­
tions are not detectable by 64-slice computed tomography", Submitted. 

67 
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5.1 INTRODUCTION 

It is increas·mgly recogn·1zed that composition and geometry of ind.lv.ldual atheroscle­

rotic plaques are important determinants for plaque rupture [Schaar-04]. Detection, 

characterization and quantification of coronary plaques is therefore important to 

predict the risk of a cardiac event. One important plaque component is calcium. The 

calcium score, or so called Agatston Score, is a measure for the extent of calcifica­

tions in the coronary tree and can be accurately assessed by e.g. electron-beam 

computed tomography [Schmermund-97]. The calcium score is a direct measure for the 

extent of coronary artery disease and has been shown to be associated with cardiac 

events [Sangiorgi-98]. Not only is the total amount of calcium is indicative for risk of 

cardiac events, but its local appearance is also related to plaque rupture. It has been 

demonstrated that large calcifications are more frequently found in stable patients, 

while small and spotty calcifications have been associated with unstable patients 

[Ehara-04, Motoyama-07] and thus unstable plaques. Micro-calcifications in the fibrous 

cap are proposed as a destabilizing factor [Vengrenyuk-05]. Hence the assessment of 

the amount, pattern and locations of calcium is important to discern vulnerable pa­

tients and vulnerable plaques. 

Intravascular ultrasound (IVUS) [Kostamaa-99, Hagenaars-00, Scott-DO, Kopp-01, Mintz-01] is 

the most accurate technique to assess coronary calcifications in vivo. However, IVUS 

is an invasive imaging modality and therefore not suitable for screening applica­

tions and risk stratification. Multi-slice computed (MSCT) is a non-invasive imaging 

technique that provides 30 high quality images of the coronary arteries [de Feyter-04}. 

Non contrast-enhanced MSCT is currently successfully applied to measure the cal­

cium score [Agatston-90, Sangiorgi-98, Greenland-a?]. The accuracy with which contrast-en­

hanced MSCT can detect local calcifications is largely unknown. Earlier comparisons 

of MSCT with the gold standard IVUS for the presence of calcifications were done 

per vessel [Leber-04] or per segment [Schoenhagen-03, Sun-08] and high accuracies were 

reported. However, these studies did not report on the accuracy of MSCT to detect 

individual calcifications. In this study we register IVUS and MSCT images such that 

cross-sectional images can be compared one-to-one and we report for the first time 

on the ability of contrast-enhanced MSCT to detect individual calcifications. 
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5.2 METHODS 

5.2.1 PATIENTS 

We randomly selected 23 patients (18 male, mean age 54 ± 11 year) who were 

treated in our institution for acute myocardial infarction or unstable angina. Patients 

were only included in our study "1f an IVUS pullback was performed in one or more 

of their coronary arteries, if they underwent MSCT coronary angiography shortly 

before or after (on average 2.0 days after) the interventional procedure, if they had 

a heart rate lower than 70 bpm during the MSCT acquisition and had no prior coro­

nary bypass surgery. Exclusion criteria to perform the MSCT were renal failure, con­

trast allergy, irregular heart rate, contra-indication to ~-blockade. 

Based on a power calculations in a pilot study, we aimed for 100 calcifications on 

IVUS, which we reached by inclusion of 23 patients. Of these patients we only in­

cluded arteries that were not stented. Patient demographics are given in Table 5-1. 

Our institutional review board approved the initial study protocols, and all patients 

gave informed consent. 

TABLE 5-1: Patient characteristics 

Male 

Age, year{± stdev) 

Mean heart rate during CT {± stdev) 

Symptoms 

Unstable angina pectoris 

Acute myocardial infarction 

Risk factors 

Hypertension 

Hype rch ol estero I em ia 

Smoking 

Family history of acute coronary syndrome 

Diabetes mellitus 

Obese {body mass index :2:30 kg/m2 

N=23. Values are n (%) unless otherwise indicated 

18 {78%) 

S4.2 ± 11.S years 

62 ± 10.S beats/min 

7 {30%) 

16 {70%) 

6 {26%} 

3 {13%) 

14 {61%} 

14 (61%) 

2 {9%} 

7 {30%} 
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5.2.2 IVUS ACQUISITION 

Patients received ::::: 200 1-1g of intra coronary nitroglycerin before acquisition. One or 

more of the coronary arteries of these patients were imaged by IV US with commer­

cially available 40 MHz (Atlantis SR Pro. Boston Scientific. Boston, Massachusetts) ul­

trasound catheters. A motorized pullback was performed at 0.5 mm/s, starting> 10 

mm distal to the segment analysed and ending at the aorta-ostial junction. Images 

were recorded on DVD and off-line analysis with an image-based ECG-gating method 

[De Winter-04] was performed such that images shortly before systole were extracted 

from the complete pullback. This provided us with a stack of gated IVUS images with 

an axial spacing of approximately 0.5 mm (see Figure 5-1a). 

5.2.3 MSCT ACQUISITION 

The patient preparation, scan protocol, and image reconstruction procedure have 

been previously described IMollet-OS]. Briefly, MSCT was only performed in patients 

who had a sinus rhythm, who had no contra-indications to the administration of 

contrast agents and who were able to hold their breath for 15 s. Patients with heart 

rates above 70 beats per minute were administered a single oral dose of 100 mg me­

toprolol 45 minutes before scanning. Scanning was performed on a 64-slice MSCT 

scanner (Sensation64®, Siemens, Germany). A non-contrast-enhanced scan for calci­

um scoring was followed by a contrast-enhanced scan (lome ron 400®, Bracco, Italy) 

according to a standardized optimized contrast-enhanced scanning protocol. A bolus 

tracking technique was used to synchronize the arrival of contrast in the coronary 

arteries with the initiation of the scan. Images were reconstructed with ECG-gating, 

initially during the mid- to end-diastolic phase (350 ms before the R-wave) with a 

temporal window of 165 ms. If image quality was poor, more reconstructions at dif­

ferent phases of the cardiac cycle were generated, sometimes combined with a dif­

ferent temporal window; the reconstruction with the best image quality was chosen 

for further processing. The in-plane voxel size was approximately 0.3 mm and the 

slice thickness 0.4 mm. 
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e. 
CT resampled stack 

FIGURE 5-1: In the JVUS stack {a) 3 bifurcations (1 to 3) serve as landmarks (indicated by the dots 

in (b)) for the registration. In the MSCT scan the centerline is tracked through the artery and 

cross-sectional images are reconstructed (black dotted line). The three bifurcations in the IVUS 

stack are identified in the MSCT cross-sections (c). The MSCT data is resampled between the 

landmarks such that the number of images between landmarks is equal to the number of images 

in the IVUS stack (e). 
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5.2.4 IVUS AND MSCT REGISTRATION 

We used in-house developed software (based on MeVislab, Mevis, Bremen, Germa­

ny) to manually register and analyse IVUS and MSCT datasets. Goal of the registra­

tion process was to reconstruct cross-sectional MSCT images of the coronary artery 

at the same axial position where the IVUS images were obtained. The registration 

process was carried out by two observers independently and final registrations were 

made in consensus. 

The registration process was performed as follows: After ECG-gating the IVUS im­

ages had an axial distance of approximately 0.5 mm (Figure 5-la). In this IVUS stack 

we identified bifurcations, which were used as landmarks (Figure 5-lb). To register 

the MSCT to the IVUS images a centerline of the vessel of interest was manually 

drawn in the MSCT dataset starting from the ostium. Perpendicular to the center­

line, cross-sectional images of the vessel were equidistantly generated at every 0.2 

mm (see Figure 5-ld). In this MSCT image set we searched for the IVUS·derived 

landmarks (see Figure 5-lc). Sampling the MSCT data set with a higher axial resolu­

tion compared to the IVUS images (0.2 mm axial distance versus 0.5 mm) enabled 

us to register the bifurcations in the two data sets more accurately. After manually 

registration of the side-branches, cross-sectional MSCT images perpendicular to the 

centerline were generated again, but now such that the number of MSCT images 

between the landmarks was equal to the number of IVUS images between the land­

marks (Figure 5-le). As registration is only possible between landmarks, at least two 

bifurcations had to be identified on both imaging modalities. The result of this regis­

tration procedure is a corresponding MSCT image for each IVUS image between the 

most proximal and most distal landmark, thus enabling a one-to-one comparison 

between these images. 

5.2.5 IVUS ANALYSIS 

The IV US images were inspected for the presence of calcium in the wall. Calcium was 

identified by its specific echogenic appearance, accompanied by an acoustic shadow 

[Mintz-01]. Calcifications can extend over multiple IVUS images. For each calcification 

we determined the length and the maximum circumferential angle. The length of a 

calcification was calculated by multiplying the number of slices the calcium extends 

over by the mean distance between the images. The angle of a calcification was 
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determined by drawing two vectors on each cross-section from the center of the 

vessel to the corners of the acoustic shadowing (see Figure 5-2a). For each calcifica­

tion the largest angle was determined. The IVUS images were analysed blinded to 

the MSCT images. 

5.2.6 MSCT ANALYSIS 

We identified calcifications in MSCT cross-sectional images as any structure with a 

density of 130 HU or more that could be visualized separately from the contrast­

enhanced coronary lumen (because its density was above the contrast-enhanced 

lumen) and that could be assigned to the coronary artery wall. Also structures with 

an intensity <130 HU, but clearly embedded in or adjacent to the surrounding non­

calcified plaque with a lower intensity were defined as calcifications. 

Identification of the calcifications was supported by gradient images. Gradient im­

ages are derived from the normal images and they that represent the local change 

in image intens·1ty Figure 5-2b and Figure 5-2c). The transition from high intensity 

lumen to the low intensity epicardial tissue is depicted as a white ring in the gradi­

ent image. The transition from the high intensity lumen to a calcified plaque results 

in a second ring adjacent to the ring of the lumen. All the MSCT cross-sections were 

checked for calcifications blinded from the IVUS images. 

5.2. 7 ANALYSIS 

For each calcification detected in the IVUS images we determined whether it was 

also present in the corresponding MSCT image, and vice versa. Based upon these 

analyses we identified three groups: 1) calcifications identified on both modalities; 

2) calcifications identified on IVUS only and 3) calcifications identified on MSCT only. 

Continuous variables were described by their means and standard deviation 

(mean ± SD). To evaluate the difference in length and angle between the calcifica­

tions seen on both modalities versus those missed on MSCT, a non-parametric two­

sample test (Mann-Whitney U) was performed. A receiver-operating characteristic 

(ROC) curve was created and the area under the curve was determined as well as a 

cut-off value for calcification length and angle to determine at which values a calcifi­

cation is detected or not on MSCT. Forth is cut-off value the sensitivity was reported. 
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FIGURE S-2: a) The calcium angle on IVUS is determined by the two vectors from the center of the 

lumen to the corners of the acoustic shadow. b) Cross-section of coronary arteries imaged with 

MSCT, with at the arrows a calcification. c) Corresponding gradient image with again the arrow 

near the calcification. Note the double ring, one from the lumen and one from the calcification. 

One-way A nova with post-hoc Tukey H5D analysis was performed to compare length 

and angle between the groups for the LAD, LCX and RCA. We performed the statis­

tical analysis with SPSS 16.01 (SPSS Inc., Chicago, Illinois) and p-values <0.05 were 

considered statistically significant. 

5.3 RESULTS 

5.3.1 CALCIFICATION IDENTIFICATION 

We registered 2435 IVUS cross-sectional images with MSCT, with a total length of 

1138 mm (446, 329 and 363 mm of the LAD, LCX and RCA respectively). These cross­

sections were obtained from 31 coronary arteries (12 LAD's, 9 LCX's, 10 RCA's) of the 

23 patients included in our study. Registration of the IV US and MSCT images was not 

possible for 4 arteries (3 LCX and 1 RCA), because we were not able to identify at 

least 2 landmarks. 

A total of 107 calcifications were identified on either IVUS or MSCT. We identified 

47 calcifications on both IVUS and MSCT, 52 calcifications were identified on IVUS 

only and 8 were identified on MSCT only (see Table 5-2). From the 99 calcifications 

identified on IVUS, 52 were missed on the MSCT images. This implies that 53% ± 

10% (95% confidence interval) of the calcifications on the IVUS images were not 

identified on the MSCT images. Less calcifications tended to be missed on the MSCT 

images in the LAD than in the LCX and RCA (42% versus 61% and 55%, p=0.07). 
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TABLE S-2: 2-by-2 contingency table 

calcium detected on 

IVUS 

yes no total 
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yes 47 8 55 
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no 52 52 
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I total 99 8 L 107 I 

TABLE 5-3: Calcification detection 

n Length [mm] Angle["] 

Overall 99 2.5 ±1.99 42 ± 29 

Not detected on MSCT* 52 1.4 ± 0.8t 27 ± 16t 

Detected on MSCT* 47 3.7 ± 2.2 59± 31 

LAD 34 2.6 ± 2.2 43 ±35 

Not detected on MSCT 14 1.0 ± 0.6t:l: 22 ± 17t 

Detected on MSCT 20 3.7 ± 2.3 58 ±37 

LCX 36 2.2 ± 1.3 39 ± 20 

Not detected on MSCT 22 1.7 ± 0.8t::J: 31 ± 17t 

Detected on MSCT 14 3.1 ± 1.6 52± 17 

RCA 29 2.8 ± 2.3 45 ±31 

Not detected on MSCT 16 1.5 ± 0.8t 26 ± 12t 

Detected on MSCT 13 1.5 ± 0.8t 68 ± 31 

*Calcifications can be detected on IVUS only, hence not on MSCT or can be detected on both 

IVUS and MSCT. t Both length and angle are significantly (p<O.OS) smaller for the calcifica­

tions missed on the MSCT images.+ Trend (p=0.053) difference for the length of the calcifica­

tions missed on MSCT of the LAD versus the LCX. 
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We identified 8 calcifications on the MSCT images, which were not seen on the 

IVUS images. One calcification on the MSCT images turned out to be false-positive 

since it could be identified as a side branch on the IVUS image. The other calcifica­

tions on the MSCT images are presumably the result of local differences in contrast 

enhancement, and/or imaging artefacts. 

5.3.2 CALCIFICATION LENGTH AND ANGLE 

In the IVUS images we measured the length and angle of each calcification (Table 5-3 

and Figure 5-3 and Figure 5-4). The total length of calcium found was 251 mm (88, 

80 and 83 mm for the LAD, LCX and RCA, respectively), which amounts to 22% of the 

total inspected length. The mean calcification length was 2.5±2.0 mm and the mean 

angle was 42"±29°. 

The calcifications that were not detected on the MSCT images were significantly 

smaller than those seen on both MSCT and IVUS both with respect to calcification 

length (1.5±0.8 vs. 3.7±2.2 mm) and calcification angle (2T±16° vs. 59°±31°). The 

total length of the calcifications missed on MSCT was 75 mm, 30% of the total cal­

cium length. 

The mean length and angle of the calcifications was not significantly different 

when comparing the three coronary arteries. For the LAD, LCX and RCA separately 

we found that the calcifications missed on the MSCT ·,mages were smaller in length 

and angle. The calcifications missed on the MSCT images in the LAD tend to be 

shorter (p=0.053) than those missed in the LCX (1.0±0.6 vs. 1.7±0.8 mm). 

5.3.3 RECEIVER OPERATING CHARACTERISTICS ANALYSIS 

Figure 5-5 shows the ROC-curve for both the length and the angle of the calcifica­

tion. The area under the curve was 0.88 for the length and 0.86 for the angle. By the 

ROC analysis we found that calcifications larger than 2.1 mm in length could be seen 

on MSCT in 85% (sensitivity) of the cases, while those calcifications smaller than 2.1 

mm were missed by MSCT in 83% of the cases (specificity). For the angle we found 

a sensitivity of 81% to detect calcifications with an angle larger than 36° and a spe­

cificity of 79%. 
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FIGURE 5~3: Average calcification length per vessel. The averages are shown for the calcifications 

that were seen on IVUS, but missed on MSCT (light bars) and the calcifications seen on both MSCT 

and IVUS (dark bars). The error bars present the standard error ofthe mean. 
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FIGURE 5·4: Average calcification angle per vessel. The averages are shown for the calcifications 

that were seen on IVUS, but missed on MSCT {light bars) and the calcifications seen on both MSCT 

and IVUS (dark bars). The error bars present the standard error of the mean. 

5.4 DISCUSSION 

This is the first study that compares the ability to detect coronary calcifications in 

64-slice MSCT and IVUS on a cross-sectional basis. We showed that in patients with 

acute coronary syndromes 53% of the calcifications seen on IVUS are not detect­

ed on contrast-enhanced MSCT. The calcifications missed on the MSCT images are 

smaller in length and angle than those seen on both the IVUS and MSCT images. We 

showed that calcifications smaller than 2.1 mm in length or 36' in angle are likely to 

be missed on MSCT. 
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FIGURE 5-5: ROC-curve for the calcium length and calcium angle. Area under the curve is 0.88 for 

the length and 0.86 for the angle. 

Other studies found very good correlation between detection of calcifications on 

IVUS and MSCT images. Leber et al. [Leber-04] reported a sensitivity of 95% to detect 

calcium on MSCT per vessel compared to IVUS. Looking at segment level Schoen ha­

genet al. [Schoenhagen-03] were able to detect calcification with 90% accuracy. Sun et 

al. [Sun-08] reported on the detection of calcifications on contrast enhanced MSCT 

scans in even smaller parts of 10 mm. They only missed 2 out of the 27 calcifica­

tions on MSCT. The discrepancy of our findings with the studies mentioned above 

can be explained by the fact that in these studies the presence of calcifications was 

examined on a vessel or segmental basis, and not on a cross-sectional basis. Assume 

that a segment contains two calcifications, and that both calcifications are detected 

by IVUS and only one calcification is detected by MSCT. If we analyse this on a seg­

mental basis, the segment will be positive both on IVUS and MSCT, although one 

calcification is not detected by MSCT. Following the approach on a cross-sectional 

basis, we would classify one calcification as detected and the other one as missed 

on MSCT. 

The different physics behind the image modalities results in a far better spatial 

and temporal resolution for IVUS than for MSCT. The low spatial resolution of MSCT 

is the main cause of missing the small calcifications, but also the movement during 

imaging and the reconstruction algorithm influences the visibility of small calcifica­

tions. Due to the low temporal resolution of MSCT it is expected that smaller calci­

fications disappear in their surroundings due to the 'smearing effect' of the moving 

calcification. 
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We showed that MSCT can detect calcifications in the LAD better than in the 

other vessels; we missed less calcifications in the LAD and the calcifications that 

were missed were also smaller in size than in the other arteries. It is likely that the 

small calcifications are better distinguished in the LAD because the LAD has the 

least movement of the arteries during the reconstruction phase of the MSCT images 

[Achenbach-OOL thus reducing the 'smearing effect'. 

For this study we choose to use the contrast enhanced MSCT data. To ensure that 

we did not miss calcifications primarily due to the overshadowing of the contrast 

agent in the contrast enhanced scan we checked whether missed calcifications on 

the contrast enhanced scan were visible on the non-contrast enhanced scan. We 

first located the coronary segment on which we saw the calcification on lVUS on 

the contrast enhanced scan. We searched for the same segment in the non-contrast 

enhanced scan. Since accurate matching of the 2 MSCT scans is a real challenge, 

we were only able to approximately locate 24 of the missed calcifications on the 

non-contrast scan. On these positions we only found two times a calcification with 

an intensity just above the threshold of 130 HU. The size and intensity of these 2 

spots was comparable to the noisy spots in the ventricle that reach also 130 HU. This 

implies that the calcifications are missed because of their size and not due to the 

blooming effect of the contrast agent. 

If we would have used a non-contrast enhanced scan in the first place we would 

not have to check for the presence of calcification on the non-contrast enhanced 

scan afterwards. However the non-contrast enhanced scan is not a good alternative 

for our purpose. This scan has a z-spacing of 1.5 mm and it is therefore unlikely that 

we can identify small calcifications we missed on contrast enhanced scan. Besides, 

a cross sectional comparison of the IVUS images and the MSCT images as presented 

in this study would not have been possible since the registration procedure relies on 

identifying side branches, which are not visible on a non-contrast-enhanced scan. 

For this study we choose patients who were have acute myocardial infarction or 

unstable angina. These patients tend to have more small spotty calcifications than 

stable patients [Ehara-04, Motoyama-07]. The percentage of missed calcifications in sta­

ble patients may therefore be lower. 

The clinical consequence of missing calcifications on MSCT on e.g. a volumetric 

calc·1um score can be estimated by comparing the volume of the missed calcification 

to the volume of all calcifications. We miss half the calcifications and the missed 

calcifications are smaller. The length and the arc of the missed calcifications is ap-
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proximately 60% of the average values (Table 5-3). Assuming that the thickness of 

the missed calcifications is also 60% of the average value, the average volume of 

the missed calcifications is approximately 20% of the average volume of all calcifica­

tions. Combined with the observation that half of the calcifications are not detected, 

this implies that approximately 10% of the total volume of the calcifications will be 

missed by MSCT. It is therefore unlikely that the missed small calcifications have a 

large effect on the calcium score, and thus on its use for the prediction for the risk of 

cardiac events. On the other hand, missing the small calcifications might be crucial 

in the local detection of vulnerable plaques, as small and spotty calcifications may 

be related to a vulnerable plaque phenotype [Ehara-04, Vengrenyuk-06]. Since calcifica­

tions smaller than approximately 2 mm cannot be seen on MSCT, improvements in 

the MSCT technology will be necessary to be able to differentiate plaque compo­

nents and the vulnerable plaque on a local scale. 

In summary, half of the calcifications seen on the IVUS images cannot be detected 

on 64-slice MSCT angiography images because of their size. The limited resolution of 

MSCT in combination with the obscuring effects of the contrast in the lumen ham­

pers the identification of small calcifications. 



location of plaque 
rupture in human 

coronary arteries is 
related to shear stress 

The combination of the reconstruction technique in Chap­

ter 3 and computational fiuid dynamics (CFD) allows us to 

determine the wall shear stress (WSS) distribution in vivo 

in patient specific geometries. We applied this method 

to investigate the relationship between the location of 

plaque rupture of non-culprit lesions and WSS in patients 

suffering from an acute myocardial infarction or unstable 

angina. From the 17 ruptures that were identified, 14 

were found at the upstream side of the plaque. For 11 

ruptures the WSS was higher than the average WSS on 

the plaque. Since the plaque composition plays a crucial 

role in the plaque rupture process, WSS might be a force 

that influence plaque composition over time. 

BASED ON: 
AG van der Giessen, JJ Wentzel, H Li, T van Walsum, NR Mollet, J Dijkstra, WJ Niessen, FN van 
de Vosse, PJ de Feyter, AFW van der Steen and FJH Gijsen, "Location of plaque rupture in hu­
man coronary arteries is related to shear stress", Submitted. 
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6.1 INTRODUCTION 

Vulnerable plaques are characterized by the presence of a large lipid pool, which is 

separated from the lumen by a thin fibrous cap, often infiltrated by macro phages 

[Schaar-04]. Rupture of this fibrous cap is generally regarded as one of the main under­

lying causes of cardiovascular events [Fa!k-95]. Rupture occurs when the stresses in 

the cap of the plaque exceed the strength of the cap [Lee-93]. The composition of the 

plaque plays a crucial role in the rupture process: it determines how blood pressure 

is translated into stresses in the wall, and composition also determines the strength 

of the tissue [Loree-94, Holzapfel-05]. 

Several studies showed that rupture occurs more frequently in the upstream re­

gion of the plaque than in the downstream region, indicating that the strength of 

the plaque is lower there [Maehara-02, Fujii-03, Lovett-03, de Weert-09]. In a recent case 

study, Groen et el. applied computational methods based on patient-derived ge­

ometries to determine the blood flow induced shear stress at the location of plaque 

rupture in a human carotid artery [Groen-07]. They found that the rupture location 

was exposed to elevated shear stress, indicating that the plaque was weakest there. 

This observation was confirmed in a larger study in human carotid arteries [Tang-09]. 

Plaque rupture of culprit lesions in relatively straight segments in coronary arteries 

was explored recently, and rupture location was associated with focal elevation of 

shear stress [Fukumoto-08]. 

We recently developed a reconstruction technique that combines multislice com­

puter tomography (MSCT) and intravascular ultrasound (IVUS) to generate three di­

mensional (3D) reconstructions of human coronary arteries [van der Giessen-09]. The 

combination of this reconstruction technique and computational fluid dynamics 

(CFD) allows us to determine the shear stress distribution in vivo. We applied this 

method to investigate the relationship between the location of plaque rupture of 

non-culprit lesions and shear stress in coronary arteries of patients suffering from 

an acute myocardial infarction or unstable angina. 
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6.2 METHODS 

6.2.1 PATIENT POPULATION 

We investigated the main coronary arteries of patients who were treated in our hos­

pital for an acute myocardial infarction or unstable angina. The patients underwent 

a percutaneous coronary intervention and were imaged just prior or after the inter­

vention by means of contrast enhanced MSCT. After stenting of the culprit lesion, at 

least one of the main coronary arteries was interrogated by means of IVUS.In total_ 

the IVUS images from 58 coronary arteries (25 left anterior descending (LAD), 191eft 

circumfiex (LCX) and 14 right coronary arteries (RCA)) from 33 patients were inves­

tigated for the presence of plaque rupture. Our institutional review board approved 

the initial study protocols, and all patients gave written informed consent. 

6.2.2 MSCT IMAGING 

The patient preparation, scan protocol, and image reconstruction procedure for 

the MSCT imaging, have been previously described [Mollet-OS]. Briefiy, MSCT imaging 

was performed with a 64-slice scanner (Sensation64®, Siemens, Germany). A non­

contrast-enhanced scan for calcium scoring was followed by a contrast-enhanced 

scan (lomeron 400°, Bracco, Italy) according to a standardized optimized contrast­

enhanced scanning protocol. A bolus tracking technique was used to synchronize 

the arrival of contrast in the coronary arteries with the initiation of the scan. Images 

were taken during the mid- to end-diastolic phase (350 ms before the R-wave) and 

reconstructed with a temporal window of 165 ms. The in-plane voxel size was ap­

proximately 0.3 mm and the slice thickness 0.4 mm. 

6.2.3 IVUS IMAGING AND ANALYSIS 

Patients received ~ 200 ~g of intracoronary nitroglycerin before the IVUS acquisi­

tion. IVUS images were acquired during a continuous motorized pullback (pullback 

speed of 0.5 mm/s) of the IVUS catheter (Atlantis SR Pro, Boston Scientific, Boston, 

USA or Eagle Eye, Volcano Therapeutics, San Diego, USA). R-top images from the 

IVUS pullback were selected in a post-processing step, using a validated image selec­

tion method [de Winter-04]. The resulting axial distance between the IVUS images was 



84 CHAPTER 6 I PLAQUE RUPTU RE AND wss 

FIGURE 6-1: Example of the f usion procedure to combine IVUS with MSCT data. After matching 

the landmarks in the two data sets, the lumen and wa ll contours of the IVUS images can be posi­

tioned in 3D and combined with the MSCT data (panel A). A close up of the proximal part of the 

data set is shown in panel B, illustrating that the side branch data cannot be imaged with IVUS. 

In this example, a plaque rupture was observed in 4 consecutive IVUS slices (panels 1 to 4). In 

panel 2, it is illustrated how we annotated the lumen and the vessel wall, and how the lumen at 

the location of the rupture was reconstructed. Panel C shows 3D position of the contours from 

the panels 1 to 4. 

approximately 0.5 mm, and the in-plane resolution was 0.15 mm. The gated IVUS 

images were analysed using semi-automatic segmentation software {QIVUS, Medis, 

Leiden, The Netherlands). The contours of the external elastic laminae as well as 

the lumen-wall interface w ere identifi ed following previously published guidelines 

(Mintz-01). Al l t he IVUS images were scrutinized for the presence of cavities, indicating 

the presence of a plaque rupt ure [Maehara-02). Once the cavities were identified, the 

animated IVUS images of t he complete pullback were analysed to establish whether 

t hese cavities were fi lled w ith the speckling appearance of blood to ensure that they 

were in contact with the lumen. If this was the case, th e cavities were labelled as 

a rupture. We only included p laque ruptures t hat were at least one diameter d istal 

or proximal f rom a side branch. In t he gated IVUS images that contained a rupture, 
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a third contour was drawn to represent the lumen as it was before the rupture oc­

curred (Figure 6-1). In the subsequent analysis, these sets of contours were used to 

establish the following: 1) the 3D lumen surface to serve as an input for the CFD, 2) 

the wall thickness to identify plaques, and 3) location of the rupture. 

6.2.4 3D RECONSTRUCTION PROCEDURE 

The 3D geometry of the lumen and the vessel wall of the coronary artery were ob­

tained by a previously described fusion procedure of the MSCT and the IVUS data 

[van der Giessen-09] for which we applied in house developed tools using MeVislab 

(Mevis, Bremen, Germany). Briefly, the lumen centerline was tracked in the con­

trast-enhanced MSCT image following a manual tracking procedure. Subsequently, 

we extracted cross-sectional MSCT images that were perpendicular to this center­

line to compare them to the IVUS images. In both image sets, we identified identi­

cal b'1furcations as fiducial points. These landmarks were used to fuse the two data 

sets in order to identify the 3D position of each IVUS contour. This enabled us to 

determine the 3D position of each contour, and thus the location of the rupture. An 

example of the fusion procedure is illustrated in Figure 6-1. 

6.2.5 SHEAR STRESS COMPUTATION 

The 30 lumen contours were used to generate a surface which was further proc­

essed with VMTK (www.vmtk.org). The main processing step involved adding in- and 

outflow extensions to facilitate prescribing the appropriate boundary conditions. 

The surface was converted into a finite element mesh with the aid of the mesh gen­

erator GAMBIT (Ansys, Inc., Canonsberg, USA). A linear tetrahedral mesh was gener­

ated with mesh refinements near the wall to generate mesh-independent solutions. 

Since we did not obtain flow measurements in the patients, we had to assume a flow 

rate at the inlet. We used the in-vivo measurements from Doriot to obtain the rela­

tionship between diameter and flow in diseased human coronary arteries [Doriot-OOJ. 

Based on these data and the average diameter of the coronary artery under investi­

gation, the average ·mflow for the coronary arteries was 42±27 ml/min. We imposed 

the fiow at the inlet using a parabolic velocity profile. No-slip boundary conditions at 

the wall and traction-free outlet boundary conditions were used. A non-Newtonian 

viscosity model was applied to model the behaviour of blood [Gijsen-99]. The Navi­

er-Stokes equations were solved with FIDAP (Ansys, Inc., Canonsberg, USA). using 

standard numerical techniques. 
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6.2.6 DATA ANALYSIS AND STATISTICS 

A segment is defined as the part of the coronary artery between two side branches 

where the plaque rupture was found. A segment may contain more than one plaque: 

whenever we refer to plaque, we mean the plaque with the rupture. All values are 

reported as average value± standard deviation. 

Rupture location is qualitatively assessed by mapping the rupture location on a 

plaque template. In this template, we distinguish 5 different plaque regions: the 

upstream, mid-cap and downstream region, and the shoulder regions. For each rup­

ture location, we visually assessed in which plaque region it occurred. 

For the quantitative assessment, all the parameters that were determined were 

mapped on the luminal surface and subsequently analysed (Figure 6-2). The dis­

tance between lumen and vessel wall interface was used to determine wall thick­

ness. At those locations where wall thickness was less than 0.5 mm, we labelled 

the arterial wall as healthy, and where wall thickness exceeded 0.5 mm we called 

it plaque [Ciarijs-97]. We determined the average wall thickness and average shear 

stress for the complete segment, for the healthy part, for the plaque region and for 

the location of rupture. 

At the minimal lumen area, we determined area stenosis (area stenosis= (lumen 

area at the reference cross section -lumen area)/lumen area at the reference cross 

section * 100%) and remodeling-index (remodeling-index= vessel area -vessel at 

the reference cross section)/vessel area at the reference cross section* 100%). The 

reference cross section was defined as the cross section with a maximum lumen 

area in the segment. Area stenosis and remodeling-index were determined for the 

complete segment, plaque region and rupture location. 

Whether rupture occurred more frequently upstream than downstream of the 

minimal lumen area of the plaque was tested with a x2-test. To compare average 

values, a paired t-test was applied. To compare the shear stress in the healthy part 

of the segment to the shear stress over the plaque and the rupture location, ratios 

were determined. To obtain a normal d·lstribution of the ratios, we applied a log 

transformation, and the differences between the ratios were tested with a paired 

t-test. P-values below 0.05 were considered statistically significant. All statistical 

analyses were carried out using Matlab (The MatWorks, Natick, USA). 
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FIGURE 6-2: After the 3D reconstruction procedure and the computational fluid dynamics, we 

have wall thickness (left panel) and shear stress data (right panel) available for each point along 

the lumen-wall interface. Furthermore, from the wall thkkness map, we can determine the 

plaque. The location of the rupture was derived from the IV US contours. 
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FIGURE 6-3: The location of each plaque rupture is mapped onto a plaque template. The plaque 

template was divided into the following regions; upstream, midcap, downstream and shoulder 

region. Furthermore, we determined whether the rupture location was proximal or distal from 

the minimum lumen area of the plaque. Each circle stands for one rupture, and the plus or minus 

indicates whether the wall shear stress (WSS) at the rupture location was higher(+) or lower(-) 

than the average WSS over the plaque. 



88 CHAPTER 6 I PLAQUE RUPTURE AND WSS 

6.3 RESULTS 

6.3.1 GENERAL 

In total, 17 ruptures were identified in 13 coronary arteries from 11 patients. The 

ruptures were found in the LAD (n=8), in the LCX (n=6) and in the RCA (n=3). 

The segments were mildly to moderately diseased. The lumen area of the seg­

ments was 7 .02±3.00 mm 2, corresponding to a diameter of 2.99 mm. Some of 

the segments contained lumen narrowing plaques, resulting in an area stenosis of 

49±16 %. The vessel area of the segments was 13.2±5.4 mm 2 and they did not show 

positive remodeling: the remodeling index was -9±11 %. The wall thickness ·m the 

segments was slightly above the threshold value for the plaque: 0.57±0.15 mm. The 

average shear stress in the segments was 0.96±0.20 Pa. 

In contrast to the segments, the plaques showed a positive remodeling-index 

(8±8%, p<0.05). The area stenosis of the plaques was 41±18 %. The wall thickness of 

the plaques was 0.88±0.28 mm, which is significantly larger the average wall thick­

ness in the segments. The average shear stress over the plaques was 1.01±0.35 Pa. 

6.3.2 RUPTURE LOCATION VERSUS PLAQUE GEOMETRY 

The qualitative assessment of the rupture locations is shown in Figure 6-3. The rup­

tures were most frequently observed in upstream of the minimal lumen area of 

the plaque (n=14). In the shoulder region, 8 ruptures were found, 3 in the mid-cap 

region and 3 in the upstream region of the plaque. Only 3 ruptures were observed 

downstream of the minimal lumen area of the plaque, all of them in the shoulder 

region {upstream versus downstream, p<O.Ol). No plaque ruptures were present in 

the downstream region. 

The quantitative data confirm these observations. The average distance from the 

rupture to the location of the minimal lumen area was 2.7±3.7 mm proximal. The 

wall thickness at the location of the rupture was 0. 76±0.24 mm, which was signifi­

cantly larger than the wall thickness of the healthy part of the segment (0.29±0.05 

mm, p<0.01) but also significantly lower than the wall th.1ckness of the plaque 
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FIGURE 6-4: Ratio of shear stress in the healthy part of the segment, the plaque and the ulcer 

location. 

(0.88±0.28 mm, p<O.OS). The area stenosis at the rupture location was significantly 

lower than the area stenosis of the plaque (29±19% vs 41±18%, p<0.01). The av­

erage remodeling-index at the location of plaque rupture did not differ from the 

remodeling-index of the plaque (9±8%). 

6.3.3 RUPTURE LOCATION VERSUS SHEAR STRESS 

The shear stress over the plaque was higher than the shear stress in the healthy 

part in the segment for 11 out of 17 plaques. The rupture location was subjected 

to higher shear stress than the healthy part of the segment in 15 out of 17 cases. In 

total, 13 out of 17 rupture locations were subjected to shear stress levels that were 

higher than the shear stress over the plaque. The shear stress in the healthy part 

of the segment was 0.82±0.20 Pa, the shear stress over the plaque was 1.01±0.35 

Pa and the shear stress at the rupture location was 1.19±0.60 Pa. The results are 

summarized in Figure 6-4, where the shear stress over the plaque and the rupture 

was divided by the shear stress in healthy part of the segment: shear stress at the 

rupture location is significantly higher compared to the shear stress in the healthy 

part of the segment (+56%, p<O.OS) and significantly higher than the shear stress 

over the plaque (+ 14%, p<O.OS). 



90 CHAPTER 6 I PLAQUE RUPTURE AND WSS 

6.4 DISCUSSION 

The location of plaque rupture of non-culprit lesions in human coronary arteries was 

investigated with a recently developed 30 reconstruction technique based on the 

fusion of MSCT and IVUS. This technique was combined with computational fluid dy­

namics to study the relationship between the location of plaque rupture and blood 

flow induced shear stress. The main findings of this study are that plaque rupture 

was predominantly found in the shoulder region, upstream of the minimum luminal 

area of the plaque. Moreover, the shear stress at the rupture location was higher 

than the average shear stress the plaque was exposed to. 

Other studies also observed that plaque rupture was more frequent in the proxi­

mal region of the plaque, both in carotid arteries [deWeert-09, Tang-09], and in coronary 

arteries [Maehara-02, Fujii-03, Fukumoto-08]. Rupture of a plaque is determined by local 

blood pressure and plaque composition. The plaques in our study are generally not 

severely lumen narrowing, implying that blood pressure in proximal region of the 

plaque will be almost equal to the blood pressure in the distal region. The preva­

lence of rupture in the proximal region of the plaque must therefore be a reflection 

of the difference in plaque composition. Several studies indicate that plaque com­

position indeed differs with respect to location. In human carotid arteries it was ob­

served that macrophages dominate the upstream part of the plaque, while smooth 

muscle cells -which are generally considered to be a stiff wall component, are more 

predominant downstream [Dirksen-98]. In a previous study, we demonstrated that hu­

man coronary plaques are stiffer in the downstream region of a plaque [Gijsen-08]. 

The results of this study indicate that also for the non-culprit coronary plaques, com· 

position upstream of the minimal lumen area is different from downstream. 

We also showed that the shear stress at the rupture location is higher than the 

average shear stress the plaque is exposed to. This is in line with previous studies 

relating shear stress to rupture location in human carotid arteries [Groen-07, Tang-09]. 

The recent results from Fukumoto et al. qualitatively confirmed this in human coro­

nary arteries [Fukumoto-08]. They showed that rupture location in culprit coronary 

lesions is associated with focal elevated shear stress. The culprit lesions had an aver­

age area stenosis of almost 79.9%, which is much higher than non-culprit lesions in 

our study (41%), indicating that the non-culprit plaques in our study represent an 
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earlier phase of atherosclerosis. Based on these observations, one might speculate 

that shear stress modulates plaque composition in various phases in atherosclerosis 

such that high shear stress enhances vulnerability of lumen intruding plaques in 

both carotid and coronary arteries. 

The endothelium might be an important factor that regulates the influence of 

shear stress on plaque composition. The endothelium forms the inner lining of our 

cardiovascular system, and it is an important barrier between blood and the vessel 

wall. The endothelium regulates various transport processes; it expresses multiple 

signalling molecules at its surface and secretes signalling agents into the blood and 

the vessel wall, all depending on its function [Davies-95]. Blood flow induced shear 

stress strongly influences endothelial function IM,Iek-99], and it is well established 

that it is one of the key factors localizing early atherosclerosis [Siager-05]. Recently, 

it was hypothesized that shear stress might also be involved in modulating plaque 

composition in more advanced atherosclerosis [Siager-05, Chatzizisis-07]. In coronary 

plaques, we found evidence for this hypothesis: coronary plaque regions exposed to 

elevated shear stress levels were significantly softer than plaque regions exposed to 

lower shear stress [Gijsen-08]. 

The mechanisms through which shear stress might affect plaque composition in 

more advanced atherosclerosis are largely unknown. Various pathways were iden­

tified [Siager-05], including nitric oxide mediated smooth muscle cell apoptosis and 

plasmin induced metalloproteinase activity, along which high shear stress could 

influence plaque composition. To establish if these shear stress related pathways 

modulate plaque composition, animal experiments in which shear stress can be al­

tered- e.g. in atherosclerotic m·lce models [Cheng-06]- are needed. The identification 

of these mechanisms is also important for the clinical implication of this study: if the 

dominant shear stress related mechanism that induces plaque vulnerability can be 

established, pharmaceutical intervention to block the responsible pathways could 

be explored. 

We studied only a limited number of plaque ruptures from patients that suffered 

from an acute myocardial infarction or unstable angina. Although the results of this 

study support previously reported data on the location of plaque rupture with re­

spect to location and shear stress [Groen-07, Fukumoto-08, Tang-09], additional in vivo 

studies in patients are required to firmly establish quantitative relationships. To 

compute the shear stress, the lumen area of the coronary artery had to be recon­

structed manually to estimate its shape before rupture. Since the ruptures were rei-
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atively small, the lumen contours could be extrapolated readily. In a previous study, 

it was demonstrated that the continuity of the lumen contour was not compromised 

[Groen-07], and we therefore expect that errors in reconstructing the lumen only mar­

ginally affects our shear stress computations. 

In conclusion, evidence is mounting that plaque rupture is localized in the up­

stream region of the plaque. In non culprit lesions, the location of plaque rupture is 

predominantly present in the shoulder region of the plaque, and more specifically, 

in those regions that are exposed to elevated shear stress levels. This implies that 

shear stress might influence plaque composition, and the responsible shear stress 

related mechanisms might form an interesting target for therapeutic interventions. 



3D distribution of lipid 

rich plaque as assessed 

by fusion of in-vivo 

NIR-IVUS and MSCT 

This chapter shows that not only lumen an wall contours 

from gray-scale intravascular ultrasound (IVUS) can be re­

constructed into 3D with the aid of multi-slice computed 

tomography, but also wall information derived from oth­

er catheter-based imaging modalities. New IVUS-related 

technologies, such as virtual histology and palpography, 

add information about the components of the arterial 

waiL In this case-report a catheter with the combination 

of IVUS and near infrared spectroscopy (NIR) was used to 

image the coronary wall. NIR can give the probability of 

the presence of a lipid core in the wall. This wall informa­

tion can be reconstructed into 3D and related to the wall 

shear stress. 

BASED ON: 
JJ Wentzel, AG van der Giessen, S Garg, C Schultz, F Mastik, FJH Gijsen, PW Serruys, AFW van 
der Steen and E Regar, "3D distribution of lipid rich plaque in human coronary artery as as­
sessed by fusion of in-vivo NIR-IVUS and MSCT'', Submitted. 
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7.1 INTRODUCTION 

There is ample evidence that the development of acute coronary syndrome is linked 

to the presence of lipid-core containing, necrotic plaques. However, there is little 

information on the natural history of lipid-core plaques in humans. A close link be­

tween structural changes of atherosclerotic plaques over time to the local shear 

stress conditions in the arterial system has been reported [Siager-os]. The current par­

adigm postulates that low shear stress is a necessary condition for plaque accumula­

tion. However, once lumen narrowing occurs because of plaque, local shear stress 

increases [Wentzel-03]. While low shear stress is recognized for its pro-atherogenic 

impact on the endothelium [Siagec-OSI, the role of (low or high) shear stress in plaque 

composition, destabilization and rupture is less clear. We describe an approach that 

allows studying the interaction of lipid-core plaque accumulation and local shear 

stress in a correct anatomical 3-dimensional (3D) reconstruction of coronary arter"1es 

in living patients. 

7.2 METHODS 

A 61-year-old male with a history of myocardial infarction and stenting of the right 

coronary artery underwent coronary catheterization for recurrent angina. A prior 

128-slice dual source computed tomography scan (MSCT, Somaton Definition Flash®, 

Siemens, Germany), had suggested a lumen narrowing in the anterior descending 

artery (LAD) (Figure 7-1A), which was subsequently proven to be physiologically 

significant by pressure wire studies. In order to identify the presence of lipid-core 

plaque, a pullback with a recently developed combination catheter with intravascu­

lar ultrasound (IVUS) and near infrared spectroscopy (NIR) (lnfraReDx, Burlington, 

MA, USA) was performed (pullback speed 0.5 mm/s, acquiring 16 frames/s). NIR 

data were displayed as color maps indicating the probability of the presence of lipid­

core by NIR as described previously [Gardner-08]. 

Although the combination catheter allows simultaneous display of the IVUS de­

rived 2D geometry and presence of lipid-core plaque in vivo (Figure 7-1B), it was up 

till now not feasible to visualize that information in anatomically correct 3D space, 

which is crucial to understand the relationship with other pathophysiologic param­

eters, such as shear stress. Recently, we developed a technique to produce 3D cor­

onary reconstructions by fusion of MSCT and IVUS information [van der Giessen-09]. 



RESULTS 95 

We adapted this approach for the combined NIR-IVUS data to reconstruct the lipid 

core plaque distribution in three dimensions. Moreover, in the lumen of this 30 re­

construction the local shear stress were assessed by computational fluid dynamics 

[Wentzel-03]. 

7.3 RESULTS 

In our patient, a complex plaque and shear stress distribution pattern is vis.1ble 

(Figure 7-lC, D). Confiuent lipid-core plaques are exclusively located on the inner 

curvature of the artery towards the myocardium (Figure 7-lC), which are generally 

considered low shear stress regions. In the region of maximum lipid-core plaque 

accumulation, lipid core plaque extents over roughly 75% of the artery's circumfer­

ence (Figure 7-1, asterix). At this site and at some other locations, the local shear 

stress as computed is relatively high (Figure 7-lD). This can be explained by the fact 

that there is advanced disease with marked thickening of the vessel wall, which re­

sulted in lumen narrowing. 

7.4 CONCLUSION 

Our observation illustrates that the combination of NIR, IVUS and MSCT data can be 

used to study the relationship between shear stress and lipid core distribution in the 

arteries of patients undergoing catheterization, which is of high potential for longi­

tudinal studies on plaque modulation. Moreover, hypotheses on the natural history 

of lipid core plaques can be tested in patients in-vivo. 



96 CHAPTER 7 I 3D LIPID DISTRIBUTION WITH NIR-IVUS AND CT 

B NJR-IVUS c D Shear stress 

high 

shear stress 
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FIGURE 7-1: 3D reconstruction of the spatial, in-vivo distribution of lipid-core plaque and local 

shear stresses in the left anterior descending artery (LAD) obtained by fusion of multislice CT 

(MSCT) and cross sectional images as derived from a combination catheter visualizing near infra 

red (NJR) and intravascular ultrasound (IVUS) information simultaneously. A) 3D rendering of the 

MSCT, with a magnified image of the proximal part of the LAD. Overlaid on this magnified image 

(lower panel) are the conto urs of the lumen (pink) and media (blue) as derived by NIR-IVUS. 

B) Cross sectional coronary images obtained by the NIR-IVUS catheter. The NIR data for each 

cross-section are displayed in a circle (color map) around the IVUS image representing t he prob­

ability for lipid core plaque in the vessel wall (yellow: high probability). C) 3D reconstruction of 

the coronary, on which the NIR lipid map is superimposed. The left panel shows the epicardial 

vessel surface, the right panel shows the endoluminal surface of the half of the artery closest to 

the myocardium in a cut-away view. Note that the vessel wall (brown) is markedly thickened. D) 

Corresponding shear stress distribution on the endoluminal vessel wall surface. The panel shows 

a cut-away view of the half of the artery closest to the myocardium. Dark blue indicates low shear 

stress and light blue high shear stress. 



The influence of 
boundary conditions 

on simulated shear 
stress in coronary trees 

The side-branches are predilection sites of atheroscle­

rosis and therefore interesting to study the relation 

between WSS and atherosclerosis. In contrast to IVUS, 

CT has the capability of imaging all the larger coronary 

arteries simultaneously, thus not only the main branch, 

but also the large side-branches. Calculating the WSS in 

geometries with side-branches requires prescription of 

boundary condition at the side-branch locations to di­

vide the flow over the different branches. Since CT does 

not come with hemodynamic measures estimation have 

to be made for this outflow conditions. In this two mod­

els that estimate the fiow division based on the available 

geometry are compared with respect to the influence on 

the WSS distribution. The choice of model infiuenced ab­

solute WSS; however, relative WSS measures were hardly 

infiuenced by the choice of the model. 

BASED ON: 
AG van der Giessen, HC Groen, JJ Wentzel, PA Doriot, PA Dorsaz, AFW van der Steen, FN van 
de Vosse and FJH Gijsen, "On the choice of outflow boundary conditions and its influence on 
wall shear stress distribution in patients specific coronary trees", in preparation for submis­
sion. 
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8.1 INTRODUCTION 

Flow induced wall shear stress (WSS) is an important parameter in the localization 

of early atherosclerosis [Giddens-93, Vanderlaan-04]. It has been demonstrated that sites 

with low WSS, such as the inner curve of arteries and regions close to bifurcations 

have a more atherogenic phenotype [Malek-99, Jeremias-oo, Cunningham-05]. It is hypoth­

esized that WSS also influences the development of atherosclerosis in the more ad­

vanced stages of the disease [Wentzel-03, Slager-05, Chatzizisis-08]. WSS is thus an impor­

tant parameter to study atherosclerosis research. 

Computational fluid dynamics (CFD) is a frequently applied technique to assess 

the local time-averaged WSS distribution in human coronary [Siager-00]. This tech­

nique requires information of the 30 lumen geometry of the vessel under study, 

preferably combined with hemodynamic data, such as pressure and flow. This data 

is necessary for the CFD simulations to prescribe appropriate boundary conditions at 

the inlet of the artery and atthe outflow of the side-branches. To obtain 3D coronary 

geometries and hemodynamic data most studies rely on invasive catheter based im­

aging techniques, such as intravascular ultrasound (IVUS) [Krams-97, Wentzel-03]. These 

techniques have limited possibilities to assess the geometry in and around bifurca­

tion regions [Gijsen-07] and are less suitable for repeated WSS assessment over time 

because of their invasive nature. 

Multi-slice computed tomography (MSCT) coronary angiography is a very promis­

ing non-invasive imaging technique to visualize the coronary artery including the 

bifurcations. Spatial resolution is the best among non-invasive imaging techniques 

and the radiation dose is now within limits such that serial imaging over time is ac­

ceptable. Since MSCT is not limited to imaging the main arteries only, as IVUS is, 

it opens the possibility to simulate WSS near bifurcations. However MSCT cannot 

provide any flow or pressure information, which is needed for the CFD simulations. 

Studies on WSS in human coronary arteries are regularly performed without pa­

tient-derived flow measurements [Krams-97, soulis-06, Frauenfelder-07]. In these studies 

an average WSS at the inlet segment was assumed based on literature values and 

flow was then determined based on the diameter of the inlet segment. An other 

approach that is regularly applied is performing WSS simulations with a wide range 

of Reynolds numbers [Perktold-91, He-96, Joshi-04], leading to a wide variety of average 

WSS values at the inlet. 
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Studies that calculated time-averaged WSS in coronary geometries including side­

branches prescribed stress-free outflow in the side-branches [Boutsianis-04] or applied 

Murray's Law [Farmakis-04, Joshi-04] to determine the flow ratio. According to Murray's 

Law the flow ratio over two branches equals the ratio over the diameters cubed 

[Murray-26]: 

EQUATION 8-1 

,with q the flow and d the diameter of the branches. 

Murray's Law is based on the minimization of work, but only includes the work to 

overcome the resistance of viscous drag and the metabolic work to maintain blood 

volume and the vessel tissue. This law also relies on several assumptions with re­

spect to geometry and flow profile [Sherman-81]. Under these assumptions not only 

the flow-diameter relation Equation 8-1 holds, but also the relationship that the di­

ameter of the mother branch cubed is equal to the summation of the diameter of 

both daughter branches cubed: 

EQUATION 8-2 

,with dM, dw d
02 

the diameters of the mother and the two daughter branches re­

spectively. Although one can assume that Murray's Law is a better assumption than 

stress-free outlet conditions, it is debatable how well this law applies to healthy as 

welt as to diseased coronary arteries. Studies that measured the diameters in the 

coronary tree [Kassab-95, Finet-08], but also studies that modeled the coronary tree ge­

ometry [VanBavel-92, Mittal-05, Huo-07] and related flow and diameter, report different, 

and constantly lower, power values than the cubed power derived by Murray's Law. 

The relation between diameter and flow in human coronary arteries is not yet 

established based on in-vivo measurements. In-vivo experimental data of flow and 

diameter of the human coronary arteries is available, but to our best knowledge, the 

combination of diameter and flow in both mother and side-branches has only been 

reported once, by Doriot et at. [Doriot-oo]. With these measurements the relationship 

between diameter and flow, and between diameter ratio and flow ratio in the coro­

nary arteries can be established. 
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The aim of our study is twofold; In the first place we will establish the relation 

between flow and diameter, and diameter ratio and flow ratio in human coronary 

bifurcations by analyzing the in-vivo flow and diameter measurements performed 

by Doriot et al.; These relations will be used as infiow and outflow boundary condi­

tions. Our second aim is to demonstrate the impact of prescribing these boundary 

conditions versus boundary conditions obtained from Murray's Law on the WSS dis­

tribution in patient-specific coronary bifurcations. 

8.2 METHODS 

8.2.1 DERIVATION OF FLOW-DIAMETER RELATION 

MEASUREMENTS 

In order to derive the flow-diameter relation Doriot et al. [Doriot-00] kindly provided 

us with the diameter and flow information of human coronary arteries. The meas­

urements are in detail described by Doriot et al. We will give a summary: In 21 pa­

tients that were undergoing cardiac catheterization for various cardiac diseases, 

blood flow velocity measurements were performed in 36 angiographically normal 

bifurcations. tn these bifurcations the peak velocity over 2 cardiac cycles was meas­

ured and averaged in the mother branch M, as well as in the larger daughter branch 

Dl and the smaller daughter branch 02. The corresponding cross-sectional areas 

were determined by 3D analysis of bi-plane angiography [Guggenheim-91]. From this 

data the flow and diameter for each branch was calculated assuming a parabolic 

fiow profile and circular vessel area. The 18 bifurcations with the best imaging qual­

ity and flow measurements were selected for further analysis. 

ANALYSIS 

Based on the data provided by Doriot et al., two fits were performed. With the first 

fit the relationship between diameter and fiow was obtained. If Murray's Law holds, 

or similarly if a Poiseuille flow is assumed with constant viscosity and equal WSS 

in all branches, then the fiow is proportional to the cubed diameter. Therefore the 

fiow q [m 3/s] and diameter d [m] of the 54 (18 times 3) branches was fitted to the 

equation 

q =k·d' EQUATION 8-3 
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by non-linear regression (Matlab 7.1, The MathWorks Inc.), with x [-] as the un­

known power term and k [m'·•fs] as constant. 

A second fitting procedure was performed to obtain the relationship between the 

diameter ratio of the daughter branches and the fiow ratio through these branch­

es. The fiow ratio and the diameter ratio of the 18 bifurcations were fitted to the 

equation: 

EQUATION 8-4 

with the x [-] as the unknown power term. This relation wHI be referred to as 

Doriot's Fit. Under the same assumptions as for the first fit, this relationship would 

result in equation 2, with 3 as the value for the unknown power term. 

For both regressions the R', and the 95% confidence interval (CI) of the estimated 

parameters were determined. 

c 

B 

FIGURE 8-1: Panel A shows the segmentation of the coronary arteries in the original CT scan. The 

complete segmented tree can be seen in panel B. This geometry is clipped (panel C), and the in,­

and outflow tracts are extended with circular tubes to aid the WSS calculations. The geometry is 

divided in segments (panel D). 
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8.2.2 WSS CALCULATIONS IN CORONARY BIFURCATIONS 

IMAGE ACQUISITION 

We retrospectively selected coronary CT angiography datasets of patients that were 

scanned with a 64-slice CT scanner (Sensation64®, Siemens, Germany) in our insti­

tution. A detailed description of the patient preparation, scan protocol and image 

reconstruction has previously been described [Mollet-05]. Briefly, a contrast enhanced 

scan (lomeron 4QQ®, Bra co, Italy) was performed according to a standardized opti­

mized contrast-enhanced scanning protocol. The initiation of the scan was synchro­

nized to the arrival of contrast in the coronary arteries by a bolus-tracking tech­

nique. The images taken during the mid-to-end diastolic phase (350 ms prior to the 

R-wave) were reconstructed with a temporal window of 165 ms. This resulted in 

datasets with an almost uniformly sized voxelspace of 0.35 by 0.35 by 0.4 mm. 

SEGMENTATION AND PREPROCESSING 

We selected 10 coronary datasets that were judged as good quality CT scans (i.e. no 

moving artifacts, good contrast enhancement) by an experienced radiologist. The 

lumen of the coronary tree was segmented with dedicated CT image processing 

software (Leonardo, Siemens, Germany) Siemens. The segmentation was based on 

intensity thresholds resulting in a binary voxelspace (see Figure 8-lA and B). We se­

lected the three best segmented right coronary artery trees and three left coronary 

artery trees, based on the completeness of the main artery and side branches. These 

binary coronary trees were converted into a surface and smoothed with the aid 

of imaging processing software (Mevislab, Mevis, Bremen, Germany). The surfaces 

were exported to the Vascular Modeling Toolkit (www.vmtk.org) to prepare the ge­

ometries for computation a I fiuid dynamics (CFD). To reduce computational cost the 

coronary tree geometries were clipped at the side-branches such that only the main 

artery and a short part of the side-branches remained. To allow for prescription of 

in and outflow conditions, the inflow tract and all outflow tracts were extended 

with circulartubes in the direction of the centerline (Figure 8-lC). Subsequently the 

coronary tree geometry was divided into segments (see Figure 8-10) [Antiga-04] and 

the average diameter of each segment and side-branch was calculated. 
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FIGURE 8-2: Left: For the analysis of the WSS the side-branches are removed from the geometry. 
Besides the segments (S

1
-S,), bifurcation regions (B,-B,) and non-bifurcation regions (NB,-NB,) are 

defined. Right: The same regions are now depicted in the 2D WSS map of t he same artery. Non­
bifurcation region NB

1 
does not exist because the inlet was too short 

COMPUTATIONAL FLU ID DYNAMICS 

A volume mesh was created from the geometries and discretized into li near tetra­

hedral volume elements with Gambit 2.4.6 (Ansys, Inc., USA). The number of ele­

ments in the geometries varied between 0.6-2.5 million and the number of nodal 

points between 107-436 t housand. For the CFD calculations the blood was modeled 

as an incompressible non-Newtonian fluid with a density of 1050 kg·m·3 (Carreau 

model with time constant = 25 s, power law index= 0.25, zero-viscosity= 0.25 kg/m­

s and infin ity-viscosity=0.0035 kg/m-s) [Seo-05]. The arterial wall was assumed to be 

rigid and with no-slip conditions at t he wall. At the inlet and all outlets except for 
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1, a parabolic velocity profile was prescribed. At the remaining, most distal, outflow 

tract, a traction free boundary condition was applied. The solution was considered 

converged when the relative error in both the pressure and the velocities in all direc­

tions were lower than 10·3 (FIDAP 8.7.4, Fluent Inc. Products, ANSYS,Inc. USA). 

INFLOW AND OUTFLOW CONDITIONS 

The maximum velocity in the parabolic inlet profile was computed from the aver­

aged diameter of the infiow segment and Doriot's Fit (Equation 8-3). Two different 

models were applied to determine the fiow ratio through the daughter branches: 

1) Murray's Law (Equation 8-1) and 2) Doriot's Fit, the experimentally derived fiow­

diameter ratio (Equation 8-4) based on the data of Dor"1ot et al. The averaged diam­

eters of the two daughter branches at each bifurcation served as input for these 

equations. Once the fiow ratio was known, the fiow through the side-branch could 

be calculated and prescribed to the outflow tract by a parabolic velocity profile. Thus 

for each geometry two WSS distributions were obtained: one derived using Murray's 

Law (WSSM) and one derived using Doriot's Fit as outflow condition model (WSS
0

). 

8.2.3 ANALYSIS 

NON-BIFURCATION REGIONS 

For the analysis different regions were defined (see Figure 8-2). We defined seg­

ments S
1
,
2 

... ,n+l' with n number of side-branches. 5
1 

starts at the inflow, until the first 

side branch, s2,3 ... ,n are between side-branches and segment sntl starts from the last 

side branch until the outflow tract. Non-bifurcation regions NB 1,2 ... ,n+l are that part 

of a segment S
1
,L,n+l minus one time its diameter from the downstream part (for 

NB
1
-NB) and minus one time its diameter from the upstream part (for NB

2
-NBn+

1
) 

(Figure 8-2). If the segment was too small for this operation, than this segment had 

no non-bifurcation region. We compared the WSSM and WSS
0 

in the non-bifurcation 

regions and related this to the prescribed fiow through these regions. 

BIFURCATION REGIONS 

The segment regions not included in the set of non-bifurcation regions were defined 

as the bifurcations regions B
1

,
2 

... ,n (Figure 8-2). We compared the size and location 

of the low WSS areas of WSSM and WSS
0 

in the bifurcation regions. We defined 

two WSS cut-off values for each bifurcation region. The first cut-off value (COM) is 



RESULTS 105 

determined by taking the 25 percentile WSS value of the WSSM. The second cut-off 

value (CO,) the 25 percentile WSS value determined from the WSS
0

. Areas with a 

WSS lower than the cut-off value are called the low WSS area (LWA). From the WSSM 

we determined the location and area of the LWA's based on the COM (LWAMM). For 

the WSS, we determined the area and location of the LWI':s both with COM (LWA,M) 

and C0
0 

{LWA
00

). First we compared the LWAMM versus the LWA
0

M on area size and 

overlap. Next we investigated the same parameters for the LWAMM versus the LWA
00

• 

Linear regression and Bland-Altman analysis and were used to compare the area 

size. The overlap of the areas was defined as: 

2·ILWAMM nLWAoMI 
overlap

0
M = ·100% 

LWAMM ·LWADM 
EQUATION 8-5 

and similar for the overlap
00 

between LWAMM and LWA
00

. The overlap percentages 

are compared with a Wilcoxon Rank test (p<0.05 was considered significant). 

8.3 RESULTS 

8.3.1 FLOW-DIAMETER RELATION 

Based on the data provided by Doriot et al. [Doriot-OO] we derived two relations; be­

tween the diameter oft he coronary branch and the flow through it and between the 

diameter ratio of two daughter branches and the flow ratio through the branches. 

The relation between fiow and diameter fitted (Equation 8-3) very well (R 2=0.87), 

with the constant k of 1.43 m' 45/s (95% Cl: -0.81 to 3.69) and the power term x of 

2.55 (95% Cl: 2.27 to 2.83) resulting in Equation 8-6. Figure 8-3A shows the meas­

ured data with the fit. 

EQUATION 8-6 

The results of the non-linear regression for flow ratio and diameter ratio (Equa­

tion 8-4) are depicted in Figure 8-38. The power term x was 2.27 (95% Cl: 1.58 to 

2.96) resulting in Equation 8-7. The fit produced an R' of 0. 70. 

~~(d" Jw 
q[)l d01 

EQUATION 8-7 
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FIGURE 8-3: Results of the fitting procedures on data of Doriot et al. On the left (panel A) the 

relationship between the flow and the diameter of the artery is fitted (Equation 8-3). On the 

right (panel B) the relationship between the flow ratio and diameter ratio of the smaller daughter 

branch 02 and larger daughter branch Dl is fitted as described by Equation 8-4. 

1. 2. 3. 

0 

:s 

4. S. 

FIGURE 8-4: The six geometries in which the WSS for different outflow condition models are cal­

culated. Geometry 1-3 are left anterior descending coronary arteries (LAD's) and 4-6 are right 

coronary arteries (RCA's). 
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8.3.2 WSS CALCULATIONS 

For six coronary arteries from 5 patients, 3 left anterior descending arteries (LAD) 

and 3 right coronary arteries (RCA), we calculated the WSS with the two different 

outflow conditions models, one based on Murray's Law (Equation 8-2), WSSM, and 

the other based on the derived fiow-diameter ratio of Doriot (Equation 8-7), WSS
0

• 

The geometries of these arteries are depicted in Figure 8-4. Of the 6 arteries, 4 had 

TABLE 8-1: Geometry characteristics and boundary conditions 

Diameter {mm) Flow (m!/min) 

Murray's Law Doriot's Fit 

Geometry Bifurcation M 01 02 M 02 M 02 

1 1 3.45 3.77 3.30 45.0 18.0 45.0 19.1 

2 3.77 3.32 2.59 27.0 8.7 25.9 9.4 

3 3.32 2.37 2.09 18.3 7.S 16.5 7.1 

2 1 2.81 2.83 2.11 26.7 7.8 26.7 9.0 

2 2.83 2.09 2.03 18.9 9.1 17.7 8.6 

3 1 4.73 5.07 3.53 101.0 25.4 101.0 30.8 

1a 5.07 3.58 3.13 75.6 30.2 70.2 29.7 

2 3.58 2.44 2.36 45.4 21.5 40.5 19.4 

3 2.44 2.44 2.36 23.8 11.3 21.0 10.1 

4 1 5.20 3.98 1.30 128.5 4.3 128.5 9.3 

2 3.98 2.90 2.50 124.2 48.3 119.2 49.5 

3 2.90 1.86 1.56 75.9 28.1 41.8 27.9 

5 1 4.72 3.68 1.87 100.4 11.6 100.4 17.7 

2 3.68 3.37 2.58 88.8 27.5 82.7 29.1 

3 3.37 2.49 1.97 61.3 20.3 53.5 19.8 

6 1 4.77 5.45 2.56 103.4 9.7 103.4 15.7 

2 5.45 4.85 2.52 93.8 11.5 87.7 16.2 

3 4.85 5.19 1.84 82.2 3.5 71.5 6.2 

4 5.19 4.67 3.35 78.7 21.2 65.3 20.9 

5 4.67 4.52 1.66 57.5 2.7 44.4 4.1 

- M is the mother branch, Dl is daughter branch 1, D2 is daughter branch 2; 
-Daughter 2 is always the smaller daughter branch; 
-The prescribed fiow in the CFD calculations are underlined; 
-Geometry 3, Bifurcation l.a is part of a trifurcation. For the analysis it is treated as 1 bifurcation 
region together with bifurcation 1. 
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3 side-branches, one artery had 4 and one artery had 5 side-branches. The LAD 

geometry with 4 side-branches had two side-branches so close to each other that 

they were considered as a single bifurcation region in the analysis. The averaged 

diameters and the prescribed flow through the segments and side-branches are 

summarized in Table 8-1. As can be expected based on the results of the Doriot's 

Fit, the total flow through the side-branches was higher when prescribing outflow 

conditions according to Doriot's Fit versus Murray's Law, resulting in a lower flow 

through the main branch. The resulting WSS distribution and analysis are illustrated 

in detail for geometry 1 (an LAD with 3 side-branches) and summarized for the other 

geometries. 

8.3.3 EFFECT OF OUTFLOW MODELS IN NON-BIFURCATING REGIONS 

For geometry 1 the WSSM is shown in Figure 8-5. The first side branch is the LCX, 

which has a large diameter. As a consequence, we see a low wall shear stress region 

opposite of the flow divider. Further downstream, the local lumen narrowing results 

in increased WSS values. Since this is a relatively straight segment, no pronounced 

effect of the curvature is observed. The WSS slightly increases from proximal to dis­

tal. Based on Doriot's Fit a higher percentage of the flow is directed through the 

side-branches. This results in a lower flow and thus lower WSS, than WSSM in the 

main branch. For geometry 1 the average WSSM was 0.26 Pa (95% Cl: 0.08-0.51 Pa) 

and 0.25 Pa (95% Cl: 0.07-0.48 Pa) for WSS
0

, with maxima of 1.02 Pa and 0.98 Pa, 

respectively, downstream of the most proximal bifurcation. Figure 8-SB depicts the 

difference in WSSM and WSS
0 

relative to WSSM. The relative difference between the 

two models ranged from -14.4% to 17.1% and is most pronounced near the bifur­

cation regions. In between the bifurcation regions this relative difference is fairly 

constant and scales very well with the difference in flow through the segment. In 

Figure 8-SD the relative difference in WSS averaged along the length of the artery 

and the relative difference in flow are depicted; they correspond well. Figure 8-5C 

shows the relative differences in WSS from which the relative difference in flow is 

subtracted in the 2D map of the artery. This illustrates that the WSS scales with the 

flow in the non-bifurcation regions, but not near the bifurcations. 

In the 6 arteries, 25 segments were defined. Five segments were too short to 

define a non-bifurcation region. The WSSM and WSS
0 

are presented in Table 8-2 as 

well as the differences and relative differences in WSS and flow through these non­

bifurcation regions. The averaged relative difference between WSSM and WSS
0 

in the 
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non-bifu rcation regions can be fairly large and ranges from -5.1% to 27.4%. The rela­

tive difference in WSS (column 5) and flow (column 6) were in each non-bifurcation 

region equal to each other (paired t-t est, p>0.05). Linear regression supported that 

the relative differences in flow and WSS in the non-bifurcation regions were equal 

{R2= 0.96, slope=l.08 and offset = 0.01). 

A WSS Murray 

D 
1S 

B % WSS difference 

1 
l 

C % WSS difference· 
%flow difference 

M urray's law vs. Doriot's fit 

" 
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FIGURE 8-5: Panel A shows the WSSM mapped into 20. In panel B the relative difference between 

the WSS., and WSS
0 

is depicted. It shows that the relative difference is very constant outside of 

the bifurcation regions. Panel C and D demonstrate that the relative difference in WSS is close to 

the relative difference in flow through the bra nch. In Panel C the relative difference in flow is sub­

tracted from t he relative difference in WSS. Between the bifurcation this results in values close 

to 0%. In Panel D the relative difference in WSS is averaged over the circumference and plotted 

against the length of the artery. 
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8.3.4 EFFECT OF OUTFLOW MODELS NEAR BIFURCATIONS 

Figure 8-6 shows the WSSM and WSS
0 

in the three bifurcations regions for geometry 

1. Bifurcation 1 and 2 both have a high WSS region at the carina of the bifurcation. 

Bifurcation 3 also has a high WSS region, but at the proximal side of the side-branch. 

The low WSS area's are found at the opposite site of the side-branch in bifu rcations 

1 and 3. In bifurcation 2 several low WSS regions are found. Qualitatively the WSSM 

and WSS0 look similar. The LWAMM is depicted in the WSSM distribution, the LWA0M 

and LWA
00 

are depicted in the WSS
0

• The difference in LWA is most prominent in 

..... 
c 
0 ·;::; 
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.2 
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WSS Murray's Law WSS Doriot's Fit 

FIGURE 8-6: On the left side the WSS distribution is depict ed as calculated w ith M urray's Law as 

outflow model for the 3 bifurcations regions of geometry 1 (WSSM). On the right the sam e bifurca­

tion regions but now depict ed w ith the WSS as calculated with Doriot's Fit (WSS
0

) . Not e that the 

WSS color bars are different for the different bif urcations. For each bifurcation in t he left panel, 

LWA is delineat ed as determined based on t he cut-off value calculat ed from the Murray's WSS 

distribution, LWA,..,. In t he r ight panels the area is depicted in t he Doriot's WSS distribution w ith 

the same cut-off value (LWA0M} and w it h the cut-off value determined by Doriot's WSS distribu­

tion LWA
00 
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bifurcation 2, and especially the LWA opposite of the side-branch differs in size and 

shape. The COM is 0.10 Pa and if we compare the LWA for both models than the 

LWAMM is 23 mm2 and the LWA
0

M and 29 mm2 with an overlap of 70.3%. It is to be 

expected that if you take the same COM for both WSS distributions that the LWA
0
M 

is larger than the LWAMM' since Doriot's Fit defined more fiow through the side­

branches. However if we base the cut-off value on the local WSS than the C0
0 

is 0.09 

Pa, and we find a better agreement since the LWA
0

M is almost equal to the LWAMM 

with 23 mm2 and an overlap of92.6%. Thus, if the cut-off value is relative to the local 

WSS values, than the LWA's hardly differ. 

TABLE 8-2: Results WSS and flow difference at the non-bifurcation regions 

Geometry NB Region WSS IPa] Flow 

WSSM WSSO Difference %Difference %Difference 

1 2 0.29 0.28 0.01 4.3% 4.0% 

3 0.23 0.21 0.02 9.6% 9.8% 

4 0.29 0.28 0.01 4.8% 4.9% 

2 1 0.37 0.39 -0.02 -5.1% 0.0% 

2 0.38 0.34 0.04 9.4% 6.6% 

3 O.S3 0.50 0.03 6.0% 5.7% 

3 1 0.48 0.48 0.00 -0.1% 0.0% 

2 0.38 0.33 0.05 12.4% 10.8% 

3 0.59 0.51 0.08 13.1% 11.9% 

4 0.40 0.36 0.04 10.2% 12.9% 

4 1 0.60 0.60 0.00 0.1% 0.0% 

2 1.19 1.14 0.06 4.4% 4.1% 

3 1.97 1.79 0.19 8.9% 8.2% 

4 2.10 2.09 0.01 -1.6% 0.6% 

5 2 0.75 0.68 0.07 8.0% 6.9% 

3 0.86 0.74 0.12 13.8% 12.7% 

4 1.36 1.11 0.25 18.2% 17.8% 

6 2 0.31 0.30 0.02 4.8% 6.5% 

4 0.29 0.23 0.06 18.1% 17.0% 

6 0.29 0.21 0.08 27.4% 26.5% 
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That this holds for all bifurcation regions is depicted in Table 8-3 and Figure 8-7. 

In Table 8-3 the LWAMM' LWA
0

M and LWA
00 

and overlap
0

M and overlap
00 

are summa­

rized for all bifurcation regions. The linear regression between LWAMM versus LWA0M 

was not as good as for LWAMM versus LWA
00 

(R'=0.87 versus R'=l.OO). The Bland­

Aitman analysis showed that the LWA
0

M was on average 4.7 mm2 larger than the 

LWAMM' but that the LWA
00 

and LWAMM were equal in size (paired-t-test, p=0.89). The 

overlap between LWAMM and LWA
00 

(94 ± 5%) was also significantly larger than the 

overlap between LWAMM and LWAM 0 (74% ± 15%) (Wilcoxon rank test, p<0.05). The 

high overlap in LWA shows that the location of the LWA does hardly differ between 

the 2 outflow condition models. 

TABLE 8-3: Results of the low WSS area's (LWA) at the bifurcations regions 

Geometry Bifurcation Total area LWA[mm2
] OverlapM

0 
Overlap

00 

[mm1] 
LWAMM LWAMD LWADD 

1 1 101 24 26 24 89.5% 98.2% 

2 92 23 29 23 70.3% 92.6% 

3 54 14 16 14 87.4% 97.2% 

2 1 58 13 13 12 81.1% 82.6% 

2 51 11 14 11 68.5% 92.4% 

3 1 121 30 35 30 77.9% 94.3% 

2 86 20 26 20 70.1% 98.4% 

3 47 12 18 12 54.1% 97.3% 

4 1 141 35 34 32 93.7% 91.8% 

2 71 17 18 17 91.9% 99.1% 

3 35 8 9 9 82.1% 92.7% 

5 1 90 22 34 21 48.9% 82.0% 

2 79 20 26 21 66.2% 92.8% 

3 54 12 15 12 73.4% 96.0% 

6 1 162 41 37 42 99.1% 89.0% 

2 174 43 51 43 78.4% 95.0% 

3 180 45 56 45 71.3% 97.2% 

4 110 29 44 29 51.8% 94.8% 

5 83 22 32 22 57.2% 98.5% 

LWAMM: Low wall shear stress area calculated w'1th Murray's law and the cut-off (CO) value 
calculated on this Murray's distribution. 

LWAM
0

: LWA calculated with Doriot's Fit and the CO calculated on Murray's distribution. 

LWA
00

: LWA calculated with Doriot's Fit and the CO value calculated on Doriot's distribution. 
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FIGURE 8-7: Comparison of the low wall shear stress areas in the bifurcation regions as calcu­

lated for Murray's Law as outflow condition model (LWAMM) versus the low WSS areas based on 

the WSS distribution calculated by Doriot's Fit with cut-off value based on Murray's distribution 

(LWA
0

M) or based on Doriot's distribution (LWA
00

}. The linear regression is shown with the original 

data points and the Blant-Aitman analysis. It shows that the LWAM
1
_, and LWA

00 
are not different. 

8.4 DISCUSSION AND CONCLUSIONS 

MSCT is a promising non-invasive imaging technique that can provide the geom­

etry of the coronary arteries to calculate WSS with computational fluid dynamics in 

the bifurcation regions. However, MSCT angiography does not provide any hemo­

dynamic information that can be used to prescribe the in,- and outflow boundary 

conditions. We provide a model to estimate these boundary cond.ltions based on 

the local geometry. The inflow into the artery was estimated based on a relationship 

that was derived from the measured flow and diameter data of Doriot et al. This 

allows thus to prescribe the flow through the artery based on the inlet diameter of 

geometry. To estimate the outflow at the side-branches it is common to use Mur­

ray's Law, which states that the flow division over two branches equals the ratio of 

the diameters to the power 3. However, this cubed power might be too large since 

lower values are found in literature and also in this study we found a value of 2.27. 

We studied the effect of different outflow conditions (Murray's Law and Doriot's 

Fit) on the WSS distribution and showed, although the differences were sometimes 

large, that the WSS scales outside the bifurcation regions with the prescribed flow 

through the branch. In the bifurcation regions the LWA's differed in size between 
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the two outflow condition models when an absolute cut-off value was chosen to 

determine LWA, however, when the cut-off value was chosen relative to the WSS 

d·lstribution of each of the models, the LWA's were equal in size and location for both 

outflow condition models. 

To estimate the inlet flow for our 6 vessel geometries based on the inlet diam­

eter we used the relation we found between diameter and flow based on the data 

of Doriot et al. On average the estimated flow was 84 ml/min. This value is within 

the range reported in literature (88 -141 ml/min [Aarnoudse-07, Bloch-09, Wellnhofer-09]). 

However, the mean WSS found in our study is 0.68 Pa, in which is lower than the 

wide range of values that are generally used in studies which the inlet flow is esti­

mated (1.4 Pa -17.7 Pa [Wentzel-05, Salhara-06, Soulis-06, Gijsen-07]). Our mean WSS value 

is within the range WSS values calculated from measured fiow data (0.46 -1.24 Pa 

[Gijsen-03, Gijsen-08]). Therefore it seems to be appropriate to use our proposed fit in 

future studies when flow data is lacking. 

Aside from the inflow, also boundary conditions need to be prescribed to regu­

late the outflow through the side-branches of the coronary artery to calculate ac­

curate WSS. Murray's Law is most often applied to determine the flow ratio over 

the daughter branches [Joshi-04, Soulis-06, G"rjsen-07]. However, reports on the geometry 

of human coronary arteries find a lower power value than the third power of Mur­

ray's Law [VanBavel-92, Finet-08]. To our knowledge we are the first that determined 

in humans the relationship between diameter ratio and flow ratio of the daughter 

branches. We found also a lower power value of 2.27. Since both literature based 

on geometry and our data come up with a lower power value, it is more appropriate 

to prescribe higher fiow rates through the side-branches than those derived from 

Murray's Law, for instance using Doriot's Fit. This will result in lower flows through 

the main-branches, and thus lower Reynolds numbers. 

The choice of different outflow boundary condition models results in different 

time-averaged WSS values. Between side-branches the averaged WSS can differ up 

to 20% and local differences are even higher depending whether you prescribe Mur­

ray's Law or Doriot's Fit. So, for studies interested in absolute WSS, Doriot's Fit is 

preferable over Murray's Law. However, we showed that outside of the bifurcations 

regions the relative difference between the two models scales with the flow. In the 

bifurcations regions the WSS does not scale with the fiow. However, the low WSS 
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regions are equal in size and position when the cut-off value is based on the local 

WSS values. Thus if no flow measurements are present, different outflow condition 

models will result in different absolute WSS values, but when relating normalized 

WSS to atherosclerosis, comparable results can be obtained. 

When studying atherosclerosis in the coronary arteries, a wide variety of disease 

can be present, from early atherosclerosis with no flow limiting effect to the more 

advanced phases of the disease with highly stenotic plaques. The data we used for 

the fitting of the flow diameter relations is obtained in patients with coronary artery 

disease, but in angiographically normal segments. Therefore, the boundary condi­

tion models presented in this paper might not be applicable for more diseased ar­

teries. More volumetric flow measurements in different parts of the coronary tree 

in different patients groups and also including the severity of the disease into the 

model, might improve the proposed models. Unfortunately, when intravascular 

Doppler measurements of coronary flow are performed, often only maximum ve­

locity is reported without the corresponding diameter at the measured location. 

Instead of Doppler measurements, for future research the choice for intravascular 

thermodilution [Aarnoudse-07] might be better, since it provides the volumetric flow 

without necessary estimations of the coronary size and velocity profile. 

In this study we prescribed flow at the outflow tracts as estimated based on geom­

etry. However, the flow through the side-branches is physiologically determined by 

the resistance of the vascular bed distal to the side-branch. Based on mathematical 

generation of coronary tree models the resistance and flow through the arteries can 

be modeled [VanBavel-92, Kaimovitz-05, Huo-07, Molloi-07]. These models can increase the 

insight into the flow division over the bifurcations. In contrast to these geometrical 

models, also lumped parameters models can be modeled to represent the vascular 

bed. Recently, methods are developed to mathematically couple these lumped pa­

rameter models to the outflow tracts of the side-branches of a 30 modeled aorta 

[Oiufsen-99, Mittal-05, Huo-07]. In the coronary arteries, however, not only the properties 

of the vascular bed but also the contraction of the heart muscle will influence the 

flow. More complex models of coronary flow exist [Bovendeerd-06], but these are not 

yet coupled to 3D models for CFD calculations. These models of increasing complex­

ity have great potential to mimic the time-dependent flow and thus time-depend­

ent WSS in the coronary arteries with increasing physiological reality. However, also 

patient specific measurements at several locations in the coronary arteries and in 

different stages of disease will be necessary to determine the parameters in such 

models. 
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Besides increasing complexity in prescribing the boundary conditions, also the 

complexity of the 3D model can be increased. In this study we choose a static, non 

compliant 3D model of the coronary arteries in which we calculated time-averaged 

WSS. Several papers have investigated the effect of these simplifications in a numer­

ical way [Prosi-04, Ramaswamy-04, Pivkin-05, Zeng-08]. These studies show that simplifica­

tions of the 3D model do influence the WSS values; however, how the simplification 

will influence the findings on the relation between WSS and atherosclerosis is still 

unknown, since in most clinical studies that relate WSS to atherosclerosis the WSS 

values are normalized or averaged in the spatial domain. 

The complexity of models to calculate WSS should also be considered in light of 

the accuracy of the current imaging techniques. Assessing the geometry non-inva­

sively by accurate segmentation of the coronary lumen from CT angiography is still a 

challenge, but accurate wall assessment is even more complex. It would be interest­

ing to study how accurate the generated geometry and model assumptions have to 

be for different type of studies on WSS and atherosclerosis. 

Apart from MSCT the coronary arteries can also be non-invasively assessed by 

MRI. Although the acquisition times of cardiac MRI are long and the spatial resolu­

tion is still limited, MRI might be a future competitor to MSCT for WSS analysis since 

the acquisition is without radiation and progress is being made in contrast enhanced 

plaque imaging and in coronary flow measurements [Bioch-09]. 

In conclusion, when patient specific boundary conditions for WSS computations 

in coronary trees are lacking, an estimation of the flow rates is necessary. Based 

on patients-specific flow data, we proposed an empirical relationship that relates 

the local geometry to flow rates through the main and side-branches. When ap­

plied as boundary conditions, the proposed relationship reveals lower flow rates 

through the main branch than based on the common applied Murray's Law. As a 

consequence the absolute WSS values are lower in the main branch. However, the 

choice of boundary condition has limited influence when studying normalized WSS 

as is common in atherosclerosis research. 



General discussion 

This last chapter starts with a summary of the previous 

chapters, which is followed by the discussion of this the­

sis. First the current and future role of computer tomog­

raphy (CT) in clinical practice, and in the assessment of 

wall shear stress and atherosclerosis is addressed. Next 

the, in this thesis frequently applied, fusion technique of 

CT and intravascular ultrasound (IVUS) is discussed for 

its application in the validation of CT versus IVUS, on the 

one hand, and, on the other hand, to study the relation 

between wall shear stress (WSS) and atherosclerosis. In 

the last part the potential of WSS as clinical parameter 

is discussed; what is possible at this moment, what are 

the challenges and what steps have to be taken before 

WSS can become a clinical important parameter? This last 

chapter ends with the conclusions of this thesis. 
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9.1 SUMMARY 

Wall shear stress (WSS), the drag force induced by the blood fiow on the vascu­

lar wall, is an important factor in the localization of atherosclerosis [Caro-71, vander­

Laan-04]. Despite its small value in comparison to the blood pressure, WSS influences 

many biological responses, which are triggered by the endothelial cells [Molek-99]. 

As WSS changes due to plaque growth, different biological responses kick in and 

as a consequence influence plaque composition and progression [Siager-05]. More 

insight in the development of atherosclerosis can contribute to the prevention and 

treatment of coronary atherosclerosis disease, which is still the number one cause 

of death in the developed countries. Because of the importance of WSS in athero­

sclerosis processes, this biomechanical parameter is extensively studied in vitro and 

in v·1vo in animals and patients. To assess WSS in patients the 3D geometry of the 

coronary lumen is needed [von Birgelen-95, van der Giessen-09]. Information about the 

atherosclerotic plaques have to be assessed in-vivo to relate the WSS to the ex­

tent of atherosclerosis. Intravascular ultrasound (IVUS) is the gold standard imaging 

technique to determine lumen and plaque information. Unfortunately IVUS is an 

invasive imaging technique~ which limits wide application in patients. Thus, there is 

a need for a non-invasive alternative to study WSS and atherosclerosis in patients. 

In the last decade the temporal and spatial resolution of computed tomography 

(CT) angiography have greatly improved. CT is a non-invasive 3D imaging technique 

and might therefore be a good alternative for IV US to assess the 3D geometry of the 

coronary lumen. Also the coronary wall can be visualized by CT, thus the relation 

between coronary WSS and atherosclerosis might be assessable with CT. The aim 

of this thesis was to explore how coronary CT angiography can be applied to study 

the relation between WSS and atherosclerosis as stand-alone non-invasive imaging 

technique or in combination with invasive imaging techniques. 

In Chapter 2 we related the presence of atheroscleros·ls to WSS in coronary bifur­

cations with CT as stand-alone imaging technique. Regions of high and low WSS were 

discriminated based on the geometry of the bifurcation and these regions were in­

spected on the presence of atherosclerosis. This study confirmed that atherosclero­

sis was mainly localized in the low WSS regions, i.e. the outer wall of the bifurcation. 

We also showed that plaque was found in the high WSS sensing carina when the 

atherosclerosis was more progressed. Thus, WSS and atherosclerosis can be studied 

in a qualitative way with CT angiography. 
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To quantitatively study WSS and atherosclerosis in the coronary arteries with the 

aid of CT, a reconstruction technique to generate patient specific 3D geometries of 

the lumen and wall by aligning 2D IVUS derived lumen and wall contours on a 3D CT 

derived centerline is presented in Chapter 3. We demonstrated the possibilities and 

robustness of this technique to correlate WSS and atherosclerosis quantitatively. 

Since this technique establishes the registration between CT and IVUS, cross-sec­

tional CT images can be compared to IVUS images as well as CT derived contours 

versus IV US contours to validate CT against the gold-standard IVUS. This validation is 

important since the possibilities of CT in WSS and atherosclerosis research depends 

on the accuracy of CT. 

In Chapter 4 the reconstruction technique is used to compare CT against IVUS. The 

accuracy to detect and classify plaques with CT in ex-vivo imaged human coronary 

arteries was assessed. This study demonstrated that plaque detection and classifica­

tion is hard. The inter-observer variabilities were large, calcifications hindered the 

assessment of the non-calcified part of a plaque, and non-calcified plaques could 

only reliably be detected if the wall was thicker than 1 mm. Also calcifications were 

not always detectable with CT. In-vivo comparison of CT and IVUS in Chapter 5 dem­

onstrated that only larger calcifications in the coronary wall can be detected with CT, 

but that the smaller ones are missed. The detection and classifications of different 

plaque types and components with CT thus remains a challenge. 

Chapter 6 and 7 show the possibilities of CT in combination with an invasive im­

aging modality to study WSS and atherosclerosis quantitatively. The reconstruction 

technique is applied in Chapter 6 to relate WSS and plaque rupture location. Small 

ruptures were mainly found upstream at the shoulders of the plaque and the WSS at 

the rupture location was on average higher than the WSS over the plaque. The asso­

ciation between elevated WSS and plaque rupture supports the hypothesis that high 

WSS in advanced atherosclerosis, destabilizes the plaque. A case report in Chapter 

7 illustrates that the 3D reconstruction technique is not limited to IVUS contours 

alone, but that any invasive 2D imaging technique can be placed into 3D with the aid 

of CT as long as side branches can be identified. In this case report the lipid content 

in the coronary wall as derived by near-infrared IVUS was placed into 3D together 

with the IVUS wall and lumen contours, such that WSS could be shown in relation to 

the lipid content in the wall. 
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In the main coronary arteries side-branch locations are predilection sites of 

atherosclerosis and therefore interesting regions to study the relation between 

WSS and atherosclerosis. In contrast to IVUS, CT has the capability of imaging all the 

larger coronary arteries simultaneously, thus not only the main branch, but also the 

large side-branches. Calculating the WSS in geometries with side-branches requires 

prescription of boundary conditions at the side-branch locations in order to divide 

the flow over the different branches. Since CT does not come with hemodynamic 

measures, estimations have to be made for this outflow conditions. In Chapter 8 

two models that estimate the flow division based on the available geometry are 

compared with respect to the influence on the WSS distribution. One model was 

based on an energy balance and one model was derived from data in the literature. 

The choice of model influenced absolute WSS; however relative WSS measures were 

hardly influenced by the choice oft he model. These ins'1ght are useful once coronary 

artery geometries with side-branches will be available either from CT as stand-alone 

imaging technique or from the combination of IVUS and CT. 

9.2 CORONARY CT ANGIOGRAPHY 

First, the current and future clinical role of CT to assess the extent of coronary artery 

disease will be discussed. Next, we will discuss the potentials of coronary CT angi­

ography as stand alone imaging technique to provide and relate WSS and athero­

sclerosis. 

9.2.1 CLINICAL APPLICATION 

Significant lumen stenosis in human coronary arteries can reliably and non-inva­

sively be assessed with coronary CT angiography [Bastarrika-09]. However CT can be 

used in more ways to determine the extent of coronary artery disease. Initial ob­

servations demonstrate good accuracies to determine myocardial perfusion defects 

[Ruzsics-08], and studies are currently executed to evaluate CT stress testing [George-09] 

and the determination of myocardial viability [Nikolaou-os]. However, it is still unclear 

how CT as a technique that can assess coronary anatomy, function, perfusion and 

viability, should become clinically incorporated with nuclear imaging, stress testing 

and traditional angiography. Yet, from a patient perspective a technique that can do 

all-in-ane with less radiation dose than two or more separate techniques would be 

very favorable. 
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CT angiography has to prove its benefits against other diagnostic modalities, in 

terms of patient outcome [Min-08, Pundziute-07] and cost-effectiveness [Dewey-07, StilJ­

man-07]. At this moment the most promising role of CT angiography is seen as a front­

line test in the diagnostic path of coronary artery disease, because high predictive 

values are obtained to rule out coronary disease [Lesser-07, Min-OS]. Since a trend is no­

ticeable towards medical treatment, instead of invasive interventional procedures 

as the core of coronary artery disease management [Tommaso-08], CT might develop 

into a screening tool for asymptomatic patients with increased risk for coronary ar­

tery disease. In addition, research on risk-stratification of different patients groups 

based on CT angiography findings in combination with the technical refinements 

of CT (lower radiation dose, higher resolution) also suggest that high-risk patients 

could benefit of CT angiography to determine the level of medical risk management 

and its success [Shaw-08]. 

9.2,2 WALL SHEAR STRESS ASSESSMENT 

The clinical success of CT for the assessment of coronary artery disease was the rea­

son to investigate the possibilities of CT angiography to provide the 3D lumen geom­

etry for patient specific coronary WSS analysis. The accuracy of WSS simulations de­

pends on, among other factors, the quality of the CT-derived lumen geometry, since 

WSS is very sensitive to the local lumen geometry. For example, assuming Poiseuille 

flow in two circular tubes with a diameter of 1.5 mm and 1.6 mm under equal flow, 

the WSS is more than 20% higher in the only 7% smaller tube. Accurate assessment 

and validation of manual annotated or automatically segmented coronary lumen is 

therefore necessary to achieve accurate 3D lumen geometry for WSS simulations. 

Lumen volumes per artery or segment as assessed by CT show good correlation 

with IVUS [Otsuka-08]. The assessment of clinical significant stenosis is possible with 

high accuracies, but stenosis quantification is still hard [Leber-05, Caussin-06]. Manual 

delineation of the lumen is challenging because the contrast intensity varies per pa­

tient and scan. In addition large calcifications in the wall hinder proper assessment 

of the lumen and at these locations the lumen size often not adequately assessed 

[Cademartiri-05]. Quantitative assessment of the local lumen area is thus still a chal­

lenge by CT. 
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Apart from the lumen geometry, flow and/or pressure measurements are neces­

sary to compute patient-specific WSS profiles. These hemodynamic input param­

eters for the CFD calculations cannot be provided by CT at this moment. Although 

true WSS values cannot be derived, the differentiation of relative high and low WSS 

has also proven to be valuable in atherosclerosis research [Wentzel-03, Gijsen-08]. In 

Chapter 8, we propose to estimate the fiow through the arteries based on the lu­

men diameters. From measured data the relationship was obtained between the 

d·1ameter of an artery and the flow, which can aid the WSS simulation when no flow 

or pressure information is available. 

9.2.3 ATHEROSCLEROSIS ASSESSMENT 

One advantage of CT over conventional angiography is that it is a non-invasive imag­

ing modality, and in addition CT can not only image the coronary lumen, but also 

the vessel wall. This opens the road for coronary plaque detection, characterization 

and quantification. In general three plaque types are discriminated with CT; non­

calcified plaques, calcified plaques and mixed plaques. Several efforts have been 

undertaken to subdivide the non-calcified plaques in plaques mainly consisting of 

fibrous tissue (hyperdense) and plaques with lipid content (hypodense plaques) 

based on CT intensity values. Good discrimination of these two types has turned out 

to be hard since the intensity values of both types overlap [Schroeder-04, Leber-04] and 

are also influenced by the contrast enhanced lumen [Cademartiri-05]. 

The detection of plaque is mainly dependent on the type of plaque type and its 

size. Calcified plaques can be detected with high sensitivity, but half of the non­

calcified plaques is missed by CT [Achenbach-04, Leber-04]. These results were confirmed 

in Chapter 4.1n this chapter it is also shown that in particular the small non-calcified 

plaques (<1 mm plaque thickness) are missed with CT. These small plaques have a 

much higher prevalence than the larger plaques, which highly decreases the overall 

sensitivity of CT to detect plaques. Nevertheless large plaques, which are clinical 

important, can be detected with acceptable sensitivity. Since these plaques have 

a higher prevalence in the proximal parts of the coronary tree, it is also generally 

noticed that plaque detection is better in these parts [Mollet-05]. 

Ask one observer twice or two different observers to judge the same CT scan on 

plaque presence and plaque classification and the results may differ considerably 

(Chapter 4), depending on, amongst other things, the experience of the observ­

ers, the quality of the CT scan and the part of the coronary tree that is assessed. 
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When comparing to IVUS, non-calcified plaques are often not detected and calcified 

plaques are easily considered as mixed plaque. Mixed plaques with a small calcifica­

tion can easily be classified as non-calcified plaques as small calcification cannot be 

detected by CT (Chapter 5). 

Detecting plaques and differentiating between plaque types with CT is thus not an 

easy task. lt is even harder to quantify the size of plaque by CT. Volumetric measure­

ments tend to underestimate the plaque volume especially of non-calcified plaques 

whereas the volume of plaques w·1th calcifications is overestimated [Achenbach~D4, 

Otsuka-08, Schepis-09]. For risk stratification it is in the first place important that the 

volumetric plaque assessment is consistent among patients and within a patient 

over time. When this can be guaranteed and the plaque burden can be related to 

increased cardiovascular risk than it is not a problem when small plaques are not 

incorporated into this volumetric measure, since the measured volumetric plaque 

burden is than only a refiection of the true plaque burden. 

9.2.4 FUTURE PERSPECTIVES 

Coronary CT angiography will undoubtedly consolidate and extend its position in 

clinical practice. Progression in the clinical field will be preceded by technical advanc­

es in the CT scanner's hardware as well as in the reconstruction and post-processing 

software. New scanners aim at both higher temporal and spatial resolution. Dual­

source CT scanners have halved the temporal resolution and the recent 320-detec­

tor row scanners allow to "snapshot" the heart within one rotation. Thanks to these 

improvements patients with high or irregular heart rates can now be imaged, which 

greatly increases the number of patients eligible for CT angiography. Upcoming are 

the flat-panel CT scanners, which can be thought of as a conventional multi-detector 

CT scanners in which the detector rows have been replaced by an area detector 

[Gupta-08]. Software developments aim to minimize imaging artifacts and to improve 

the image quality by incorporating new reconstruction algorithms and filters. In ad­

dition segmentation algorithms are developed and incorporated to facilitate the 

user by (semi)-automatically derivation of clinical relevant measures, which will in­

crease the reproducibility of the results 

At this moment qualitative assessment of WSS and atherosclerosis is possible (see 

Chapter 2) in human coronary arteries. However to obtain more quantitative values 

and measures for WSS and atherosclerosis with CT as stand-alone imaging modality, 

the technical advances mentioned above are undoubtedly necessary. Due to the 
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limited spatial resolution and the almost similar attenuation of the coronary wall 

and surrounding tissue, coronary CT as stand-alone imaging modality is not capable 

for this type of research. The inter,- and intra-observer variability's when assessing 

the diameter of the lumen or the size and components of the atherosclerotic wall 

are at this moment too large. For better atherosclerosis assessment contrast agents 

can be developed that target the plaque or a specific plaque component and in­

crease in this way the plaque detection by CT. Until quantitative assessment of WSS 

and atherosclerosis is possible with CT as stand-alone imaging modality, the fusion 

technique of IVUS and CT as presented in Chapter 3 can be an intermediate solution. 

9.3 FUSION OF IVUS AND CT 

In Chapter 3 a technique is presented that determines the 3D position of the IVUS 

images in the 3D CT images. On the one hand this technique allows for validation of 

CT derived parameters by comparison to IVUS (Chapter 4 and 5) and on the other 

hand 30 IV US contours can serve as the input for WSS simulations and atherosclero­

sis assessment (Chapter 6 and 7). 

9.3.1 VALIDATION OF CT VERSUS IVUS 

To validate CT derived lumen and/or wall segmentations, lumen and wall param­

eters have to be compared to the same parameters as derived with IVUS, the gold 

standard for coronary artery imaging. Whereas in clinical studies comparison of 

both imaging modalities ·Is car(1ed out on a segment base or at landmarks such as 

the minimum lumen diameter, the technique in Chapter 3 registers larger parts of 

the coronary artery as imaged by IVUS. This opens the possibility to validate CT de­

rived information against JVUS in several ways. 

In chapter 4 and 5 lumen and wall were not segmented in CT, but the presence 

of plaque, the presence of calcifications and the plaque type was determined. In 

chapter 4 it was shown that the accuracy to detect and classify calcified plaque by 

CT was much higher than for non-calcified plaque. In combination with geometri­

cal information derived from IVUS, the detection of plaque (components) can be 

determined in relation to the size of the plaque( component) as is demonstrated in 

Chapter 4 for non-calcified plaque and in Chapter 5 for calcifications. 
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When CT lumen and wall contours are obtained either by manually annotation 

or semi-(automatically) segmentation they can be validated against the contours 

derived from IVUS images. Areas can be compared at a local scale, but also volumet­

ric measures per segment, artery or tree, can be compared for example to validate 

plaque burden assessment. Also the influence of, for example, lumen contrast in­

tensity and the presence of calcifications on the accuracy of the CT contours can be 

investigated. In addition derived parameters such as the percentage of area stenosis 

or the remodeling index can be validated over the complete extent of the registered 

part of the artery. 

Aside from validation it is it is possible to position the IVUS contours over the CT 

dataset. Without assessing the contours in CT, the intensity of lumen and plaque can 

be determined. This information could serve as input for segmentation algorithms. 

Furthermore, projecting IV US images next to CT cross-sectional images overlaid with 

IVUS contours can be a valuable tool to increase the CT reading skills of observers. 

The presented technique to combine IVUS and CT information also has some draw­

backs and limitations. Unfortunately only a limited number of patients and thus data 

is available for comparison since only patients included in research protocols will be 

imaged by both modalities because of the invasive nature of IV US and the radiation 

dose of CT. For optimal validation ideally IVUS and CT should be obtained simultane­

ously, however this is not possible. If patients are imaged within a short time-span 

plaque characteristics and size will not change, however lumen dimensions can vary 

a lot due to, among others, stress and medication. The presented technique com­

pares IVUS and CT on a very local scale. Since for clinical applications this might be 

too local, simpler techniques might be more appropriate for validation of volumetric 

parameters such as plaque burden. 

9.3.2 SHEAR STRESS AND ATHEROSCLEROSIS 

The initial goal of the reconstruction technique in Chapter 3 was to create 3D pa­

tients-specific coronary geometry suitable for WSS simulations by placing the IVUS 

derived lumen and wall contours onto the 3D CT-derived centerline. In Chapter 6 

and 7, the 3D reconstructed arteries are successfully used in WSS simulations. 
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In Chapter 6 for the first time several 30 coronary artery geometries are created 

by combination of IVUS lumen and wall contours and coronary CT angiography. WSS 

was simulated in these geometries and related to the location of plaque ruptures 

as were identified on IVUS. The plaque ruptures were found most often upstream 

at the shoulders of the plaque and at higher WSS locations than on average over 

the plaque. This is in consensus with the hypothesis that high WSS by infiuencing 

the plaque components, destabilizes the plaque and what is previously reported 

[Groen~07, Fukumoto-08]. 

Previous reconstruction techniques positioned IVUS into 3D by placing the con~ 

tours onto the 3D derived catheter path, which was imaged by bi-plane angiography 

(ANGUS). The advantage of the IVUS-CT combination is that it is not dependent on 

bi-plane acquisition, and no additional actions by the cardiologist during the inter­

vention are required (i.e. diluted contrast injection and special angiography posi­

tions). Also the reconstruction technique is easier and faster. As mentioned before, a 

drawback of the technique is that, although CT is widely available, only few patients 

will be imaged by both CT and IVUS. On the other hand, the availability of data to 

perform the ANGUS technique is at least equally sparse. An advantage of the ANGUS 

technique is that both biplane angiography and IVUS are acquired at the same time, 

which is not possible for IVUS and CT. The ANGUS technique is also extensively vali­

dated and already widely applied by several research groups. 

9.3.3 FUTURE PERSPECTIVES 

As indicated above, many studies to validate CT more extensively are possible with 

this technique and some are currently in progress. The CT technology is still evolving 

and with every improvement, there is need for exploration of the capabilities of the 

new systems. As this moment no standardized method to validate CT is available. 

The proposed reconstruction technique might be a start to compare IV US and CT for 

each new scanner in a similar way. Knowledge about the accuracy of CT is necessary 

to derive feasible relations between WSS and atherosclerosis. As the CT scanners 

become better, also more extensive and more quantitative relations can be obtained 

with CT as stand-alone imaging technique. 
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As shown in Chapter 7, the reconstruction technique is not limited to grey-scale 

IVUS alone. CT can serve as backbone for all invasive tomographic imaging tech­

niques in which landmarks can be distinguished that are also visible in CT. This opens 

doors to study in-vivo plaque components in 3D as assessed with virtual histology, 

optical coherence tomography or NIR-IVUS in relation to WSS. On the other hand, 

also other 3D imaging techniques than CT can serve as backbone, such as MRI angi­

ography and rotational angiography. 

IVUS acquisition is often limited to one of the main coronary branches. The WSS 

cannot reliable be simulated near side-branches since the disturbed flow in the bi­

furcations regions will not be correctly simulated if the side branches are not incor­

porated into the geometry. The reconstruction technique can be extended by incor­

porating side-branches derived from the CT dataset into the 3D geometry derived 

from the IVUS contours. Of course the accuracy of the WSS will not be optimal in 

the side-branches since the geometry is obtained from CT instead of from IVUS, but 

by simulating fiow through the branches, the WSS patterns near the side-branch­

es in the main branch will improve. Since atherosclerosis is often located near the 

side-branches, incorporating side-branches to the geometry has additional value. 

However adding side-branches to the geometry comes with choosing appropriate 

boundary conditions for the CFD simulations, which by itself is not straightforward 

when hemodynamic measurements are not available (Chapter 8). 

9.4 CLINICAL APPLICATION OF SHEAR STRESS: Quo 

VADIT? 

WSS is a proven factor in the localization of atherosclerosis and might have role in 

the progression and destabilization of atherosclerosis [Siager-05]. WSS has been sug­

gested as additional local risk-factor to the known systemic risk factors. Dev·lating 

WSS patterns in the coronary arteries might even indicate regions vulnerable for 

rupture, however these relations are not yet established in large patients groups. 

Reason for this is that WSS assessment comes at this moment with invasive imaging 

and complex reconstruction techniques that are not widely available. CT angiogra­

phy could fill-in this gap as soon as the geometries of CT have proven to be good 

enough for coronary WSS assessment. 
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The current methods to assess WSS and atherosclerosis in the coronary arteries 

are not optimal to study WSS and atherosclerosis over time. Whether IVUS and/or 

CT is used to assess the geometry for WSS simulations, the invasiveness of IVUS and 

the radiation dose of CT limit imaging over time. The assessment of atherosclerosis 

is generally only possible at one time po·1nt often just after the first manifestation of 

the atherosclerotic disease. The consequence of this limitation is that the influence 

of WSS on atherosclerosis cannot be assessed over time and is thus limited to obser­

vational studies. In chapter 6 for example it is demonstrated that the WSS is gener­

ally higher at the location of ruptures than on average over the complete plaque. 

However from this study cannot be concluded that high WSS is induces changes in 

the composition of the plaque. 

For the same reasons that WSS is not obtained over time, WSS is not assessed in 

high-risk patients without symptoms. This limits the possibilities to study WSS as 

risk-predictor for coronary artery event. A lot can be learned from ongoing research 

in the carotid arteries on the relation between WSS and atherosclerosis. The carotid 

arteries can already be imaged non-invasively and databases are build with patient 

information, with imaging information of the carotid arteries at several time-points 

and with event information. By adding WSS computations to this information more 

can be learned about WSS as predictor for cerebral vascular events. These results 

might steer the research of WSS as risk parameter in the coronary arteries. 

As soon as patients are diagnosed with coronary artery disease, they get medica­

tion such statins. These medicines have proven to be very effective. However they 

overshadow the natural influence of parameters such as WSS on the development 

of plaques. In addition the event rates in large patient studies are nowadays very 

low, such that it is hard to find additional risk-factors. Therefore, animal studies are 

inevitable to study these types of relations since WSS can artificially be adapted, 

relations can be obtained at different time points and plaque composition can ex­

tensively studied by histological analysis. The large disadvantage of animal studies 

is that the pathophysiology of atherosclerosis is not comparable in the full extent to 

that of humans and thus findings in animals cannot always translated to humans. 

Before WSS can be a clinical parameter, it is also necessary to investigate how 

accurate WSS simulations have to be. WSS simulations can be carried out in a wide 

range of complexity, where models with increased complexity try to mimic the real 

physiology more and more. Models in these thesis could for example be extended 

by including the movement of the artery during contraction of the heart, adding 



GENERAL CONCLUSION 129 

the movement of the wall due to the pressure waves and by using patients-specific 

blood viscosity. However, increasing complexity of the models comes along with an 

increasing number of input parameters for the simulation that have to be deter­

mined or estimated from the patient. Aside from the scientific value and the evolve­

ment of mathematical modeling techniques, it is uncertain how much additional 

value they will have in studying patient specific WSS in relation to atherosclerosis. 

Absolute WSS values change over time, within minutes, during the day, but also 

during one's life. More interesting is to study the relative difference in WSS between 

those regions that are affected with atherosclerosis and those not. The complexity 

of the WSS simulations and the accuracy of the geometrical description of the artery 

should be investigated in that light instead of focusing on "true, absolute" WSS val­

ues. In addition to the complexity of the models it should also be investigated how 

accurate the geometry of the coronary artery should be derived for different type of 

studies. For example a less accurate WSS pattern might be necessary to study WSS 

for risk stratification in a large patient groups than to determine WSS in relation to 

local plaque components. 

9.5 GENERAL CONCLUSION 

Coronary CT angiography can have a promising role as a stand-alone imaging modal­

ity to study WSS versus atherosclerosis in the coronary arteries, since it is widely 

available and can acquire fast and non-invasively images of the lumen and wall of 

the main and side branches of the coronary arteries. However, at this moment CT 

cannot provide the information that is necessary to quantitatively determine WSS 

values and relate this to plaque parameters. Lumen and wall segmentation and clas­

sification are still challenging both in case of manual annotation by clinical observ­

ers as well as for (semi-) automated segmentation algorithms. CT in combination 

with IVUS can provide accurate 3D information about lumen and wall, which is suit­

able to relate for WSS and atherosclerosis in a quantitative way. Unfortunately this 

technique will be limited to research applications s·mce patients will not be imaged 

by both IVUS and CT because of the invasiveness of the IVUS procedure and the 

radiation exposure during CT acquisition. Until further improvements in CT, espe­

cially in spatial resolution, coronary CT angiography can only be used to relate WSS 

and atherosclerosis in a qualitative way. The value of quantitative and qualitative 

WSS and plaque assessment for risk-prediction, treatment or prevention of coronary 

atherosclerosis should be part of future studies. 



130 CHAPTER 9 I GENERAL DISCUSSION 



References 

Aarnoudse, van't Veer, Pijls, ter Woorst, Vercauteren, Tenino, Geven, Rutten, van Hagen, de Bruyne and van de Vosse 
(2007). "Direct volumetric blood flow measurement in coronary arteries by thermodilution." JAm Coli Cardiel 

50(24): 2294-2304. 

Achenbach, Ropers, Holle, Muschiol, Daniel and Moshage (2000). "In-plane coronary arterial motion velocity: 
measurement with electron-beam CT.'' Radiology 216(2): 457-463. 

Achenbach, Moselewski, Ropers, Ferencik, Hoffmann, MacNeill, Pohle, Baum, Anders, Jang, Daniel and Brady (2004). 
"Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter 
multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound." 

Circulation 109{1): 14-17. 

Achenbach, Ropers, Hoffmann, MacNeill, Baum, Pohle, Brady, Pomerantsev, Ludwig, Flachskampf, Wicky, Jang and Daniel 

(2004). "Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by 

multi detector spiral computed tomography.'' JAm Coli of Cardiel 43(5): 842-847. 

Agatston, Janowitz, Hildner, Zusmer, Viamonte and Detrano (1990). "Quantification of coronary artery calcium using 

ultrafast computed tomography." JAm Coli Cardiol15(4): 827-832. 

Antiga and Steinman (2004). "Robust and objective decomposition and mapping of bifurcating vessels." IEEE Transactions 

on Medical Imaging 23{6}: 704-713. 

Asakura and Karina (1990). "Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries." 

Circ Res 66(4): 1045-1066. 

Badak, Schoen hagen, Tsunoda, Magyar, Coughlin, Kapadia, Nissen and Tuzcu (2003). "Characteristics of atherosclerotic 

plaque distribution in coronary artery bifurcations: an intravascular ultrasound analysis.'' Coren Artery Dis 14(4}: 
309-316. 

Bastarrika, Lee, Huda, Ruzsics, Costello and Schoepf (2009). "CT of coronary artery diease." Radiology 253(2}: 317-338. 

Becker, Knez, Ohnesorge, Schoepf and Reiser {2000). "Imaging of noncalcified coronary plaques using helical CT with 

retrospective ECG gating." AJR Am J Roentgenol175{2): 423-424. 

Becker, Nikolaou, Muders, Babaryka, Crispin, Schoepf, Loehrs and Reiser (2003). ''Ex-vivo coronary atherosclerotic plaque 

characterization with multi-detector-row CT." Eur Radiol13: 2094-2098. 

Bhatia, Bhatia, Dhindsa and Dhindsa (2003). "Imaging of the vulnerable plaque: new modalities." South Med J 96(11}: 

1142-1147. 

Bhullar, li, Miao, Zandi, Kim, Shyy and Chien (1998). "Fluid shear stress activation of lkappa(3 ldnase is integrin­

dependent." J Bioi Chem 273{46): 30544-30549. 

Blackmon, Streck, Thilo, Bastarrika, Costello and Schoepf (2009). "Reproducibility of automated noncalcified coronary 

artery plaque burden assessment at coronary CT angiography." J Thorac Imaging 24(2}: 96-102. 

Bloch, Carlsson, Arheden and Stahlberg (2009). "Quantifying coronary sinus flow and global LV perfusion at 3T." BMC 

Med Imaging 9: 9. 

131 



132 REFERENCES 

Boskamp, Rinck, Link, Kummerlen, Stamm and Mildenberger {2004). "New vessel analysis tool for morphometric 
quantification and visualization of vessels in CT and MR imaging data sets." Radiographies 24(1}: 287-297. 

Bourantas, Kourtis, Plissiti, Fotiadis, Katsouras, Papafaklis and Michalis (2005). "A method for 30 reconstruction of 
coronary arteries using biplane- angiography and intravascular ultrasound images." Com put Med Imaging Graph 
29(8): 597-606. 

Boutsianis, Dave, Frauenfelder, Poulikakos, Wildermuth, Turina, Ventikos and Zund (2004). "Computational simulation of 

intracoronary flow based on real coronary geometry." Eur J Cardiothorac Surg 26(2): 248-256. 

Bovendeerd, Borsje, Arts and van de Vosse (2006). "Dependence of intramyocardial pressure and coronary flow on 
ventricular loading and contractility: a model study." Ann Biomed Eng 34(12): 1833-1845. 

Burke, Farb, Malcom, Liang, 5mialek and Virmani (1997). "Coronary risk factors and plaque morphology in men with 

coronary disease who died suddenly." N Engl J Med 336{18): 1276-1282. 

Burke, Kolodgie, Farb, Weber, Malcom, 5mialek and Virmani (2001). "Healed plaque ruptures and sudden coronary 
death: evidence that subclinical rupture has a role in plaque progression." Circulation 103(7): 934-940. 

Cademartiri, Mollet, Runza, Bruining, Hamers, Somers, Knaapen, Verheye, Midiri, Krestin and de Feyter (2005). "Influence 
of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: 
Observations in an ex-vivo model of coronary computed tomography angiography.'' Eur Radiol15: 1426-1431. 

Caro, Fitz-Gerald and Schroter (1971). "Atheroma and arterial wall shear. Observation, correlation and proposal of a shear 
dependent mass transfer mechanism for atherogenesis." Proc R Soc Lond B Bioi Sci 177(46): 109-159. 

Caussin, Larchez, Ghostine, Pesenti-Rossi, Daoud, Habis, Sigai-Cinqualbre, Perrier, Angel, Lancelin and Paul (2006). 
"Comparison of coronary minimal lumen area quantification by sixty-four-slice computed tomography versus 
intravascular ultrasound for intermediate stenosis." Am J Cardiel 98(7): 871-876. 

Chatzizisis, Coskun, Jonas, Edelman, Feldman and Stone (2007). "Role of endothelial shear stress in the natural history 
of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior." JAm Coli Cardiol 
49(25): 2379-2393. 

Chatzizisis, Jonas, Coskun, Beigel, Stone, Maynard, Gerrity, Daley, Rogers, Edelman, Feldman and Stone (2008). "Prediction 
of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an 
intravascular ultrasound and histopathology natural history study." Circulation 117(8): 993-1002. 

Cheng, Tempel, van Haperen, van der Baan, Grosveld, Daemen, Krams and de Crom (2006). "Atherosclerotic lesion size 
and vulnerability are determined by patterns of fluid shear stress." Circulation 113(23}: 2744-2753. 

Clarijs, Pasterkamp, Schoneveld, van Leeuwen, Hillen and Borst (1997}. "Compensatory enlargement in coronary and 
femoral arteries is related to neither the extent of plaque-free vessel wall nor lesion eccentricity. A postmortem 
study." Arterioscler Thromb Vase Bioi 17(11): 2617-2621. 

Cunningham and Gotlieb (2005). "The role of shear stress in the pathogenesis of atherosclerosis." Lab Invest 85(1): 9-23. 

Dammers, Stifft, Tordoir, Hameleers, H oeks and Kitslaar (2003). "Shear stress depends on vascular territory: comparison 

between common carotid and brachial artery." 1 Appl Physiol94(2}: 485-489. 

Davies, Barbee, La I, Robotewskyj and Griem (1995). "Hemodynamics and atherogenesis. Endothelial surface dynamics in 
flow signal transduction." Ann NY Acad Sci 748: 86-102; 

de Feyter, Mollet, Nieman, Arampatzis, Cademartiri, Pattynama and Serruys (2004). "Noninvasive visualisation of 
coronary atherosclerosis with multislice computed tomography.'' Cardiovasc Radiat Med 5(1): 49-56. 

de Feyter (2008). "Multislice ct coronary angiography: A new gold-standard for the diagnosis of coronary artery disease?" 

Nat Clin Pract Cardiovasc Med 5(3): 132-3. 

de Weert, Cretier, Groen, Homburg, Cakir, Wentzel, Dippel and van der Lugt (2009). "Atherosclerotic plaque surface 
morphology in the carotid bifurcation assessed with multidetector computed tomography angiography." Stroke 
40(4}: 1334-1340. 

de Winter, Hamers, Degertekin, Tanabe, Lemos, Serruys, Roelandt and Bruining (2004). "Retrospective image-based 
gating of intracoronary ultrasound images for improved quantitative analysis: the intelligate method." Catheter 

Cardiovasc lnterv 61(1): 84-94. 

Dewey and Hamm (2007). "Cost effectiveness of coronary angiography and calcium scoring using CT and stress MRI for 
diagnosis of coronary artery disease." Eur Radio117(5): 1301-1309. 



REFERENCES 133 

Dewey, Teige, Laule and Hamm (2007). "Influence of heart rate on diagnostic accuracy and image quality of 16-slice CT 

coronary angiography: comparison of multisegment and halfscan reconstruction approaches." Eur Radiol17{11): 

2829-2837. 

Dirksen, van der Wal, van den Berg, van der laos and Becker (1998). "Distribution of inflammatory cells in atherosclerotic 

plaques relates to the direction of flow." Circulation 98(19): 2000-2003. 

Doriot, Dorsaz, Dorsaz, De Benedetti, Chatelain and Delafontaine (2000). "In-vivo measurements of wall shear stress in 

human coronary arteries.'' Caron Artery Dis 11(5): 495-502. 

Ehara, Kobayashi, Yoshiyama, Shimada, Shimada, Fukuda, Nakamura, Yamashita, Yamagishi, Takeuchi, Naruko, Haze, 

Becker, Yoshikawa and Ueda (2004). "Spotty calcification typifies the culprit plaque in patients with acute 

myocardial infarction: an intravascular ultrasound study." Circulation 110(22): 3424-3429. 

Falk, Shah and Fuster (1995). "Coronary plaque disruption." Circulation 92(3): 657-671. 

Farmakis, 5oulis, Giannoglou, Zioupos and Louridas (2004). "Wall shear stress gradient topography in the normal left 

coronary arterial tree: possible implications for atherogenesis." Curr Med Res Opin 20(5}: 587-596. 

Ferencik, Nieman and Achenbach (2006}. " Noncalcified and calcified coronary plaque detection by contrast-enhanced 

multi-detector computed tomography: a study of interobserver agreement." JAm Coli Cardiol47(1):207-209. 

Feskens, J.W. and A.H.H. (2006). Corona ire hartziekten samengevat. Volksgezondheid Toekomst Verkenning, Nationaal 

Kompas Volksgezondheid. Bilthoven, RIVM. 

Finet, Gilard, Perrenot, Rioufol, Motreff, Gavit and Prost (ZOOS). "Fractal geometry of arterial coronary bifurcations: a 

quantitative coronary angiography and intravascular ultrasound analysis." Eurolntervention 3(4): 490-498. 

Flohr, McCollough, Bruder, Petersilka, Gruber, Suss, Grasruck, Stierstorfer, Krauss, Raupach, Primak, Kuttner, Achenbach, 

Becker, Kopp and Ohnesorge (2006). "First performance evaluation of a dual-source CT (D5CT) system." Eur Radial 

16(2): 256-268. 

Frauenfelder, Boutsianis, Schertler, Husmann, Leschka, Poulikakos, Marincek and Alkadhi (2007). "In-vivo flow simulation 

in coronary arteries based on computed tomography datasets: feasibility and initial results." Eur Radial 17(5): 

1291-1300. 

Friedman, Brinkman, Qin and Seed (1993). "Relation between coronary artery geometry and the distribution of early 

sudanophilic lesions." Atherosclerosis 98(2): 193-199. 

Fujii, Kobayashi, Mintz, Takebayashi, Dangas, Moussa, Mehran, Lansky, Kreps, Collins, Colombo, Stone, Leon and 
Moses (2003). "Intravascular ultrasound assessment of ulcerated ruptured plaques: a comparison of culprit and 

nonculprit lesions of patients with acute coronary syndromes and lesions in patients without acute coronary 

syndromes.'' CirculaTion 108(20): 2473-2478. 

Fukumoto, Hiro, Fujii, Hashimoto, Fujimura, Yamada, Okamura and Matsuzaki (ZOOS). "Localized elevation of shear stress 

is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in-vivo color mapping 

of shear stress distribution." JAm Coli Cardiol51(5): 645-650. 

Furchgott and Zawadzki (1980). "The obligatory role of endothelial cells in the relaxation of arter"1al smooth muscle by 

acetylcholine.'' Nature 288{5789): 373-6. 

Gardner, Tan, Hull, Usauskas, Sum, Meese, Jiang, Madden, Caplan, Burke, Virmani, Goldstein and Muller (2008). 

''Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared 
spectroscopy system." JACC Cardiovasc Imaging 1(5): 638-548. 

George, Arbab-Zadeh, Miller, Kitagawa, Chang, Bluemke, Becker, Yousuf, Texter, Lardo and Lima (2009). "Adenosine stress 
64- and 256-row detector computed tomography angiography and perfusion imaging: a pilot study evaluating 

the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia." Circ 

Cardiovasc Imaging 2(3}: 174-182. 

Giddens, Zarins and Glagov {1993). "The role of fluid mechanics in the localization and detection of atherosclerosis." J 

Biomech Eng 115(4B): 588-594. 

Gijsen, Allanic, van de Vosse and Janssen (1999). "The influence of the non-Newtonian properties of blood on the flow in 
large arteries: unsteady flow in a 90 degrees curved tube." J Biomech 32(7): 705-713. 

Gijsen, Oortman, Wentzel, Schuurbiers, Tanabe, Degertekin, Ligthart, Thury, de Feyter, 5erruys and Slager (2003). 

"Usefulness of shear stress pattern in predicting neointima distribution in sirolimus-eluting stents in coronary 

arteries." Am J Cardiol92(11): 1325-1328. 



134 REFERENCES 

Gijsen, Wentzel, Thury, Lamers, Schuurbiers, Serruys and van der Steen (2007). "A new imaging technique to study 3-D 

plaque and shear stress distribution in human coronary artery bifurcations in vivo." J Biomech 40(11): 2349-2357. 

Gijsen, Wentzel, Thury, Mastik, Schaar, Schuurbiers, Slager, van der Giessen, de Feyter, van der Steen and Serruys (2008). 

"Strain distribution over plaques in human coronary arteries relates to shear stress." Am J Physiol Heart Circ 

Physiol295(4): H1608-1614. 

Glagov, Weisenberg, Zarins, Stakunavicius and Kolettis {1987). "Compensatory enlargement of human atherosclerotic 

coronary arteries." N Engl J Med 316(22): 1371-1375. 

Greenland, Bon ow, Brundage, Bud off, Eisenberg, Grundy, Lauer, Post, Raggi, Red berg, Rodgers, Shaw, Taylor, Weintraub, 

Harrington, Abrams, Anderson, Bates, Grines, Hlatky, Lichtenberg, Lindner, Pohost, Schofield, Shubrooks, Stein, 

Tracy, Vogel and Wesley (2007). ''ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium 

scoring by computed tomography in global cardiovascular risk assessment and ·In evaluation of patients with chest 

pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA 
Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography)." 

Circulation 115(3): 402~426. 

Groen, Gijsen, van der Lugt, Ferguson, Hatsukami, van der Steen, Yuan and Wentzel (2007). "Plaque rupture in the carotid 

artery is localized at the high shear stress region: a case report." Stroke 38(8): 2379-2381. 

Groen, Gijsen, van der Lugt, Ferguson, Hatsukami, Yuan, van der Steen and Wentzel (2008). ''High shear stress influences 

plaque vulnerability." Neth Heart J 16(7-8): 280-283. 

Gr0ttum, Svindland and Walloe (1983). "Localization of atherosclerotic lesions in the bifurcation of the main left coronary 

artery." Atherosclerosis 47(1): SS-62. 

Guggenheim, Doriot, Dorsaz, Descouts and Rutishauser (1991). "Spatial reconstruction of coronary arteries from 

angiographic images." Phys Med Biol36(1): 99-110. 

Gupta, Cheung, Bartling, Usauskas, Grasruck, Leidecker, Schmidt, Flohr and Brady (2008). "Flat-panel volume CT: 

fundamental principles, technology, and applications." Radiographies 28(7): 2009-2022. 

Hagenaars, Gussenhoven, van der Linden and Born (2000). "Reproducibility of calcified lesion quantification: a 

longitudinal intravascular ultrasound study." Ultrasound Med Biol26(7): 1075-1079. 

He and Ku (1996). "Pulsatile flow in the human left coronary artery bifurcation: average conditions." J Biomech Eng 

118(1): 74-82. 

Hoffmann, Moselewski, Nieman, Jang, Ferenc"lk, Rahman, Cury, Abbara, Joneid"1-Jafari, Achenbach and Brady (2006). 

"Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary 

syndrome and stable lesions in stable angina by multidetector computed tomography." JAm Coli Cardiel 47(8): 

1655-1662. 

Hoffmann, Nagurney, Moselewski, Pena, Ferencik, Chae, Cury, Butler, Abbara, Brown, Manini, Nichols, Achenbach and 

Brady (2006). "Coronary multidetector computed tomography in the assessment of patients with acute <:hest 

pain." Circulation 114(21): 2251"2260. 

Hoffmann, Kwait, Handwerker, Chan, Lamuraglia and Brady (2003). "Vascular calcification in ex vivo carotid specimens: 

precision and accuracy of measurements with multi-detector row CT." Radiology 229(2): 375-381. 

Holzapfel, Sommer, Gasser and Regitnig (2005). "Determination of layer-specific mechanical properties of human 

coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling." Am J Physiol 

Heart Circ Physiol289(5): H2048-2058. 

Huo and Kassab (2007). "A hybrid one-dimensionai/Womersley model of pulsatile blood flow in the entire coronary 

arterial tree." Am J Physiol Heart Circ Physio1292(6): H2623-2633. 

Husmann, Herzog, Gaemperli, Tatsugami, Burkhard, Valenta, Veit-Haibach, Wyss, Landmesser and Kaufmann (2009). 

"Diagnostic accuracy of computed tomography coronary angiography and evaluation of stress-only single­

photon emission computed tomography/computed tomography hybrid imaging: comparison of prospective 

electrocardiogram-triggering vs. retrospective gating.'' Eur Heart J 30(5): 600-607. 

lriart, Brunet, Coste, Montaudon, Dos-Santos, Leroux, Labeque, Jais and Laurent (2007). "Early characterilation of 

atherosclerotic coronary plaques with multidetector computed tomography in patients with acute coronary 

syndrome: a comparative study with intravascular ultrasound." Eur Radiol17(10): 2581-2588. 



REFERENCES 135 

lwami, Fujii, Miura, Otani, lid a, Kawamura, Yoshitake, Kohne, Hisamatsu, Iwamoto and Matsuzaki (1998). "Importance of 

left anterior descending coronary artery curvature in determining cross-sectional plaque distribution assessed by 

intravascular ultrasound." Am J Cardiel 82(3): 381-384. 

Jeremias, Huegel, Lee, Hassan, Wolf, Yeung, Yock and Fitzgerald {2000). "Spatial orientation of atherosclerotic plaque in 
non-branching coronary artery segments." Atherosclerosis 152{1): 209-215. 

Joshi, Leask, Myers, Ojha, Butany and Ethier {2004). "Intimal thickness is not associated with wall shear stress patterns in 
the human right coronary artery." Arterioscler Thromb Vase Bioi 24(12): 2408-2413. 

Kaimovitz, Lanir and Kassab (2005). "Large-scale 3-0 geometric reconstruction of the porcine coronary arterial vasculature 
based on detailed anatomical data." Ann Biomed Eng 33(11): 1517-1535. 

Kassab and Fung (1995). "The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis." Ann Biomed 
Eng 23(1): 13-20. 

Kirpalani, Park, Butany, Johnston and Ojha (1999). "Velocity and wall shear stress patterns in the human right coronary 
artery.'' J Biomech Eng 121(4): 370-375. 

Knez, Becker, Becker, Leber, White, Reiser and Steinbeck (2002). "Determination of coronary calcium with multi-slice 
spiral computed tomography: a comparative study with electron-beam CT." lnt J Cardiovasc Imaging 18(4): 295-

303. 

Kopp, Schroeder, Baumbach, Kuettner, Georg, Ohnesorge, Heuschmid, Kuzo and Claussen (2001). "Non-invasive 

characterization of coronary lesion morphology and composition by multislice CT: first results in comparison with 
intracoronary ultrasound." Eur Radiolll: 1607-1611. 

Kostamaa, Donovan, Kasaoka, Tobis and Fitzpatrick (1999). "Calcified plaque cross-sectional area in human arteries: 
correlation between intravascular ultrasound and undecalcified histology." Am Heart J 137(3): 482-488. 

Krams, Wentzel, Oomen, Vinke, Schuurbiers, de Feyter, Serruys and Slager (1997). "Evaluation of endothelial shear stress 
and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary 
arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid 
dynamics." Arterioscler Thromb Vase Biol17(10): 2061-2065. 

Krams, Wentzel, Cespedes, Vinke, earlier, van der Steen, Lancee and Slager {1999). "Effect of catheter placement on 3-D 
velocity profiles in curved tubes resembling the human coronary system." Ultrasound Med Bioi 25{5): 803-810. 

Krams, Cheng, Helderman, Verheye, van Damme, Mousavi Gourabi, Tempel, Segers, de Feyter, Pasterkamp, De Klein, de 
Crom, van d er Steen and Serruys (2006). "Shear stress is associated with markers of plaque vulnerab"dity and MMP-
9 activity." Eurolntervention 2(2): 250-2S6. 

Leber, Knez, Becker, Becker, Ziegler, Nikolaou, Rist, Reiser, Carl White, Steinbeck and Boekstegers (2003). "Accuracy 
of multidetector spiral computed tomography in identifying and differentiating the composition of coronary 
atherosclerotic plaques. A comparative study with intracoronary ultrasound." JAm Coli Cardiol43(7}: 1241-1247. 

Leber, Knez, White, Becker, von Ziegler, Muehling, Becker, Reiser, Steinbeck and Boekstegers (2003). "Composition 
of coronary atherosclerotic plaques in patients with acute myocardial infarction and stable angina pectoris 
determined by contrast-enhanced multislice computed tomography." Am J Cardiol91(6): 714-718. 

Leber, Knez, Becker, Becker, von Ziegler, Nikolaou, Rist, Reiser, White, Steinbeck and Boekstegers (2004). "Accuracy 
of multidetector spiral computed tomography in identifying and differentiating the composition of coronary 
atherosclerotic plaques: a comparative study with intra coronary ultrasound." J Am Coli Cardiol 43(7): 1241-1247. 

Leber, Knez, Becker, Becker, Reiser, Steinbeck and Boekstegers (2005). "Visualising noncalcified coronary plaques by CT." 
lnt J Cardiovasc Imaging 21: 55-61. 

Leber, Knez, Ziegler, Becker, Nikolaou, Paul, Wintersperger, Reiser, Becker, Steinbeck and Boekstegers (2005). 
"Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography A 
comparative study with quantification coronary angiography and intravascular ultrasound." JAm Coil Cardiel 
26{1): 147-1S4. 

Leber, Johnson, Becker, von Ziegler, Tittus, Nikolaou, Reiser, Steinbeck, Becker and Knez (2007). "Diagnostic accuracy of 
dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary 
artery d"1sease." Eur Heart J 28(19): 23S4-2360. 

Lee, Loree, Cheng, Lieberman, Jaramillo and Schoen (1993). "Computational structural analysis based on intravascular 
ultrasound imaging before in vitro angioplasty: prediction of plaque fracture locations." JAm Coli Cardiel 21(3): 
777-782. 



136 REFERENCES 

Lefevre, Louvard, Morice, Pierre Dumas, Loubeyre, Benslimane, Premchand, Guillard and PiE>chaud (2000). "Stenting of 

bifurcation lesions: Classification, treatments, and results." Catheter Cardiovasc lnterv 49: 274-283. 

Lesser, Flygenring, Knickelbine, Hara, Henry, Kalil, Pelak, Lindberg, Pelzel and Schwartz (2007). "Clinical utility of coronary 

CT angiography: coronary stenosis detection and prognosis in ambulatory patients." Catheter Cardiovasc lnterv 
69(1): 64-72. 

Libby (2002). "Inflammation in atherosclerosis." Nature 420:868-875. 

libby (2002). "Atherosclerosis: the new view." Sci Am 286{5): 46-55. 

Loree, Grodzinsky, Park, Gibson and Lee (1994). "Static circumferential tangential modulus of human atherosclerotic 
tissue." J Biomech 27(2): 195-204. 

Lovett and Rothwell (2003). "Site of carotid plaque ulceration in relation to direction of blood flow: an angiographic and 
pathological study." Cerebrovasc Dis 16(4): 369-375. 

Mackay and Mensah {2004). "The atlas of heart disease and stroke." Geneva: World Health Organization. 

Maehara, Mintz, Bui, Walter, Castagna, Canes, Pichard, Satler, Waksman, Suddath, Laird, Kent and Weissman (2002). 
"Morphologic and angiographic features of coronary plaque rupture detected by intravascular ultrasound." J Am 
Coli Cardiol40(5): 904-910. 

Malek and lzumo (1995). ''Control of endothelial cell gene expression by flow." J Biomech 28(12): 1515-1S28. 

Malek, Alper and lzumo (1999). "Hemodynamic shear stress and its role in atherosclerosis." JAMA 282(21}: 203S-2042. 

Marquering, Dijkstra, Besnehard, Duth, Schuijf, J.J. and Reiber (2008). ''Coronary CT angiography: IVUS image fusion for 
quantitative plaque and stenosis analyses." Medicallmaging2008: Visualization, Image-Guided Procedures, and 
Modeling, Proceedings of the SPIE. 

Meijboom, Mollet, van Mieghem, Kluin, Weustink, Pugliese, Vourvouri, Cademartiri, Bogers, Krestin and de Feyter 
(2006). "Pre-operative computed tomography coronary angiography to detect significant coronary artery disease 

in patients referred for cardiac valve surgery." JAm Coli Cardiol48(8}: 1658-1665. 

Metz, Schaap, Van Walsum and Niess:en (2007). "Semi-automatic coronary artery centerline extraction in computed 
tomography angiography data.' IEEE International Symposium on Biomedical Imaging: Macro to Nano. 

Min, Kang, Shaw, Devereux, Robinson, lin, Legorreta and Gilmore {2008). "Costs and clinical outcomes after coronary 
multidetector CT angiography in patients without known coronary artery disease: comparison to myocardial 
perfusion SPECT." Radiology 249(1): 62-70. 

Min and lin (2008). "What makes a coronary CT angiogram non diagnostic?" J Cardiovasc Comput Tomogr 2(6): 351-359. 

Mintz, Nissen, Anderson, Bailey, Erbel, Fitzgerald, Pinto, Rosenfield, Siegel, Tuzcu and Yock {2001). ''American College 
of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting 
of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical 
Expert Consensus Documents." JAm Coli Cardiol37{5): 1478-1492. 

Mittal, Zhou, Linares, Ung, Kaimovitz, Molloi and Kassab (2005). "Analysis of blood flow in the entire coronary arterial 
tree." Am J Physiol Heart Circ Ptwsiol289(1): H439-446. 

Mohan, Mohan, Valente and Sprague (1999). "Regulation of low shear flow-induced HAEC VCAM-1 expression and 
monocyte adhesion." Am J Physio1276(5 Pt 1): C1100-7. 

Mollet, Cademartiri and de Feyter (2005). "Non-invasive multislice CT coronary imaging." Heart 91(3}: 401-407. 

Mollet, Cademartiri, Nieman, Saia, Lemos, MD, Serruys, Krestin and de Feyter (2005). "Noninvasive assessment of 
coronary plaque burden using multislice computed tomography." Am J Cardiol95·.1165-1169. 

Mollet, Cademartiri, van Mieghem, Runza, McFadden, Baks, Serruys, Krestin and de Feyter (2005). "High-resolution 
spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary 
angiography." Circulation 112(15}: 2318-2323. 

Molloi and Wong (2007). "Regional blood flow analysis and its relationship with arterial branch lengths and lumen 
volume in the coronary arterial tree." Phys Med Biol52(5): 1495-1503. 

Motomiya and Karina (1984). "Flow patterns in the human carotid artery bifurcation." Stroke 15 (1}: S0-56. 

Motoyama, Kondo, Anno, Sugiura, Ito, Mori, Ishii, Sato, Inoue, Sarai, Hishida and Narula (2007). ''Atherosclerotic plaque 
characterization by 0.5-mm-slice multislice computed tomographic imaging." Circ J 71(3): 363-366. 



REFERENCES 137 

Motoyama, Kondo, Sarai, Sugiura, Harigaya, Sato, Inoue, Okumura, Ishii, Anno, Virmani, Ozaki, Hishida and Narula (2007). 
"Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes." JAm Coli 

Cardiol50(4): 319-326. 

Mowatt, Cook, Hillis, Walker, Fraser, Jia and Waugh (2008). "54-Slice computed tomography angiography in the diagnosis 

and assessment of coronary artery disease: systematic review and meta-analysis." Heart 94(11)·. 1386-1393. 

Murase, Kume, Korenaga, Ando, Sawamura, Masaki and Kita (1998). "Fluid shear stress transcriptionally induces lectin­

like oxidized LDL receptor-1 in vascular endothelial cells." Circ Res 83(3): 328-333. 

Murray (1926). ''The physiological principle of minimum work: I. The vascular system and the cost of blood volume." Proc 

Natl Acad Sci US A 12(3): 207-214. 

Nair, Kuban, Tuzcu, Schoenhagen, Nissen and Vince {2002). "Coronary plaque classification with intravascular ultrasound 
radiofrequency data analysis." Circulation 106(17): 2200-2206. 

Nikolaou, Becker, Flohr, Huber, Scheidler, Fayad and Reiser {2004). "Optimization of ex vivo CT- and MR- imaging of 
atherosclerotic vessel wall changes." lnt J Cardiovasc Imaging 20{4): 327-334. 

Nikolaou, Sanz, Poon, Wintersperger, Ohnesorge, Rius, Fayad, Reiser and Becker (2005). "Assessment of myocardial 

perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: 
preliminary results." Eur Radiol15(5): 864-871. 

Olufsen {1999). "Structured tree outflow condition for blood flow in larger systemic arter"les." Am J Physiol 276(1 Pt 2): 

H257-268. 

Otsuka, Bruining, van Pelt, Mollet, Ligthart, Vourvouri, Hamers, de Jaegere, Wijns, van Domburg, Stone, Veldhof, 

Verheye, Dudek, Serruys, Krestin and de Feyter {2008). "Quantification of coronary plaque by 64-slice computed 

tomography: a comparison with quantitative intracoronary ultrasound." Invest Radiol43(5): 314-321. 

Perktold, Nerem and Peter (1991). "A numerical calculation of flow in a curved tube model of the left main coronary 

artery." J Biomech 24(3-4): 175-189. 

Pivkin, Richardson, Laidlaw and Karniadakis (2005). "Combined effects of pulsatile flow and dynamic curvature on wall 
shear stress in a coronary artery bifurcation model.'' J Biomech 38: 1283-1290. 

Pohle, Achenbach, Macneill, Ropers, Ferencik, Moselewski, Hoffmann, Brady, Jang and Daniel (2007). "Characterization 

of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS." Atherosclerosis 
190{1): 174-180. 

Poos (2008}. "Waaraan overlijden mensen in Nederland?" Volksgezondheid Toekomst Verkenning, Nationaal Kompas 

Volksgezondheid. Bilthoven, RIVM. 

Prosi, Perktold, Ding and Friedman (2004). "Influence of curvature dynamics on pulsatile coronary artery flow in a realistic 

bifurcation model." J Biomech 37(11): 1767-1775. 

Pugliese, Mollet, Runza, van Mieghem, Meijboom, Malagutti, Baks, Krestin, de Feyter and Cademartiri (2006). "Diagnostic 

accuracy of non-invasive 54-slice CT coronary angiography in patients with stable angina pectoris.'' Eur Radial 
16(3): 575-582. 

Pundziute, Schuijf, Jukema, Boersma, de Roos, van der Wall and Bax (2007). "Prognostic value of multislice computed 

tomography coronary angiography in patients with known or suspected coronary artery disease." J Am Coil Cardiel 
49(1): 62-70. 

Ramaswamy, Vigmostad, Wahle, Lai, Olszewski, Braddy, Brennan, Rossen, Sonka and Chandran (2004). "Fluid dynamic 

analysis in a human left anterior descending coronary artery with arterial motion." Ann Biomed Eng 32(12): 1628-

1641. 

Reimann, Rinck, Birinci-Aydogan, Scheuering, Burgstahler, Schroeder, Brodoefel, Tsitlikas, Herberts, Flohr, Claussen, 

Kopp and Heuschmid (2007). "Dual-source computed tomography: advances of improved temporal resolution in 
coronary plaque imaging." Invest Radiol42(3): 196-203. 

Ropers, Ropers, pflederer, Anders, Kuettner, Stilianakis, Komatsu, Kalender, Bautz, Daniel and Achenbach (2007). 

"Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography." 
JAm Coli Cardiel 50(25): 2393-2398. 

Ruzsics, Lee, Zwerner, Gebregziabher, Costello and Schoepf (2008). ''Dual-energy CT of the heart for diagnosing coronary 
artery stenosis and myocardial ischemia-initial experience." Eur Radiol18(11): 2414-2424. 



138 REFERENCES 

Rybicki, Otero, Steigner, Vorobiof, Nallamshetty, Mitsouras, Ersoy, Mather, Judy, Cai, Coyner, Schultz, Whitmore and Di 

Carli (2008). "Initial evaluation of coronary images from 320-detector row computed tomography." lnt J Cardiovasc 
Imaging 24{5): 535-546. 

Rybicki, Melchionna, Mitsouras, Coslcun, Whitmore, Steigner, Nallamshetty, Welt, Bernaschi, Barkin, Sircar, Kaxiras, 

Succi, Stone and Feldman (2009). "Prediction of coronary artery plaque progression and potential rupture from 

320-detector row prospectively ECG-gated single heart beat CT angiography: Lattice Boltzmann evaluation of 
endothelial shear stress." lnt J Cardiovasc Imaging. 

Saihara, Hamasaki, Okui, Biro, Ishida, Yoshikawa, Kataoka, Ninomiya, Mizoguchi, lchiki, Otsuji and Tei (2006). "Association 

of coronary shear stress with endothelial function and vascular remodeling in patients with normal or mildly 

diseased coronary arteries." Caron Artery Dis 17(5): 401-407. 

Samijo, Willigers, Barkhuysen, Kitslaar, Reneman, Brands and Hoeks {1998). "Wall shear stress in the human common 

carotid artery as function of age and gender." Cardiovasc Res 39(2): S15-522. 

Sangiorgi, Rumberger, Severson, Edwards, Gregoire, Fitzpatrick and Schwartz (1998). "Arterial calcification and not lumen 

stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary 
artery segments using non decalcifying methodology." JAm Coil Cardia I 31(1): 126-133. 

Sarwar, Rieber, Mooyaart, Seneviratne, Houser, Bamberg, Raffel, Gupta, Kalra, Pien, lee, Brady and Hoffmann (2008). 

"Calcified plaque: measurement of area at thin-section flat-panel CT and 64-section multidetector CT and 
comparison with histopathologic findings." Radiology 249(1): 301-306. 

Schaap, Metz, Van Walsum, VanDer Giessen, Weustink, Mollet, Bauer, Bogunovic, Castro, Deng, Dikici, O'donnell, Frenay, 

Friman, Hernandez Hoyos, Kitslaar, Krissian, Kuhne!, Luengo-Oroz, Orkisz, Smedby, Styner, Szymczak, Tek, Wang, 

Warfield, Zambal, Zhang, Krestin and Niessen (2009). "Standardized evaluation methodology and reference 

database for evaluating coronary artery centerline extraction algorithms." Med Image Anai13{S): 701-14. 

Schaar, Muller, Fatk, Virmani, Fuster, Serruys, Colombo, Stefanadis, Ward Casscells, Moreno, Maseri and van der Steen 

(2004). 'Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable 

plaque, June 17 and 18, 2003, S.antorini, Greece.'' Eur Heart J 2S(12): 1077-1082. 

Schaar, de Korte, Mastik, van Damme, Krams, Serruys and van der Steen (2005). "Three-dimensional palpography of 

human coronary arteries. Ex vivo validation and in-patient evaluation." Herz 30(2): 12S-133. 

Schepis, Marwan, Pflederer, Seltmann, Ropers, Daniel and Achenbach (2009). "Quantification of noncalcified coronary 
atherosclerotic plaques with Dual Source Computed Tomography: comparison to intravascular ultrasound." Heart. 

Schiemann, Bakhtiary, Hietschold, Koch, Esmaeili, Ackermann, Moritz, Vogl and Abolmaali (2006). "MR-based coronary 
artery blood velocity measurements in patients without coronary artery disease." Eur Radiol16(5): 1124-1130. 

Schmermund, Baumgart, Gorge, Seibel, Gronemeyer, Ge, Haude, Rumberger and Erbel (1997). "Coronary artery 

calcium in acute coronary syndromes: a comparative study of electron-beam computed tomography, coronary 
angiography, and intracoronary ultrasound in survivors of acute myocardial infarction and unstable angina." 

Circulation 96(5): 1461-1469. 

Schoenhagen, Tuzcu, Stillman, Moliterno, Halliburton, Kuzmiak, Kasper, Magyar, Lieber, Nissen and White (2003}. "Non­

invasive assessment of plaque morphology and remodeling in mildly stenotic coronary segments: comparison of 

16-slice computed tomography and intravascular ultrasound." Co ron Artery Dis 14(6): 459-462. 

Schroeder, Kuettner, leitritz, Janzen, Kopp, Herdeg, Heuschmid, Burgstahler, Baumbach, Wehrmann and Claussen (2004). 

"Reliability of differentiating human coronary plaque morphology using contrast-enhanced multislice spiral 

computed tomography: a comparison with histology." J Com put Assist Tomogr 28(4): 449-4S4. 

Scott, Arora, Farb, Virmani and Weissman (2000). "Pathologic validation of a new method to quantify coronary calcific 

deposits in vivo using intravascular ultrasound." Am J Cardiol85(1): 37-40. 

Seo, Schachter and Barakat (2005). "Computational study of fluid mechanical disturbance induced by endovascular 

stents." Ann Biomed Eng 33(4): 444-4S6. 

Shaw, Berman, Hendel, Borges Neto, Min and Callister (2008). "Prognosis by coronary computed tomographic 

angiography: matched comparison with myocardial perfusion single-photon emission computed tomography." J 

Cardiovasc Com put Tomogr 2{2): 93-101. 

Sherman (1981). "On connecting large vessels to small. The meaning of Murray's law." J Gen Physiol 78(4): 431-453. 



REFERENCES 139 

Shimada, Courtney, Nakamura, Hongo, Sonoda, Hassan, Yock, Honda and Fitzgerald (2006). "Intravascular ultrasonic 

analysis of atherosclerotic vessel remodeling and plaque distribution of stenotic left anter·lor descending coronary 
arterial bifurcation lesions upstream and downstream of the side branch." Am J Cardiol98(2): 193-196. 

Sianos, Morel, Kappetein, Morice, Colombo, Dawkins, Brand, Dyck, Russel and Serruys (2005). "The SYNTAX Score: an 

angiographic tool grading the complexity of coronary artery disease." Eurolntervention 2: 219-227. 

Slager, Wentzel, Schuurbiers, Oomen, Kloet, Krams, von Birge len, van der Giessen, Serruys and de Feyter (2000). "True 

3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS} and its 

quantitative validation." Circulation 102(5): 511-516. 

Slager, Wentzel, Gijsen, Schuurbiers, van der Wal, van der Steen and Serruys (ZOOS). "The role of shear stress in the 
generation of rupture-prone vulnerable plaques." Nat Clin Pract Cardiovasc Med 2(8): 401-407. 

Slager, Wentzel, G"1jsen, Thury, van der Wal, Schaar and Serruys (2005}. "The role of shear stress in the destabilization of 
vulnerable plaques and related therapeutic implications." Nat Clin Pract Cardiovasc Med 2(9}: 456-464. 

Soulis, Farmakis, Giannoglou and louridas (2006). "Wall shear stress in normal left coronary artery tree." J Biomech 
39(4): 742-749. 

Stary (1987). "Macrophages, macrophage foam cells, and eccentric intimal thickening in the coronary arteries of young 
children." Atherosclerosis 64: 91-108. 

Stary, Blankenhorn, Chandler, Glagov, lnsull, Richardson, Rosenfeld, Schaffer, Schwartz, Wagner and Wissler (1992). "A 

definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the committe on 
vascular lesions of the council on arteriosclerosis, American Heart Association." Circulation 85: 391-405. 

Stary, Chandler, Glagov, Guyton, lnsull, Rosenfeld, Schaffer, Schwartz, Wagner and Wissler (1994). "A definition of initial, 
fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the 
Council on Arteriosclerosis, American Heart Association." Circulation 89(5): 2462-2478. 

Stary, Chandler, Dinsmore, Fuster, Glagov, lnsull, Rosenfeld, Schwartz, Wagner and Wissler (1995). "A definition of 
advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the 

Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association." Circulation 92(5): 
1355-1374. 

Stary (2000). "Natural history and histological classification of atherosclerotic lesions: an update.'' Arterioscler Thromb 
Vase Biol20(5): 1177-1178. 

Stillman, Oudkerk, Ackerman, Becker, Buszman, de Feyter, Hoffmann, Keadey, Marano, Lipton, Raff, Reddy, Rees, Rubin, 
Schoepf, Tarulli, van Beek, Wexler and White (2007). "Use of multidetector computed tomography for the 
assessment of acute chest pain: a consensus statement of the North American Society of Cardiac Imaging and the 
European Society of Cardiac Radiology." lnt J Cardiovasc Imaging 23(4): 415-427. 

Stone, Coskun, Kinlay, Clark, Sonka, Wahle, llegbusi, Yeghiazarians, Popma, Orav, Kuntz and Feldman (2003). "Effect 
of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent 
restenosis in humans: in vivo 6-month follow-up study." Circulation 108(4): 438-444. 

Sun, Zhang, Lu, Yu, Yang, Zhou, Wang and Fan (2008). "Identification and quantification of coronary atherosclerotic 
plaques: a comparison of 64-MDCT and intravascular ultrasound." AJR Am J Roentgenol190(3): 748-754. 

Suo, Oshinski and Giddens (2008). ''Blood flow patterns in the proximal human coronary arteries: relationship to 
atherosclerotic plaque occurrence." Mol Cell Biomech 5{1): 9-18. 

Svindland (1983). "The localization of sudanophilic and fibrous plaques in the main left coronary bifurcation." 
Atherosclerosis 48(2): 139-145. 

Tadjfar (2004). "Branch angle and flow into a symmetric bifurcation." J Biomech 126(4): 517-518. 

Tang, Teng, Canton, Yang, Ferguson, Huang, Zheng, Woodard and Yuan (2009). "Sites of rupture in human atherosclerotic 
carotid plaques are associated with high structural stresses: an in vivo MRI-based 3D fluid-structure interaction 
study." Stroke 40{10): 3258-3263. 

Tommaso {2008). "One year perspective on COURAGE." Catheter Cardiovasc lnterv 72(3): 426-429. 

Tsutsui, Yamagishi, Uematsu, Suyama, Nakatani, Yasumura, Asanuma and Miyatake (1998). "Intravascular ultrasound 
evaluation of plaque distribution at curved coronary segments.'' Am J Cardiol 81(8): 977-981. 



140 REFERENCES 

Tuzcu, Kapadia, Tutar, Ziada, Hobbs, McCarthy, Young and Nissen {2001). "High prevalence of coronary atherosclerosis 

in asymptomatic teenagers and young adults: evidence from intravascular ultrasound." Circulation 103(22): 2705-

2710. 

van der Giessen, Schaap, Gijsen, Groen, van Walsum, Mollet, Dijkstra, van de Vosse, Niessen, de Feyter, van der Steen and 

Wentzel {2009). "3D fusion of intravascular ultrasound and coronary computed tomography for in-vivo wall shear 
stress analysis: a feasibility study." lnt J Cardiovasc Imaging. 

van der Steen, Cespedes, earlier, Mastik, Lupotti, Borsboom, Li, Serruys and Born (2000). "Flow estimation using an 

intravascular imaging catheter." Ultrasonics 38{1-8): 363-368. 

van Mieghem, McFadden, de Feyter, Bruining, Schaar, Mollet, Cademartiri, Goedhart, de Winter, Granillo, Valgimigli, 

Mastik, van der Steen, van der Giessen, Sianos, Backx, Morel, van Es, Zalewski and Serruys (2006). "Noninvasive 

detection of subclinical coronary atherosclerosis coupled with assessment of changes in plaque characteristics 

using novel invasive imaging modalities: the Integrated Biomarker and Imaging Study (IBIS)." JAm Coli Cardiel 
47(6): 1134-1142. 

VanBavel and Spaan (1992). ''Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity." 
Circ Res 71(5): 1200-1212. 

Vanderlaan, Reardon and Getz (2004). "Site specificity of atherosclerosis. Site-selective responses to atherosclerotic 

modulators." Arterioscler, Thromb Vase Bio124(1): 12-22. 

Vattikuti and Towler (2004). "Osteogenic regulation of vascular calcification: an early perspective." Am J Physiol 

Endocrinol Metab 286(5): E686-696. 

Vengrenyuk, earlier, Xanthos, Cardoso, Ganatos, Virmani, Einav, Gilchrist and Weinbaum (2006). "A hypothesis for 

vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous 

caps." Proc Natl Acad Sci US A 103(40): 14678-14683. 

Virmani, Kolodgie, Burke, Farb and Schwartz {2000). "Lessons from sudden coronary death: a comprehensive 

morphological classification scheme for atherosclerotic lesions." Arterioscler Thromb Vase Bioi 20(5): 1262-1275. 

Virmani, Burke, Kolodgie and Farb (2002). "Vulnerable plaque: the pathology of unstable coronary lesions.'' J lnterv 

Cardio115(6): 439-446. 

Virmani, Kolodgie, Burke, Finn, Gold, Tulenko, Wrenn and Narula {2005). "Atherosclerotic plaque progression and 
vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage." Arterioscler Thromb Vase Bioi 

25(10}: 2054-61. 

Virmani, Burke, Farb and Kolodgie (2006). "Pathology of the vulnerable plaque." J Am Coli Cardiel 47(8 Suppl): C13-18. 

von Birgelen, Erbel, Di Mario, Li, Prati, Ge, Bruining, Gorge, Slager, Serruys and et al. (1995). "Three-dimensional 

reconstruction of coronary arteries with intravascular ultrasound." Herz 20(4): 277-289. 

Wahle, Lopez, Olszewski, Vlgmostad, Chandran, Rossen and Sonka (2006). "Plaque development, vessel curvature, and 

wall shear stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound." Med Image 

Anal10(4): 615-631. 

Wellnhofer, Goubergrits, Kertzscher, Affeld and Fleck (2009). ''Novel non-dimensional approach to comparison of wall 

shear stress distributions in coronary arteries of different groups of patients." Atherosclerosis 202(2): 483-490. 

Wentzel, Gijsen, Schuurbiers, Groen, van der Giessen, van der Steen and Serruys (2001). "Why do we need flow 

measurements? Role of flow and shear stress in atherosclerotic disease. Handbook of Optical Coherence 

Tomography." Bouma and Tearney. 

Wentzel, Krams, Schuurbiers, Oomen, Kloet, van der Giessen, Serruys and Slager (2001). "Relationship between 

neointimal thickness and shear stress after Wallstent implantation in human coronary arteries." Circulation 
103(13): 1740-1745. 

Wentzel, Janssen, Vos, Sch uurb"1ers, Krams, Serruys, de Feyter and Slager (2003). "Extens·1on of "mcreased atherosclerotic 

wall thickness into high shear stress regions is associated with loss of compensatory remodeling." Circulation 
108(1): 17-23. 

Wentzel, Gijsen, Schuurbiers, Krams, Serruys, de Feyter and Slager {2005). "Geometry guided data averaging enables 

the interpretat1on of shear stress related plaque development in human coronary arteries." J Biomech 38(7): 

1551-1555. 

WHO (2003). Global Health: today's challenges. The World Health Report 2002-Shaping the future. Geneva, World Health 
Organizat1on. 



REFERENCES 141 

Zarins, Giddens, Bharadvaj, Sottiurai, Mabon and Glagov {1983). "Carotid bifurcation atherosclerosis. Quantitative 

correlation of plaque localization with flow velocity profiles and wall shear stress." Circ Res 53(4): 502-514. 

Zeng, Boutsianis, Ammann, Boomsma, Wildermuth and Poulikakos (ZOOS). ''A study on the compliance of a right coronary 

artery and its impact on wall shear stress.'' J Biomech Eng 130(4}: 041014. 



142 REFERENCES 



Dankwoord 

Dit is dan het eindstation van vier en half jaar werk. Hoewel de reis soms meer op 
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aan de momenten buiten werk (Boston, Florida, Barcelona). Frank, je bent een 
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rollen zauden gaan vervullen, dus ik wil jullie aile drie, Ton, Pim, Frans, in een adem 

bedanken voor de mogelijkheid die jullie hebben gecreeerd om aan het ErasmusMC 
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Oak de andere !eden van promotie- en leescammissie wil ik op deze plaats 

bedanken. Wouter Jukema, Wim van der Giessen, bedankt dat jullie vanuit een 
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cardiologisch perspectief interesse in mijn werk hebben getoond. Udo, I feel 
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voor jullie inbreng op welke wijze oak. Naast het biomechanica lab, is er nag het 

grater geheel, de afdeling biomedische technologie. Collega's bedankt voor de 

goede sfeer, het jaarlijkse labuitje was tel kens een feest. Mieke, bedankt voor je 

warme wijze waarop je ondersteuning geeft a an de afdeling. 

Een multidisciplinair project doe je niet aileen. Vee! mensen van verschillende 

afdelingen hebben dit proefschrift mogelijk gemaakt. Van de BIGR wil ik Thea, 
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team aan interventiecardiologen en cathlabtechnici, heeft toegang gegeven tot 

uitzonderlijke data. Bedankt dat jullie dit wilden delen. 
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het regelmatig als spagaat voelde, heeft de opleiding Qualified Medical Engineer 

van de SMPE/e zeker bijgedragen aan mijn vorming. Herman, lneke en aile anderen, 



bedankt voor jullie ondersteuning, persoonlijk, inhoudelijk, organisatorisch en 

financieel. 

Familie, vrienden, bedankt voor de steun de afgelopen jaren en het begrip 
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wilt zijn. Het wordt een mooi plaatje met drie vrouwen op een rij. Lambert, even 

zijn we coltega's geweest en zelfs een moment stadsgenoten. Het schept een band 

die hopelijk nog lang blijft. Marcel, Homme-Auke, we zullen elkaar nog regelmatig 

tegenkomen op werkgebied, Iaten we niet vergeten zo nu en dan oak een avondje 

ofweekendje te prikken. 

Lieve meiden, jullie weten dat ik jullie bedoel, domweg bedankt dat jullie mijn 
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